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Abstract. Economic statistics are frequently produced at an administrative level such as the sub-national division. However,
these measures may lack sufficient local variation in-the-economic-activities-to-analyze for effective analysis of local economic
development patterns and the-exposure to natural hazards. Agriculture GDP is a critical indicator for measurement of the
primary sector, on which more than 2.5 billion people depend on their livelihoodsthat-provide-, and it provides a key source of
income for the entire household (FAO, 2021). Through a data fusion method based on cross-entropy optimization, this paper
disaggregates national and subnratienal-sub-national administrative statistics of Agrieuttaral-agricultural GDP into a global
gridded dataset at approximately 10 x 10 kilometers for the year 2010 using satellite-derived indicators of the components
that make up agricultural GDP, namely crop, livestock, fishery, hunting and timber-production—The-forestry production. To
illustrate the use of the new dataset, the paper estimates the exposure of areas with at least one extreme drought during 2000
to 2009 to agricultural GDPis-an-estimated-, which amounts to around US$432 biltien-billions of agricultural GDP circa 2010,
where-with nearly 1.2 billion people tiveliving in those areas. The data are available on the World Bank Development Data
Hub (DOI: http://doi.org/10.57966/0j71-8d56; IFPRI and World Bank, 2022).

1 Introduction

According to the Food and Agriculture Organization of the United Nations, at least 2.5 billion people depend on the agricultural
sector for their livelihood and it provides a key source of employment and income for the poor and vulnerable people (FAO,
2013, 2019, 2021). Yet, economic statistics of the agricultural sector are frequently produced at a national or lower adminis-
trative level and may not adequately capture the-oeal-variation-local variation in production activities. Furthermore, a spatial
mismateh-may-existbetween-the-geographic unit of interestlike-, such as the natural area of a river and-the-administrative-basin,
may not align with political administrative boundaries, limiting the ability to conduct a comprehensive overlay analysis of the
area. Lastly, local conditions can pose challenges to measurement across the world. Agfﬁu%&ﬂ%%—lﬂﬂdﬂﬁfﬁﬁppf@ﬂmﬁfdy

Around five billion hectares an

eurrent-or-complete-of land is dedicated to agriculture, but collecting and reporting data across the world can be challengin
especially in areas affected by fragility, conflict, and violence, which can result in incomplete or outdated geographic coverage.
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Detailed agricultural data are critical to examining a wide range of agricultural issues including technology and land use
(e.g. Bella and Irwin, 2002; Luijten, 2003; Staal et al., 2002; Samberg et al., 2016), exposure to natural hazards (e.g. Murthy

et al., 2015), evaluation of forest restoration opportunities (Shyamsundar et al., 2022) as part of nature-based climate solutions

2

(Griscom et al., 2017), and patterns of and productivity of economic development (e.g. Nelson, 2002; Elhorst and Strijker,
2003; Gollin et al., 2014; Reddy and Dutta, 2018). Carrdo et al. (2016) examine the exposure of people and economic activity
to drought using measures of physical elements (e.g. cropland and livestock). Rentschler and Salhab (2020) find that low and
middle-income countries have 89% of global flood exposed population and poor people account for almost 600 million, who
are directly exposed to the risk of intense flooding. Vesco et al. (2021) examine linkages between climate variability and agri-
cultural production as well as conflict. They find that climate variability contributes to an increase in the spatial concentration
of agricultural production within countries. Furthermore, in countries with a high share of agricultural employment in the na-
tional workforce, they find this combined effect increases the likelihood of conflict onset. To better target rural development
strategies for economic growth and poverty reduction, as well as conserve the natural resource base for long-term sustainable
development, we need to accurately delineate the spatial distribution of agricultural resources and production activities (Wood
etal., 1999).
One method to parti

uses-address the case where administrative boundaries and geographic areas of interest are not aligned is to use the gridded
(raster) data formatby-providing-. It provides an intermediate and consistent unit for disaggregation and aggregation (e.g.

UNISDR, 2011). Data-disaggregation methods can use detailed data to inform estimates of aggregated data from large areas at
the local level (e.g. see review in Pratesi et al., 2015). Several spatial data products from global models are available to estimate
population at a local level (see review in Leyk et al., 2019).

Previous evidence-based risk analyses take advantage of global data of hazards to estimate exposure of population and
economic activity (e.g. Gunasekera et al., 2015, 2018; Ward et al., 2020; Rentschler and Salhab, 2020). Gross Domestic
Product (GDP) is a critical economic indicator in the measurement and monitoring of an economy in a country that is typically
only available at national and occasionally sub-national levels. Regional indicators play a key role in the necessary variation
to forecast regional GDP (Lehmann and Wohlrabe, 2015) and food security (Andree et al., 2020). Previous efforts to estimate
local GDP use high resolution spatial auxiliary information such as luminosity or population data to provide local variation.
Methods by Nordhaus (2006); World Bank and UNEP (2011); Kummu et al. (2018); Murakami and Yamagata (2019) took
advantage of gridded population data, which is the result of a model disaggregating the most detailed level population data into
gridste-g—seereview-in-Leyketal;2019). However, wealth-income is not evenly distributed among people nor infrastructure
(Berg et al., 2018). In fact, the divide between the rich and poor is even widening in our time (Dabla-Norris et al., 2015).
The method used in World Bank and UNEP (2011) stratify-stratifies the population by rural and urban, yet the definition
of these geographic areas can vary based on the selection of the population model (Leyk et al., 2019). These measurements
matter in application to stylized facts such as the strong negative correlation of the level of urbanization with the size of

its agricultural sector (Roberts et al., 2017). Also, the strong assumption of uniform distribution of labor in agriculture is
another key concern (Gollin et al., 2014). Uneven agricultural productivity across different regions or locations can lead to
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a non-uniform distribution of labor within the sector, which has implications for the accuracy and effectiveness of models
based on rural per capita allocation. Other methods used land cover such as vegetation and built-up indices, however did not

incorporate types of agriculture like cropland and livestock (Gunasekera et al., 2015; Goldblatt et al., 2019).

