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Abstract: Annual forest maps at a high spatial resolution are necessary for forest management and conservation. 

Large uncertainties remain among the existing forest maps, because of different forest definitions, satellite datasets, 

in-situ training datasets, and mapping algorithms. In this study, we generated annual maps of forest maps and 

evergreen forest maps at a 30-m resolution in the Contiguous United States (CONUS) during 2015-2017 by integrating 30 

microwave data (Phased Array type L-band Synthetic Aperture Radar (PALSAR-2)) and optical data (Landsat) using  

kKnowledge-based algorithms. The resultant PALSAR-2/Landsat-based forest maps (PL-Forest) were compared with 

five major forest datasets in the CONUS: (1) the Landsat tree canopy cover from Global Forest Watch datasets (GFW-

Forest), (2) the Landsat Vegetation Continuous Field datasets (Landsat VCF-Forest), (3) the National Land Cover 

Database 2016 (NLCD-Forest), (4) the Japan Aerospace Exploration Agency (JAXA) forest maps (JAXA-Forest), 35 

and (5) the Forest Inventory and Analysis (FIA) data from the USDA Forest Service (FIA-Forest). The forest structure 

data (tree canopy height and canopy coverage) derived from the lidar observations of the Geoscience Laser Altimetry 

System (GLAS) onboard of NASA's Ice, Cloud, and land Elevation Satellite (ICESat-1) were used to assess the five 

forest cover datasets derived from satellite images. Using the forest definition by the Food and Agricultural 

Organization (FAO) of the United Nations, more forest pixels from the PL-Forest maps meet the FAO’s forest 40 

definitions than the GFW-, Landsat VCF-, and JAXA-Forest datasets. Forest area estimates from the PL-Forest were 

close to those from the FIA-Forest statistics but higher than the GFW-Forest, NLCD-Forest and lower than the Landsat 

VCF-Forest, which highlights the potential of using both PL-Forest and FIA-Forest datasets to support the FAO's 

Global Forest Resources Assessment. Furthermore, the PL-based annual evergreen forest maps (PL-Evergreen Forest) 

showed reasonable consistency with the NLCD product.  Together with our previous work in South America and 45 

monsoon Asia, this study This study provided the improved annual PL-Forest and PL-Evergreen Forest datasets at 

30-mfurther demonstrates the potential of integrating PALSAR and Landsat images for developing annual forest maps 

and forest-type maps at high spatial resolution across the scales from region to the globe for CONUS to , which could 

be used to support the forest management, conservation, and FAO's Global Forest rResources aAssessments. The 

comparison of the most widely used forest datasets offered insights to employ appropriate products for relevant 50 

research and management activities across local tot both regional and national scales.   The generated datasets in this 

study PL-Forest and PL-Evergreen Forest datasets are  publicly available at 

https://doi.org/10.6084/m9.figshare.21270261 (Wang, 2024)(Wang et al., 2022). The improved annual maps of forest 
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and evergreen fForest at 30-m over the CONUS can be used to support the forest management, conservation, and 

resource assessments. 55 

Keywords: Forest map, Evergreen forest map,  Tree canopy height, Tree canopy cover, Evergreen Forest, Deciduous 

Forest 
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1 Introduction 

Forests cover approximately 30% of the land surface and have played major roles on in regulating terrestrial 60 

carbon and water cycles (Harris et al., 2012; D'almeida et al., 2007), influencing climate (Bonan, 2008; Peng et al., 

2014), conserving biodiversity (Seto et al., 2012; Betts et al., 2017), and supplying forest products to humankinds 

(Foley et al., 2005; Smith et al., 2018). The United States of America (USA) is covered by 310 million hectares of 

forests, which is the fourth largest forest country in the world, as estimated in 2020 (Global Forest Resources 

Assessment 2020). The forest biomes are dominated by the northwestern rocky mountain and Pacific coast evergreen 65 

forests, the eastern deciduous and mixed forests, and the southeastern coastal plain evergreen forests (Cooperation, 

1997). According to tree speciesT, tThe forest iForest Inventory and analysis Analysis (FIA) program, managed by 

the U.S. Department of Agriculture (USDA) Forest Service, identified 142 forest types (by major tree species), which 

were  with aggregated into 28 forest groups across the USA (Ruefenacht et al., 2008). FIA has reported that the 

national forest area totals remain stable, but substantial changes occurred at local and regional and local scales (Oswalt; 70 

et al., 2019). In addition, extensive impacts of disturbance (e.g., wildfires, harvests, insect outbreaks) and climate 

factors have been increasingly changing the forest structure, function, and species composition (Sexton et al., 2016; 

Mekonnen et al., 2019). To identify the forest dynamics and assessing the associated impacts more effectively I, it is 

critical to generate timely and accurate annual forest maps at a high spatial resolution, which can be then used to 

identify the forest area dynamics， assess the associated impacts，and  to support policy discussiondecisions and 75 

relevant research (Sexton et al., 2015).  

Remote sensing technology offers large-area and high-frequency observations that have been widely used for 

regional continental and global forest mapping. For example, the optical-based regional and global forest maps are 

generated at the coarse (thousands of meters) and moderate (hundreds of meters) spatial resolutions using the 1-km 

Advanced Very High Resolution Radiometer (AVHRR) (Hansen and Defries, 2004; Achard et al., 2001), 1-80 

km  Satellite Pour I’Observation de Ia Terre 4 (SPOT-4) VEGETATION (Stibig et al., 2004; Stibig and Malingreau, 

2003; Souza et al., 2003),  and 500250-m and 2500-m Moderate Resolution Imaging Spectroradiometer (MODIS) 

(Friedl et al., 2010; Hansen et al., 2003; Dimiceli et al., 2017). The characteristics and comparisons of several major 

forest cover products at the moderate spatial resolution have been shown in detail in one of our previous studies, 

including image data sources, forest definition, algorithms, accuracy, and other relevant information (Qin et al., 2017).  85 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/advanced-very-high-resolution-radiometer
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/modis
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The Landsat images have been used to generate forest or other land cover products at a high spatial resolution 

(tens of meters) (Chen et al., 2015; Hansen et al., 2013a; Jin et al., 2013a). The major Landsat-based products for the 

CONUS include the Global Forest Watch (GFW) program of the World Resources Institute (2013b), the forest cover 

fraction (VCF) product from the Global Land Cover Facility Data Center (GLCF) at the University of Maryland 

(Sexton et al., 2013b), and the National Land Cover Database (NLCD) from U.S. Geological Survey (USGS) (Jin et 90 

al., 2013b). In the United States, FIA and NLCD are the primary databases used by managers, researchers, and 

policymakers to assess land use and track land management (Hoover et al., 2020; Domke et al., 2021). FIA is a field 

survey of forest plots and reports information on the status and trends of forests in the United States. A subset of plots 

is measured every year with revisit intervals of 5 to 10 years depending on the state  (Hoover et al., 2020; Burrill et al., 

2021). The NLCD provides updated datasets continuously every three years or so, which was were generated by 95 

change detection algorithms for only a time period and had a certain amount of commission errors (Jin et al., 2013a). 

Additionally, the annual global forest maps have been published by the Japan Aerospace Exploration Agency (JAXA) 

over the years of 2007-2010 and 2015-2018, which are generated using PALSAR and PALSAR-2 images at 25-m and 

50-m spatial resolutions (Shimada et al., 2014). The main characteristics of these high-spatial-resolution forest maps 

covering the CONUS are summarized in Table 1. The wide availability of satellite-based forest and land cover maps 100 

makes it convenient for stakeholders to access more information than ever before. However, it is still challenging for 

users to understand the differences between the forest products and clarify remains untested about their application 

potential for specific purpose the annual management of forest resources systematically.  

