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Abstract. Economic statistics are frequently produced at an administrative level such as the sub-national division. However,

these measures may lack sufficient local variation in the economic activities to analyze local economic development patterns

and the exposure to natural hazards. Agriculture GDP is a critical indicator for measurement of the primary sector, on which

more than 2.5 billion people depend on their livelihoods that provide a key source of income for the entire household (FAO,

2021). Through a data fusion method based on cross-entropy optimization, this paper disaggregates national and subnational5

administrative statistics of Agricultural GDP into a global gridded dataset at approximately 10 x 10 kilometers using satellite-

derived indicators of the components that make up agricultural GDP, namely crop, livestock, fishery, hunting and timber

production. The paper estimates the exposure of areas with at least one extreme drought during 2000 to 2009 to agricultural

GDP is an estimated US$432 billion of agricultural GDP circa 2010, where nearly 1.2 billion people live. The data are available

on the World Bank Development Data Hub (DOI: http://doi.org/10.57966/0j71-8d56; IFPRI and World Bank, 2022).10

1 Introduction

According to the Food and Agriculture Organization of the United Nations, at least 2.5 billion people depend on the agricul-

tural sector for their livelihood and it provides a key source of employment and income for the poor and vulnerable people

(FAO, 2013, 2019, 2021). Yet, economic statistics of the agricultural sector are frequently produced at a national or lower

administrative level and may not adequately capture the local variation. Furthermore, a spatial mismatch may exist between15

the geographic unit of interest like the natural area of a river and the administrative area. Lastly, local conditions can pose

challenges to measurement across the world. Agricultural land area is approximately five billion hectares and access to data

capture and reporting in fragile, conflict and violence states may not allow current or complete geographic coverage.

Detailed agricultural data are critical to examining a wide range of agricultural issues including technology and land use

(e.g. Bella and Irwin, 2002; Luijten, 2003; Staal et al., 2002; Samberg et al., 2016), exposure to natural hazards (e.g. Murthy20

et al., 2015) and patterns of and productivity of economic development (e.g. Nelson, 2002; Elhorst and Strijker, 2003; Gollin

et al., 2014; Reddy and Dutta, 2018). Carrão et al. (2016) examine the exposure of people and economic activity to drought

using measures of physical elements (e.g. cropland and livestock). Rentschler and Salhab (2020) find that low and middle-
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income countries have 89% of global flood exposed population and poor people account for almost 600 million, who are

directly exposed to the risk of intense flooding. Vesco et al. (2021) examine linkages between climate variability and agricul-25

tural production as well as conflict. They find that climate variability contributes to an increase in the spatial concentration

of agricultural production within countries. Furthermore, in countries with a high share of agricultural employment in the na-

tional workforce, they find this combined effect increases the likelihood of conflict onset. To better target rural development

strategies for economic growth and poverty reduction, as well as conserve the natural resource base for long-term sustainable

development, we need to accurately delineate the spatial distribution of agricultural resources and production activities (Wood30

et al., 1999).

One method to partially address spatial mismatch between administrative and other geographic units such as natural hazards

uses the gridded (raster) data format by providing an intermediate and consistent unit for disaggregation and aggregation (e.g.

UNISDR, 2011). Data-disaggregation methods can use detailed data to inform estimates of aggregated data from large areas at

the local level (e.g. see review in Pratesi et al., 2015). Several spatial data products from global models are available to estimate35

population at a local level (see review in Leyk et al., 2019).

Previous evidence-based risk analyses take advantage of global data of hazards to estimate exposure of population and

economic activity (e.g. Gunasekera et al., 2015, 2018; Ward et al., 2020; Rentschler and Salhab, 2020). Gross Domestic

Product (GDP) is a critical economic indicator in the measurement and monitoring of an economy in a country that is typically

only available at national and occasionally sub-national levels. Regional indicators play a key role in the necessary variation40

to forecast regional GDP (Lehmann and Wohlrabe, 2015) and food security (Andree et al., 2020). Previous efforts to estimate

local GDP use high resolution spatial auxiliary information such as luminosity or population data to provide local variation.

Methods by Nordhaus (2006); World Bank and UNEP (2011); Kummu et al. (2018); Murakami and Yamagata (2019) took

advantage of gridded population data, which is the result of a model disaggregating the most detailed level population data into

grids (e.g. see review in Leyk et al., 2019). However, wealth is not evenly distributed among people nor infrastructure (Berg45

et al., 2018). In fact, the divide between the rich and poor is even widening in our time (Dabla-Norris et al., 2015). The method

used in World Bank and UNEP (2011) stratify the population by rural and urban, yet definition of these geographic areas can

vary based on the selection of the population model (Leyk et al., 2019). These measurements matter in application to stylized

facts such as the strong negative correlation of the level of urbanization with the size of its agricultural sector (Roberts et al.,

2017). Also, the uniform distribution of labor in agriculture is another key concern (Gollin et al., 2014). Other methods used50

land cover such as vegetation and built-up indices, however did not incorporate types of agriculture like cropland and livestock

(Gunasekera et al., 2015; Goldblatt et al., 2019).

Other methods to estimate GDP at a local level take advantage of the lights at night dataset. Doll et al. (2006) and Elvidge

et al. (2009) found nighttime lights to provide a uniform, consistent, and independent estimate for economic activity, and several

other studies (e.g. Chen and Nordhaus, 2011; Henderson et al., 2012; Ghosh et al., 2010; Bundervoet et al., 2015; Wang et al.,55

2019; Eberenz et al., 2020; Wang and Sun, 2021) utilized this striking correlation between luminosity and economic activities

to estimate economic output on the ground. While night light is a good reflection of economic activities in manufacturing and

urban areas, night light data may not capture the agricultural activity as it requires areas to emit light. Bundervoet et al. (2015)
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suggest that agricultural indicators rather than rural population could improve the estimation of GDP given the importance of

agriculture in many of the economies in their sample of Africa. Gibson et al. (2021) find that night time lights data are a poor60

predictor of economic activity in low population density rural areas.

