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Abstract. Economic statistics are frequently produced at an administrative level such as the sub-national division. However,

these measures may lack sufficient local variation for effective analysis of local economic development patterns and expo-

sure to natural hazards. Agriculture GDP is a critical indicator for measurement of the primary sector, on which more than

2.5 billion people depend on their livelihoods, and it provides a key source of income for the entire household (FAO, 2021).

Through a data fusion method based on cross-entropy optimization, this paper disaggregates national and sub-national admin-5

istrative statistics of agricultural GDP into a global gridded dataset at approximately 10 x 10 kilometers for the year 2010

using satellite-derived indicators of the components that make up agricultural GDP, namely crop, livestock, fishery, hunting

and forestry production. To illustrate the use of the new dataset, the paper estimates the exposure of areas with at least one

extreme drought during 2000 to 2009 to agricultural GDP, which amounts to around US$432 billions of agricultural GDP circa

2010, with nearly 1.2 billion people living in those areas. The data are available on the World Bank Development Data Hub10

(DOI: http://doi.org/10.57966/0j71-8d56; IFPRI and World Bank, 2022).

1 Introduction

According to the Food and Agriculture Organization of the United Nations, at least 2.5 billion people depend on the agricul-

tural sector for their livelihood and it provides a key source of employment and income for the poor and vulnerable people

(FAO, 2013, 2019, 2021). Yet, economic statistics of the agricultural sector are frequently produced at a national or lower15

administrative level and may not adequately capture local variation in production activities. Furthermore, a geographic unit of

interest, such as the natural area of a river basin, may not align with political administrative boundaries, limiting the ability

to conduct a comprehensive overlay analysis of the area. Lastly, local conditions can pose challenges to measurement across

the world. Around five billion hectares of land is dedicated to agriculture, but collecting and reporting data across the world

can be challenging, especially in areas affected by fragility, conflict, and violence, which can result in incomplete or outdated20

geographic coverage.

Detailed agricultural data are critical to examining a wide range of agricultural issues including technology and land use

(e.g. Bella and Irwin, 2002; Luijten, 2003; Staal et al., 2002; Samberg et al., 2016), exposure to natural hazards (e.g. Murthy
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et al., 2015), evaluation of forest restoration opportunities (Shyamsundar et al., 2022) as part of nature-based climate solutions

(Griscom et al., 2017), and patterns of and productivity of economic development (e.g. Nelson, 2002; Elhorst and Strijker,25

2003; Gollin et al., 2014; Reddy and Dutta, 2018). Carrão et al. (2016) examine the exposure of people and economic activity

to drought using measures of physical elements (e.g. cropland and livestock). Rentschler and Salhab (2020) find that low and

middle-income countries have 89% of global flood exposed population and poor people account for almost 600 million, who

are directly exposed to the risk of intense flooding. Vesco et al. (2021) examine linkages between climate variability and agri-

cultural production as well as conflict. They find that climate variability contributes to an increase in the spatial concentration30

of agricultural production within countries. Furthermore, in countries with a high share of agricultural employment in the na-

tional workforce, they find this combined effect increases the likelihood of conflict onset. To better target rural development

strategies for economic growth and poverty reduction, as well as conserve the natural resource base for long-term sustainable

development, we need to accurately delineate the spatial distribution of agricultural resources and production activities (Wood

et al., 1999).35

One method to address the case where administrative boundaries and geographic areas of interest are not aligned is to

use the gridded (raster) data format. It provides an intermediate and consistent unit for disaggregation and aggregation (e.g.

UNISDR, 2011). Data-disaggregation methods can use detailed data to inform estimates of aggregated data from large areas at

the local level (e.g. see review in Pratesi et al., 2015). Several spatial data products from global models are available to estimate

population at a local level (see review in Leyk et al., 2019).40

Previous evidence-based risk analyses take advantage of global data of hazards to estimate exposure of population and

economic activity (e.g. Gunasekera et al., 2015, 2018; Ward et al., 2020; Rentschler and Salhab, 2020). Gross Domestic

Product (GDP) is a critical economic indicator in the measurement and monitoring of an economy in a country that is typically

only available at national and occasionally sub-national levels. Regional indicators play a key role in the necessary variation

to forecast regional GDP (Lehmann and Wohlrabe, 2015) and food security (Andree et al., 2020). Previous efforts to estimate45

local GDP use high resolution spatial auxiliary information such as luminosity or population data to provide local variation.

Methods by Nordhaus (2006); World Bank and UNEP (2011); Kummu et al. (2018); Murakami and Yamagata (2019) took

advantage of gridded population data, which is the result of a model disaggregating the most detailed level population data into

grids. However, income is not evenly distributed among people nor infrastructure (Berg et al., 2018). In fact, the divide between

the rich and poor is even widening in our time (Dabla-Norris et al., 2015). The method used in World Bank and UNEP (2011)50

stratifies the population by rural and urban, yet the definition of these geographic areas can vary based on the selection of the

population model (Leyk et al., 2019). These measurements matter in application to stylized facts such as the strong negative

correlation of the level of urbanization with the size of its agricultural sector (Roberts et al., 2017). Also, the strong assumption

of uniform distribution of labor in agriculture is another key concern (Gollin et al., 2014). Uneven agricultural productivity

across different regions or locations can lead to a non-uniform distribution of labor within the sector, which has implications55

for the accuracy and effectiveness of models based on rural per capita allocation. Other methods used land cover such as

vegetation and built-up indices, however did not incorporate types of agriculture like cropland and livestock (Gunasekera et al.,

2015; Goldblatt et al., 2019).

2



Other methods to estimate GDP at a local level take advantage of nighttime lights datasets. Doll et al. (2006) and Elvidge

et al. (2009) found nighttime lights to provide a uniform, consistent, and independent estimate for economic activity, and several60

other studies (e.g. Chen and Nordhaus, 2011; Henderson et al., 2012; Ghosh et al., 2010; Bundervoet et al., 2015; Wang et al.,

2019; Eberenz et al., 2020; Wang and Sun, 2021) utilized this striking correlation between luminosity and economic activities

to estimate economic output on the ground. While night light is a good reflection of economic activities in manufacturing and

urban areas, night light data may not capture the agricultural activity as it requires areas to emit light. Bundervoet et al. (2015)

suggest that agricultural indicators rather than rural population could improve the estimation of GDP given the importance of65

agriculture in many of the economies in their sample of Africa. Gibson et al. (2021) find that night time lights data are a poor

predictor of economic activity in low population density rural areas.

In this paper, we present a high resolution gridded Agricultural GDP (corresponding to the "agriculture, forestry, and fishing,

value added" in World Development Indicators, henceforth AgGDP) dataset that is produced through a spatial allocation model

by distributing national and sub-national statistics to 5-arcminute grids based on satellite-derived information of constituents70

of AgGDP, including forestry, hunting, and fishing, as well as cultivation of crops and livestock production1. Our main contri-

bution is to construct a global dataset of gridded AgGDP. This entails a massive effort of data collection and integration. We

extend and apply the cross-entropy framework developed in the Spatial Production Allocation Model (SPAM) for crops that

pioneered the use of cross-entropy optimization in spatial allocation (You and Wood, 2003; You et al., 2014, 2018; Yu et al.,

2020). We construct and integrate global datasets of the components of AgGDP as priors and then reconcile the values with75

the regional account statistics using cross-entropy optimization. As an illustration of the novel dataset, we assess the exposure

of economic activity to natural hazards with a focus on AgGDP. Significant progress has been made to measure physical assets

such as built-up area along with its importance in population models (Rubinyi et al., 2021) and estimate hazards in order to

quantify the exposure to natural hazards (e.g Gunasekera et al., 2015; UNDRR, 2019). However, the detailed spatial distri-

bution of AgGDP is less known. So, we apply these data to inform efforts quantifying the population and AgGDP at risk to80

drought and water scarcity highlighting a linkage to a subset of agricultural activities as well as an association with population.

The rest of this paper is structured as follows. The next section provides a detailed description of the methodology and

data. Then, we present the model results, uncertainty, and validation. Afterwards, we demonstrate one possible application by

analyzing AgGDP exposure to natural hazards. Finally, we provide concluding remarks.

2 Methodology and data85

Following the composite structure of AgGDP, we disaggregate the national and sub-national statistics into a global grid through

a cross-entropy allocation model. Given the limited availability of data and the global scope of the study, we made various

efforts to adjust official statistics and create priors for different components based on the available data. Below we discuss the

construction of each component, AgGDP statistics and the allocation model followed by the global natural hazards data. Given

1Agriculture, forestry, and fishing corresponds to ISIC divisions 1-3 and includes forestry, hunting, and fishing, as well as cultivation of crops and livestock

production
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the spatial resolution and year of reference of the input data for the crop value of production, we estimate AgGDP for the year90

2010 into 5-arcminute grids (10x10 km) across the world.