 

Due to the differences in forest definitions, satellite data, in-situ training data, and mapping algorithms, the 105 

available previous forest maps still have large discrepancies on in forest area estimates (Smith et al., 2018; Qin et al., 

2017; Sexton et al., 2016). TThe major challenge of the optical remote sensing data are approach affected by is to 

collect good-quality observation data without cloud cover, cloud shadow, and smoke, which reduce the number of 

good quality observations (Reiche et al., 2015). BThe PALSAR-based forest maps often have commission errors 

caused by buildings, rocks, and high biomass crops often have large PALSAR backscatter coefficients at similar or 110 

higher levels of forest (Qin et al., 2017). The combination of the optical and microwave data could take advantage of 

the optical remote sensing sensors that capture the light and forest canopy interaction and L-band microwave sensors 

that capture the microwave and forest structure (tree trunk and branch) interaction without cloud contamination. 
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OAdditionally, nean assessment study suggested that the complementarity of optical and SAR datasets improved the 

accuracydiscriminative properties offor forest maps, in ping comparison ed to either optical or SARthe individual 115 

datasett (Lehmann et al. 2015). For example, mis-classificationuncertainties of the Landsat-based forest maps could 

be caused by the re-planted areas with small- or medium-size trees or regions with some vegetation types like highland 

scrub, however, t. These regions could be identified correctly by PALSAR data (Lehmann et al. 2015).    Improved 

forest mapsping have haves been reported in a number ofseveral studies by using integrated PALSAR and Landsat 

data in tropical regions (Reiche et al., 2015; Lehmann et al., 2015; Thapa et al., 2014), and PALSAR and MODIS data 120 

in monsoon Asia and otherseveral sample regions of the world (Zhang et al., 2019; Qin et al., 2016b). However, it 

remains unclear about the potential of combined PALSAR and Landsat images to improve the annual forest area 

estimates monitoring in the CONUS by combining PALSAR and Landsat images.   

In addition to annual forest maps, information on evergreen forests and deciduous forests is also important for 

forest management and conservation. Many studies showed that the spatial distributions of evergreen and deciduous 125 

forests have been changing and will continue to change in the future, driven by multiple stressors involving climate 

change, forest disturbance, land-use change, and invasive species (Soh et al., 2019; Mekonnen et al., 2019; Knott et 

al., 2019). Accurate distribution information of on evergreen and deciduous forests types is also needed to reduce the 

uncertainty in the carbon budgets (Deb Burman et al., 2021). With the development of Earth observation technology, 

some efforts have been carried out to produce forest forest-type datasets based on multiple spaceborne or/and/or 130 

airborne images (Laurin et al., 2016; Kushwaha, 1990). As an example, for the study at the national or continental 

scale, the NLCD dataset provides the nationwide distribution of deciduous, evergreen, and mixed forests in the U.S. 

at 30-m spatial resolution for the years of 2001, 2006, 2011, and 2016. The 50-m evergreen and deciduous forest map 

in 2010 was generated across the monsoon Asia using PALSAR and time series MODIS images (Qin et al., 2016b). 

In addition, time series MODIS images have been reported to improve the estimates of evergreen forests in tropical 135 

regions (Qin et al., 2019). As the NLCD used multi-temporal Landsat images to identify evergreen and deciduous 

forests, time series Landsat images could  improve the discrimination and classification of evergreen and deciduous 

forests to support the annual analyses in the scientific research and policy policy-making on forest ecosystems.  To 

date, few efforts have been conducted to produce the annual maps of evergreen or deciduous forest maps explore the 

potential over the temperate regions despite of the importance.  140 
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The United Nations Food and Agriculture Organization (FAO) Global Forest Resources Assessment (FRA) 

provides essential information for understanding the world’s forest resources, management, and uses every five years 

since 1990 by assembling the forest data from individual countries (Keenan et al. 2015). In an effort to improve annual 

forest maps at a national scale for supportingto support the FAO FRA program, this study had three objectives. The 

first objective was to develop annual forest maps and annual evergreen forest maps in the CONUS by using both 145 

PALSAR-2 and Landsat images during from 2015 to -2017. The second objective was to assess and compare the 

resultant PALSAR-2/Landsat-based forest maps with the major satellite-based forest cover datasets by using the forest 

structure data (tree height and tree canopy coverage), which were derived from the observations of the Geoscience 

Laser Altimetry System (GLAS) onboard of NASA's Ice, Cloud, and land Elevation Satellite (ICESat -1). This 

comparison with a large amount of LiDAR data will help understand the differences of between the forest datasets 150 

under the forest definition used by the FAO. The FAO defines  forests as lands ofnatural forest area morelarger than 

0.5ha with tree cover over 10% and tree height greater than 5-m (Fao, 2012). The third objective was to report the 

PALSAR-2/Landsat-based forest maps at two administration levels (state and CONUS) and compare them with the 

forest area estimates from the FIA Forest Inventory Assessment by the USDA Forest Service, which are the primary 

data sources provided by the USA government for the FAO Global Forest Resources Assessment. This comparison 155 

will help us to investigate the capability of combining the PALSAR-2/Landsat approach and the FIA approach for 

support of the Global Forest Resource Assessment at the national scale.    

Table 1. Characteristics of the main forest cover datasets at a high spatial resolution (tens of meters) for the Contiguous 

United States. The forest cover datasets analyzed in this study are from the Forest Inventory and Analysis 

program(FIA-Forest), the National Land Cover Database (NLCD-Forest) from the United States Geological Survey, 160 

the Global Forest Watch (GFW-Forest) program of the World Resources Institute, the Landsat-based forest cover 

fraction (Landsat VCF-Forest) product from the Global Land Cover Facility Data Center at the University of 

Maryland, the Japan Aerospace Exploration Agency forest maps (JAXA-Forest), and the PALSAR-2/Landsat-based 

forest maps generated in this study (PL-Forests)..  

Sensors Datasets Forest 

definition 

Major data 

source 

Methods Spatial 

resolutio

ns 

Periods References 

Statistic

s 

FIA-

Forest  

Tree 

cover≥10% 

Inventory 

data 

Sampling  State Annual 

sampling 

design after 

1998 

Burrill et al. 

(2021) 

Optical NLCD-

Forest 

Tree 

cover≥ 20%, 

tree height ≥ 5-

m 

Landsat 

images 

Decision 

tree 

30-m circa 1992, 

2001, 2006, 

2011, 2016, 

2019 

Jin et al. 

(2019) 

Landsat 

VCF-

Forest 

tree height ≥ 5-

m 

MODIS 

VCF, 

Regression 

tree 

30-m 2000, 2005, 

2010, 2015 

Sexton et al. 

(2013a) 
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Landsat 

images  

GFW-

Forest 

tree height ≥ 5-

m 

Landsat 

images 

Decision 

tree 

30-m 2000, 2010 Hansen et 

al. (2013a) 

SAR JAXA-

Forest 

Tree cover 

≥ 10%, tree 

height ≥ 5-m 

PALSAR/P

ALSAR-2 

images  

Decision 

tree 

25-m 2007-2010, 

2015-2018 

 

Shimada et 

al. (2014) 

SAR/Op

tical 

PL-

Forests 

Tree cover 

≥ 10%, tree 

height ≥ 5-m 

25-m 

PALSAR-2 

and 30-m 

Landsat 

images in 

2015-2017 

Decision 

tree 

30-m 2015-2017 This study 

 165 

2 Materials and Methods 

The workflow in Fig. 1 presents the three major study sections and the detailed processes of each section in this 

study. First, we generated the annual forest maps, and annual evergreen and deciduous forest maps at 30-m spatial 

resolution during 2015-2017 by integrating PALSAR-2 and Landsat time-series Normalized Difference Vegetation 

Index (NDVI) data. Second, we compared the resultant PALSAR-2/Landsat forest maps with other major satellite-170 

based forest datasets in the study period of 2015-2017. We assessed these forest maps following the FAO's forest 

definition using the tree height and canopy coverage data from the ICESat-1 LiDAR-based products. Third, we 

examined the performance of all the satellite-based forest maps on forest area estimates by comparison with the FIA 

statistic data at the state and national administration levels.   