Other methods to estimate GDP at a local level take advantage of the-lights-atnightdatasetnighttime lights datasets. Doll et al.
(2006) and Elvidge et al. (2009) found nighttime lights to provide a uniform, consistent, and independent estimate for economic
activity, and several other studies (e.g. Chen and Nordhaus, 2011; Henderson et al., 2012; Ghosh et al., 2010; Bundervoet et al.,
2015; Wang et al., 2019; Eberenz et al., 2020; Wang and Sun, 2021) utilized this striking correlation between luminosity and
economic activities to estimate economic output on the ground. While night light is a good reflection of economic activities
in manufacturing and urban areas, night light data may not capture the agricultural activity as it requires areas to emit light.
Bundervoet et al. (2015) suggest that agricultural indicators rather than rural population could improve the estimation of GDP
given the importance of agriculture in many of the economies in their sample of Africa. Gibson et al. (2021) find that night
time lights data are a poor predictor of economic activity in low population density rural areas.

In this paper, we present a high resolution gridded Agricultural GDP (corresponding to the "agriculture, forestry, and fishing,
value added" in World Development Indicators, henceforth AgGDP) dataset that is produced through a spatial allocation model
by distributing national and sub-national statistics to S-aremintte-pixels-5-arcminute grids based on satellite-derived informa-
tion of constituents of AgGDP, including forestry, hunting, and fishing, as well as cultivation of crops and livestock produc-
tion!. We-make-two-main-contributions—First—we-Our main contribution is to construct a global dataset of gridded AgGDP.
This entails a massive effort of data collection and integration. We extend and apply the cross-entropy framework developed
in the Spatial Production Allocation Model (SPAM) for crops that pioneered the use of cross-entropy optimization in spatial
allocation (You and Wood, 2003; You et al., 2014, 2018; Yu et al., 2020). We construct and integrate global datasets of the
components of agricultural-GDP-AgGDP as priors and then reconcile the values with the regional account statistics using
cross-entropy optimization. Second;—we-contribute-to-efforts-assessing-As an illustration of the novel dataset, we assess the
exposure of economic activity to natural hazards with a focus on agrieutturaFGPPAgGDP. Significant progress has been made
to measure physical assets such as built-up area along with its importance in population models (Rubinyi et al., 2021) and esti-
mate hazards te-gquantify-its-in order to quantify the exposure to natural hazards (e.g Gunasekera et al., 2015; UNDRR, 2019).
However, the detailed spatial distribution of agrietttural-GBP-AgGDP is less known. So, we apply these data to inform efforts
quantifying the population and agrieutturabGDP-AgGDP at risk to drought and water scarcity highlighting a linkage to a subset

of agricultural activities as well as an association with population.
The rest of this paper is structured as follows. The next section provides a detailed description of the methodology and data.

Then, we present the model resultsand-data—Then—we-diseuss-the-results-along-with-validationfollowed-by-usagenotesfrom

a-fitness-for-use-perspeetive, uncertainty, and validation. Afterwards, we demonstrate one possible application by analyzin
AgGDP exposure to natural hazards. Finally, we provide concluding remarks.

! Agriculture, forestry, and fishing corresponds to ISIC divisions 1-3 and includes forestry, hunting, and fishing, as well as cultivation of crops and livestock

production
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2 Methodology and data

Following the composite structure of agricuttura-GDPAgGDP, we disaggregate the national and sub-national statistics into a
global grid through a cross-entropy allocation model. Given the limited availability of data and the global scope s-eur-efforts
varied-on-adjusting-of the study, we made various efforts to adjust official statistics and ereating-create priors for different
components based on the available data. Below we discuss the construction of each component, AgGDP statistics and the
allocation model followed by the global natural hazards data. Given the spatial resolution and year of reference of the input
data for the crop value of production, we estimate AgGDP for the year 2010 into S-are-mintte-5-arcminute grids (10x10 km)

across the world.
2.1 Construction of components

For each pixel, we construct an estimated value of production based on high spatial resolution information of the five compo-
nents that serve as priors in the modeling process: crop, livestock, forestry, fishing, and hunting. Given the lack of information
on the hunting component, we disaggregate the forestry component into two parts: timber and non-timber products of forestry.
The non-timber products of forestry includes an even distribution of hunting. The construction of the five components is de-

scribed below in four subsections: crop, livestock, forestry (timber and non-timber) and fishing.
2.1.1 Crop value of production

The prior for the crop component in the gridded AgGDP is generated by multiplying the quantity of production from the global
SPAM 2010 version 1 dataset? (You et al., 2018) with the-producer prices at the country level from FAOSTAT (FAO, 2016) for

each crop and then summed together. 3 As-As for the producer prices, ideally, we need sub-national level figures since prices
for agricultural products can vary greatly within countries and their subdivisions, but such a dataset is not available globally.
Therefore, we use the FAOSTAT s national producer prices and take the average of 2009-2011, in order to mitigate the potential

impact of temporal variation. However, due to missing data for certain countries, crops, and years, this average may be based
on a smaller time period or the closest year available. As mentioned earlier, SPAM is a cross-entropy model, which calculates

a plausible allocation of crop areas and production to approximately 10 km pixels, based on agricultural statistics at national
and sub-national levels, combined with gridded layers of cropland, irrigated areas, population density and potential crop areas
and yields (Yu et al., 2020). SPAM’s output distinguishes between 42 crops (33 individual crops, 9 aggregated crops) that
together add up to practically all cultivated crops in a country with four parameters including production, yield, physical area

and harvest area.

2 Available at www.mapSPAM.info




For aggregated SPAM crops (such as other cereals, other pulses, vegetables, fruits, etc.), we computed their prices by taking

the weighted average of their components, as follows:

Y jprice;prod;

120  Pricejagg = ,Vj € Jagg 1)

X prod;
where Jagg is the aggregated crop group, j is any crop that belongs to Jagg, Price,q, is the price of the aggregated crop
group, price; is the price of crop j, and prod; is the production of j.

For each grid, the value of crop production is thus:
Cropval; = Xjprod; jprice;,Vj that grow in pixel ¢ )

125 where Cropval, is the value of total crop production in pixel i, prod;; is the production of crop j in pixel i, and price; is the price

of crop j. A map of global gridded crop production value as a prior is shown in Figure 1.