2.1 Construction of components

For each pixel, we construct an estimated value of production based on high spatial resolution information of the five compo-

nents that serve as priors in the modeling process: crop, livestock, forestry, fishing, and hunting. Given the lack of information

on the hunting component, we disaggregate the forestry component into two parts: timber and non-timber products of forestry.95

The non-timber products of forestry includes an even distribution of hunting. The construction of the five components is de-

scribed below in four subsections: crop, livestock, forestry (timber and non-timber) and fishing.

2.1.1 Crop value of production

The prior for the crop component in the gridded AgGDP is generated by multiplying the quantity of production from the

global SPAM 2010 version 1 dataset2 (You et al., 2018) with producer prices at the country level from FAOSTAT (FAO, 2016)100

for each crop and then summed together. As for the producer prices, ideally, we need sub-national level figures since prices

for agricultural products can vary greatly within countries and their subdivisions, but such a dataset is not available globally.

Therefore, we use the FAOSTAT’s national producer prices and take the average of 2009-2011, in order to mitigate the potential

impact of temporal variation. However, due to missing data for certain countries, crops, and years, this average may be based

on a smaller time period or the closest year available. As mentioned earlier, SPAM is a cross-entropy model, which calculates105

a plausible allocation of crop areas and production to approximately 10 km pixels, based on agricultural statistics at national

and sub-national levels, combined with gridded layers of cropland, irrigated areas, population density and potential crop areas

and yields (Yu et al., 2020). SPAM’s output distinguishes between 42 crops (33 individual crops, 9 aggregated crops) that

together add up to practically all cultivated crops in a country with four parameters including production, yield, physical area

and harvest area.110

For aggregated SPAM crops (such as other cereals, other pulses, vegetables, fruits, etc.), we computed their prices by taking

the weighted average of their components, as follows:

PriceJagg =
Σjpricejprodj

Σjprodj
,∀j ∈ Jagg (1)

where Jagg is the aggregated crop group, j is any crop that belongs to Jagg, PriceJagg is the price of the aggregated crop

group, pricej is the price of crop j, and prodj is the production of j.115

For each grid, the value of crop production is thus:

Cropvali =Σjprodi,jpricej ,∀j that grow in pixel i (2)

where Cropvali is the value of total crop production in pixel i, prodi,j is the production of crop j in pixel i, and pricej is the price

of crop j. A map of global gridded crop production value as a prior is shown in Figure 1.
2Available at www.mapSPAM.info
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Figure 1. The assembled crop production value used as a prior in the cross-entropy model. Sources: FAO (2016); Yu et al. (2020); Authors’

calculation (2022)

2.1.2 Livestock production120

Livestock accounts for an estimated 40% of the global value of agriculture output and plays an important role in ensuring the

livelihoods and food security for over one-sixth of the world’s population (FAO, 2018). Yet, it is still under rapid expansion as

the global demand for animal-sourced products such as meat, milk, eggs, and hides continues to grow (Herrero and Thornton,

2013). While species and quantities of livestock raised vary among regions and husbandry farmers, there are five primary

species - cattle, sheep, goats, pigs, and chicken - that prevail worldwide and provide essential products for human consumption.125

We calculate the prior for the component of livestock production in gridded AgGDP based on the distribution maps of

the above five primary species from the Gridded Livestock of the World (Robinson et al., 2014; Gilbert et al., 2018) and

FAOSTAT’s value of production of livestock products (including meat, milk, eggs, honey and wool) (FAO, 2020). Due to data

limitations, distribution maps for other animals such as ducks, horses, camels, and bees are not available. But the FAOSTAT’s

livestock production values include a more comprehensive list of animals and their products. By distributing FAOSTAT values130

to grids in proportion to the five primary livestock species, we assume that other animals included in FAOSTAT have a similar

spatial distribution to the five primary livestock species. This assumption is generally valid, but may not be accurate in special

areas, such as deserts where camels are an important source of livestock products. To facilitate comparison, the animal-specific
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density numbers are converted to one animal type by using International Livestock Units as conversion factors (Eurostat, 2018),

as shown in Table 1. The conversion factors reflect biomass differences between different animals 3. Then the densities of the135

animal equivalent values are multiplied by the total area of each 5-arcminute pixel to get the count of animals per grid, which is

used to calculate the share of animal counts and then multiplied by the FAOSTAT’s value of production to obtain the livestock

production prior for each pixel.

lsvali = lsvalx
lsnumi

ΣX lsnumi
,∀i ∈X (3)

where lsvali is the total value of livestock production in pixel i; lsvalx is the value of livestock production (meat, milk, eggs,140

honey and wool) that is reported at the national level; lsnumi is the total number of equivalent animals in pixel i; and X is a set

including all pixels that fall within the boundary of a nation.

A map of global gridded livestock production value as a prior is shown in Figure 2.

Table 1. Conversion factors for different livestock types. Sources: Eurostat (2018)

Livestock type Conversion factor

Cattle 1

Pigs 0.3

Goats 0.1

Sheep 0.1

Chicken 0.01

2.1.3 Forestry production and hunting

People have utilized forest resources for a long time throughout history for their livelihood and various other purposes (Hossain145

et al., 2008). Up until now, over a billion people still rely on forest resources for food security and income generation to some

extent (FAO, 2018). In the world’s least developed regions, 34 countries depend on fuelwood to provide more than 70% of

energy, among which 13 nations require 90% of energy (FAO, 2018).

The contribution of forest production to AgGDP can be classified into two broad types: wood (logging) products and non-

wood forest products. Wood (logging) products are the most exploited commodities in the forestry sector. The trees are har-150

vested for fuelwood and industrial roundwood, which is processed into a variety of products including lumber, plywood,

furniture, and paper products. Non-wood forest products are defined by the Food and Agriculture Organization of the United

3The uniform conversion factors may oversimplify local variation in livestock patterns. Future work may consider using country-specific values of livestock

products from FAOSTAT.
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Figure 2. The assembled livestock production value used as a prior in the cross-entropy model. Sources: Robinson et al. (2014); Gilbert et al.

(2018); Eurostat (2018); Authors’ calculation (2022)

Nations (FAO).4 It is estimated that millions of households around the world depend on non-wood forest products for their

livelihood. Some 80% of people in the developing world use these products in their everyday life (Sorrenti, 2016).

For a complete assessment of forest production priors, this study takes both wood and non-wood products into consideration.155

The gridded non-wood forest products dataset used in this study was jointly developed by Resources for the Future and the

World Bank (Siikamäki et al., 2015) through an approach of meta-regression modeling, which integrates over 100 estimates

at various locations from a literature review and multifold information on ecological and socioeconomic factors. The value of

non-wood forest products is resampled to the 5-arcminute grid cell size and converted to 2010 USD for consistency with other

AgGDP components. As part of non-timber products, we include hunting with an even distribution across units and time given160

the lack of information.

The value of wood products prior per pixel is calculated based on forest loss from year 2010 to year 2011 excluding loss

due to fire, with an assumption that the forests were mainly cut down for timber production. The Moderate Resolution Imaging

Spectroradiometer (MODIS) Land Cover map (Friedl et al., 2010) for year 2011 is overlaid on top of that for year 2010 to

4These products are “goods of biological origin other than wood derived from forests, other wooded land and trees outside forests”, including foods (nuts,

fruits, mushrooms, etc.), food additives (herbs, spices, sweeteners, etc.), fibers (for construction, furniture, clothing, etc.), and plant and animal products with

chemical, medical, cosmetic or cultural value.
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detect the area that has changed from forest to non-forest.5 However, forest loss due to fire needs to be removed because it165

does not result in timber production in most cases6. Thus, fire information for year 2010 is obtained from the NASA Fire

Information for Resource Management System (FIRMS) (NASA, 2018) and areas that experienced forest fires are eliminated.

After the identification of the forest area change in each pixel, the value of wood production at the national level is taken from

a FAO led project (Lebedys and Li, 2014) and proportionally disaggregated to arrive at a pixel-wise value of wood products as

follows:170

Woodvali = (forestvalx −nonwoodvalx)
forestlossi

ΣXforestlossi
,∀i ∈X (4)

where Woodvali is the value of wood products in pixel i; forestvalx is the value of forest products reported at the national level;

nonwoodvalx is the value of non-wood products at the national level which is derived from Siikamäki et al. (2015); forestlossi

is the area of forest loss excluding loss to fire in pixel i; again, X is a set including all pixels that fall within the boundary of a

nation.175

In our analysis of the forestry sector GDP, we have utilized the estimates provided by Lebedys and Li (2014) as the best

available source. However, it should be noted that these estimates primarily capture activities within the formal forestry sector

and do not take into account the value-added generated by informal activities such as wood fuel production and non-wood

forest products. To account for non-timber forest products, we have utilized the estimates provided by Siikamäki et al. (2015).

Despite these efforts, it is acknowledged that the current analysis may still underestimate the forestry sector GDP due to the180

lack of reliable data on fuel wood production, which could account for half of global wood harvests (Ghazoul and Evans, 2004).

This is a common issue as fuel wood values are often not properly captured in official statistics, as they are often collected

for subsistence or sold in remote rural areas in many countries (Lebedys and Li, 2014). In future research, we intend to make

efforts to acquire more reliable data on fuel wood production to improve the accuracy of our estimates of the forestry sector

GDP.185

A map of global gridded wood forest production value as a prior is shown in Figure 3.