 175 

Figure 1: The workflow of this study. It includes three major study sections and the detailed processes of each section in 

this study. GFW, Landsat VCF, NLCD, JAXA, and FIA present different forest cover datasets that have been released. HH, 

HV, HH-HV, and HH/HV denote the horizontal-horizontal (HH) and horizontal-vertical (HV) polarization bands, and tTwo 
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composite layers of the difference (HH-HV) and the ratio (HH/HV). AOIs refer to the areas of interests used as calibration 

and validation samples in this study.  180 

2.1 Study area 

Our study area is the CONUS with an area of about 8.08×106 km2, including the 48 states and Washington, DC. 

About 50% of the CONUS land cover change has involved forests since 2001(Homer et al., 2020). The CONUS has 

large topographical variation from the eastern USA to the western USA as shown by the spatial distribution of 

topography in the CONUS (Fig. 2a).  185 

 

Figure 2: The spatial distributions of (a) the topography of the CONUS using the digital elevation model (DEM). data from 

the U.S. Geological Survey, 3D Elevation Program 10-Meter Resolution Digital Elevation Model (DEM).  (b, c, d) the 

acquisition dates of PALSAR-2 images in a year during 2015 - 2017. 

2.2 PALSAR-2 data in 2015-2017 190 

The annual 25-m ALOS-2 PALSAR-2 mosaic data from 2015 to 2017 were collected at the Google Earth Engine 

(GEE) platform (https://developers.google.com/earth-
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engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR, last access: 18 March 2022). The PALSAR-2 

horizontal-horizontal (HH) and horizontal-vertical (HV) polarization bands, provided by the Earth Observation 

Research Center, Japan Aerospace Exploration Agency (JAXA), are slope slope-corrected, radiometrically calibrated, 195 

and ortho-rectified backscatters with a geometric accuracy of around 12 meters (Reiche et al., 2018). Fig. 2b,c,d shows 

the acquisition dates of the PALSAR-2 mosaic images over the CONUS and most images were acquired during from 

May to October. The HH and HV bands were converted from the amplitude values into gamma-naught backscattering 

coefficients in decibels (γ°) using a calibration factor the equation (1) (Shimada et al., 2009; Shimada et al., 2014; 

Chen et al., 2018).  200 

(CF) of -83 (γ°=10×lnDN2 + CF                                                                                                                                             )(1) . 

 where γ° is the backscattering coefficient using dB as the unit; DN is the digital number of the amplitude images 

like HH or HV band, and CF is a calibration factor with a value of -83 dB. In addition, tTwo composite layers, i.e., 

the difference (HH-HV) and the ratio (HH/HV), were calculated as input data for forest mapping.  

2.3 Landsat data in 2015-2017 205 

We used all the Landsat-7 Enhanced Thematic Mapper (ETM+) and Landsat-8 Operational Land Imager (OLI) 

surface reflectance (SR) images from 2015 to 2017 to construct a time series image data cube in GEE 

(https://developers.google.com/earth-engine/datasets/catalog/LANDSAT, last access: 18 March 2022). This dataset 

provides multi-spectral images at 30-m resolution and the SR data were derived from top of -of-atmosphere (TOA) 

reflectance by the atmospheric correction codes (Vermote et al., 2016). The bad-quality observations with clouds, 210 

cloud shadows, snow/ice, and scan-line-off strips were identified as NODATA following the quality band (pixel_qa). 

The remaining good-quality observations were used to calculate the vegetation indices of NDVI, Enhanced Vegetation 

Index (EVI), and Land Surface Water Index (LSWI) for each image in the data cube. Fig. 3 shows the spatial 

distribution of annual total good-quality observation numbers (GOBs) for individual pixels over the CONUS from 

2015 to 2017.  215 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑
 (21) 

𝐸𝑉𝐼 = 2.5 ×
𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅+6×𝜌𝑅𝑒𝑑−7.5×𝜌𝐵𝑙𝑢𝑒+1
  (32) 

𝐿𝑆𝑊𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅+𝜌𝑆𝑊𝐼𝑅
                                                                                                                                                                (43) 
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where𝜌𝐵𝑙𝑢𝑒, 𝜌𝑅𝑒𝑑  𝜌𝑁𝐼𝑅    and 𝜌𝑆𝑊𝐼𝑅   are the surface reflectance values of blue (450-520nm), red (630-690nm), near-

infrared (760-900nm), and shortwave-infrared bands (1550-1750nm). 220 

 

Figure 3: The summary of the good-quality observation (GOBs) numbers for individual pixels in a year over the CONUS 

using all Landsat images in a year from 2015 to 2017.  

2.4 Sample data for accuracy assessment of forest maps 

The accuracy of the PALSAR-2/Landsat annual forest maps were was assessed based on the global validation 225 

sample set released by researchers from Tsinghua University, China (http://data.ess.tsinghua.edu.cn/, last access: 20 

February 2022) (Gong et al., 2013). This validation dataset was generated using a random sampling strategy and visual 

interpretation method for the Finer Resolution Observation and Monitoring-Global Land Cover (FROM-GLC) (Gong 

et al., 2013). AsDue to the validation samples were being generated in 2013, in this study, we double-checked the land 

cover types of all the samples by visual interpretation ofaccording to the Google Earth images during 2015-2017. We 230 

deleted thoseall the samples with land cover changes (e.g., from forest to non-forest or from non-forest to forest), and 

t including the samples changed from other land cover types to forests. Thus, a total of 652 the number of forest 
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samples were kept for this studychanged from 706 to 652 before and after the removal. The samples with land cover 

changes were identified visually according to the Google Earth images during 2015-2017, which were removed in this 

study. At last, aA total number of 1,958 points were used for the validation of the resultant forest maps, which includes 235 

652 forests, 285 croplands, 431 grasslands, 205 shrublands, 95 water bodies and wetlands, 46 impervious surfaces, 

244 barren lands (Fig. 4).   

 

 

Figure 4: The land cover samples for accuracy assessment in this study. These samples were from the global validation 240 
sample set released by the third-party researchers from Tsinghua University, China (http://data.ess.tsinghua.edu.cn/, last 

access: 20 February 2022) (Gong et al. 2013). They were revised by excluding the samples with land cover change according 

to the Google Earth images.   Forest_NL, Forest_BL, and Forest_ML denote needle-leaved forest, broad-leaved forest, and 

mixed-leaved forest, respectively.  