In this paper, we present a high resolution gridded Agricultural GDP (henceforth AgGDP) dataset that is produced through

a spatial allocation model by distributing national and sub-national statistics to 5 arcminute pixels based on satellite-derived

information of constituents of AgGDP, including forestry, hunting, and fishing, as well as cultivation of crops and livestock

production1. We make two main contributions. First, we construct a global dataset of gridded AgGDP. This entails a massive65

effort of data collection and integration. We extend and apply the cross-entropy framework developed in the Spatial Production

Allocation Model (SPAM) for crops that pioneered the use of cross-entropy optimization in spatial allocation (You and Wood,

2003; You et al., 2014, 2018; Yu et al., 2020). We construct and integrate global datasets of the components of agricultural

GDP as priors and then reconcile the values with the regional account statistics using cross-entropy optimization. Second,

we contribute to efforts assessing the exposure of economic activity to natural hazards with a focus on agricultural GDP.70

Significant progress has been made to measure physical assets such as built-up area and estimate hazards to quantify its

exposure to natural hazards. However, the spatial distribution of agricultural GDP is less known. So, we apply these data to

inform efforts quantifying the population and agricultural GDP at risk to drought and water scarcity.

The rest of this paper is structured as follows. The next section provides a detailed description of the methodology and data.

Then, we present the model results and data. Then, we discuss the results along with validation followed by usage notes from75

a fitness-for-use perspective. Finally, we provide concluding remarks.

2 Methodology and data

Following the composite structure of agricultural GDP, we disaggregate the national and sub-national statistics into a global

grid through a cross-entropy allocation model. Given the availability of data and the global scope, our efforts varied on adjusting

official statistics and creating priors for different components. Below we discuss the construction of each component, AgGDP80

statistics and the allocation model followed by the global natural hazards data. Given the spatial resolution and year of reference

of the input data for the crop value of production, we estimate AgGDP for the year 2010 into 5 arc-minute grids (10x10 km)

across the world.

2.1 Construction of components

For each pixel, we construct an estimated value of production based on high spatial resolution information of the five compo-85

nents that serve as priors in the modeling process: crop, livestock, forestry, fishing, and hunting. Given the lack of information

on the hunting component, we disaggregate the forestry component into two parts: timber and non-timber products of forestry.

1Agriculture, forestry, and fishing corresponds to ISIC divisions 1-3 and includes forestry, hunting, and fishing, as well as cultivation of crops and livestock

production

3

https://doi.org/10.5194/essd-2022-336
Preprint. Discussion started: 7 November 2022
c© Author(s) 2022. CC BY 4.0 License.



The non-timber products of forestry includes an even distribution of hunting. The construction of the five components is de-

scribed below in four subsections: crop, livestock, forestry (timber and non-timber) and fishing.

2.1.1 Crop value of production90

The crop component in the gridded AgGDP is generated by multiplying the quantity of production from the global SPAM

2010 version 1 dataset2 (You et al., 2018) with the producer prices at the country level from FAOSTAT (FAO, 2016) for each

crop and then summed together.3 As mentioned earlier, SPAM is a cross-entropy model, which calculates a plausible allocation

of crop areas and production to approximately 10 km pixels, based on agricultural statistics at national and sub-national

levels, combined with gridded layers of cropland, irrigated areas, population density and potential crop areas and yields (Yu95

et al., 2020). SPAM’s output distinguishes between 42 crops (33 individual crops, 9 aggregated crops) that together add up to

practically all cultivated crops in a country with four parameters including production, yield, physical area and harvest area.

For aggregated SPAM crops (such as other cereals, other pulses, vegetables, fruits, etc.), we computed their prices by taking

the weighted average of their components, as follows:

PriceJagg =
Σjpricejprodj

Σjprodj
,∀j ∈ Jagg (1)100

where Jagg is the aggregated crop group, j is any crop that belongs to Jagg, PriceJagg is the price of the aggregated crop

group, pricej is the price of crop j, and prodj is the production of j.

For each grid, the value of crop production is thus:

Cropvali = Σjprodi,jpricej ,∀j that grow in pixel i (2)

where Cropvali is the value of total crop production in pixel i, prodi,j is the production of crop j in pixel i, and pricej is the price105

of crop j. A map of global gridded crop production value as a prior is shown in Figure 1.

2.1.2 Livestock production

Livestock accounts for an estimated 40% of the global value of agriculture output and plays an important role in ensuring the

livelihoods and food security for over one-sixth of the world’s population (FAO, 2018). Yet, it is still under rapid expansion as

the global demand for animal-sourced products such as meat, milk, eggs, and hides continues to grow (Herrero and Thornton,110

2013). While species and quantities of livestock raised vary among regions and husbandry farmers, there are five primary

species - cattle, sheep, goats, pigs, and chicken - that prevail worldwide and provide essential products for human consumption.

We calculate the component of livestock production in gridded AgGDP based on the distribution maps of the above five

primary species from the Gridded Livestock of the World (Robinson et al., 2014; Gilbert et al., 2018) and FAOSTAT’s value

of production of livestock products (including meat, milk, eggs, honey and wool) (FAO, 2020). To facilitate comparison, the115

2Available at www.mapSPAM.info
3As for the producer price, ideally, we need sub-national level figures, but such a dataset is not available globally. Therefore, we use the FAOSTAT’s

national producer prices.

4

https://doi.org/10.5194/essd-2022-336
Preprint. Discussion started: 7 November 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 1. This map illustrates the assembled crop production value used as a prior in the cross-entropy model. Sources: FAO (2016); Yu

et al. (2020); Authors’ calculation (2022)

Table 1. This table shows the livestock type with the conversion factor. Sources: Eurostat (2018)

livestock type conversion factor

Cattle 1

Pigs 0.3

Goats 0.1

Sheep 0.1

Chicken 0.01

animal-specific density numbers are converted to one animal type by using International Livestock Units (Eurostat, 2018), as

shown in Table 1. Then the densities of the animal equivalent values are multiplied by pixel areas to get the count of animals

per grid, which is multiplied by the FAOSTAT’s value of production to obtain the livestock production prior for each pixel.

lsvali = lsvalx
lsnumi

ΣX lsnumi
,∀i ∈X (3)
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where lsvali is the total value of livestock production in pixel i; lsvalx is the value of livestock production (meat, milk, eggs,120

honey and wool) that is reported at the national level; lsnumi is the total number of equivalent animals in pixel i; and X is a set

including all pixels that fall within the boundary of a nation.

A map of global gridded livestock production value as a prior is shown in Figure 2.

Figure 2. This map illustrates the assembled livestock production value used as a prior in the cross-entropy model. Sources: Robinson et al.

(2014); Gilbert et al. (2018); Eurostat (2018)

2.1.3 Forestry production and hunting

Forest resources have been utilized by people since the advent of civilization (Hossain et al., 2008). Up until now, over a billion125

people still rely on forest resources for food security and income generation to some extent (FAO, 2018). In the world’s least

developed regions, 34 countries depend on fuelwood to provide more than 70% of energy, among which 13 nations require

90% of energy (FAO, 2018).