Figure 1. Fhis-map-tHustrates-the The assembled crop production value used as a prior in the cross-entropy model. Sources: FAO (2016); Yu
et al. (2020); Authors’ calculation (2022)

Crop production value prior (USD ca. 2010)

Low production / NA 50,000-99,999 | 1,000,000 - 4,999,999
I 5,000- 9,999 100,000 - 499,999 [l 5,000,000 - 9,999,999
10,000 - 49,999 500,000 - 999,999 ] >= 10,000,000

2.1.2 Livestock production

Livestock accounts for an estimated 40% of the global value of agriculture output and plays an important role in ensuring the

livelihoods and food security for over one-sixth of the world’s population (FAO, 2018). Yet, it is still under rapid expansion as
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the global demand for animal-sourced products such as meat, milk, eggs, and hides continues to grow (Herrero and Thornton,
2013). While species and quantities of livestock raised vary among regions and husbandry farmers, there are five primary
species - cattle, sheep, goats, pigs, and chicken - that prevail worldwide and provide essential products for human consumption.

We calculate the prior for the component of livestock production in gridded AgGDP based on the distribution maps of
the above five primary species from the Gridded Livestock of the World (Robinson et al., 2014; Gilbert et al., 2018) and
FAOSTAT’s value of production of livestock products (including meat, milk, eggs, honey and wool) (FAO, 2020). Due to data

limitations, distribution maps for other animals such as ducks, horses, camels, and bees are not available. But the FAOSTAT's
livestock production values include a more comprehensive list of animals and their products. By distributing FAOSTAT values
to grids in proportion to the five primary livestock species, we assume that other animals included in FAOSTAT have a similar
spatial distribution to the five primary livestock species. This assumption is generally valid, but may not be accurate in special

areas, such as deserts where camels are an important source of livestock products. To facilitate comparison, the animal-specific
density numbers are converted to one animal type by using International Livestock Units as conversion factors (Eurostat, 2018),

as shown in Table 1. The conversion factors reflect biomass differences between different animals >, Then the densities of the
animal equivalent values are multiplied by pixel-areas-the total area of each S-arcminute pixel to get the count of animals per
grid, which is used to calculate the share of animal counts and then multiplied by the FAOSTAT’s value of production to obtain

the livestock production prior for each pixel.

l i .
lsval; = lsvalzﬂ,w eX 3
Yxlsnum;

where Isval; is the total value of livestock production in pixel i; Isval, is the value of livestock production (meat, milk, eggs,
honey and wool) that is reported at the national level; Isnum; is the total number of equivalent animals in pixel 7; and X is a set
including all pixels that fall within the boundary of a nation.

A map of global gridded livestock production value as a prior is shown in Figure 2.

Table 1. Conversion factors for different livestock types. Sources: Eurostat (2018)

Livestock type  Conversion factor

Cattle 1

Pigs 0.3
Goats 0.1
Sheep 0.1
Chicken 0.01

3The uniform conversion factors may oversimplify local variation in livestock patterns. Future work may consider using country-specific values of livestock

roducts from FAOSTAT.



Figure 2. Fhis—map—iHustrates—the-The assembled livestock production value used as a prior in the cross-entropy model. Sources:
Robinson et al. (2014); Gilbert et al. (2018); Eurostat (2018); Authors’ calculation (2022

B . B

Livestock production value prior (USD ca. 2010)

Low production / NA 10,000 - 49,999 . >= 1,000,000
. 500 - 999 50,000 - 99,999 NA
. 1,000 - 4,999 100,000 - 499,999

5,000 - 9,999 . 500,000 - 999,999

2.1.3 Forestry production and hunting

ten-People have utilized forest resources for a lon
time throughout history for their livelihood and various other purposes (Hossain et al., 2008). Up until now, over a billion

people still rely on forest resources for food security and income generation to some extent (FAO, 2018). In the world’s least

155 developed regions, 34 countries depend on fuelwood to provide more than 70% of energy, among which 13 nations require
90% of energy (FAO, 2018).
The contribution of forest production to AgGDP can be classified into two broad types: wood (logging) products and non-

wood forest products. Wood (logging) products are the most exploited commodities in the forestry sector. The trees are eut

160 derivatives;such-as-econstruction-materials-harvested for fuelwood and industrial roundwood, which is processed into a variet
of products including lumber, plywood, furniture, and paper products. Non-wood forest products are defined by the Food and



165

170

175

180

185

190

Agriculture Organization of the United Nations (FAO).* It is estimated that millions of households around the world depend
on non-wood forest products for their livelihood. Some 80% of people in the developing world use these products in their
everyday life (Sorrenti, 2016).

For a complete assessment of forest production priors, this study takes both wood and non-wood products into consideration.
The gridded non-wood forest products dataset used in this study was jointly developed by Resources for the Future and the
World Bank (Siikamaiki et al., 2015) through an approach of meta-regression modeling, which integrates over 100 estimates at
various locations from a literature review and multifold information on ecological and socioeconomic factors. The value of non-
wood forest products is resampled to the S-are-mintte-5-arcminute grid cell size and converted to 2010 USD for consistency
with other AgGDP components. As part of non-timber products, we include hunting with an even distribution across units and
time given the lack of information.

The value of wood products prior per pixel is calculated based on forest loss from year 2010 to year 2011 excluding loss
due to fire, with an assumption that the forests were mainly cut down for timber production. The Moderate Resolution Imaging
Spectroradiometer (MODIS) Land Cover map (Friedl et al., 2010) for year 2011 is overlaid on top of that for year 2010 to
detect the area that has changed from forest to non-forest.> However, forest loss due to fire shoutd-needs to be removed because
it does not result in W%dﬂedue%%(mim)stcmesﬁ Thus, fire information for year 2010 is obtained from the
NASA Fire Information for Resource Management System (FIRMS) (NASA, 2018) and areas that experienced forest fire-fires
are eliminated. After the identification of the forest area change in each pixel, the value of wood production at the national
level is taken from a FAO lead-led project (Lebedys and Li, 2014) and proportionally disaggregated to arrive at a pixel-wise
value of wood products as follows:

forestloss;

Woodval; = (forestval, — nonwoodval,,) eX 4)

where Woodval; is the value of wood products in pixel i; forestval, is the value of forest products reported at the national level;
nonwoodval, is the value of non-wood products at the national level which is derived from Siikamiki et al. (2015); forestloss;
is the area of forest loss excluding loss to fire in pixel i; again, X is a set including all pixels that fall within the boundary of a
nation.