2.5 Canopy height and canopy coverage data from ICESat LiDAR 245 

To assess the PALSAR-2/Landsat forest maps and other forest maps in terms of forest structure traitfeatures 

(canopy height, canopy coverage) that are used in forest definition by FAO, we used the ICESat global canopy 

coverage and height dataset to generate the samples of (1) forest canopy height (meter) and (2) forest canopy coverage 

(%). This ICESat dataset was derived based on the observations from the Geoscience Laser Altimetry System (GLAS) 

设置了格式: 字体: 10 磅, 字体颜色: 自动设置
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on board of NASA’s Ice, Cloud, and land Elevation Satellite (ICESat-1) with a footprint of about 65-m in diameter 250 

(Tang et al., 2019). The ICESat mission acquired LiDAR data over the globe during 2003-2009. The ICESat-based 

tree canopy cover products provide improved information to characterize biome-level gradients and canopy cover 

almost without bias at the foot print level (Tang et al., 2019). There are more than 550,000 laser footprintspots from 

ICESat-1 over the CONUS (Fig. 5). This is the only available dataset that can be used to assess the structural 

characteristics of the forests extracted by the forest cover products in the study period of 2015-2017. We recognize 255 

Tthe image acquisition yearstime difference between the ICESat data (2003-2009) and the PALSAR-2/Landsat data 

(2015-2017), which , which may cause smallome slightly unquantifiable uncertainties in affect the assessment results. , 

dependent upon the land use change. A pixel has three scenarios in terms of forest or not in these twoone time- periods 

(2003-2009 vs 2015-2017): (1) as forest in both 2003-2009 and 2015-2017, (2) as forest in 2003-2009 but not in 2015-

2017 (forest loss due to deforestation), and (3) as forest in 2015-2017 but not in 2003-2009 (forest gain due 260 

reforestation or afforestation). For those pixels that were forest in both 2003-2009 and 2015-2017 (Scenario #1), as 

the canopy height (CH) and canopy coverage (CC) of a forest stand are likely to increase over the years, using lower 

CH and CC data obtained in 2003-2009 may underestimate the number proportion of pixels meets the FAO forest 

definition.  there is no effect of time differences (2003-2009 vs 2015-2017) on the assessment. For those pixels that 

were forest only in one period of 2003-2009 or 2015-2017with (the scenario #2 orand #3), they were not evaluated 265 

the time differences could have small effect on the assessment.  in the assessment. In additionWhat’s more, the 

differences in image acquisition yearstime difference woulddoes not affect the results of inter-comparison between 

different forest cover products.   

 

Figure 5.: The ICESat samples in the CONUS, (a) Spatial distribution of ICESat-1 samples. (b) the histogram of canopy 270 
height (m) and canopy coverage (%) for the ICESat-1 samples.   
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2.6 Satellite-basedFive forest cover data products for inter-comparison 

We used four forest cover products derived from analyses of satellite images at a high spatial resolution (≤30-m) 

for inter-comparison with our PALSAR-2/Landsat  forest maps:  the GFW product in 2010, the Landsat VCF product 

in 2015, the NLCD product in 2016 (NLCD2016), and JAXA product in 2015-2017 (Fig. 6). The GFW tree canopy 275 

cover product in 2010 at 30-m resolution was generated by using decision tree algorithms and multi-temporal Landsat 

images (https://www.glad.umd.edu/dataset/global-2010-tree-cover-30-m, last access: 1 May 2021) (Hansen et al., 

2013a). The Landsat VCF product in 2015 is a global tree cover percentage dataset  and can be downloaded from the 

Land-Cover and Land-Use Change Program (https://lcluc.umd.edu/metadata/global-30m-landsat-tree-canopy-

version-4, last access: 5 May 2021). It is generated by using a regression tree model to rescale the 250-m MODIS 280 

VCF tree cover layer into 30-m (Sexton et al., 2013a).  The Landsat-based NLCD2016 provides land cover information 

at 30-m resolution over the CONUS with an accuracy of 83% (https://www.mrlc.gov/data/nlcd-2016-land-cover-

conus, last access: 9 May 2021) (Homer et al., 2020). This product has three forest types: deciduous forest, evergreen 

forest, and mixed forest (Homer et al., 2020). The 25-m annual global forest maps from 2015 to 2017 from JAXA 

were produced by using thePALSAR-2 mosaic data and a decision tree method (JAXA-F forest  maps), which are 285 

available at https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.html, with last access of 12 May 2021 (Shimada 

et al., 2014). JAXA-F forest used the FAO forest definition. So, similarly, for the tree cover products of Landsat VCF 

and GFW, we selected the pixels with tree canopy coverage greater than 10% as forests  to generateobtain the GFW-

Forest and Landsat VCF-Forest maps.  

2.7. Forest cover data from in-situ field inventory for inter-comparison 290 

The forest area statistical data for year 2017 at the county scale was also used for comparison analysis. This 

statistical dataset comes from the USDA Forest Service (FS) Forest Inventory and Analysis (FIA) program 

(https://www.srs.fs.usda.gov/pubs/57903, last access: 10 May 2021) and is widely used in the studies of forests in the 

CONUS (Domke et al., 2021; Burrill et al., 2021; Hoover et al., 2020). The definition of the forest land condition is: 

larger than 0.4 ha (1.0 acre) in size, greater than 37m (120.0 feet) in width, at least 10% canopy cover by live tally 295 

trees of any size at present or in the past (Burrill et al., 2021). Forest land also includes (1) the transition zones, such 

as areas between forest and non-forest lands that meet the minimal tree canopy cover and forest areas; (2) the strips 

of trees in roadside, streamside, and shelterbelt, must wider than 37m (120 feet) and longer than 111m (363 feet) 

continuously; (3) the unimproved roads and trails, streams, and clearings in forest areas if they are less than 37m in 
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width or less than 0.4 ha in size. Forest land does not include tree-covered regions in agricultural production settings 300 

like orchards or urban areas like city parks (Burrill et al., 2021). The accuracy standard for forest area in the FIA 

program is to meet the mandated sampling error no more than 3% error per 1 million acres of timberland (Burrill et 

al., 2021). It It is the critical data source provided by the US government for the FAO's Global Forest Resources 

Assessment, and for resources managers and the public to manage and utilize the forest resources in the United States.    

 305 
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Figure 6.: Forest distribution in the CONUS from four forest data products, (a, b, c) Landsat-based and (d, e, f) PALSAR-

2-based forest products during 2015-2017. GFW-Forest in in 2010 presents the forest cover map in 2010 from the Global 

Forest Watch (GFW) program of the World Resources Institute. Landsat VCF-Forest in 2015 presents the Landsat-based 310 
forest cover fraction (Landsat VCF) product from the Global Land Cover Facility Data Center at the University of 

Maryland. NLCD- forest Forest in 2016 presents the forest cover map in 2016 from the National Land Cover Database 

(NLCD). JAXA-Forest in 2015-2017 , JAXA 2016, and JAXA 2017 refer to the Japan Aerospace Exploration Agency forest 

maps from 2015 to 2017. 
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2.87 PALSAR-2/Landsat forest mapping approach  315 

The advantages of L-band ALSO-2 PALSAR-2 data in penetrating tree canopy to interact with tree branches and 

trunks lead to higher volume backscatter signals from forests than from other land cover types (e.g., grasslands, 

shrublands, croplands, and water bodies). However, some natural surfaces (e.g., rocky lands) or artificial structures 

(e.g., buildings) also have high backscatter signals, which could easily cause commission errors in the 

PALSAR/PALSAR-2-based forest signature analysis (Qin et al., 2017). As these land cover types have low NDVI 320 

values, they can be tracked and identified by optical images. According to these this knowledges, we developed a two-

step forest mapping approach by integration of PALSAR or PALSAR-2 and optical (e.g. MODIS, Landsat) images in 

our previous studies such as in South America (Qin et al., 2017), Asia (Qin et al., 2016b), and Australia (Qin et al., 

2021). However, these previous studies were mainly conducted at a lower spatial resolution (e.g., 50-m by PALSAR 

and MODIS) or attempted for limited spatial scales using PALSAR/PALSAR-2 and Landsat images. It is still unclear 325 

that the performance of the integrated datasets of PALSAR-2 and Landsat for monitoring the annual dynamics of 

forest distribution and forest functional types over the temperate regions at a higher spatial resolution of 30-m.        