The contribution of forest production to AgGDP can be classified into two broad types: wood (logging) products and non-

wood forest products. Wood (logging) products are the most exploited commodities in the forestry sector. The trees are cut130

down to be the raw materials for producing timber and pulp, which are further processed and converted into a number of deriva-

tives, such as construction materials and paper products. Non-wood forest products are defined by the Food and Agriculture
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Organization of the United Nations (FAO).4 It is estimated that millions of households around the world depend on non-wood

forest products for their livelihood. Some 80% of people in the developing world use these products in their everyday life

(Sorrenti, 2016).135

For a complete assessment of forest production priors, this study takes both wood and non-wood products into consideration.

The gridded non-wood forest products dataset used in this study was jointly developed by Resources for the Future and the

World Bank (Siikamäki et al., 2015) through an approach of meta-regression modeling, which integrates over 100 estimates

at various locations from a literature review and multifold information on ecological and socioeconomic factors. The value of

non-wood forest products is resampled to the 5 arc-minute grid cell size and converted to 2010 USD for consistency with other140

AgGDP components. As part of non-timber products, we include hunting with an even distribution across units and time given

the lack of information.

The value of wood products per pixel is calculated based on forest loss from year 2010 to year 2011 excluding loss due

to fire, with an assumption that the forests were mainly cut down for timber production. The Moderate Resolution Imaging

Spectroradiometer (MODIS) Land Cover map (Friedl et al., 2010) for year 2011 is overlaid on top of that for year 2010 to145

detect the area that has changed from forest to non-forest.5 However, forest loss due to fire should be removed because it does

not result in wood products. Thus, fire information for year 2010 is obtained from the NASA Fire Information for Resource

Management System (FIRMS) (NASA, 2018) and areas that experienced forest fire are eliminated. After the identification of

forest area change in each pixel, the value of wood production at national level is taken from a FAO lead project (Lebedys and

Yanshu, 2014) and proportionally disaggregated to arrive at a pixel-wise value of wood products as follows:150

Woodvali = (forestvalx−nonwoodvalx)
forestlossi

ΣXforestlossi
,∀i ∈X (4)

where Woodvali is the value of wood products in pixel i; forestvalx is the value of forest products reported at national level;

nonwoodvalx is the value of non-wood products at national level which is derived from Siikamäki et al. (2015); forestlossi is

the area of forest loss excluding loss to fire in pixel i; again, X is a set including all pixels that fall within the boundary of a

nation.155

A map of global gridded wood forest production value as a prior is shown in Figure 3.

2.1.4 Fishery production

Fish makes up approximately 17% of animal-sourced protein in the human diet worldwide (Mathiesen, À. M., 2018). The

fishery industry supports the livelihood of 12% of world population by creating 200 million jobs along its value chain. In the

global trade system, 80 billion USD worth of fish is exported from developing countries and it plays a crucial role in promoting160

local economic development (Kelleher et al., 2009).

4These products are “goods of biological origin other than wood derived from forests, other wooded land and trees outside forests”, including foods (nuts,

fruits, mushrooms, etc.), food additives (herbs, spices, sweeteners, etc.), fibers (for construction, furniture, clothing, etc.), and plant and animal products with

chemical, medical, cosmetic or cultural value.
5The measurement is limited to detection of land cover change from satellite and will likely account for selective harvesting or forest degradation.
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Figure 3. This map illustrates the assembled wood forest production value used as a prior in the cross-entropy model. Sources: Friedl et al.

(2010); Siikamäki et al. (2015); NASA (2018); Authors’ calculation (2022)

We estimate both freshwater inland fisheries and marine production values using the FISHSTAT (FAO, 2009) data with

a classification based on the fish production categories. The inland fishery production value is the result of disaggregating

corresponding country level statistics in proportion to areas of inland water bodies in pixels. The distribution of inland water

bodies is obtained from the ESA-CCI (Lamarche et al., 2017). Thus, the value of inland fishing production in each grid is165

calculated as follows:

fishvali = freshvalx
waterbodyi

ΣXwaterbodyi
,∀i ∈X (5)

where fishvali is the value of fishery production in pixel i; freshvalx is the value of fresh fish production at the national level

which is aggregated from FISHSTAT; waterbodyi is the area of water bodies in pixel i; and X is a set including all pixels i that

fall within the boundary of a nation x.170

The value of marine fisheries production is based on its proximity to fish landing ports weighted by a composite indicator of

equal weight from the number of visits and sum of the vessel hold of fishing vessels. We use the port database from the World

Port Index (National Geospatial-Intelligence Agency, 2019) and the number of port visits with a vessel hold of fishing vessels

from Hosch et al. (2019) to create a composite variable as the prior based on the sum (for each port) of the number of visits

(each event in the database) and total vessel hold at the port. The geographic coverage of the ports is calculated for each port175
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using the minimum port distance provided in (Hosch et al., 2019). Any distance greater than 150km is calculated at 150km.

The value of marine fishing production in each grid is calculated as follows:

marinevali = marinevalx
portindexi

ΣXportindexi
,∀i ∈X (6)

where marinevali is the value of fishery production in pixel i; portindexi is an equal weighted composite index of the number

of visits in pixel and the total vessel hold in pixel i; and X is a set including all pixels i that fall within the boundary of a nation180

x.

A map of global gridded fishery production value as a prior is shown in Figure 4.

Figure 4. This map illustrates the assembled fishery production value (prior) used as a prior in the cross-entropy model. Sources: FAO (2009);

Lamarche et al. (2017); Hosch et al. (2019); National Geospatial-Intelligence Agency (2019); Authors’ calculation (2022)

.

2.2 AgGDP Statistics and Linked Grids

Tremendous effort has been made to collect and organize national and sub-national statistics from various sources of national

ministries or from reports. However, not every country publishes its agricultural GDP figures at the sub-national (regional)185

9

https://doi.org/10.5194/essd-2022-336
Preprint. Discussion started: 7 November 2022
c© Author(s) 2022. CC BY 4.0 License.



level and different methods of regionalization exist including top-down, bottom-up and mixed methods (Eurostat, 2013).6 Our

database has 68 countries that have sub-national agricultural GDP data, expressed in varying domestic currencies and for

different years. Table B7 lists these countries and descriptive statistics including temporal coverage and number of subnational

regions at an administrative geographic level including NUTS level.7

To overcome discrepancies in temporal coverage and currency terms (constant and current), and to keep the data consistent190

and comparable for countries across the world, shares from sub-national statistics are calculated and then applied to a national

total to derive a calibrated number at the sub-national level. The national totals are obtained from the World Development

Indicators (World Bank, 2019) and averaged over three years around 2010. For a few countries, which do not report their

national agricultural GDP in the WDI database, sums of all agricultural GDP components are used as proxies.