2.1.4 Fishery production

Fish makes up approximately 17% of animal-sourced protein in the human diet worldwide (Mathiesen, À. M., 2018). The

fishery industry supports the livelihood of 12% of world population by creating 200 million jobs along its value chain. In the

global trade system, 80 billion USD worth of fish is exported from developing countries and it plays a crucial role in promoting190

local economic development (Kelleher et al., 2009).

We estimate both freshwater inland fisheries and marine production values using the FISHSTAT (FAO, 2009) data with

a classification based on the fish production categories. The inland fishery production value is the result of disaggregating

corresponding country level statistics in proportion to areas of inland water bodies in the 5-arcminute pixel. This is a simplified
5The measurement is limited to detection of land cover change from satellites and might not fully account for selective harvesting or forest degradation.

And the area of forest is considered homogeneous of equal production value. Also, it could result in upward bias when trees are cut down for plantation

replanting and not used in further processing of timber production.
6Still, sometimes wood harvests may occur after forest fires, and therefore the elimination could underestimate the area harvested for wood products.
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Figure 3. The assembled wood forest production value used as a prior in the cross-entropy model. Sources: Friedl et al. (2010); Siikamäki

et al. (2015); NASA (2018); Authors’ calculation (2022)

assumption and may cause overestimation in places where there are inland waterbodies, but not much fishery activities going195

on. The distribution of inland water bodies is obtained from the ESA-CCI (Lamarche et al., 2017). Thus, the value of inland

fishing production in each grid is calculated as follows:

fishvali = freshvalx
waterbodyi

ΣXwaterbodyi
,∀i ∈X (5)

where fishvali is the value of fishery production in pixel i; freshvalx is the value of fresh fish production at the national level

which is aggregated from FISHSTAT; waterbodyi is the area of water bodies in pixel i; and X is a set including all pixels i that200

fall within the boundary of a nation x.

The value of marine fisheries production is determined by its proximity to fish landing ports and a composite indicator

that equally weighs the number of vessel visits and the total holding capacity of the fishing vessels. We use the port database

from the World Port Index (National Geospatial-Intelligence Agency, 2019) and the number of port visits with a vessel hold

of fishing vessels from Hosch et al. (2019) to create a composite variable as the prior based on the sum (for each port) of205

the number of visits (each event in the database) and total vessel hold at the port. The geographic coverage of the ports is

calculated for each port using the minimum port distance provided in Hosch et al. (2019). Any distances greater than 150 km

were considered as 150 km in this analysis. The value of marine fishing production in each grid is calculated as follows:
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marinevali =marinevalx
portindexi

ΣXportindexi
,∀i ∈X (6)

where marinevali is the value of fishery production in pixel i; portindexi is an equally weighted composite index of the210

number of visits and the total vessel hold in pixel i; and X is a set including all pixels i that fall within the boundary of a nation

x.

A map of global gridded fishery production value as a prior is shown in Figure 4.

Figure 4. The assembled fishery production value used as a prior in the cross-entropy model. Sources: FAO (2009); Lamarche et al. (2017);

Hosch et al. (2019); National Geospatial-Intelligence Agency (2019); Authors’ calculation (2022)

.

2.2 AgGDP Statistics and Linked Grids

Substantial efforts have been made to collect and organize national and sub-national statistics from a variety of sources, in-215

cluding national ministries and reports. However, not every country publishes its AgGDP figures at the sub-national (regional)

level and there exist different methods of regionalization including top-down, bottom-up and mixed methods (Eurostat, 2013).7

7Regional Gross Domestic Product (RGDP) can be estimated following the production, income or expenditure approaches. However, RGDP is not typically

compiled using the expenditure approach due to the scarcity of data such as inter-regional purchases and sales, or regional exports/imports. On the production
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Our database has 68 countries that have sub-national AgGDP data, expressed in varying domestic currencies and for different

years. The typical administrative level is at the state or provincial level. Table B7 lists these countries and descriptive statistics

including the temporal coverage and the number of sub-national regions at an administrative geographic level including the220

NUTS level.8

To overcome discrepancies in temporal coverage and currency terms (constant and current), and to keep the data consistent

and comparable for countries across the world, shares from sub-national statistics are calculated and then applied to a national

total to derive a calibrated number at the sub-national level. The national totals are obtained from the publicly available World

Development Indicators (WDI) (World Bank, 2019) and averaged over three years around 2010. For a few countries, which do225

not report their national AgGDP in the WDI database, sums of all AgGDP components are used as proxies.

The World Bank compiles these national accounts data following the International Standard Industrial Classification (ISIC)

divisions 1-3 that includes agriculture, forestry and fishing. Given the challenges of compiling national accounts data across the

world, limitations include the exclusion of unreported economic activity in the informal or secondary economy. In particular,

agricultural output in developing countries may not be reported due to issues such as, natural losses, self-consumption or not230

exchanged for money. Despite best efforts, agricultural production may be estimated indirectly leading to approximations that

are different than the true values. 9

The calibrated statistics are then linked to grids through a shapefile of the Global Administrative Unit Layers (GAUL)

that maintains global geographic layers with a consistent and comprehensively unified coding system (FAO, 2015). Then,

we overlay the GAUL administrative boundaries on the grid network to assign the corresponding codes of the administrative235

units to each grid. For areas where sub-national AgGDPs have different administrative areas than GAUL, the GAUL areas are

merged or split to match the sub-national AgGDP areas.

2.3 Spatial Allocation Model

After constructing all the components, we define a spatial allocation model in a cross-entropy framework following (You

et al., 2014) to allocate administrative statistics to 5-arcminute pixels10. National and sub-national AgGDP values are used as a240

constraint, while the distribution of crop, livestock, fishery, and forestry production (hunting is included in non-timber products

of forestry) is used to create priors for estimating pixel-level AgGDP. In actuality, the priors that we have constructed do not

encompass all elements of AgGDP, and the national and sub-national AgGDP statistics include a broader range of production

values. But the priors account for most variation between pixels, and thus their shares can serve as appropriate proxies in the

AgGDP disaggregation model. Lastly, measurement units are unified using deflators and exchange rates.11245

and income approaches, the estimate of market activities is typically from the production approach, whereas the estimate of non-market industries is from the

income approach.
8The European Union developed a standard for administrative levels: The Classification of Territorial Units for Statistics (NUTS, for the French nomen-

clature d’unités territoriales statistiques).
9See World Bank WDI for more details on metadata and limitations

10A comprehensive presentation of the cross-entropy method is in Rubinstein and Kroese (2004)
11The currency varies by source. Crops are in local currency. Livestock are in International USD 2004-2006. Fish are USD 2009. Non-timber forest products

are in USD 2012 and Timber (forest) are in USD 2011.
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The first step is to transform all real-value parameters into corresponding probabilities. Let Si be the share of the total AgGDP

allocated to pixel i within a country x. AgGDPi,x is the AgGDP allocated to pixel i in country x and X is a set including all

pixels that fall within the boundary of a nation. Therefore:

Si =
AgGDPi,x

ΣXAgGDPi,x
,∀i ∈X (7)

Let PreAgGDPi be the pre-prior allocation of AgGDP share from our best estimate. The first approximation can be done by250

summing all five calculated pixel level components of AgGDP:

PreAgGDPi = Cropi +Livestocki +Forestryi +Fishingi +Huntingi (8)

where we assume hunting occurs in areas with equal probability.

Theoretically, the sum of these components should be close to the official values obtained from the World Development

Indicators. However, it should be noted that due to limitations in available data, we have some components in output values255

(crop, livestock, and fishery) whereas others in value added (forestry and hunting). This may result in discrepancies and

inconsistencies. Overall, we make sure that the official AgGDP values are guaranteed to be no less than the sum of all five

components of AgGDP.