In this study, we used the same workflow  to identify and map forest cover in CONUS (Qin et al., 2016a) to 

identify and map forest cover in CONUS. First, we identified forest pixels by using 25-m PALSAR-2 images and the 

threshold-based algorithm. A pixel is classified to be pixel forest, if its PALSAR-2 data meets -19 ≤ HV ≤ -7.5, 0 ≤ 330 

Difference ≤ 9.5, 0.2 ≤ Ratio ≤ 0.95. The thresholds for the 25-m PALSAR-2 images had been slightly adjusted from 

those for the 25-m PALSAR data based on our previous studies on PALSAR and PALSAR-2 signature analyses of 

forest and non-forest samples (Qin et al., 2016a; Chen et al., 2018). A 5 × 5 window median filter was applied to 

decrease the potential noise (e.g., salt-and and-pepper noise) on the PALSAR-based forest and non-forest (F/NF) maps. 

These resultant 25-m F/NF maps were resampled to 30-m to match the spatial resolution of Landsat images. Forests 335 

usually have a high leaf area index (larger than 3 m2/m2), but rocky lands, barren lands, and built-up surfaces have no 

or little green vegetation in a year. Due to LAI and NDVI are closely related to each other, the value of NDVI with 

0.7 or so usually represents the range of 1 to 2 m2/m2 of LAI dependent upon the vegetation types, which can be used 

to identify forest and eliminate the commission errors in the PALSAR/PALSAR-2 based forest maps (Qin et al., 

2016a). Here we generated the maximum NDVI layers from all the available Landsat images in each year (January to 340 

December) during 2015-2017 and applied the threshold of NDVImax > 0.7 into the layers to generate the NDVImax 
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masks to extract the pixels covered by green vegetation. The annual 30-m forest map was produced by overlaying the 

PALSAR-2-based forest maps and the Landsat-based NDVImax mask layers.  

In post-classification, a temporal and logical consistency check was performed on this three-year forest and non-

forest (F/NF) maps to reduce the noise or misclassification in the F/NF sequence (Chen et al., 2018; Qin et al., 2016a). 345 

For each pixel in annual F/NF time series maps from 2015 to 2017, the reasonable forest dynamics were NNN, FNN, 

NNF, FFF, NFF, and FFN (N denotes non-forest and F indicates forest). The NFN and FNF sequences were considered 

as "not reasonable sequences" and re-processed as sequences of NNN and FFF, respectively. This 3-year consistency 

check during 2015-2017 makes the annual forest map in 2016 with higher confidence, and we will use it for inter-

comparison and forest area estimates at county, state, and CONUS scales. The resultant PALSAR-2/Landsat (PL-) 350 

annual forest maps are called as "PL-Forest maps" in this study.  

2.98 PALSAR-2/Landsat-based annual evergreen forest maps in 2015-2017 

Evergreen trees have green leaves all the year round, but deciduous trees usually shed their leaves in winter or 

dry season. These leaf phenological profiles can be captured by the satellite-based vegetation indices (e.g., NDVI, 

EVI, and LSWI) to distinguish evergreen and deciduous forests (Qin et al., 2016b; Prabakaran et al., 2013). Based on 355 

the characteristics of forest canopy phenology and vegetation indices, we have developed a simple and robust 

algorithms to map evergreen forests by analyzing the time series water-related index (LSWI) and greenness-related 

indices (EVI, NDVI). The green leaves of evergreen forests have positive LSWI values all year round and relatively 

high EVI in winter and/or dry seasons, and thus which can be detected by the seasonal profiles analysis of LSWI and 

EVI was used to identify for extracting evergreen forests, and the algorithm has been documented in details in our 360 

previous publications (Qin et al., 2016b). TWe used the same approach was used to and generate thed annual maps of 

evergreen vegetation by the criteria of pixels having (1) LSWI≥0 for all the good observation images in a year and (2) 

a minimum EVI (EVImin) no less than 0.2 identified as evergreen cover. This rule can be characterized by the frequency 

of LSWI≥0 (FQLSWI≥0) for all the good observations in a year and EVImin using the decision thresholds (FQLSWI≥0 = 

100% and EVImin ≥ 0.2). Here, the FQLSWI≥0 was calculated by the number of observations numberfrequency with 365 

LSWI≥0 (N LSWI≥0) over all the number of good-quality observations (NGOBs) in a year for individual pixels (EQ. 4), 

and EVImin was the minimum EVI values in a year. Finally, we overlaid our annual 30-m PALSAR-2/Landsat-based 

forest/non-forest map with the evergreen vegetation layers to identify evergreen forests. Thus, evergreen forests refer 

to the forest land having green leaves throughout the year, with tree canopy height greater than 5-m and tree canopy 
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cover larger than 10%. In this study, both the forests and evergreen forests include natural and artificial forests that 370 

meet the requirements (Qin et al., 2024). Meanwhile, as the evergreen forests were extracted based on the greenness 

signature observed by the satellite images, this map includes both needle-leaf and broad-leaf evergreen forests that 

meet the requirements.   

𝐹𝑄𝐿𝑆𝑊𝐼≥0 =
𝑁𝐿𝑆𝑊𝐼≥0

𝑁𝐺𝑂𝐵𝑠
× 100                                                                                                                                 (4)  

 375 

2.109 Validation  

The resultant PL-Forest maps (forest and non-forest) in 2015-2017 were validated by the validation samples 

generated by the  researchers from Tsinghua University, China (Gong et al., 2013).third party (Fig.4). We overlayed 

the samples and the resultant PL-Forest maps to calculate the confusion matrix and assess the user’s, producer’s, and 

overall accuracies.  380 

2.110 Cross-comparison between forest-related products 

We selected the five popular forest cover data products at 25-m or 30-m spatial resolution to perform the inter-

comparison analysis at three spatial scales: from two aspects of (1) describing the forest/non-forest with forest height 

and canopy coverage data at pixel scalestructures, (2) forest area estimates at state scale, and  and (32) forest area 

estimates at the CONUS scaleassessing the forest resource areas at different statistical levels.  385 

First, to understand the differences in terms of forest structure measurements in the PALSAR-2-based, Landsat-

based, and PALSAR-2/Landsat-based forest maps, we overlaid the ICESat-1 samples and individual forest products 

to identify those forest pixels that geographically correspond to the ICESat-1 samples and gather their information on 

the attributes of forest canopy height and canopy coverage. In this process, all the forest products have been resampled 

into 70-m to match the footprint size of ICESat-1. Then, the distributions of forest pixels were analyzed with the 390 

canopy height and canopy coverage for individual forest maps by using 1-D histogram and 2-D histogram graphs.  

Secondly, we compared our PL-based forest maps with the selected five forest datasets in terms of forest areas 

at state and CONUS scales. All the forest maps were re-projected into equal-area projection before the forest areas 

were calculated from individual maps. The linear regression approach was used to show the relationships in forest 

areas between these forest datasets at the state level.  395 
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Thirdly, tThe forest area estimates at the national level were directly compared among them.  Based on the re-

projected forest maps, the forest areas were calculated at the CONUS region from each individual maps. The results 

on the forest area of CONUS were compared among them. .... 

3 Results 

3.1 Annual forest and evergreen forest maps in 2015-2017 400 

The PALSAR-2/Landsat forest maps showed the annual forest distribution in CONUS during from 2015 to 2017 

(Fig.7a, b, c). At the pixel level, we calculated the frequency of individual pixels covered by forest in 2015-2017 

(Fig.7d). 79% of the forest pixels have consistent forest cover during from 2015 to 2017 with a frequency of three, 

which is much larger than the proportions of forest pixels with one year (11%) or two years (10%) forest cover. The 

forest dynamics during from 2015 to 2017 were are shown in Fig.7e, f. It suggested that more forest decreases than 405 

forest increases, especially for the central regions.   