The calibrated statistics are then linked to grids through a shapefile of the Global Administrative Unit Layers (GAUL)195

that maintains global geographic layers with a consistent and comprehensively unified coding system (FAO, 2015). Then,

we overlay the GAUL administrative boundaries on the grid network to assign the corresponding codes of the administrative

units to each grid. For areas where sub-national AgGDPs have different administrative areas than GAUL, the GAUL areas are

merged or split to match the sub-national AgGDP area.

2.3 Spatial Allocation Model200

After constructing all the components, we define a spatial allocation model in a cross-entropy framework following (You

et al., 2014) to allocate administrative statistics to 5 arc-minute pixels8. National and sub-national AgGDP values are used

as a constraint, while the distribution of crop, livestock, fishery, and forestry production (hunting is included in non-timber

products of forestry) is used to create priors for estimating pixel-level AgGDP. Measurement units are unified using deflators

and exchange rates.9205

The first step is to transform all real-value parameters into corresponding probabilities. Let Si be the share of the total

agricultural GDP allocated to pixel i within a country x. AgGDPi,x is the agricultural GDP allocated to pixel i in country x and

X is a set including all pixels that fall within the boundary of a nation. Therefore:

Si =
AgGDPi,x

ΣXAgGDPi,x
,∀i ∈X (7)

6Regional Gross Domestic Product (RGDP) can be estimated following the production, income or expenditure approaches. However, RGDP is not typically

compiled using the expenditure approach due to the scarcity of data such as inter-regional purchases and sales, or regional exports/imports. On the production

and income approaches, the estimate of market activities is typically from the production approach, whereas the estimate of non-market industries is from the

income approach.
7The European Union developed a standard for administrative levels: The Classification of Territorial Units for Statistics (NUTS, for the French nomen-

clature d’unités territoriales statistiques).
8A comprehensive presentation of the cross-entropy method is in Rubinstein and Kroese (2004)
9The currency varies by source. Crops are in local currency. Livestock are in International USD 2004-2006. Fish are USD 2009. Non-timber forest products

are in USD 2012 and Timber (forest) are in USD 2011.
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Let PreAgGDPi be the pre-prior allocation of AgGDP share from our best estimate. The first approximation can be done by210

summing all five calculated pixel level components of AgGDP:

PreAgGDPi = Cropi + Livestocki + Forestryi + Fishingi + Huntingi (8)

where we assume hunting occurs in areas with equal probability.

Theoretically, the sum of these components should be close to the official values obtained from the World Development

Indicators. We make sure that the official AgGDP values are guaranteed to be no less than the sum of all five components of215

agricultural GDP. Therefore, we first sum up all prior estimations of AgGDP.

AgGDPx = Σi∈xPreAgGDPi (9)

Then, we rescale the prior AgGDP to be consistent with the official AgGDP value:

PriorAgGDPi =
PreAgGDPiAgGDPx

ΣiPreAgGDPx
(10)

Then we calculate the prior for Si as a probability by normalizing PriorAgGDP:220

PreAlloci =
PriorAgGDPi,x

Σi∈XPriorAgGDPi
(11)

Finally, we formulate a cross entropy model in the following mathematical optimization framework:

MIN CE(Si) = ΣiSilog(Si)−ΣiSilog(PreAlloci) (12)

Subject to the following three conditions:

ΣiSi = 1 (13)225

Σi∈k(ΣAgGDP )Si = SubAgGDPk ∀k) (14)

0≤ Si ≤ 1 ∀i (15)

where i: i=1,2,3,. . . are pixel identifiers within the allocation unit (e.g. Brazil); and k: k=1,2,3, . . . are identifiers for sub-230

national geopolitical units (e.g. a state) where AgGDP values (SubAgGDPk) are available. The objective function is defined

as the cross entropy of AgGDP shares and their prior. The first constraint (Equation 13) is the pycnophylactic or volume-

preserving constraint (e.g. Tobler, 1979) that ensures the sum of all allocated AgGDP values is equal to the total AgGDP of

the country. The next equation (14) sets the sum of all allocated AgGDP within those subnational units with available data to
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https://doi.org/10.5194/essd-2022-336
Preprint. Discussion started: 7 November 2022
c© Author(s) 2022. CC BY 4.0 License.



be equal to the corresponding sub-national AgGDP values. The last equation (15) is a natural constraint for the percentage of235

AgGDP, which is also the probability in the cross-entropy model. The modeling framework is flexible in that more constraints

can be added if more data are available and/or more reasonable assumptions on how AgGDP should be spatially disaggregated

are discovered.10 Last but not least, we multiply the total regional agricultural GDP by the probability in the cross-entropy

model to derive the final pixel level agricultural GDP:

AgGDPi = ΣiAgGDPxSi (16)240

2.4 Natural hazards

We use measures of two natural hazards to gain insight into the spatial distribution of agricultural activity with regards to

drought and water scarcity. We calculate the Standardized Precipitation-Evapotranspiration Index (SPEI) (Vicente-Serrano

et al., 2010), which measures the difference between observed precipitation and estimated potential evapotranspiration with a

3 month interval using the base climatology of 1980 to 2019, which is implemented in R (Beguería and Vicente-Serrano, 2017)245

using climate data from Harris et al. (2020). Extra dry years are defined as the number of years that are less than or equal to

-2.0 during the period from 2000 to 2009. Figure 5 shows the results of the SPEI.

The Water Crowding Index (WCI) is a measure of water scarcity considering the local population as the annual water

availability per capita (Falkenmark, 1986, 2013). Veldkamp et al. (2015) model global water crowding index with return

periods. We take the mean of any pixels of the ensemble WCI with a 10 year return period within an agricultural GDP pixel.250

Following the literature (e.g. Arnell, 2003; Alcamo et al., 2007; Kummu et al., 2010; Veldkamp et al., 2015), we categorize

the WCI into four categories: Absolute is less than 500 m3/capita per year; severe is less than or equal to 1000 m3/capita per

year; moderate is less than or equal to 1,700 m3/capita per year; and low is the remainder (Figure 6). Then, we evaluate water

shortage events using a threshold of 1,700 m3/capita per year with a return period of 10 years.