AgGDPx =Σi∈xPreAgGDPi (9)

Then, we rescale the prior AgGDP to be consistent with the official AgGDP value:260

PriorAgGDPi =
PreAgGDPiAgGDPx

ΣiPreAgGDPx
(10)

Then we calculate the prior for Si as a probability by normalizing PriorAgGDP:

PreAlloci =
PriorAgGDPi,x

Σi∈XPriorAgGDPi
(11)

Finally, we formulate a cross entropy model in the following mathematical optimization framework:

MIN CE(Si) = ΣiSilog(Si)−ΣiSilog(PreAlloci) (12)265

Subject to the following three conditions:

ΣiSi = 1 (13)

Σi∈k(ΣAgGDP )Si = SubAgGDPk ∀k (14)

270

0≤ Si ≤ 1 ∀i (15)

12



where i: i=1,2,3,. . . are pixel identifiers within the allocation unit (e.g. Brazil); and k: k=1,2,3, . . . are identifiers for sub-

national geopolitical units (e.g. a state) where AgGDP values (SubAgGDPk) are available. The objective function is defined

as the cross entropy of AgGDP shares and their priors. The first constraint (Equation 13) is the pycnophylactic or volume-

preserving constraint (e.g. Tobler, 1979) that ensures the sum of all allocated AgGDP values is equal to the total AgGDP of275

the country. The next equation (14) sets the sum of all allocated AgGDP within those sub-national units with available data

to be equal to the corresponding sub-national AgGDP values. The last equation (15) is a natural constraint for the share of

AgGDP to be between 0 and 1, which is also the probability in the cross-entropy model. The modeling framework is flexible

in that more constraints can be added if more data are available and/or more reasonable assumptions on how AgGDP should

be spatially disaggregated are discovered.12 Last but not least, we multiply the total regional AgGDP by the probability in the280

cross-entropy model to derive the final pixel level AgGDP:

AgGDPi =ΣiAgGDPxSi (16)

3 Results, Uncertainty, and Validation

3.1 Results

Figure 5 illustrates the result of the cross-entropy model in a global map of gridded AgGDP. The global gridded AgGDP for285

the year 2010 in 2010 US dollars is in gridded (raster) format at a resolution of 5 arcminute, which approximates to 10 km.13

The spatial extent and quantity distribution of AgGDP over the world are in agreement with general knowledge of agricultural

technology adoption and suitability, with well-known agricultural nations, such as India, China and the United States standing

out as regions with relatively high AgGDP compared with many other areas of the world. A number of European countries also

exhibit high AgGDP values, which is likely due to the benefit of adopting mechanized farming and technological facilitation,290

considering that the shares of agricultural land and agrarian population are relatively low in these well-developed places.

Countries in Sub-Saharan Africa remain low in agricultural production, as indicated by low-value pixels sparsely spreading over

the continent. Within the continent, agricultural production activities primarily take place in geographic areas with suitability

and access to markets (e.g. land cultivation see Berg et al., 2018).

We examine the correlation of the AgGDP dataset with two commonly used global datasets to proxy economic activity:295

night time lights and population. Night time lights data are commonly used in the estimation of local human development and

economic activity (e.g. Ghosh et al., 2010; Henderson et al., 2012; Bundervoet et al., 2015; Kummu et al., 2018; Bruederle

and Hodler, 2018). We use the sum of the radiance calibrated data for 2010 from the F16 satellite to quantify the correlation

12For instance, market access may play a role in determining the spatial distribution or spatial structure of AgGDP and can be included as a constraint in

the model. However, we provide a parsimonious model without market access.
13The coordinate system is the standard WGS84 and saved in GeoTIFF format. For presentation in the paper, the coordinate system of the maps is Eckert

IV and transformed from the geographic coordinates in R software. The data are publicly and freely available through the World Bank Development Data Hub

website at http://www.doi.org/10.57966/0j71-8d56.
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Figure 5. Global gridded AgGDP circa 2010 from the Cross-Entropy model in 2010 USD. Source: Authors’ calculation (2022)

.

between AgGDP and nighttime lights by geographic regions of the world defined by the World Bank.14 We use rural population

derived from Center for International Earth Science Information Network - CIESIN - Columbia University (2017) following300

methods in Thomas et al. (2019). We use country level data from the World Bank World Development Indicators (World Bank,

2019). We find that the correlation of AgGDP with night light varies across world regions, with Sub-Saharan Africa and the

Other Region showing lower correlation values (Table 2). Most World Bank regions have similar patterns of correlation with

nighttime lights across the measures of AgGDP and population. Likewise, World Bank income groups show similar patterns

across the measures with lower middle and upper middle income groups having higher correlations than low and high income305

groups. However, notable differences of the correlations exist between geographic levels. The mean correlation of AgGDP

with night time lights (NTL) and population (pop) derived from administrative level 2 data is lower than the national level,

which presents evidence of new information from the AgGDP dataset.

Furthermore, limitations exist with these commonly used datasets for applications of AgGDP. For night time lights, Li et al.

(2020) provide a cautionary note about rural applications where the presence of agricultural activities typically takes place. A310

population model assumes proportional activity to population by strata (e.g. rural), which does not account for the type of rural

of agricultural activity, and the model requires a standard definition of rural, which can pose challenges in global applications

(e.g. stylized facts in the urban and development economics literature Roberts et al., 2017). Notably, the rural population

14Specifically, we use the version 4 product from the F16 satellite (20100111 - 20101209) available at:

https://ngdc.noaa.gov/eog/dmsp/download_radcal.html
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AgGDP correlations by

World Bank Regions

(1)

NTL (adm 0)

(2)

NTL (adm 2)

(3)

POP (adm 0)

(4)

POP (adm 2)

AFR 0.682 0.314 0.934 0.673

EAP 0.956 0.493 0.979 0.739

ECA 0.818 0.546 0.914 0.611

LAC 0.949 0.605 0.947 0.720

MENA 0.798 0.556 0.953 0.638

Other 0.896 0.669 0.909 0.697

SOA 0.929 0.547 0.929 0.716
Table 2. Spearman correlation of AgGDP with night time lights at the Admin 0 level (1) and Admin 2 level (2) as well as rural population at

the Admin 0 level (3) and the Admin 2 level (4), grouped by World Bank Region where AFR is Sub Saharan Africa; EAP is East Asia and

Pacific; ECA is Eastern Europe and Central Asia; LAC is Latin America; MENA is Middle East and North Africa; SOA is South Asia and

Other is the category for the remaining countries. Sources: NOAA (2011); World Bank (2019); Authors’ calculation (2022).

dataset also has variation in the geographic level of the input information, which informs the estimates of population model,

and currency across the world, especially when dependent on the frequency of production and availability of a population315

census. Also, the AgGDP dataset may attenuate modeling concerns of endogeneity when using AgGDP along with population

or night time lights.

3.2 Fitness-for-use and uncertainty

We provide descriptive statistics of the data and modeling from a fitness-for-use perspective (e.g. Leyk et al., 2019). The data

are most appropriate for applications at global, continental and regional scales (You and Wood, 2006). However, decisions320

regarding the use of the data at smaller spatial extents should be made with caution and with consideration of the underlying

assumptions and characteristics of the area in question. Users should take into account factors such as area of the grid cell

of AgGDP, the number of subdivisions of AgGDP from the political area (e.g. country), and assumptions in the priors (e.g.

see shares of priors in Table B8). When input data contains multiple observations, the AgGDP dataset may still be suitable

for use, as it is already standardized in grid cells, which may facilitate integration with other data. As the spatial refinement325

of ancillary data advances along with greater currency, coverage and representativeness, we expect validation possibilities to

increase and inform a better understanding of the uncertainty and the associated fitness-for-use. Also, we intend to improve

spatial and temporal coverage when it is feasible.

The process of disaggregating the data from the source level to the target level does impose spatial relationships and is

prone to error (Li et al., 2007) and the Modifiable Areal Unit Problem (MAUP) (Openshaw, 1981). In previous work, our330

team conducted sensitivity analyses and examined consequences of methodological-data choices involved in a cross-entropy

model to disaggregate crop production statistics (Joglekar et al., 2019). These analyses included eight scenarios that varied in

allocation methods, data grouping, input variables, and different levels of statistics. The analysis indicated that allocation results
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are most dependent on the degree of disaggregation and quality of the underlying national and sub-national production statistics.

Therefore, we provide more discussion in section 3.2.1 Regional accounts. Additionally, the results are moderately sensitive to335

allocation methods. We previously compared three models for the case of Brazil (Thomas et al., 2019) and found that cross-

entropy is the most appropriate method for the global study with relatively high accuracy and flexible data requirements, when

compared with either the spatial regression or rural population methods. Interested readers may find more details in the Brazil

paper. Lastly, the results are somewhat sensitive to the grouping and format of input components that serve as priors, which we

discuss in 3.2.2 Components.340

3.2.1 Regional accounts

The measurement of GDP is challenging (Angrist et al., 2021), especially agricultural production (Carletto et al., 2015). The

level of uncertainty associated with these results includes the thematic, spatial and temporal accuracies. We collected regional

accounts by sector from various sources into a global database. The data are not balanced over time nor at the geographic

level. The variation in the reference year of the regional accounts data influences the temporal balance of the database. This345

mismatch can influence the regional distribution of the AgGDP that may be different than the target reference year of 2010.

Given climate15 and specifically rainfall is important input to crop and livestock production and may contribute to variation

across years (Stanimirova et al., 2019; Zhang et al., 2020), we attempt to reduce this source of error by averaging over multiple

years when data are available, which is a similar approach to You et al. (2014). However, this does not eliminate this mismatch.

The availability of data varies when grouped by World Bank income (low or lower middle, upper middle and high income). The350

average absolute temporal difference (ATD) defined as the mean difference in years between the reference regional accounts

and the target year (2010) is higher in the low and lower middle income group. Likewise, the mean deviation of the share of

AgGDP by country over the year(s) is larger in low or lower middle compared to high income.