 

Based on the third-party validation samples (Fig.4), the accuracies of the PALSAR-2/Landsat forests were high 

and varied slightly for the years of 2015 to 2017, the overall accuracies of ~93%, the user's accuracies of 87.6% to 

95.8%, and producer's accuracies of 90.6% to 91.9% (Table 2). The forest map in 2016 had slightly higher accuracy 410 

than in 2015 and 2017, which was expected because the temporal and logical consistency check was implemented on 

the resultant map of 2016 to reduce the noise or misclassification in the F/NF sequence of 2015 to 2017 ( see Section 

2.7). The accuracies were comparable to the PALSAR-based forest maps that were reported overall accuracies 

exceeding 91% (Shimada et al., 2014). In detail, the accuracies of the PALSAR-2/Landsat forests in 2016 have been 

estimated at different altitudes of 0-500m, 500-1000m, 1000-2000m, and 2000-4000m (Tabel 3). Results showed that 415 

the areas with altitudes lower than 2000m have user’s and producer’s accuracies greater than 88%, and overall 

accuracies greater than 91%. The areas with altitudes higher than 2000m have slightly lower user’s (78.3%), 

producer’s (76.6%), and overall accuracies (87.8%). Additionally, we examined the potential of the PALSAR-

2/Landsat forests in 2016 to exclude the impacts of the burned area by overlying a MODIS burned area product and 

the forest map (Fig. 8). The results showed that there were 6,845,692 pixels covered by burned area and 713,003 pixels 420 

were identified as forests in the resultant PALSAR-2/Landsat forest map in 2016 with a proportion of about 10.4%. 
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But this number may not accurately represent the commission error, as the burned forest may not be fully dead and 

could regrow again.  
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 425 

Figure 7: Annual forest maps in 2015-2017 based on PALSAR-2 and Landsat images (PL-Forest), (a) PL-Forest in 2015, 

(b) PL-Forest in 2016, and (c) PL-Forest in 2017. (d) the forest frequency map was generated based on the PL-Forest maps 

in 2015-2017. The colors of red, blue, and green denote the numbers of a specific pixel classified as forest in the annual PL-

Forest maps from 2015 to 2017.  (e) the decreased forest in 2015-2017. (f) the increased forest in 2015-2017.  

 430 
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Table 2. Accuracy assessment of annual PALSAR-2/Landsat forest maps in 2015-2017 (PL-Forests) based on the 

third-party validation samples (Fig.4). The User's (UA), Producer's (PA), and Overall (OA) accuracy are shown.  

PL-Forests 

Classification 

Reference UA PA OA 

Forests Non-Forests  Total 

2015 

Forests 596 84 680 87.6% 91.4% 92.8% 

Non-forests 56 1222  1278 95.6% 93.5%  

Total  652 1306 1958      

2016 

Forests 599 81 680 88.1% 91.9% 93.2% 

Non-forests 53 1225 1278 95.8% 93.8%   

Total  652 1306 1958    

2017 

Forests 591 84 675 87.6% 90.6% 92.6% 

Non-forests 61 1222 1283 95.2% 93.5%  

Total  652 1306 1958    

 

Table 3. Accuracy assessment of the annual PALSAR-2/Landsat forest map in 2016 (PL-Forests) with different 435 

elevations based on the validation samples (Fig. 4). The User's (UA), Producer's (PA), and Overall (OA) accuracy is 

shown.  

Elevation 

(m) 

PL-Forests 

Classification 

Reference UA PA OA 

Forests Non-Forests  Total 

0-500 

Forests 441 58 499 88.4% 94.0% 91.2% 

Non-forests 28 555 583 95.2% 90.5%  

Total  469 613 1092      

500-1000 

Forests 70 6 76 92.1% 90.9% 95.9% 

Non-forests 7 234 241 97.1% 97.5%   

Total  77 240 317    

1000-2000 

Forests 52 7 59 88.1% 88.1% 96.4% 

Non-forests 7 321 328 97.9% 97.9%  

Total  59 328 387    

2000-4000 

Forests 36 10 46 78.3% 76.6% 87.8% 

Non-forests 11 115 126 91.3% 92.0%  

Total  47 125 172    
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Figure 8: Distribution of burned area overlaid with the PALSAR-2/Landsat forests in 2016. The burned area in 2016 was 440 
generated from the MODIS Burned Area Monthly Global 500m products (MCD64A1.061). If a pixel was burned in any 

month, the pixel was considered a burned area in 2016.    

 

Based on the PALSAR-2/Landsat forest maps, we further identified annual evergreen forests in CONUS during 

2015-2017 (Fig. 98a, b, c). These resultant evergreen forest maps have similar spatial patterns with the evergreen 445 

forests in the NLCD-2016 dataset (Fig. 98d). Evergreen forests show obvious regional characteristics and are mainly 

distributed in the western, southeastern, and northeastern regions of the CONUS. The evergreen forest area estimated 

from the PALSAR-2/Landsat map in 2016 was 1.08×106 km2, which is higher than the evergreen forests of 0.92×106 

km2 but lower than the total area of evergreen forests and mixed forests of 1.22×106 km2 from the NLCD-2016 (Fig. 

98a-d). The spatial comparison between these two products was carried out at the pixel scale (Fig. 98e). The noticeable 450 

discrepancies were in the southwestern regions (e.g., Nevada, Utah, Arizona), the south Florida, and some regions in 

the northeastern CONUS. In the southwestern regions, the differences were mainly from the detection of evergreen 

and non-evergreen forests between these two products. For the eastern regions (e.g., south Florida, and New England 

states), the differences of between these two products were mostly caused by the detection of forests, as most of the 

evergreen forest pixels in the PALSAR-2/Landsat evergreen forest map were shown as non-forest in the NLCD map 455 
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(Fig. 98e). At the state scale, the PALSAR-2/Landsat evergreen forest map in 2016 had a good linear relationship with 

the evergreen forests in NLCD 2016, with a slope of 0.8 and R2 of 0.54 (Fig. 98f). A stronger relationship was found 

between the evergreen forest areas from the PL-Evergreen forest maps and the sum of evergreen forest and mixed 

forests from the NLCD-2016 at the state scale, with a slope of 0.98 and R2 of 0.69 (Fig. 98f). One possible explanation 

could be that the mixed forests in NLCD include evergreen species  (Selkowitz and Stehman, 2011). However, it 460 

cannot be estimated quantitatively because it is uncertain about the forest types and proportions within the mixed 

forest pixels (Tran et al., 2016).  
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Figure 98: Spatial distributions of evergreen forests in the CONUS. (a, b, c) Annual evergreen and non-evergreen forest 465 
maps generated from the PALSAR-2/Landsat (PL) images in 2015-2017. (d) The forest forest-type map from the National 

Land Cover Database (NLCD) in the 2016 dataset. (ed) shows the consistency between the PALSAR-365 2/Landsat 

evergreen forest (PL-Evergreen forest) in 2016 and the NLCD-E evergreen forest in 2016 (NLCD-Evergreen). The 

abbreviations are Evergreen Forest (EF), PL-Evergreen Forest in 2016 (PL), Mixed Forest (MF), Non-Forest (NF), 

Deciduous Forest (DF), and Non-Evergreen Forest (NEF). (f) shows the comparison between PL-Evergreen forest and 470 
NLCD-Evergreen and NLCD-Evergreen and mixed forest in 2016s at the state scale using the linear regression analysis.  
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3.2 A comparison of five satellite-based forest maps at the pixel scale  

  At the pixel scale, we compared the PALSAR-2/Landsat forests and the JAXA-F forests in 2016 in terms of 

forest area identification (Fig. 109). These two products have about 75% pixels in agreement, 11% pixels only 

identified byin the JAXA- Forestforests, and 14% pixels only identified byin the PALSAR-2/Landsat forest product. 475 