2.5 Night time lights255

Night time lights data are commonly used in the estimation of local human development and economic activity (e.g. Ghosh

et al., 2010; Henderson et al., 2012; Bundervoet et al., 2015; Kummu et al., 2018; Bruederle and Hodler, 2018). We use the

radiance calibrated data for 2010 from the F16 satellite to quantify the correlation between agricultural GDP and night time

lights by geographic regions of the world defined by the World Bank.11

3 Results and Discussion260

Figure 7 illustrates the result of the cross-entropy model in a global map of gridded agricultural GDP. The global gridded

AgGDP for the year 2010 in 2010 US dollars is in gridded (raster) format at a resolution of 5 arc-minute, which approximates
10For instance, market access may play a role in determining the spatial distribution or spatial structure of AgGDP and can be included as a constraint in

the model. However, we provide a parsimonious model without market access.
11Specifically, we use the version 4 product from the F16 satellite (20100111 - 20101209) available at:

https://ngdc.noaa.gov/eog/dmsp/download_radcal.html
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Figure 5. This map illustrates the number of years with at least one extreme drought from 2000 to 2009 measured by a 3 month SPEI.

Sources: Harris et al. (2020); Beguería and Vicente-Serrano (2017); Authors’ calculation (2022)

.

to 10 km.12 The spatial extent and quantity distribution of AgGDP over the world are in agreement with general knowledge

of agricultural technology adoption and suitability, with well-known agricultural nations, such as India, China and the United

States standing out as regions with high AgGDP. A number of European countries also exhibit high agricultural GDP values,265

which is likely due to the benefit of adopting mechanized farming and technological facilitation, considering that the shares of

agricultural land and agrarian population are relatively low in these well-developed places. Countries in Sub-Saharan Africa

remain low in agricultural production, as indicated by low-value pixels sparsely spreading over the continent. Within the

continent, agricultural production activities primarily take place in geographic areas with suitability.

The correlation of AgGDP with night light varies across world regions as it requires areas to emit light (Table 2). Most World270

Bank regions have similar patterns of correlation with night time lights across the measures of AgGDP, GDP and population.

The relationship is strongest with the correlation between GDP and night light compared with AgGDP or population. Likewise,

World Bank income groups show similar patterns across the measures with lower middle and upper middle income groups

having higher correlations than low and high income groups.

12The coordinate system is the standard WGS84 and saved in GeoTIFF format. The data are publicly and freely available through the World Bank Devel-

opment Data Hub website at http://www.doi.org/10.57966/0j71-8d56.

13

https://doi.org/10.5194/essd-2022-336
Preprint. Discussion started: 7 November 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 6. This map illustrates the Water Scarcity Index categories with a return period of 10 years. Sources: Veldkamp et al. (2015); Authors’

calculation (2022)

.

Table 2. This table shows the Spearman correlation with night time lights across the measures of AgGDP, GDP and population grouped by

World Bank Region where AFR is Sub Saharan Africa; EAP is East Asia and Pacific; ECA is Eastern Europe and Central Asia; LCR is Latin

America; MENA is Middle East and North Africa; SOA is South Asia and Other is the category for the remaining countries. Sources: NOAA

(2011); World Bank (2019); Authors’ calculation (2022).

World Bank Regions AgGDP and NTL GDP and NTL POP and NTL

AFR 0.665 0.874 0.694

EAP 0.951 0.953 0.947

ECA 0.830 0.894 0.790

LCR 0.941 0.961 0.925

MENA 0.779 0.893 0.756

Other 0.528 0.549 0.529

SOA 0.929 0.952 0.929

Following previous global studies (e.g. Blankespoor et al., 2017), we present an application of exposure to a natural hazard275

with the AgGDP dataset and population. A common drought measure is the Standard Precipitation Evapotranspiration Index
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Figure 7. This map illustrates the global gridded Agricultural GDP circa 2010 from the Cross-Entropy model in 2010 USD. Source: Authors’

calculation (2022)

.

(SPEI) (Vicente-Serrano et al., 2010). The global population estimates for the year 2010 are from WorldPop and Center for

International Earth Science Information Network (CIESIN), Columbia University (2018).13

The exposure to drought is not uniform across the world. Across the world, the group of high income countries have less

population and agricultural GDP exposed to drought in each number of years with extremely dry compared to the countries in280

other income categories (Figure 8). The top ten countries in agricultural GDP exposed to an extreme drought from 2000 to 2009

include the large economies in the agriculture sector such as China, India, the United States and Russian Federation (Table B1).

However, other countries have a high share of their agricultural GDP exposed to an extreme drought (Table B2). The top 10

countries in 2010 population exposed to dry areas include countries with the largest economies in the agriculture sector as

noted above, but the list includes countries such as the Democratic Republic of Congo, Tanzania and Uganda (Table B3).285

Across the world, high income countries have less population and agricultural GDP in areas of absolute or severe categories

of the Water Crowding Index compared to countries in other income categories (Figure 9). The top ten countries of agricultural

GDP exposed to the Water Crowding Index include large economies in the agriculture sector such as China, India, Pakistan,

Indonesia and Nigeria (Table B4). However, several countries have a high share of their agricultural GDP exposed to the Water

13They use a Random Forest-based dasymetric redistribution method.
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Figure 8. The total exposure of agricultural GDP [A] and population [B] aggregated from ar-

eas with at least one extreme drought from 2000 to 2009 measured by a 3 month SPEI.

Sources: WorldPop and Center for International Earth Science Information Network (CIESIN), Columbia University (2018); World

Bank (2019); Authors’ calculation (2022).

Crowding Index (Table B5). The top 10 countries in 2010 population exposed to dry areas include countries with the largest290

economies in the agriculture sector as noted above, but the list includes countries such as Bangladesh, the Arab Republic of

Egypt and Mexico (Table B6).

3.1 Validation

A true validation of the predictive accuracy of this model involves data collection and construction of agricultural gross regional

product in different pixels and testing those independent observations against the predicted values. The regional product data are295

generally constructed at the administrative level rather than the pixels, so validation would have to be done on an aggregation of

model predictions. Few countries provide the required data to assess the prediction accuracy to examine the internal validation

of the disaggregation efficiency and the data collection would be extremely costly and time-consuming. For the case of Brazil,

Thomas et al. (2019) examine the predictive accuracy of three models to disaggregate agricultural GDP spatially including:

cross-entropy, rural population and spatial regression. The cross-entropy and spatial regression models outperform a naive rural300

population AgGDP model as measured by the Mean Absolute Deviation (MAD) and Root Mean Square Error (RMSE).14 While

the spatial regression performs the best, global data requirements that allow high enough degrees of freedom is a challenge.