In our analysis of the forestry sector GDP, we have utilized the estimates provided by Lebedys and Li (2014) as the best

available source. However, it should be noted that these estimates primarily capture activities within the formal forestry sector
and do not take into account the value-added generated by informal activities such as wood fuel production and non-wood

forest products. To account for non-timber forest products, we have utilized the estimates provided by Siikamiki et al. (2015

. Despite these efforts, it is acknowledged that the current analysis may still underestimate the forestry sector GDP due to the

“4These products are “goods of biological origin other than wood derived from forests, other wooded land and trees outside forests”, including foods (nuts,

fruits, mushrooms, etc.), food additives (herbs, spices, sweeteners, etc.), fibers (for construction, furniture, clothing, etc.), and plant and animal products with

chemical, medical, cosmetic or cultural value.
5The measurement is limited to detection of land cover change from sateHite satellites and witHikety-might not fully account for selective harvesting or

forest degradation. And the area of forest is considered homogeneous of equal production value. Also, it could result in upward bias when trees are cut down

for plantation replanting and not used in further processing of timber production.
6Still, sometimes wood harvests may occur after forest fires, and therefore the elimination could underestimate the area harvested for wood products.



lack of reliable data on fuel wood production, which could account for half of global wood harvests (Ghazoul and Evans, 2004
. This is a common issue as fuel wood values are often not properly captured in official statistics, as they are often collected
for subsistence or sold in remote rural areas in many countries (Lebedys and Li, 2014). In future research, we intend to make

efforts to acquire more reliable data on fuel wood production to improve the accuracy of our estimates of the forestry sector
195 GDP._

A map of global gridded wood forest production value as a prior is shown in Figure 3.

Figure 3. Fhis-map-tHustrates-the- The assembled wood forest production value used as a prior in the cross-entropy model. Sources: Friedl
et al. (2010); Siikamaéki et al. (2015); NASA (2018); Authors’ calculation (2022)

Wood forest production value prior (USD ca. 2010)
Low production / NA 50,000 - 99,999 . 500,000 - 999,999
10,000 - 49,999 100,000 - 499,999 . >= 1,000,000

2.1.4 Fishery production

Fish makes up approximately 17% of animal-sourced protein in the human diet worldwide (Mathiesen, A. M., 2018). The

fishery industry supports the livelihood of 12% of world population by creating 200 million jobs along its value chain. In the

200 global trade system, 80 billion USD worth of fish is exported from developing countries and it plays a crucial role in promoting
local economic development (Kelleher et al., 2009).

We estimate both freshwater inland fisheries and marine production values using the FISHSTAT (FAO, 2009) data with

a classification based on the fish production categories. The inland fishery production value is the result of disaggregating

corresponding country level statistics in proportion to areas of inland water bodies in pixels—the 5-arcminute pixel. This is
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a simplified assumption and may cause overestimation in places where there are inland waterbodies, but not much fishe:
activities going on. The distribution of inland water bodies is obtained from the ESA-CCI (Lamarche et al., 2017). Thus, the

value of inland fishing production in each grid is calculated as follows:

waterbody;

fishval; = freshval, Vie X )

Y xwaterbody;’

where fishval; is the value of fishery production in pixel i; freshval, is the value of fresh fish production at the national level
which is aggregated from FISHSTAT; waterbody; is the area of water bodies in pixel i; and X is a set including all pixels i that
fall within the boundary of a nation x.

The value of marine fisheries production is based-en-determined by its proximity to fish landing ports weighted-by-and a
composite indicator ef-equal-weight-frem-that equally weighs the number of visits-and-sum-of-the-vessel-held-ef-vessel visits
and the total holding capacity of the fishing vessels. We use the port database from the World Port Index (National Geospatial-
Intelligence Agency, 2019) and the number of port visits with a vessel hold of fishing vessels from Hosch et al. (2019) to
create a composite variable as the prior based on the sum (for each port) of the number of visits (each event in the database)

and total vessel hold at the port. The geographic coverage of the ports is calculated for each port using the minimum port

distance provided in (Heseh-etal5 2049 —Any-distance—greater-than—150km-is—ealenlated-at+50kmHosch et al. (2019). An

distances greater than 150 km were considered as 150 km in this analysis. The value of marine fishing production in each grid
is calculated as follows:

ortinder;
marineval; = marinevalmp—,z,w eX (6)
Y. xportindex;
where marineval; is the value of fishery production in pixel i; portindex; is an -equally weighted composite index of the

number of visits inr-pixel-and the total vessel hold in pixel i; and X is a set including all pixels i that fall within the boundary of
a nation x.

A map of global gridded fishery production value as a prior is shown in Figure 4.
2.2 AgGDP Statistics and Linked Grids

Tremendous-effort-has-Substantial efforts have been made to collect and organize national and sub-national statistics from

a variety of sources, including national ministries and reports. However, not every
country publishes its agricultural-GDP-AgGDP figures at the sub-national (regional) level and there exist different methods

of regionalization exist-including top-down, bottom-up and mixed methods (Eurostat, 2013).” Our database has 68 countries

that have sub-national agrieultura-GBP-AgGDP data, expressed in varying domestic currencies and for different years. The

"Regional Gross Domestic Product (RGDP) can be estimated following the production, income or expenditure approaches. However, RGDP is not typically
compiled using the expenditure approach due to the scarcity of data such as inter-regional purchases and sales, or regional exports/imports. On the production
and income approaches, the estimate of market activities is typically from the production approach, whereas the estimate of non-market industries is from the

income approach.