Comparison through zoom-in random samples showed that JAXA forests identified somethe pixels with obvious 

backgrounds of barren lands or rocks have been classified as forests in the JAXA-Forest, which were excluded in the 

PALSAR-2/Landsat forests. However, over the regions with dense tree cover, there are more omission errors in the 

JAXA-Forest map forests missed more pixels with dense tree cover, which were identified in the PALSAR-2/Landsat 

forests (Fig. 109). 480 

We further compared the five studied satellite-based forest data products in terms of their forest definitions of 

canopy (tree) height (CH) and canopy coverage (CC). The frequency distributions of the forest pixels with CH and 

CC were extracted from different forest products using ICESat-1 observations (Fig. 110). The comparison result 

showed that the proportion of forest pixels with CH larger than 5-m and CC larger than 10% was 85% for NLCD-

Forest in 2016, ~82% for the PALSAR-2/Landsat forest maps, 81% for the JAXA-Forest maps, 80% for the GFW-485 

Forest in 2010 (79.98%), and 77% for Landsat VCF-Forest in 2015.  
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Figure 109: A comparison between the PALSAR-2/Landsat based forest (PL-Fforest) map in 2016 and the Japan Aerospace 

Exploration Agency JAXA (JAXA) forest map in 2016 at the pixel scale. Six random areas denoted as a to f were selected 490 
from the disagreement regions, which were used to show the zoom-in landscapes from the Google Earth high- resolution 

images.  The images were acquired from Google Earth Pro (© Google Earth Pro 2020) 
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Figure 110: The frequency distributions of the forest pixels with tree canopy height (CH) and canopy cover (CC) features. 495 
The forest pixels were from the five satellite-based forest products, respectively. The CH and CC data were extracted from 

the ICESat-1 observations. PL-Forest is PALSAR-2/Landsat-based forest maps generated in this study. JAXA-Forest is the 

Japan Aerospace Exploration Agency (JAXA) forest map from 2015 to 2017. GFW-Forest 2010 is the forest map 2010 from 

the Global Forest Watch (GFW) program of the World Resources Institute. Landsat VCF-Forest 2015 is the Landsat-based 

forest cover fraction (Landsat VCF) product 2015 from the Global Land Cover Facility Data Center at the University of 500 
Maryland. The NLCD-Forest 2016 refers to the forest map from the National Land Cover Database (NLCD) in 2016 

provided by the United States Geological Survey.  

 

3.3 A comparison of forest area estimates from six forest datasets at the state and CONUS scales  

The forest areas were estimated at the state and the CONUS scales from the six forest datasets, including five 505 

satellite-based forest maps in 2010-2017 and a FIA statistic data in 2017 (Fig. 121). At the state scale, the PALSAR-
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2/Landsat forest maps have good linear relationships with other satellite-based datasets for each year during 2015 to 

2017, with the slope ranging from 0.65 to 1.15, R2 within 0.87 to 0.96 (Fig. 121a, b, c). In terms of forest area estimates 

at the state scale, the PL-Forest and JAXA-Forest forest maps showed higher agreements with the FIA-F forest dataset 

than do GFW-Forest 2010, Landsat VCF-Forest 2015, and NLCD-Forest 2016 forest maps (Fig. 121d). The forest 510 

area estimates from the Landsat VCF-Forest in 2015 was higher than the FIA-F forest area estimates (slope of 1.19), 

while the forest area estimates from the GFW-Forest 2010 and NLCD-Forest 2016 were lower than the FIA-F forest 

area estimates (slopes of 0.89 and 0.71) (Fig. 121d). The forest area estimates from the PL-Forest  and JAXA-F forest 

maps were very close to the numbers from the FIA (a slope of 0.98).  

At the CONUS scale, the forest area estimates from the PALSAR-2/Landsat forest maps for the years of 2015 515 

to 2017 were 2.73×106 km2, 2.79×106 km2, and 2.66×106 km2, respectively, which were similar to the areas of JAXA-

Forest mapforests of 2.79×106 km2, 2.68×106 km2 and 2.62×106 km2 (Fig. 121e). The FIA-Forest dataset reported the 

forest area of 2.57×106 km2 in 2017, which was very close to the value of 2.66×106 km2 from the PL-Forest map in 

2017, a difference of 3.5%.  
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Figure 121: The comparisons of forest area estimatesestimates between satellite-based forest products and the FIA statistics 

at the state and national scales. PL-Forest is the PALSAR-2/Landsat-based forest map generated in this study. JAXA-

Forest is the Japan Aerospace Exploration Agency (JAXA) forest map from 2015 to 2017. GFW-Forest 2010 is the forest 

map in 2010 from the Global Forest Watch (GFW) program of the World Resources Institute. Landsat VCF-Forest 2015 525 
is the Landsat-based forest cover fraction (Landsat VCF) product in 2015 from the Global Land Cover Facility Data Center 

at the University of Maryland. The NLCD-Forest 2016 refers to the forest map from the National Land Cover Database 

(NLCD) in 2016 provided by the United States Geological Survey. FIA-Forest 2017 presents the forest cover datasets from 

the Forest Inventory and Analysis (FIA) program in 2017. 

4 Discussion 530 

4.1 Improved annual forest maps at high spatial resolution  

To improve the accuracy of forest cover maps, several efforts have examined the likely factors causing the 

uncertainties of the resultant products (Sexton et al., 2016; Sexton et al., 2013a; Tchuenté et al., 2011; Qin et al., 

2016b). These factors include (1) the diverse forest-cover definitions, (2) input image datasets, (3) training samples, 

and (4) algorithms (Qin et al., 2021; Tchuenté et al., 2011). For example, the forest definitions use different criteria 535 

of for tree coverage (from 10% to 60%) and tree height (from 2-m to 5-m), as well as the parcel size  (Qin et al., 2016b; 
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Sexton et al., 2016). To reduce the uncertainty of forest maps in from the perspective of forest definition, a solution 

was proposed by Sexton et al. (2016) to focus on the measurable ecological characteristics of tree cover, canopy height, 

biomass, and composition of vegetation. This study provided a comprehensive assessment by intercomparison with 

the widely used forest products using According to the FAO forest definition and the Lidar-based forest structural data 540 

(CC, CH) as references. The comparison between forest datasets suggested, the PL-Forest had a slightly higher 

percentage of pixels than JAXA-Forest, GFW-Forest 2010, and Landsat VCF-Forest 2015 in line with the FAO’s 

forest criteria off  tree height larger than 5-m and/or canopy cover larger than 10%. In this criterion, the NLCD-F 

forest 2016 had the highest pixel proportion, but this dataset used the tree canopy cover larger than 20% as the forest 

threshold and resulted in the lowest forest area estimate (Fig. 121e). This comparison results based on the PALSAR-545 

2/Landsat forests agree well with our recent study on the forest mapping in Australia, which demonstrated that 

PALSAR/MODIS forest maps had more forest pixels satisfied with the FAO’s forest definition than the GFW-Forest 

and JAXA-Forest forest maps (Qin et al., 2021).       