The global regional account database includes national and sub-national units at various administrative levels.16 Following

Robinson et al. (2014) in their assessment of Gridded Livestock Of the World (GLW) 2.0, we summarize the average spatial355

resolution (ASR) of the input regional data, which is the square root of the land area divided by the number of administrative

units (See Figure 6). We find that on average the ASR value increases from high to low income groups based on World Bank

2010 classifications. Following Yu et al. (2020) we suggest that users can view the ASR map as an indicator of uncertainty

level since the model is proven most dependent on the ASR of statistics. Larger ASR represents more sparsity of input statistics

and more uncertainty of the gridded results.360

3.2.2 Components

Another source of uncertainty is the indirect temporal inaccuracy propagated from the input datasets of the components,

which are modeled. We discuss all five components of AgGDP: crop, livestock, forest, fish and hunting. The SPAM model

(You et al., 2014) is a result of several gridded modeled datasets including rural population density from Global Rural-Urban

15For a discussion on climate yield factors see Block et al. (2008).
16This also includes cases where administrative units at the same level are merged to match the geography of the regional accounts data.
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Figure 6. The average spatial resolution of the regional accounts data by country.

Sources: World Bank (2019); Authors’ calculation (2022) and various sources see Appendix.

Mapping Project (GRUMP) Alpha version (Balk et al., 2006). Likewise, the Gridded Livestock of the World v2.0 includes365

rural population density in 2006 (GRUMP) along with other predictors such as precipitation (Hijmans et al., 2005) and a

modeled travel time to places with 50,000 inhabitants circa 2000 (Nelson, 2008). Anderson et al. (2015) find variation in

their examination of global data products of cropping systems models. For livestock, we transform the 5 major livestock into

international values from livestock products (namely, meat, milk, eggs, honey and wool). The forest (non-wood products,

wood-products) components rely on a remote sensing model to estimate forest loss. With regards to the non-timber values,370

limitations from the sources present two challenges. The estimates use simple averages from the literature that accordingly

assume a property of uniformity in the value of a hectare of forest as similar across the world and the sample of forests with

literature drawn for the study is representative of the world (Siikamäki et al., 2015). The fishing model relies on proximity and

association with ports or water bodies.17 Finally, since we do not incorporate any information on hunting, the result is an even

distribution across units and time.375

Another source of uncertainty is the geographic distribution of the components. Ideally, we would use sub-national prices,

however it was not feasible. So the results do not reflect this occurrence, and there is a potential mis-representation of admin-

istrative units with high variation of prices due to the heterogeneity of distinct urban and rural areas.

17The freshwater case does not account for any variation, whereas the marine port locations incorporate variation on vessel holds.
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3.3 Validation

A true validation of the predictive accuracy of this model involves data collection and construction of agricultural gross regional380

product in different pixels and testing those independent observations against the predicted values. The regional production data

are, however, generally constructed at the administrative level rather than the pixels, so validation would have to be done on

an aggregation of model predictions. Few countries provide the required data to assess the prediction accuracy to examine the

internal validation of the disaggregation efficiency and the data collection would be extremely costly and time-consuming. An

evaluation of prediction accuracy requires input data at a local level, which is not available for all countries.385

Multiple geographic levels of AgGDP exist for the case of Brazil where we conducted a pilot study and examined the

validity of various methods to disaggregate AgGDP spatially including: cross-entropy, rural population-based model and spatial

regression (see Thomas et al., 2019) . Administrative divisions of Brazil consist of 558 microgregions, which are further divided

into 5,564 municipios. We had AgGDP data at both microregion and municipio levels. In order to test the methods, we only

used statistics for the 558 microregions and allocated them to gridded pixels. Then we aggregated estimated results at the390

pixel level to 5564 municipios and compared them with groundtruth data. Results showed that the correlation between the

predictions and actual values at the municipio level was 0.91 for the cross-entropy model. Mean Absolute Deviation (MAD)

and Root Mean Square Error (RMSE) were 8,249 and 18,347, respectively, while the average of the municipios-level true

values was 28,739 (R$ 1.000). The performance of spatial regression model was slightly better than the cross-entropy model,

but it can hardly generalize to the global work since for many countries we only have one number at the national level and395

don’t have enough degree of freedom for the regression model. The naïve rural population model had a correlation value of

0.81 between the predictions and actual values at the municipio level, and MAD and RMSE were 28,744 and and 25,397,

respectively. The cross-entropy model was proven to have relatively high accuracy compared to the naïve model and better

flexibility to accommodate data scarcity in certain countries, and thus chosen as the model for the global AgGDP dataset.

At the global scale, since we do not have AgGDP statistics at lower administrative levels consistently, we are not able to400

validate estimated results by aggregating to different geographic levels like the Brazil case. In addition, due to the volume

preserving pycnophylactic property of the cross-entropy model that utilizes all available data from mixed levels and ensures

that the aggregated values conform to all original values, we do not have extra data for validation. All available data have

been internalized by the model to improve estimation results and thus cannot serve as external validation. Nevertheless, we

compare the results from the global cross-entropy model to that from a rural population-based model at the grid level and405

examined their correlation, which is a similar assessment to You et al. (2014) (as mentioned, a spatial regression model at the

global scale is not feasible due to insufficient degrees of freedom). We construct a proportional allocation model using rural

population count following the method in Thomas et al. (2019) for the case of Brazil. We use the 2010 Gridded Population

of the World version 4 from Center for International Earth Science Information Network - CIESIN - Columbia University

(2017) adjusted to the United Nation’s World Population Prospects followed by including the rural area defined by the Global410

Human Settlement grid for 2015: namely, “Rural cluster", “Low Density Rural grid cell”, or “Very low density rural grid cell”

(Pesaresi and Freire, 2019). We disaggregate national or sub-national AgGDP statistics to grids in proportion to their rural
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population, with each rural individual receiving an equal portion of the AgGDP. Figure 7 shows results of the rural per capita

model and the cross-entropy model together. We can test the similarity of the two global maps. Following Levine et al. (2009),

we assume a normal distribution over the 2 million land pixels and perform a pairwise student t test to test the null hypothesis415

that both maps were identical. This test allows us to examine whether the mean difference in the corresponding pixel value

from one map to another was greater than would be expected by chance alone. The t test statistic tell us that we can not reject

the null hypothesis which provides some evidence of similarity between the two models using all the global pixels. However

at a granular spatial level, Figure 8 shows variation in local correlation across the world. We use a Spearman correlation for

a 3 x 3 window of pixels with a focus on AgGDP areas with values above 200,000, excluding the Low Agricultural GDP/NA420

category where the measurement of rural population and AgGDP may have discontinuity due to modeling inaccuracies. The

lack of similarity illustrates the difference in the spatial distribution of agricultural production systems that are not directly

correlated with population density within a geographic level. At the granular spatial level, populated places and agricultural

land use are different locations to allocate AgGDP. The rural per capita model is dependent on the input geographic level,

where average spatial resolution may vary, as well as on the quality and resolution of ancillary data like built-up area (e.g.425

Rubinyi et al., 2021).

4 Illustration of use: drought risk and water scarcity

Following previous global studies (e.g. Blankespoor et al., 2017; Rentschler et al., 2022), we present an application of the

population exposed to a natural hazard. Specifically, we investigate the spatial distribution of population and agricultural

activity with regards to drought and water scarcity. These two indicators provide an illustrative example of different linkages430

to agricultural production. Drought highlights the linkages to crops and livestock whereas water scarcity focuses attention

on the distribution of population. The global population estimates for the year 2010 are from WorldPop and Center for

International Earth Science Information Network (CIESIN), Columbia University (2018).18 For a drought index, we calculate

the Standardized Precipitation-Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010), which measures the difference

between observed precipitation and estimated potential evapotranspiration with a 3 month interval using the base climatology435

of 1980 to 2019, which is implemented in R (Beguería and Vicente-Serrano, 2017) using climate data from Harris et al. (2020).

Extra dry years are defined as the number of years that are less than or equal to -2.0 during the period from 2000 to 2009.

Figure A1 shows the results of the SPEI. The Water Crowding Index (WCI) is a measure of water scarcity considering the local

population as the annual water availability per capita (Falkenmark, 1986, 2013). Veldkamp et al. (2015) models global water

crowding index with return periods. We take the mean of any pixels of the ensemble WCI with a 10 year return period within440

an AgGDP pixel. Following the literature (e.g. Arnell, 2003; Alcamo et al., 2007; Kummu et al., 2010; Veldkamp et al., 2015),

we categorize the WCI into four categories: Absolute is less than 500 m3/capita per year; severe is less than or equal to 1000

m3/capita per year; moderate is less than or equal to 1,700 m3/capita per year; and low is the remainder (Figure A2). Then, we

evaluate water shortage events using a threshold of 1,700 m3/capita per year with a return period of 10 years.

18They use a Random Forest-based dasymetric redistribution method.
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Figure 7. A panel map of gridded AgGDP circa 2010 from the Cross-Entropy model (top) and from the rural per capita population model

(bottow). Source: Authors’ calculation (2022).
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Figure 8. Spearman correlation in areas of AgGDP above or equal to 200,000 in the Cross-Entropy and rural per capita models. Source:

Authors’ calculation (2022).