10
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Figure 4. This-map-itustrates-the- The assembled fishery production value (prior)-used as a prior in the cross-entropy model. Sources: FAO
(2009); Lamarche et al. (2017); Hosch et al. (2019); National Geospatial-Intelligence Agency (2019); Authors’ calculation (2022)

Fishery production value prior (USD ca. 2010)

Low production / NA 1,000- 4,909 [l >= 10,000
151 - 999 I 5000-92999

typical administrative level is at the state or provincial level. Table B7 lists these countries and descriptive statistics including
the temporal coverage and number-of-subnational-the number of sub-national regions at an administrative geographic level
including the NUTS level.®

To overcome discrepancies in temporal coverage and currency terms (constant and current), and to keep the data consistent
and comparable for countries across the world, shares from sub-national statistics are calculated and then applied to a national
total to derive a calibrated number at the sub-national level. The national totals are obtained from the publicly available World
Development Indicators (WDI) (World Bank, 2019) and averaged over three years around 2010. For a few countries, which do
not report their national agrieuttural-GDP-AgGDP in the WDI database, sums of all agrieulturallGBPP-AgGDP components are
used as proxies.
divisions 1-3 thatincludes agriculture, forestry and fishing. Given the challenges of compiling national accounts data across the
world, limitations include the exclusion of unreported economic activity in the informal or secondary economy. In particular,

8The European Union developed a standard for administrative levels: The Classification of Territorial Units for Statistics (NUTS, for the French nomen-

clature d’unités territoriales statistiques).

11
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agricultural output in developing countries may not be reported due to issues such as, natural losses, self-consumption or not

exchanged for money. Despite best efforts, agricultural production may be estimated indirectly leading to approximations that
are different than the true values, °

The calibrated statistics are then linked to grids through a shapefile of the Global Administrative Unit Layers (GAUL)
that maintains global geographic layers with a consistent and comprehensively unified coding system (FAO, 2015). Then,
we overlay the GAUL administrative boundaries on the grid network to assign the corresponding codes of the administrative
units to each grid. For areas where sub-national AgGDPs have different administrative areas than GAUL, the GAUL areas are

merged or split to match the sub-national AgGDP areaareas.
2.3 Spatial Allocation Model

After constructing all the components, we define a spatial allocation model in a cross-entropy framework following (You et al.,
2014) to allocate administrative statistics to 5ﬂfe-fﬂiﬂﬂf&§:grvcvrgivnvuvt§\pixelslo. National and sub-national AgGDP values are
used as a constraint, while the distribution of crop, livestock, fishery, and forestry production (hunting is included in non-timber

products of forestry) is used to create priors for estimating pixel-level AgGDP. Measurement-In actuality, the priors that we

have constructed do not encompass all elements of AgGDP, and the national and sub-national AgGDP statistics include a
broader range of production values. But the priors account for most variation between pixels, and thus their shares can serve as

appropriate proxies in the AgGDP disaggregation model. Lastly, measurement units are unified using deflators and exchange
rates.!!

The first step is to transform all real-value parameters into corresponding probabilities. Let S; be the share of the total

agrieultural-GDP-AgGDP allocated to pixel i within a country x. AgGDP; , is the agrieulturaGDP-AgGDP allocated to pixel i

in country x and X is a set including all pixels that fall within the boundary of a nation. Therefore:

AgGDPi, .

Let PreAgGDP; be the pre-prior allocation of AgGDP share from our best estimate. The first approximation can be done by

summing all five calculated pixel level components of AgGDP:
PreAgGDP; = Crop; + Livestock; + Forestry; + Fishing; + Hunting; )

where we assume hunting occurs in areas with equal probability.

Theoretically, the sum of these components should be close to the official values obtained from the World Development

Indicators. We-However, it should be noted that due to limitations in available data, we have some components in output
values (crop, livestock, and fishery) whereas others in value added (forestry and hunting). This may result in discrepancies and

°See World Bank WDI for more details on metadata and limitations

10A comprehensive presentation of the cross-entropy method is in Rubinstein and Kroese (2004)
"'The currency varies by source. Crops are in local currency. Livestock are in International USD 2004-2006. Fish are USD 2009. Non-timber forest products

are in USD 2012 and Timber (forest) are in USD 2011.
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inconsistencies. Overall, we make sure that the official AgGDP values are guaranteed to be no less than the sum of all five

~AgGDP,_

components of <

AgGDP, = Yic, PreAgGDP, 9)

Then, we rescale the prior AgGDP to be consistent with the official AgGDP value:

) PreAgGDP;AgGDP,

PriorAgGDP; = 10
rorsg >, PreAgGDP, (10)
Then we calculate the prior for S; as a probability by normalizing PriorAgGDP:

PriorAgGDP;

PreAlloc; = 11
reanoc Yiex PriorAgGDP; an
Finally, we formulate a cross entropy model in the following mathematical optimization framework:

MIN CE(S;) = %;5;log(S;) — X;S;log(PreAlloc;) (12)

Subject to the following three conditions:

38 =1 (13)

Yiek(BAgGDP)S; = SubAgGD Py, Vk) (14)

0<5;<1Vi (15)

where i: i=1,2,3,. .. are pixel identifiers within the allocation unit (e.g. Brazil); and k: k=1,2,3, ... are identifiers for sub-national
geopolitical units (e.g. a state) where AgGDP values (SubAgGDPy) are available. The objective function is defined as the cross
entropy of AgGDP shares and their prierpriors. The first constraint (Equation 13) is the pycnophylactic or volume-preserving
constraint (e.g. Tobler, 1979) that ensures the sum of all allocated AgGDP values is equal to the total AgGDP of the country.
The next equation (14) sets the sum of all allocated AgGDP within those stbratioral-sub-national units with available data
to be equal to the corresponding sub-national AgGDP values. The last equation (15) is a natural constraint for the pereentage
of-AgGDP-share of AgGDP to be between 0 and 1, which is also the probability in the cross-entropy model. The modeling
framework is flexible in that more constraints can be added if more data are available and/or more reasonable assumptions on
how AgGDP should be spatially disaggregated are discovered.'? Last but not least, we multiply the total regional agriculturat
GDBP-AgGDP by the probability in the cross-entropy model to derive the final pixel level agricultural-GBPAgGDP:

12For instance, market access may play a role in determining the spatial distribution or spatial structure of AgGDP and can be included as a constraint in

the model. However, we provide a parsimonious model without market access.
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3 Results, Uncertainty, and DiseussionValidation

3.1 Results

Figure 5 illustrates the result of the cross-entropy model in a global map of gridded agrieultural-GDPAgGDP. The global grid-
ded AgGDP for the year 2010 in 2010 US dollars is in gridded (raster) format at a resolution of 5 are-minutearcminute, which

approximates to 10 km.'® The spatial extent and quantity distribution of AgGDP over the world are in agreement with general

13The coordinate system is the standard WGS84 and saved in GeoTIFF format. For presentation in the paper, the coordinate system of the maps is Eckert

IV and transformed from the geographic coordinates in R software. The data are publicly and freely available through the World Bank Development Data Hub
website at http://www.doi.org/10.57966/0j71-8d56.
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325 knowledge of agricultural technology adoption and suitability, with well-known agricultural nations, such as India, China and
the United States standing out as regions with high-AgGDPrelatively high AsGDP compared with many other areas of the
world. A number of European countries also exhibit high agrieutturalGBDP-AgGDP values, which is likely due to the benefit of
adopting mechanized farming and technological facilitation, considering that the shares of agricultural land and agrarian popu-
lation are relatively low in these well-developed places. Countries in Sub-Saharan Africa remain low in agricultural production,

330 as indicated by low-value pixels sparsely spreading over the continent. Within the continent, agricultural production activities

primarily take place in geographic areas with suitability and access to markets (e.g. land cultivation see Berg et al., 2018).

Figure 5. Fhis-map-iHustrates-the-gtobal-Global gridded AgrieatturalGBP-AgGDP circa 2010 from the Cross-Entropy model in 2010 USD.
Source: Authors’ calculation (2022)

Agricultural GDP (USD ca. 2010)

Low Agricultural GDP / NA 600,000 - 799,999 2,000,000 - 3,999,999
. 200,000 - 399,999 800,000 - 999,999 . 4,000,000 - 5,999,999
400,000 - 599,999 1,000,000 - 1,999,999 . >= 6,000,000

The-correlation-of AgGDP-with-night-We examine the correlation of the AgGDP dataset with two commonly used global

datasets to proxy economic activity: night time lights and population. Night time lights data are commonly used in the
estimation of local human development and economic activity (e.g. Ghosh et al., 2010; Henderson et al., 2012; Bundervoet et al., 2015; Ku

335 . We use the sum of the radiance calibrated data for 2010 from the F16 satellite to quantify the correlation between AgGDP

and nighttime lights by geographic regions of the world defined by the World Bank.'* We use rural population derived

from Center for International Earth Science Information Network - CIESIN - Columbia University (2017) following methods

in Thomas et al. (2019). We use country level data from the World Bank World Development Indicators (World Bank, 2019)

14

Specifically, we use the version 4 roduct  from the FI16  satellite (20100111 - 20101209)  available at:
https://ngdc.noaa.gov/eog/dmsp/download_radcal html
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. We find that the correlation of AgGDP with night light varies across world regionsas-it-requires-areas-to-emit-tight-(, with

Sub-Saharan Africa and the Other Region showing lower correlation values (Table 2). Most World Bank regions have similar
patterns of correlation with night-timenighttime lights across the measures of AgGDP ;-GBP-and population. FTherelationship

S e e e e e e e D e b e b e e D oD e ce e b ] Tkewidse, World Bank

income groups show similar patterns across the measures with lower middle and upper middle income groups having higher

correlations than low and high income groups.
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AgGDP correlations by 1 ) 3) C))

World Bank Regions NTL (adm 0) NTL (adm 2) POP (adm 0) POP (adm 2)
AFR 0.682 0.314 0.934 0.673

EAP 0.956 0.493 0.979 0.739

ECA 0.818 0.546 0.914 0.611

LAC 0.949 0.605 0.947 0.720
MENA 0.798 0.556 0.953 0.638

Other 0.896 0.669 0.909 0.697

SOA 0.929 0.547 0.929 0.716

Table 2. Spearman correlation of AgGDP with night time lights at the Admin 0 level (1) and Admin 2 level (2) as well as rural population at
the Admin 0 level (3) and the Admin 2 level (4), grouped by World Bank Region where AFR is Sub Saharan Africa; EAP is East Asia and
Pacific; ECA is Eastern Europe and Central Asia; LAC is Latin America; MENA is Middle East and North Africa; SOA is South Asia and

Other is the category for the remaining countries. Sources: NOAA (2011); World Bank (2019); Authors’ calculation (2022).

with these commonly used datasets for applications of AgGDP. For night time lights, Li et al. (2020) provide a cautiona
note about rural applications where the presence of agricultural activities typically takes place. A population model assumes
roportional activity to population by strata (e.g. rural), which does not account for the type of rural of agricultural activity, and

the model requires a standard definition of rural, which can pose challenges in global a

. Notably, the rural population dataset also has variation in the geographic level of the input information, which informs the
estimates of population model, and currency across the world, especially when dependent on the frequency of production and

lications (e.g. stylized facts in the urban and develc




availability of a population census. Also, the AgGDP dataset may attenuate modeling concerns of endogeneity when usin
AgGDP along with population or night time lights.

3.2 UsageNotesFitness-for-use and uncertainty

425 We provide descriptive statistics of the data and modeling from a fitness-for-use perspective (e.g. Leyk et al., 2019). The data
are most appropriate for applications at global, continental and regional scales (You and Wood, 2006). Decisions-However,
decisions regarding the use of this-version-over-the data at smaller spatial extents should be earefully-considered-inrelation-to
made with caution and with consideration of the underlying assumptions and characteristics of a-particutararea—Howeveras

the area in question. Users should take into account factors such as area of the grid cell of AgGDP, the number of subdivisions
430 of AgGDP from the political area (e.g. country), and assumptions in the priors (e.g. see shares of priors in Table B8). When

input data contains multiple observations, the AgGDP dataset may still be suitable for use, as it is already standardized in grid
cells, which may facilitate integration with other data. As the spatial refinement of ancillary data advances along with greater

currency, coverage and representativeness, we expect validation possibilities to increase and inform a better understanding of

the uncertainty and the associated fitness-for-use. Also, we intend to improve spatial and temporal coverage when it is feasible.