Forest coverarea data products have been generated based on the optical images (e.g., MODIS, Landsat), 

microwave images (e.g. PALSAR, PALSAR-2), or the integration of microwave and optical images (e.g. 550 

PALSAR/MODIS, PALSAR/Landsat). On the forest area estimates, under a consistent tree canopy cover definition 

(10%), the PALSAR-2/Landsat products had close results to the PALSAR-2-based forest maps for the years of 2015 

to 2017 at both state and national scales (Fig. 121). The forest area estimates in 2017 from the PL-Forest dataset was 

very close to the result from the FIA-Forest dataset, which indicates that the PL-Forest dataset is more accurate than 

the forest area estimates from the other optical satellite-based forest products (Fig. 121e). One of the reasons for the 555 

improved accuracy could be attributed to the utilization of L-band PALSAR-2 images that (1) are less affected by 

atmospheric conditions, clouds, and cloud shadows than optical data, and (2) have stronger penetration capability into 

forest canopy with more sensitivity to forest structure (Shimada et al., 2014). Our previous studies also showed the 

similar forest area estimates from the PALSAR/MODIS or PALSAR/Landsat forest products and the JAXA forest 

maps in several regions like monsoon Asia (Qin et al., 2016b), and South America (Qin et al., 2017). For example, in 560 

the South America, forest area estimates from the 30-m GFW-Forest 2010 dataset were higher than those from the 50-

m PALSAR/MODIS forest products (Qin et al., 2017). In addition, GFW-Forst 2010 and Landsat VCF-Forest 2015 

present the forest cover in the CONUS in the years of 2010 and 2015. The inconsistent time with the FIA-Forest in 

2017 may contribute to some discrepancies between them that are difficult to quantify.  
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The results mentioned above also suggested that PL-Forests had a slightly better performance than the other four 565 

forest products, according to the potential of forest tree height and tree canopy cover monitoring, and forest area 

estimates. This result corroborates the previous claims for integrating microwave and optical images to improve the 

forest cover maps (Reiche et al., 2015; Lehmann et al., 2015; Thapa et al., 2014). These forest mapping approaches 

take advantage of (1) the sensitivity of microwave signals to forest structures without weather interference (Næsset et 

al., 2016; Qin et al., 2016b), and (2) the optical signals to reduce the ground objects with similar backscatter values as 570 

forests, such as rocky lands and buildings (Reiche et al., 2015; Lehmann et al., 2015) (Fig. 109). The integration of 

PALSAR and MODIS images has been demonstrated to generate improved forest maps in tropical, temperate, and 

boreal forests with overall accuracies above 90% (Zhang et al., 2019; Qin et al., 2017; Qin et al., 2016b). This study 

produced the forest maps with an overall accuracy of about 93% that which corroborated the potential of combining 

PALSAR-2 and Landsat observations to monitor the annual dynamics of forest distribution and functional types at a 575 

high spatial resolution for national or larger scales across the temperate regions.  It also suggested the potential of 

integrating FIA data and PL-Forst products to support the FAO's Global Forest Resources Assessment at the national 

scale.    

However, there could be some uncertainties and limitations when applying this approach. Firstly, although the 

thresholds of PALSAR-2 signatures for extracting forests were trained by numerous samples, they could be impacted 580 

by forest composition and structures (Chen et al., 2018). Thus, a careful study of the thresholds by samples of specific 

areas could provide more information that affects the accuracy and uncertainty of the forest maps when applying the 

algorithms into other regions. In addition, due to the PALSAR data are not available during 2011-2014, we cannot 

apply this PALSAR/optical data approach in these four years. PALSAR data are available for 2007-2010, thus a 

combination of PALSAR (2007-2010), PALSAR-2 (2015 to present), and optical images would develop forest maps 585 

to monitor forest changes since 2007 (Zhang et al., 2019).  

4.2 Evergreen forest mapping algorithms  

Evergreen forests show different functional traits from deciduous forests, such as water use efficiency (Soh et 

al., 2019), and high ecosystem stability in carbon sink under extreme climates (Huang and Xia, 2019). Driven by 

climate change and diverse human activities, the expansion of evergreen forests has been reported in many regions all 590 

over the world (Twidwell et al., 2016; Saintilan and Rogers, 2015). Various mapping algorithms have been developed 

to identify evergreen and non-evergreen forests, which could provide the accurate information on evergreen forests 
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for science and policy users  (Qin et al., 2016b). These evergreen forest mapping algorithms can be grouped as (1) 

NDVI-based and (2) LSWI-based algorithms. Evergreen plants keep green leaves in the winter season or dry season 

and yield high NDVI values in contrast to senescent plants. Following this phenological feature, evergreen plants and 595 

forests have been successfully separated from non-evergreen plants based on the seasonal dynamics of NDVI, for 

example using mean or median NDVI values of the winter season (Qin et al., 2016b; Soudani et al., 2012). Evergreen 

forests have LSWI values of above zero throughout the year, which has been used to map evergreen forests for tropical 

regions (Qin et al., 2016b; Grogan et al., 2016). In this study, the LSWI-based algorithm was used to identify the 

evergreen forests in CONUS and the results have reasonable consistency with the NLCD-2016 evergreen forest 600 

product (Fig. 98). It demonstrated the potential of the LSWI-based algorithm for the evergreen forest identification 

over the temperate regions based on Landsat datasets.  

The moderate discrepancy of in the evergreen forest products between the PL-Forest maps and the NLCD-2016 

dataset could be attributed in part to the differences in the algorithms and image data. The NLCD products were 

generated using the decision tree algorithm and multi-temporal images (Jin et al., 2019). The classification algorithm 605 

is based on the spatial statistics of images (image-based spatial statistics) and training samples to generate 

classification rules. Therefore, the resultant forest maps are affected by the quantity and quality of the training samples. 

In comparison, we used the LSWI-based algorithm and time series images in a year to identify forests for individual 

pixels, which used the pixel-based time series statistics. Our method used all the images in a year, which is more than 

the multi-temporal images used in the image-based spatial statistic approach. A challenge for the LSWI-base algorithm 610 

is to acquire a sufficient number of good quality observations throughout the year, in particularly, during the winter 

season. As Landsat acquires images at a 16-day revisit cycle, the missing data issue could cause some uncertainties in 

the PALSAR-2/Landsat evergreen forest maps. However, this data issue could be improved by combining multi-

source remote sensing images like Sentinle-2, Landsat-8, and Landsat-9 in the future. To improve the evergreen forest 

mapping, the development of a hybrid approach of both LSWI- and NDVI-based algorithms is another promising way, 615 

which will be examined in our following works for discrimination of evergreen and deciduous trees, shrubs, and 

grasses.   

Data availability 

The data are available at https://doi.org/10.6084/m9.figshare.21270261 (Wang, 2024)(Wang et al., 2022).  
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Conclusions 620 

This study integrated microwave (PALSAR-2) and optical (Landsat) images and produced annual forest maps 

in 2015-2017 for the CONUS at 30-m spatial resolution with an improved accuracy. We compared the PL-based forest 

maps with the four widely-used satellite-based forest maps in terms of (1) forest area estimates and (2) forest definition 

by forest structure metrics (tree height and canopy coverage) from the ICESat LiDAR tree structure datasets. The 

good performance of PL-based forest maps shows the strong potential of the PALSAR-2/Landsat integrated mapping 625 

approach for generating accurate high-resolution forest products at the national or larger scales. Furthermore, we 

generated the annual 30-m evergreen forest maps in the CONUS, which can be used to investigate how climate change 

and human activities affect these forest types in the CONUS. In addition, following the FAO’s forest definition, we 

compared the widely-used Landsat-based, PALSAR-2-based, and PALSAR-2/Landsat-based forest cover products on 

the characterization of forest structure metrics (CC and CH) by using the ICESat LiDAR tree structure datasets. We 630 

also compared the satellite-based forest cover products and the FIA statistical data on the forest area estimates. The 

comprehensive intercomparisoninvestigation with a wide range of products provides insights to apply appropriate 

products for relevant research and management activities.on the satellite-based forest mapping approaches and the 

FIA forest products also suggested the potential of integrating FIA data and PALSAR and Landsat images to support 

the FAO's Global Forest Resources Assessment at the national scale.  635 
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