The exposure to drought is not uniform across the world. Across the world, the group of high income countries has less445

population and AgGDP exposed to drought in each number of years with extremely dry compared to the countries in other

income categories (Figure 9). Areas that are exposed to at least one extreme drought from 2000 to 2009 account for an estimated

AgGDP of US$432 billion and a population of 1.2 billion. The top ten countries in total AgGDP exposure include the large

economies in the agriculture sector such as China, India, the United States and Russian Federation (Table B1). However, other

countries have a high share of their AgGDP exposed to an extreme drought (Table B2). The top 10 countries in 2010 population450

exposed to dry areas include countries with the largest economies in the agriculture sector as noted above, but the list includes

countries such as the Democratic Republic of Congo, Tanzania and Uganda (Table B3).

Across the world, high income countries have less population and AgGDP in areas of absolute or severe categories of the

Water Crowding Index compared to countries in other income categories (Figure 10). The top ten countries of AgGDP exposed

to the Water Crowding Index include large economies in the agriculture sector such as China, India, Pakistan, Indonesia and455

Nigeria (Table B4). However, several countries have a high share of their AgGDP exposed to the Water Crowding Index

(Table B5). The top 10 countries in 2010 population exposed to dry areas include countries with the largest economies in the

agriculture sector as noted above, but the list includes countries such as Bangladesh, the Arab Republic of Egypt and Mexico

(Table B6).
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Figure 9. The total exposure of AgGDP [A] and population [B] aggregated from areas

with at least one extreme drought from 2000 to 2009 measured by a 3 month SPEI.

Sources: WorldPop and Center for International Earth Science Information Network (CIESIN), Columbia University (2018); World

Bank (2019); Authors’ calculation (2022).

5 Conclusions460

A globally consistent dataset on local estimates of AgGDP could benefit research and policymaking in a wide range of areas

related to nature conservation, economic development, and disaster management. However, such data have been missing. In

this paper, we made the first attempt to create a novel global dataset that disaggregates the national and regional accounts

of the agriculture sector into 5-arcminute grids using cross-entropy optimization based on ancillary data of satellite-derived

products. The gridded data format provides flexibility when the map is integrated with other data sources. It can be aggregated465

to various levels using administrative boundaries or other boundaries of interest, such as natural hazard zones. Since most

interventions are geographically targeted, this dataset will provide important information on local variations in agricultural

production and help identify places of policy interest. We illustrate the usage of this dataset through an exposure analysis of

agriculture production to drought risk and water scarcity, and examine uneven natural hazard exposure across the world on

US$ 432 billion of AgGDP and 1.2 billion people. With increasing frequency and severity of natural hazards such as floods,470

droughts, and cyclones, socio-economic estimates at the local level play a more and more important role in informing the

preparations of disaster response.

These data are the result of data collection and collaboration across multiple entities to ensure the most current and widest

coverage. However, persistent challenges to data collection remain, including limited geographic levels and temporal lags with
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Figure 10. Total AgGDP [A] and population [B] by mean Water Crowding Index, where Absolute is less than 500 m3/capita per year,

severe is less than or equal to 1000 m3/capita per year, moderate is less than or equal to 1700 m3/capita per year and low is the remainder.

Sources: Veldkamp et al. (2015); World Bank (2019); Authors’ calculation (2022).

low frequencies. Also, the reference year and spatial resolution of the local AgGDP estimates are limited to the contempora-475

neous availability of the economic statistics and components such as the crop production model. We often have to consider the

fitness-for-use while considering the accuracy; the model has higher ASR in areas where we have little data, however these

same areas may benefit from the availability of these estimates to inform policy. Predictions are dependent on the availability

and quality of the training data on which the model is based and the modeling process is flexible to update individual countries

as the data are available.480

In the near future, we hope to update this dataset as the currency and number of countries with sub-national data increase

along with updated data for different agricultural components. We have learned that the main input for our crop component,

SPAM, now includes data for 2017 in Sub-Saharan Africa and is in the process of producing a global crop map for 2020.

Additionally, the FAO livestock distribution maps for our livestock component have been updated to include a greater variety

of animal types for the more recent year of 2015. We also intend to utilize annually updated satellite imagery from MODIS485

Land Cover and ESA-CCI in order to calculate more recent data for the forestry and fishery sectors. In future work, we will also

make the necessary adjustments to include fuel wood production and exclude trees that are cut down for plantation replanting

and not used for further timber production in the calculation of forestry sector GDP.
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Data availability. These data are available at the World Bank’s Development Data Hub under http://www.doi.org/10.57966/0j71-8d56 (IF-

PRI and World Bank, 2022).490

24

http://www.doi.org/10.57966/0j71-8d56


Appendix A: Figures

Figure A1. The number of years with at least one extreme drought from 2000 to 2009 measured by a 3 month SPEI. Sources: Harris et al.

(2020); Beguería and Vicente-Serrano (2017); Authors’ calculation (2022)

.
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Figure A2. Water Scarcity Index categories with a return period of 10 years. Sources: Veldkamp et al. (2015); Authors’ calculation (2022)

.
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Appendix B: Tables

Table B1. Top 10 countries of largest total Agricultural GDP (millions of USD) exposed to dry areas with share of Agricultural GDP and

Population (thousands)

Rank Country Ag GDP Share of Ag GDP Pop (2010)

1 China 146,000 0.26 323,000

2 India 60,600 0.22 255,000

3 United States 21,800 0.14 69,100

4 Russian Federation 14,300 0.26 27,100

5 Iran, Islamic Rep. 13,400 0.44 40,600

6 Brazil 12,600 0.14 9,230

6 Pakistan 12,600 0.28 42,600

7 Australia 10,900 0.44 6,130

8 Italy 6,560 0.17 7,120

9 Canada 5,540 0.25 5,000
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Table B2. Top 10 countries of largest share of Agricultural GDP exposed to dry areas with Agricultural GDP (millions of USD) and

Population (thousands)

Rank Country Share of Ag GDP Ag GDP Pop (2010)

1 Rwanda 1.00 1670 9850

1 Saint Vincent and the Grenadines 1.00 11.6 29.9

1 Micronesia, Federated States of 1.00 < 1 < 1

2 Burundi 0.97 732 8320

3 Brunei Darussalam 0.91 99.3 92.8

4 West Bank and Gaza 0.85 543 2770

5 Gambia, The 0.81 170 1420

6 Finland 0.79 4400 3950

7 Belize 0.79 126 208

8 Jordan 0.73 733 5400
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Table B3. Top 10 countries of 2010 population (thousands) exposed to dry areas with Agricultural GDP (millions of USD) and share of

Agricultural GDP

Rank Country Pop (2010) Ag GDP Share of Ag GDP

1 China 323,000 146,000 0.26

2 India 255,000 60,600 0.22

3 United States 69,100 21,800 0.14

4 Congo, Dem. Rep. 45,100 2,780 0.59

5 Pakistan 42,600 12,600 0.28

6 Iran, Islamic Rep. 40,600 13,400 0.44

7 Russian Federation 27,100 14,300 0.26

8 Tanzania 23,200 4,140 0.55

9 Uganda 18,700 2,990 0.66

10 Thailand 17,400 4,930 0.15
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Table B4. Top 10 countries of largest total Agricultural GDP exposed to WCI areas with Agricultural GDP (million of USD) and Population

(thousands)

Rank Country Ag GDP Share of Ag GDP Pop (2010)

1 China 436,000 0.802 990,000

2 India 243,000 0.925 1,000,000

3 Pakistan 44,200 0.999 170,000

4 Nigeria 38,300 0.465 78,000

5 Indonesia 38,200 0.479 120,000

6 United States of America 37,800 0.247 65,000

7 Turkey 37,600 0.625 43,000

8 Italy 30,400 0.854 42,000

9 Iran, Islamic Republic of 28,100 0.943 70,000

10 Egypt, Arab Republic of 24,400 0.947 70,000
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Table B5. Top 10 countries of largest share of Agricultural GDP in country exposed to WCI areas with Agricultural GDP (million of USD)

and Population (thousands)

Rank Country Ag GDP Share of Ag GDP Pop (2010)

1 United Arab Emirates 1,310 1.000 3,900

1 Cyprus 346 1.000 610

1 Djibouti 28 1.000 380

1 Dominican Republic 2,740 1.000 6,300

1 Gambia, The 147 1.000 680

1 Haiti 1,070 1.000 5,900

1 Israel 3,270 1.000 5,600

1 Jamaica 523 1.000 1,400

1 Jordan 996 1.000 5,800

1 Korea, Republic of 14,600 1.000 31,000

18Additional countries exposed to WCI area with the 1.00 share of Ag GDP include: West Bank and Gaza; Cyprus; Kuwait; Gambia, The; Qatar; Hong

Kong (SAR, China)
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Table B6. Top 10 countries of 2010 population exposed to WCI areas with Agricultural GDP (million of USD) and Population (thousands)

Rank Country Pop (2010) Ag GDP Share of Ag GDP

1 India 1,000,000 243,000 0.925

2 China 990,000 436,000 0.802

3 Pakistan 170,000 44,200 0.999

4 Indonesia 120,000 38,200 0.479

5 Bangladesh 110,000 13,900 0.909

6 Nigeria 78,000 38,300 0.465

7 Egypt, Arab Republic of 70,000 24,400 0.947

7 Iran, Islamic Republic of 70,000 28,100 0.943

8 United States of America 65,000 37,800 0.247

9 Mexico 64,000 14,100 0.462
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Table B7. Regional account descriptive statistics