14Specifically, the MAD and RMSE for each model are respectively: the rural population density model (28,744 and 25,397), Cross-entropy spatial allocation

(8,249 and 18,347) and Spatial disaggregation from a regression on agricultural production (7,214 and 16,673).
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Figure 9. Total Agricultural GDP [A] and population [B] by mean Water Crowding Index, where Absolute is less than 500 m3/capita per year,

severe is less than or equal to 1000 m3/capita per year, moderate is less than or equal to 1700 m3/capita per year and low is the remainder.

Sources: Veldkamp et al. (2015); World Bank (2019); Authors’ calculation (2022).

Given these data requirements and challenges, we compare the cross-entropy model to another spatial allocation model

based on rural population at the country level. Then we extend a comparison of both models at the global level by mapping the

correlation.305

One advantage of the cross-entropy is the volume preserving pycnophylactic property, which ensures the sum of the gridded

data is the original value and allows the possibility to include all information that is available from mixed levels of data (e.g.

You et al., 2014). However, this presents a challenge in terms of an assessment of a global model. Previous work on gridded data

products includes evaluations of accuracy. Typically, studies evaluate the internal accuracy of the model exploiting multiple

geographic levels of data (as mentioned above in Thomas et al., 2019). Similarly, Van Boeckel et al. (2011), who examine duck310

data in Thailand, conclude that input levels do matter, especially the importance of the presence of administrative level 1 data.

Robinson et al. (2014) evaluate the livestock model in Brazil and find a positive association between the model accuracy and the

administrative level of the training data used in the model. They also illustrate this inverse relationship of prediction accuracy

and level of intensification in the case of chickens in Europe (Robinson et al., 2014). At the local cell level, previous models

of land or population have compared results to independent local data (Siebert et al., 2002) or identified errors of omission in315

a gridded population model using the locations from household surveys (e.g. Tiecke et al., 2017).

Since we can not perform an evaluation of prediction accuracy for all countries, we compare the global cross-entropy model

with another allocation model, which is similar to the global assessment of maize and rice production in You et al. (2014). For

the comparison, we construct a proportional allocation model using rural population density following the method in Thomas
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et al. (2019) for the case of Brazil.15 Then, we can test the similarity of the two maps. Following Levine et al. (2009), we320

assume a normal distribution over the 2 million land pixels and perform a pairwise student t test to test the null hypothesis

that both maps were identical. This test allows us to examine whether the mean difference in the corresponding pixel value

from one map to another was greater than would be expected by chance alone. The t test statistic tell us that we can not reject

the null hypothesis which provides some evidence of similarity between the two models using all the global pixels. Figure 10

displays three global maps: the two models and their Spearman correlation.16 We exclude areas from the analysis with values325

that are less than 200,000. The correlation shows both areas of high and low correlation as the input of the models draws from

the relationship of agriculture from productions values or a (rural) population perspective.

The cross-entropy model can also propagate errors from the ancillary data that are inputs to the components. For the SPAM

model, the CGIAR network held expert consultation and validation workshops according to each crop and subsequently incor-

porated their feedback with modifications of the priors used in the model (You et al., 2014). The authors of Gridded Livestock330

Of the World (GLW) note regional differences in accuracy (i.e. RMSE values) are the result of the variation of production

intensity and thus dependence on the initial conditions of the land upon which the prediction variables are mainly drawn (spa-

tial agro-ecological variables)(Robinson et al., 2014). Lastly, the models integrate higher spatial resolution data to inform the

spatial disaggregation procedures, which is subject to the MAUP (Openshaw, 1981).

3.2 Usage Notes335

We provide descriptive statistics of the data and modeling from a fitness-for-use perspective (e.g. Leyk et al., 2019). The data

are most appropriate for applications at global, continental and regional scales (You and Wood, 2006). Decisions regarding

the use of this version over smaller spatial extents should be carefully considered in relation to the underlying assumptions

and characteristics of a particular area. However, as the spatial refinement of ancillary data advances along with greater cur-

rency, coverage and representativeness, we expect validation possibilities to increase and inform a better understanding of the340

uncertainty and the associated fitness-for-use. Also, we intend to improve spatial and temporal coverage when it is feasible.

The data disaggregation model from source to target level does impose spatial relationships and is subject to error (Li et al.,

2007). The measurement of GDP is also challenging (Angrist et al., 2021), especially agricultural production (Carletto et al.,

2015). The level of uncertainty associated with these results includes the thematic, spatial and temporal accuracies. Below, we

discuss these data and modeling issues in relation to two aspects: regional accounts and the regional components of AgGDP345

(mainly crop, fishery, forest, and livestock production values) that are priors in the cross-entropy model, and the outcome of

the cross-entropy model.

15We use the 2010 Gridded Population of the World version 4 from Center for International Earth Science Information Network - CIESIN - Columbia

University (2017) adjusted to the United Nation’s World Population Prospects followed by including the rural area defined by the Global Human Settlement

grid for 2015: namely, “Rural cluster", “Low Density Rural grid cell”, or “Very low density rural grid cell” (Pesaresi and Freire, 2019).
16The raster correlation in R performs a simple moving window correlation between two grids with a 3x3 pixel window.
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Figure 10. A panel map of gridded Agricultural GDP circa 2010 from the Cross-Entropy model and from the rural population model (A) and

its Spearman correlation in areas of AgGDP above or equal to 200,000 in the Cross-Entropy model (B). Source: Authors’ calculation (2022).
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3.2.1 Regional accounts

We collect regional accounts by sector from various sources into a global database. The data are not balanced over time nor

at the geographic level. The variation in the reference year of the regional accounts data influences the temporal balance of350

the database. This mismatch can influence the regional distribution of the agricultural GDP that may be different than the

target reference year of 2010. Given climate17 and specifically rainfall is important input to crop and livestock production and

may contribute to variation across years (Stanimirova et al., 2019; Zhang et al., 2020), we attempt to reduce this source of

error by averaging over multiple years when data are available similar to You et al. (2014). However, this does not eliminate

this mismatch. The availability of data varies when grouped by World Bank income (low or lower middle, upper middle and355

high income). The average absolute temporal difference (ATD) defined as the mean difference in years between the reference

regional accounts and the target year (2010) is higher in the low and lower middle income group. Likewise, the mean deviation

of the share of AgGDP by country over the year(s) is larger in low or lower middle compared to high income.