435 The data-disaggregation-model-fromseurce-to-process of disaggregating the data from the source level to the target level
does impose spatial relationships and is sttbjeet-prone to error (Li et al., 2007) —-and the Modifiable Areal Unit Problem (MAUP)
(Openshaw, 1981). In previous work, our team conducted sensitivity analyses and examined consequences of methodological-data
choices involved in a cross-entropy model to disaggregate crop production statistics (Joglekar et al., 2019). These analyses
included eight scenarios that varied in allocation methods, data grouping, input variables, and different levels of statistics. The

440  analysis indicated that allocation results are most dependent on the degree of disaggregation and quality of the underlying
national and sub-national production statistics. Therefore, we provide more discussion in section 3.2.1 Regional accounts.
Additionally, the results are moderately sensitive to allocation methods. We previously compared three models for the case of
Brazil (Thomas et al., 2019) and found that cross-entropy is the most appropriate method for the global study with relativel
high accuracy and flexible data requirements, when compared with either the spatial regression or rural population methods.

445 Interested readers may find more details in the Brazil paper. Lastly, the results are somewhat sensitive to the grouping and
format of input components that serve as priors, which we discuss in 3.2.2 Components.

3.2.1 Regional accounts

The measurement of GDP is alse-challenging (Angrist et al., 2021), especially agricultural production (Carletto et al., 2015).

The level of uncertainty associated with these results includes the thematic, spatial and temporal accuracies. Belowwe-diseuss
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3.2.2 Regional-aceounts

We-eolteet-We collected regional accounts by sector from various sources into a global database. The data are not balanced
over time nor at the geographic level. The variation in the reference year of the regional accounts data influences the temporal
balance of the database. This mismatch can influence the regional distribution of the agricultural-GBP-AgGDP that may be
different than the target reference year of 2010. Given climate'® and specifically rainfall is important input to crop and livestock
production and may contribute to variation across years (Stanimirova et al., 2019; Zhang et al., 2020), we attempt to reduce
this source of error by averaging over multiple years when data are availablesimitar-, which is a similar approach to You et al.
(2014). However, this does not eliminate this mismatch. The availability of data varies when grouped by World Bank income
(low or lower middle, upper middle and high income). The average absolute temporal difference (ATD) defined as the mean
difference in years between the reference regional accounts and the target year (2010) is higher in the low and lower middle
income group. Likewise, the mean deviation of the share of AgGDP by country over the year(s) is larger in low or lower middle
compared to high income.

The global regional account database includes national and subrattenat-sub-national units at various administrative levels.'®
Following Robinson et al. (2014) in their assessment of Gridded Livestock Of the World (GLW) 2.0, we summarize the
average spatial resolution (ASR) of the input regional data, which is the square root of the land area divided by the number

of administrative units (See Figure 6). We find that on average the ASR deereases-value increases from high to low income

groups —based on World Bank 2010 classifications. Following Yu et al. (2020) we suggest that users can view the ASR ma
as an indicator of uncertainty level since the model is proven most dependent on the ASR of statistics. Larger ASR represents
more sparsity of input statistics and more uncertainty of the gridded results.

3.2.2 Components

Another source of uncertainty is the indirect temporal inaccuracy propagated from the input datasets of the components,
which are modeled. We discuss all five components of agricultural-GDPAgGDP: crop, livestock, forest, fish and hunting.
The SPAM model (You et al., 2014) is a result of several gridded modeled datasets including rural population density from
Global Rural-Urban Mapping Project (GRUMP) Alpha version (Balk et al., 2006). Likewise, the Gridded Livestock of the
World v2.0 includes rural population density in 2006 (GRUMP) along with other predictors such as precipitation (Hijmans
et al., 2005) and a modeled travel time to places with 50,000 inhabitants circa 2000 (Nelson, 2008). {Anderson-et-al526015)-
Anderson et al. (2015) find variation in their examination of global data products of cropping systems models. For livestock,
we transform the 5 major livestock into international values from livestock products (namely, meat, milk, eggs, honey and
wool). The forest (non-wood products, wood-products) components reliesrely on a remote sensing model to estimate forest
loss. With regards to the non-timber values, Hmitation-limitations from the sources present two challenges. The estimates use

simple averages from the literature that accordingly assume a property of uniformity in the value of a hectare of forest as similar

15For a discussion on climate yield factors see Block et al. (2008).
16This also includes cases where administrative units at the same level are merged to match the geography of the regional accounts data.
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Figure 6. The average spatial resolution of the regional accounts data b country.

Sources: World Bank (2019); Authors’ calculation (2022) and various sources see Appendix.
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across the world and the sample of forests with literature drawn for the study is representative of the world (Siikaméki et al.,
485 2015). The fishing model relies on proximity and association with ports or water bodies.!” Finally, since we do not incorporate
any information on hunting, the result is an even distribution across units and time.
Another source of uncertainty is the geographic distribution of the components. Ideally, we would use subnational-sub-national
prices, however it was not feasible;-and—._So_the results do not reflect this occurrence, including-and there is a potential
mis-representation of administrative units with higher-high variation of prices due to the heterogeneity of distinct urban and

490 rural areas.

17The freshwater case does not account for any variation, whereas the marine port locations incorporate variation on vessel holds.
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33 Validation

A true validation of the predictive accuracy of this model involves data collection and construction of agricultural gross regional
product in different pixels and testing those independent observations against the predicted values. The regional production data
are, however, generally constructed at the administrative level rather than the pixels, so validation would have to be done on
an aggregation of model predictions. Few countries provide the required data to assess the prediction accuracy to examine the
internal validation of the disaggregation efficiency and the data collection would be extremely costly and time-consuming. An
evaluation of prediction accuracy requires input data at a local level, which is not available for all countries.