Country First Last Number of Source

Year Year regions

Albania 2012 2014 12 EUROSTAT

Argentina 2004 2004 24 Instituto Nacional de Estadística y Censos

Australia 2009 2011 8 Australian Bureau of Statistics

Austria 2012 2014 9 EUROSTAT

Belarus 2011 2013 8 BELSTAT

Belgium 2012 2014 3 EUROSTAT

Bolivia 2009 2011 9 Instituto Nacional de Estadística

Brazil 2010 2012 31 Instituto Brasileiro de Geografia e Estatística

Bulgaria 2012 2014 2 EUROSTAT

Canada 2009 2011 13 Statistics Canada

Chile 2013 2015 13 Banco Central De Chile

China 2009 2011 32 National Bureau of Statistics China

Colombia 2009 2011 32 Departamento Administrativo Nacional de Estadística

Croatia 2012 2014 3 EUROSTAT

Czech Republic 2012 2014 7 EUROSTAT

Denmark 2012 2014 5 EUROSTAT

Ecuador 2006 2006 23 Banco Central De Ecuador

Estonia 2012 2014 5 EUROSTAT

Finland 2012 2014 2 EUROSTAT

France 2012 2014 22 EUROSTAT

Georgia 2009 2011 9 National Statistics Office of Georgia

Germany 2012 2014 16 EUROSTAT

Greece 2012 2014 13 EUROSTAT

Hungary 2012 2014 3 EUROSTAT

India 2011 2013 32 Central Statistics Office

Indonesia 2009 2011 31 INDO-DAPOER

Iran, Islamic Rep. 2014 2014 28 Iran Statistical Yearbook 1389

Ireland 2012 2014 2 EUROSTAT

Italy 2012 2014 20 EUROSTAT

Japan 2009 2011 47 Cabinet Office Government of Japan

Kazakhstan 2010 2012 15 Agency of Statistics of the Republic of Kazakhstan

Kenya 2017 2017 48 Kenya National Bureau of Statistics and World Bank

Korea, Rep. 2009 2011 15 Korean Statistical Information Services
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Table B7. Continued.

Country First Last Number of Source

Year Year regions

Latvia 2012 2014 6 EUROSTAT

Lithuania 2012 2014 10 EUROSTAT

Malaysia 2010 2012 16 Department of Statistics Malaysia

Mali 2009 2009 9 Cellule d’Analyse et de Prospective

Malta 2012 2014 2 EUROSTAT

Mexico 2009 2011 32 Instituto Nacional de Estadística y Geografía

Mongolia 2015 2017 23 Mongolian Statistical Information Service

Morocco 2005 2007 7 Ministry of Finance

Nepal 2019 2019 7 Central Bureau of Statistics Nepal

Netherlands 2012 2014 12 EUROSTAT

New Zealand 2009 2011 14 Statistics New Zealand

North Macedonia 2012 2014 8 EUROSTAT

Norway 2012 2014 19 EUROSTAT

Panama 2009 2011 9 Instituto Nacional de Estadística y Censo

Peru 2009 2011 25 Instituto Nacional de Estadistica e informatica

Philippines 2009 2011 17 Philippine Statistics Authority

Poland 2012 2014 15 EUROSTAT

Romania 2012 2014 4 EUROSTAT

Russian Federation 2009 2011 82 Mordoviastat: Federal Service of State Statistics

Slovak Republic 2012 2014 4 EUROSTAT

Slovenia 2012 2014 2 EUROSTAT

South Africa 2009 2011 9 Statistics South Africa

Spain 2012 2014 19 EUROSTAT

Sri Lanka 2009 2011 9 Economic and Social Statistics of Sri Lanka

Sweden 2012 2014 3 EUROSTAT

Switzerland 2009 2011 25 Federal Statistical Office of Switzerland

Thailand 2009 2011 76 Office of the National Economic and Social Development Board

Türkiye 2009 2011 81 Turkish Statistical Institute

Ukraine 2010 2012 25 State Statistics Service of Ukraine

United Kingdom 2012 2014 4 EUROSTAT

United States 2009 2011 51 Bureau of Economic Analysis

Uruguay 2008 2008 19 Instituto Nacional de Estadistica

Vietnam 2009 2011 64 General Statistics Office of Viet Nam

Zambia 2015 2015 9 Central Statistics Office of Zambia
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Table B8. Share of priors in territory

Country or political area Crop Livestock Timber Non Timber Fish

Afghanistan 0.785 0.210 0.004 0.001 0.000

Albania 0.442 0.507 0.001 0.045 0.004

Algeria 0.638 0.344 0.012 0.000 0.006

Andorra 0.002 0.241 0.671 0.085 0.001

Angola 0.976 0.012 0.003 0.002 0.007

Antigua and Barbuda 0.461 0.539 0.000 0.000 0.000

Argentina 0.577 0.364 0.037 0.010 0.012

Armenia 0.538 0.455 0.000 0.003 0.004

Australia 0.422 0.391 0.164 0.001 0.022

Austria 0.225 0.315 0.449 0.010 0.001

Azerbaijan 0.644 0.354 0.001 0.001 0.000

Bahamas, The 0.568 0.350 0.069 0.014 0.000

Bahrain 0.100 0.092 0.020 0.000 0.788

Bangladesh 0.692 0.088 0.057 0.001 0.162

Barbados 0.341 0.280 0.379 0.000 0.000

Belarus 0.527 0.439 0.018 0.014 0.002

Belgium 0.324 0.455 0.202 0.006 0.013

Belize 0.433 0.185 0.018 0.357 0.007

Benin 0.941 0.010 0.031 0.001 0.016

Bermuda (UK) 0.505 0.000 0.495 0.000 0.000

Bhutan 0.584 0.190 0.187 0.036 0.003

Bolivia 0.487 0.316 0.002 0.187 0.009

Bosnia and Herzegovina 0.545 0.293 0.012 0.138 0.012

Botswana 0.209 0.402 0.388 0.001 0.000

Brazil 0.514 0.372 0.077 0.029 0.008

British Virgin Islands (UK) 0.237 0.763 0.000 0.000 0.000

Brunei Darussalam 0.524 0.362 0.092 0.001 0.021

Bulgaria 0.608 0.293 0.034 0.058 0.007

Burkina Faso 0.623 0.266 0.098 0.000 0.013

Burundi 0.852 0.095 0.019 0.008 0.026

Cabo Verde 0.957 0.000 0.043 0.000 0.000

Cambodia 0.716 0.119 0.045 0.007 0.114

Cameroon 0.788 0.116 0.068 0.004 0.023
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Table B8. Continued.

Country or political area Crop Livestock Timber Non Timber Fish

Canada 0.359 0.264 0.337 0.014 0.026

Cayman Islands (UK) 0.646 0.354 0.000 0.000 0.000

Central African Republic 0.577 0.339 0.024 0.057 0.003

Chad 0.549 0.436 0.013 0.002 0.000

Chile 0.258 0.142 0.233 0.014 0.354

China 0.565 0.276 0.093 0.001 0.065

Colombia 0.507 0.368 0.001 0.101 0.023

Comoros 0.000 0.207 0.720 0.073 0.000

Congo, Dem. Rep. 0.707 0.051 0.004 0.084 0.154

Congo, Rep. of 0.732 0.181 0.056 0.001 0.030

Costa Rica 0.747 0.155 0.030 0.054 0.014

Côte d’Ivoire 0.867 0.086 0.045 0.000 0.002

Croatia 0.484 0.283 0.194 0.031 0.008

Cuba 0.896 0.056 0.000 0.046 0.002

Cyprus 0.344 0.539 0.096 0.000 0.020

Czech Republic 0.277 0.323 0.367 0.026 0.007

Denmark 0.126 0.306 0.061 0.002 0.506

Djibouti 0.199 0.801 0.000 0.000 0.000

Dominica 0.701 0.106 0.000 0.193 0.000

Dominican Republic 0.607 0.282 0.000 0.105 0.006

Ecuador 0.423 0.292 0.076 0.070 0.139

Egypt, Arab Rep. 0.567 0.367 0.011 0.000 0.055

El Salvador 0.892 0.075 0.008 0.024 0.002

Equatorial Guinea 0.544 0.109 0.320 0.006 0.021

Eritrea 0.363 0.636 0.001 0.000 0.000

Estonia 0.226 0.339 0.375 0.031 0.028

Ethiopia 0.604 0.331 0.060 0.002 0.003

Fiji 0.458 0.335 0.153 0.040 0.014

Finland 0.090 0.175 0.692 0.009 0.033

France 0.476 0.350 0.157 0.005 0.012

Gabon 0.348 0.082 0.508 0.001 0.061

Gambia, The 0.605 0.374 0.019 0.000 0.001

Georgia 0.441 0.509 0.030 0.019 0.001
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Table B8. Continued.