The global regional account database includes national and subnational units at various administrative levels.18 Following

Robinson et al. (2014) in their assessment of Gridded Livestock Of the World (GLW) 2.0, we summarize the average spatial360

resolution (ASR) of the input regional data, which is the square root of the land area divided by the number of administrative

units. We find that on average the ASR decreases from high to low income groups.

3.2.2 Components

Another source of uncertainty is indirect temporal inaccuracy propagated from the input datasets of the components, which

are modeled. We discuss all five components of agricultural GDP: crop, livestock, forest, fish and hunting. The SPAM model365

(You et al., 2014) is a result of several gridded modeled datasets including rural population density from Global Rural-Urban

Mapping Project (GRUMP) Alpha version (Balk et al., 2006). Likewise, the Gridded Livestock of the World v2.0 includes

rural population density in 2006 (GRUMP) along with other predictors such as precipitation (Hijmans et al., 2005) and a

modeled travel time to places with 50,000 inhabitants circa 2000 (Nelson, 2008). (Anderson et al., 2015) find variation in

their examination of global data products of cropping systems models. For livestock, we transform the 5 major livestock into370

international values from livestock products (namely, meat, milk, eggs, honey and wool). The forest (non-wood products,

wood-products) components relies on a remote sensing model to estimate forest loss. With regards to the non-timber values,

limitation from the sources present two challenges. The estimates use simple averages from the literature that accordingly

assume a property of uniformity in the value of a hectare of forest as similar across the world and the sample of forests with

literature drawn for the study is representative of the world (Siikamäki et al., 2015). The fishing model relies on proximity and375

association with ports or water bodies.19 Finally, since we do not incorporate any information on hunting, the result is an even

distribution across units and time.
17For a discussion on climate yield factors see Block et al. (2008).
18This also includes cases where administrative units at the same level are merged to match the geography of the regional accounts data.
19The freshwater case does not account for any variation, whereas the marine port locations incorporate variation on vessel holds.
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Another source of uncertainty is the geographic distribution of the components. Ideally, we would use subnational prices,

however it was not feasible, and the results do not reflect this occurrence, including administrative units with higher variation

of prices due to the heterogeneity of distinct urban and rural areas.380

4 Conclusions

Natural hazards impact both lives and livelihoods and a higher frequency and severity of disasters will likely increase in a

changing climate. Socio-economic estimates at the local level inform disaster preparations of the exposure of physical assets

and production to natural hazards and have implications for food security. Increased frequency and severity of natural hazards

such as floods, droughts and cyclones are also likely to impact agricultural production systems, which can be wide ranging385

including loss of life, harvest or livestock and damage to infrastructure.

Significant advancement in the spatial allocation of indicators has occurred in the past 10 years such as population (e.g

Leyk et al., 2019). The advantages of gridded data as a common spatial unit of integration and the cross-entropy models are

clear. These common units allow us to examine within-country characteristics, especially in the case of spatial data that do not

conform with each other such as administrative boundaries and natural hazards to inform analyses with local estimates. We390

present a novel data set that disaggregates the national and regional accounts of the agriculture sector across areas as a result

of a model where we use ancillary data including satellite data. This allows us to estimate especially in countries that have a

relatively higher share of agricultural activity in the entire economy. Then, we examine the exposure of areas with at least one

extreme drought during 2000 to 2009 to agricultural GDP, where nearly 1.2 billion people live, and find an estimated US$432

billion of agricultural GDP in 2010.395

These data are the result of data collection and collaboration across multiple entities to ensure the most current and widest

coverage. However, persistent challenges to data collection remain, including limited geographic levels and temporal lag at low

frequencies. Also, the reference year and spatial resolution of the local AgGDP estimates are limited to the contemporaneous

availability of the economic statistics and components such as the crop production model. We often have to consider the

fitness-for-use while considering the accuracy; the model has lower average spatial resolution in areas where we have little400

data, however these same areas may benefit from the availability of these estimates to inform policy. Predictions are dependent

on the availability and quality of the training data on which the model is based and the modeling process is flexible to update

individual countries as the data are available. In the near future, we hope to increase the currency and number of countries with

subnational data as updates of the regional account data and models of the components upon which the model relies become

available.405

Data availability. These data are available at the World Bank’s Development Data Hub under http://www.doi.org/10.57966/0j71-8d56 (IF-

PRI and World Bank, 2022).
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Appendix B: Tables

Table B1. Top 10 countries of largest total Agricultural GDP (millions of USD) exposed to dry areas with share of Agricultural GDP and

Population (thousands)

Rank Country Ag GDP Share of Ag GDP Pop (2010)

1 China 146,000 0.26 323,000

2 India 60,600 0.22 255,000

3 United States 21,800 0.14 69,100

4 Russian Federation 14,300 0.26 27,100

5 Iran, Islamic Rep. 13,400 0.44 40,600

6 Brazil 12,600 0.14 9,230

6 Pakistan 12,600 0.28 42,600

7 Australia 10,900 0.44 6,130

8 Italy 6,560 0.17 7,120

9 Canada 5,540 0.25 5,000
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Table B2. Top 10 countries of largest share of Agricultural GDP exposed to dry areas with Agricultural GDP (millions of USD) and

Population (thousands)

Rank Country Share of Ag GDP Ag GDP Pop (2010)

1 Rwanda 1.00 1670 9850

1 Saint Vincent and the Grenadines 1.00 11.6 29.9

1 Micronesia, Federated States of 1.00 < 1 < 1

2 Burundi 0.97 732 8320

3 Brunei Darussalam 0.91 99.3 92.8

4 West Bank and Gaza 0.85 543 2770

5 Gambia, The 0.81 170 1420

6 Finland 0.79 4400 3950

7 Belize 0.79 126 208

8 Jordan 0.73 733 5400
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Table B3. Top 10 countries of 2010 population (thousands) exposed to dry areas with Agricultural GDP (millions of USD) and share of

Agricultural GDP

Rank Country Pop (2010) Ag GDP Share of Ag GDP

1 China 323,000 146,000 0.26

2 India 255,000 60,600 0.22

3 United States 69,100 21,800 0.14

4 Congo, Dem. Rep. 45,100 2,780 0.59

5 Pakistan 42,600 12,600 0.28

6 Iran, Islamic Rep. 40,600 13,400 0.44

7 Russian Federation 27,100 14,300 0.26

8 Tanzania 23,200 4,140 0.55

9 Uganda 18,700 2,990 0.66

10 Thailand 17,400 4,930 0.15
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Table B4. Top 10 countries of largest total Agricultural GDP exposed to WCI areas with Agricultural GDP (million of USD) and Population

(thousands)

Rank Country Ag GDP Share of Ag GDP Pop (2010)

1 China 436,000 0.802 990,000

2 India 243,000 0.925 1,000,000

3 Pakistan 44,200 0.999 170,000

4 Nigeria 38,300 0.465 78,000

5 Indonesia 38,200 0.479 120,000

6 United States of America 37,800 0.247 65,000

7 Turkey 37,600 0.625 43,000

8 Italy 30,400 0.854 42,000

9 Iran, Islamic Republic of 28,100 0.943 70,000

10 Egypt, Arab Republic of 24,400 0.947 70,000
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Table B5. Top 10 countries of largest share of Agricultural GDP in country exposed to WCI areas with Agricultural GDP (million of USD)

and Population (thousands)

Rank Country Ag GDP Share of Ag GDP Pop (2010)

1 United Arab Emirates 1,310 1.000 3,900

1 Cyprus 346 1.000 610

1 Djibouti 28 1.000 380

1 Dominican Republic 2,740 1.000 6,300

1 Gambia, The 147 1.000 680

1 Haiti 1,070 1.000 5,900

1 Israel 3,270 1.000 5,600

1 Jamaica 523 1.000 1,400

1 Jordan 996 1.000 5,800

1 Korea, Republic of 14,600 1.000 31,000

19Additional countries exposed to WCI area with the 1.00 share of Ag GDP include: West Bank and Gaza; Cyprus; Kuwait; Gambia, The; Qatar; Hong

Kong (SAR, China)
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Table B6. Top 10 countries of 2010 population exposed to WCI areas with Agricultural GDP (million of USD) and Population (thousands)

Rank Country Pop (2010) Ag GDP Share of Ag GDP

1 India 1,000,000 243,000 0.925

2 China 990,000 436,000 0.802

3 Pakistan 170,000 44,200 0.999

4 Indonesia 120,000 38,200 0.479

5 Bangladesh 110,000 13,900 0.909

6 Nigeria 78,000 38,300 0.465

7 Egypt, Arab Republic of 70,000 24,400 0.947

7 Iran, Islamic Republic of 70,000 28,100 0.943

8 United States of America 65,000 37,800 0.247

9 Mexico 64,000 14,100 0.462
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Table B7. Regional account descriptive statistics

Country First Last Number of Source

Year Year regions

Albania 2012 2014 12 EUROSTAT

Argentina 2004 2004 24 Instituto Nacional de Estadística y Censos

Australia 2009 2011 8 Australian Bureau of Statistics

Austria 2012 2014 9 EUROSTAT

Belarus 2011 2013 8 BELSTAT

Belgium 2012 2014 3 EUROSTAT

Bolivia 2009 2011 9 Instituto Nacional de Estadística

Brazil 2010 2012 31 Instituto Brasileiro de Geografia e Estatística

Bulgaria 2012 2014 2 EUROSTAT

Canada 2009 2011 13 Statistics Canada

Chile 2013 2015 13 Banco Central De Chile

China 2009 2011 32 National Bureau of Statistics China

Colombia 2009 2011 32 Departamento Administrativo Nacional de Estadística

Croatia 2012 2014 3 EUROSTAT

Czech Republic 2012 2014 7 EUROSTAT

Denmark 2012 2014 5 EUROSTAT

Ecuador 2006 2006 23 Banco Central De Ecuador

Estonia 2012 2014 5 EUROSTAT

Finland 2012 2014 2 EUROSTAT

France 2012 2014 22 EUROSTAT

Georgia 2009 2011 9 National Statistics Office of Georgia

Germany 2012 2014 16 EUROSTAT

Greece 2012 2014 13 EUROSTAT

Hungary 2012 2014 3 EUROSTAT

India 2011 2013 32 Central Statistics Office

Indonesia 2009 2011 31 INDO-DAPOER

Iran, Islamic Rep. 2014 2014 28 Iran Statistical Yearbook 1389

Ireland 2012 2014 2 EUROSTAT

Italy 2012 2014 20 EUROSTAT

Japan 2009 2011 47 Cabinet Office Government of Japan

Kazakhstan 2010 2012 15 Agency of Statistics of the Republic of Kazakhstan

Kenya 2017 2017 48 Kenya National Bureau of Statistics and World Bank

Korea, Rep. 2009 2011 15 Korean Statistical Information Services
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Table B7. Continued.

Country First Last Number of Source

Year Year regions

Latvia 2012 2014 6 EUROSTAT

Lithuania 2012 2014 10 EUROSTAT

Malaysia 2010 2012 16 Department of Statistics Malaysia

Mali 2009 2009 9 Cellule d’Analyse et de Prospective

Malta 2012 2014 2 EUROSTAT

Mexico 2009 2011 32 Instituto Nacional de Estadística y Geografía

Mongolia 2015 2017 23 Mongolian Statistical Information Service

Morocco 2005 2007 7 Ministry of Finance

Nepal 2019 2019 7 Central Bureau of Statistics Nepal

Netherlands 2012 2014 12 EUROSTAT

New Zealand 2009 2011 14 Statistics New Zealand

North Macedonia 2012 2014 8 EUROSTAT

Norway 2012 2014 19 EUROSTAT

Panama 2009 2011 9 Instituto Nacional de Estadística y Censo

Peru 2009 2011 25 Instituto Nacional de Estadistica e informatica

Philippines 2009 2011 17 Philippine Statistics Authority

Poland 2012 2014 15 EUROSTAT

Romania 2012 2014 4 EUROSTAT

Russian Federation 2009 2011 82 Mordoviastat: Federal Service of State Statistics

Slovak Republic 2012 2014 4 EUROSTAT

Slovenia 2012 2014 2 EUROSTAT

South Africa 2009 2011 9 Statistics South Africa

Spain 2012 2014 19 EUROSTAT

Sri Lanka 2009 2011 9 Economic and Social Statistics of Sri Lanka

Sweden 2012 2014 3 EUROSTAT

Switzerland 2009 2011 25 Federal Statistical Office of Switzerland

Thailand 2009 2011 76 Office of the National Economic and Social Development Board

Türkiye 2009 2011 81 Turkish Statistical Institute

Ukraine 2010 2012 25 State Statistics Service of Ukraine

United Kingdom 2012 2014 4 EUROSTAT

United States 2009 2011 51 Bureau of Economic Analysis

Uruguay 2008 2008 19 Instituto Nacional de Estadistica

Vietnam 2009 2011 64 General Statistics Office of Viet Nam

Zambia 2015 2015 9 Central Statistics Office of Zambia
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