Country or political area Crop Livestock Timber Non Timber Fish

Germany 0.254 0.417 0.307 0.016 0.006

Ghana 0.829 0.054 0.094 0.000 0.023

Gibraltar (UK) 0.011 0.013 0.004 0.000 0.972

Greece 0.711 0.216 0.046 0.007 0.020

Grenada 0.723 0.247 0.030 0.000 0.000

Guatemala 0.642 0.108 0.002 0.245 0.003

Guinea 0.747 0.141 0.079 0.023 0.011

Guinea-Bissau 0.559 0.414 0.024 0.002 0.001

Guyana 0.696 0.031 0.007 0.257 0.009

Haiti 0.794 0.123 0.000 0.082 0.000

Honduras 0.491 0.205 0.002 0.293 0.010

Hong Kong (SAR, China) 0.000 0.280 0.674 0.000 0.046

Hungary 0.537 0.335 0.111 0.010 0.006

Iceland 0.006 0.068 0.009 0.000 0.916

India 0.683 0.219 0.073 0.001 0.024

Indonesia 0.658 0.158 0.109 0.003 0.073

Iran, Islamic Rep. 0.605 0.364 0.021 0.000 0.011

Iraq 0.564 0.411 0.003 0.000 0.023

Ireland 0.091 0.787 0.093 0.000 0.028

Israel 0.523 0.395 0.074 0.000 0.009

Italy 0.463 0.310 0.207 0.006 0.014

Jamaica 0.866 0.059 0.000 0.066 0.008

Japan 0.430 0.244 0.259 0.001 0.065

Jordan 0.434 0.485 0.075 0.000 0.005

Kazakhstan 0.500 0.485 0.012 0.000 0.003

Kenya 0.555 0.380 0.031 0.001 0.033

Kiribati 0.000 0.034 0.000 0.000 0.966

Korea, Democratic People’s Republic of 0.635 0.174 0.036 0.143 0.012

Korea, Rep. 0.500 0.241 0.156 0.001 0.102

Kosovo 0.631 0.315 0.024 0.029 0.002

Kuwait 0.263 0.426 0.291 0.000 0.020

Kyrgyz Republic 0.467 0.529 0.002 0.001 0.000

Lao People’s Democratic Republic 0.735 0.164 0.046 0.017 0.038

Latvia 0.228 0.215 0.497 0.035 0.024
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Table B8. Continued.

Country or political area Crop Livestock Timber Non Timber Fish

Lebanon 0.667 0.257 0.072 0.000 0.003

Lesotho 0.303 0.597 0.092 0.007 0.001

Liberia 0.663 0.086 0.203 0.043 0.005

Libya 0.579 0.278 0.026 0.000 0.118

Liechtenstein 0.013 0.318 0.631 0.038 0.000

Lithuania 0.385 0.353 0.202 0.033 0.027

Luxembourg 0.161 0.493 0.338 0.008 0.000

Macedonia, FYR 0.681 0.255 0.002 0.061 0.001

Madagascar 0.498 0.431 0.055 0.005 0.011

Malawi 0.877 0.080 0.005 0.003 0.036

Malaysia 0.672 0.143 0.162 0.001 0.023

Maldives 0.982 0.018 0.000 0.000 0.000

Mali 0.440 0.452 0.059 0.000 0.049

Malta 0.374 0.482 0.069 0.000 0.075

Mauritania 0.226 0.771 0.003 0.000 0.001

Mauritius 0.858 0.000 0.077 0.000 0.065

Mexico 0.433 0.404 0.057 0.072 0.034

Micronesia, Federated States of 0.962 0.038 0.000 0.000 0.000

Moldova 0.630 0.319 0.001 0.045 0.005

Monaco 0.024 0.024 0.903 0.046 0.003

Mongolia 0.230 0.739 0.027 0.001 0.003

Montenegro 0.566 0.249 0.001 0.179 0.004

Montserrat (UK) 0.247 0.753 0.000 0.000 0.000

Morocco 0.615 0.351 0.022 0.000 0.012

Mozambique 0.645 0.279 0.048 0.022 0.005

Myanmar 0.805 0.108 0.016 0.010 0.061

Namibia 0.374 0.511 0.020 0.000 0.095

Nepal 0.733 0.232 0.004 0.020 0.011

Netherlands 0.257 0.547 0.147 0.004 0.045

New Caledonia (Fr.) 0.208 0.429 0.267 0.095 0.000

New Zealand 0.124 0.671 0.157 0.000 0.048

Nicaragua 0.526 0.275 0.001 0.194 0.003
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Table B8. Continued.

Country or political area Crop Livestock Timber Non Timber Fish

Niger 0.657 0.306 0.025 0.000 0.012

Nigeria 0.865 0.094 0.015 0.001 0.026

Norway 0.087 0.292 0.229 0.008 0.383

Oman 0.575 0.290 0.135 0.000 0.000

Pakistan 0.477 0.485 0.027 0.000 0.011

Panama 0.211 0.414 0.001 0.047 0.327

Papua New Guinea 0.443 0.158 0.042 0.033 0.325

Paraguay 0.602 0.313 0.010 0.074 0.001

Peru 0.369 0.253 0.029 0.037 0.312

Philippines 0.492 0.230 0.009 0.003 0.266

Poland 0.368 0.406 0.190 0.027 0.008

Portugal 0.392 0.273 0.280 0.012 0.042

Puerto Rico (US) 0.324 0.542 0.050 0.084 0.000

Qatar 0.229 0.445 0.326 0.000 0.000

Romania 0.540 0.329 0.113 0.017 0.001

Russian Federation 0.378 0.394 0.086 0.019 0.122

Rwanda 0.894 0.069 0.029 0.003 0.004

Saint Kitts and Nevis 0.703 0.297 0.000 0.000 0.000

Saint Lucia 0.552 0.255 0.000 0.193 0.000

Saint Vincent and the Grenadines 0.642 0.239 0.000 0.119 0.000

San Marino 0.776 0.185 0.036 0.003 0.000

São Tomé and Príncipe 0.935 0.065 0.000 0.000 0.000

Saudi Arabia 0.548 0.406 0.039 0.000 0.007

Senegal 0.756 0.084 0.085 0.000 0.074

Serbia 0.649 0.291 0.015 0.040 0.005

Seychelles 0.922 0.078 0.000 0.000 0.000

Sierra Leone 0.785 0.042 0.137 0.007 0.030

Singapore 0.072 0.145 0.607 0.000 0.176

Slovak Republic 0.289 0.228 0.453 0.029 0.001

Slovenia 0.230 0.346 0.390 0.030 0.004

Solomon Islands 0.586 0.018 0.285 0.112 0.000

Somalia 0.113 0.872 0.008 0.007 0.000

South Africa 0.417 0.375 0.152 0.000 0.057
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Table B8. Continued.

Country or political area Crop Livestock Timber Non Timber Fish

South Sudan 0.873 0.112 0.007 0.000 0.008

Spain 0.531 0.247 0.152 0.006 0.064

Sri Lanka 0.758 0.100 0.071 0.020 0.052

Sudan 0.419 0.562 0.000 0.000 0.019

Suriname 0.534 0.255 0.072 0.115 0.023

Swaziland 0.618 0.115 0.265 0.002 0.001

Sweden 0.094 0.150 0.740 0.014 0.002

Switzerland 0.182 0.401 0.410 0.007 0.000

Syrian Arab Republic 0.594 0.374 0.020 0.001 0.012

Tajikistan 0.791 0.206 0.002 0.000 0.001

Tanzania 0.798 0.038 0.051 0.006 0.106

Thailand 0.744 0.165 0.062 0.001 0.028

Timor-Leste 0.661 0.237 0.006 0.006 0.089

Togo 0.657 0.310 0.021 0.004 0.008

Tonga 0.588 0.000 0.412 0.000 0.000

Trinidad and Tobago 0.306 0.550 0.073 0.070 0.000

Tunisia 0.572 0.336 0.059 0.000 0.033

Türkiye 0.656 0.284 0.053 0.001 0.007

Turkmenistan 0.451 0.547 0.000 0.000 0.001

Uganda 0.637 0.090 0.086 0.002 0.185

Ukraine 0.671 0.287 0.005 0.032 0.005

United Arab Emirates 0.504 0.298 0.197 0.000 0.000

United Kingdom 0.285 0.437 0.235 0.004 0.040

United States 0.454 0.302 0.207 0.014 0.023

United States 0.954 0.036 0.000 0.000 0.010

Uruguay 0.239 0.295 0.076 0.003 0.388

Uzbekistan 0.758 0.240 0.001 0.000 0.001

Vanuatu 0.912 0.035 0.020 0.032 0.000

Vatican City 0.366 0.234 0.000 0.397 0.003

Venezuela, Republica Bolivariana de 0.569 0.364 0.015 0.028 0.025

Vietnam 0.599 0.259 0.044 0.003 0.095

West Bank and Gaza 0.231 0.752 0.015 0.000 0.002

Yemen, Rep. 0.516 0.472 0.012 0.000 0.000

Zambia 0.517 0.169 0.233 0.006 0.075

Zimbabwe 0.517 0.351 0.105 0.013 0.013
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