Multiple geographic levels of AgGDP exist
for the case of Brazil where we conducted a pilot study and examined the validity of various methods to disaggregate
AgGDP spatially including: cross-entropy, rural population-based model and spatial regression (see Thomas et al., 2019) .
Administrative divisions of Brazil consist of 558 microgregions, which are further divided into 5,564 municipios. We had
AgGDP data at both microregion and municipio levels. In order to test the methods, we only used statistics for the 558
microregions and allocated them to gridded pixels. Then we aggregated estimated results at the pixel level to 5564 municipios
and compared them with groundtruth data. Results showed that the correlation between the predictions and actual values at
the municipio level was 0.91 for the cross-entropy ' ife-withi
charaeteristies;espeetalty-in-model. Mean Absolute Deviation (MAD) and Root Mean Square Error (RMSE) were 8,249 and

18,347, respectively, while the average of the

values was 28,739 (R$ 1.000). The performance of spatial regression model was slightly better than the cross-entropy model,
but it can hardly generalize to the global work since for many countries we only have one number at the national level and
don’t have enough degree of freedom for the regression model. The naive rural population model had a correlation value of
0.81 between the predictions and actual values at the municipio level, and MAD and RMSE were 28,744 and and 25,397,
respectively. The cross-entropy model was proven to have relatively high accuracy compared to the naive model and better
flexibility to accommodate data scarcity in certain countries, and thus chosen as the model for the global AgGDP dataset.

At the global scale, since we do not have AgGDP statistics at lower administrative levels consistently, we are not able to
validate estimated results by aggregating to different geographic levels like the Brazil case. In addition, due to the volume
preserving pycnophylactic property of the cross-entropy model that utilizes all available data from mixed levels and ensures
that the aggregated values conform to all original values, we do not have extra data for validation. All available data have been
internalized by the model to improve estimation results and thus cannot serve as external validation. Nevertheless, we compare
the results from the global cross-entropy model to that from a rural population-based model at the grid level and examined their
correlation, which is a similar assessment to You et al. (2014) (as mentioned, a spatial regression model at the global scale is
not feasible due to insufficient degrees of freedom). We construct a proportional allocation model using rural population
count following the method in Thomas et al. (2019) for the case of Brazil. We use the 2010 Gridded Population of the World
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530 version 4 from Center for International Earth Science Information Network - CIESIN - Columbia University (2017) adjusted
to the United Nation’s World Population Prospects followed by including the rural area defined by the Global Human Settlement
rid for 2015: namely, “Rural cluster”, “Low Density Rural grid cell”, or “Very low density rural grid cell” (Pesaresi and Freire, 2019)
- We disaggregate national or sub-national AgGDP statistics to grids in proportion to their rural population, with each rural
individual receiving an equal portion of the AgGDP:. Figure 7 shows results of the rural per capita model and the cross-entropy.
535 model together. We can test the similarity of the two global maps. Following Levine et al. (2009), we assume a normal
distribution over the 2 million land pixels and perform a pairwise student t test to test the null hypothesis that both maps
were identical. This test allows us to examine whether the mean difference in the corresponding pixel value from one map
to_another was greater than would be expected by chance alone. The t test statistic tell us that we can not reject the null
hypothesis which provides some evidence of similarity between the two models using all the global pixels. However at a
540  granular spatial level, Figure 8 shows variation in local correlation across the world. We use a Spearman correlation fora 3 x 3
window of pixels with a focus on AgGDP areas with values above 200,000, excluding the Low Agricultural GDP/NA category.
where the measurement of rural population and AgGDP may have discontinuity due to modeling inaccuracies. The lack of
similarity illustrates the difference in the spatial distribution of agricultural production systems that are not directly correlated
with population density within a geographic level. At the granular spatial level, populated places and agricultural land use are

545 different locations to allocate AeGDP. The rural per capita model is dependent on the input geographic level, where average

spatial resolution may vary, as well as on the quality and resolution of ancillary data like built-up area (e.g. Rubinyi et al., 2021

4 Illustration of use: drought risk and water scarcit

.g. Blankespoor et al., 2017; Rentschler et al., 2022), we present an a

3

550 population exposed to a natural hazard. Specifically, we investigate the spatial distribution of population and agricultural
activity with regards to drought and water scarcity. These two indicators provide an illustrative example of different linkages to
agricultural production. Drought highlights the linkages to crops and livestock whereas water scarcity focuses attention on the
distribution of population. The global population estimates for the year 2010 are from WorldPop_and Center for International Earth Science
.I* For a drought index, we calculate the Standardized Precipitation-Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010)

555 , which measures the difference between observed precipitation and estimated potential evapotranspiration with a 3 month
interval using the base climatology of 1980 to 2019, which is implemented in R (Beguerfa and Vicente-Serrano, 2017) using
climate data from Harris et al. (2020). Extra dry years are defined as the number of years that are less than or equal to -2.0
during the period from 2000 to 2009. Figure Al shows the results of the SPEL The Water Crowding Index (WCD) is a
measure of water scarcity considering the local population as the annual water availability per capita (Falkenmark, 1986, 2013)

560 . Veldkamp et al. (2015) models global water crowding index with return periods. We take the mean of any pixels of the
. Arnell, 2003; Alcamo et al., 2007; Kumm

2

ensemble WCI with a 10 year return period within an AgGDP pixel. Following the literature (e.

18They use a Random Forest-based dasymetric redistribution method.
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Figure 7. A panel map of gridded AgGDP circa 2010 from the Cross-Entropy model (top) and from the rural per capita population model
bottow). Source: Authors’ calculation (2022).

Cross-entropy

Agricultural GDP (USD ca. 2010)
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1 400,000 - 599,999 1,000,000 - 1,999,999 ] >= 6,000,000
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Figure 8. Spearman correlation in areas of AgGDP above or equal to 200,000 in the Cross-Entropy and rural per capita models. Source:
Authors’ calculation (2022).
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. we categorize the WCI into four categories: Absolute is less than 500 m*/capita per year; severe is less than or equal to 1000
m’/capita per year; moderate is less than or equal to 1,700 m’/capita per year; and low is the remainder (Figure A2). Then, we
evaluate water shortage events using a threshold of 1.700 m*/capita per year with a return period of 10 years. _

The exposure to drought is not uniform across the world. Across the world, the group of high income countries has less
population and AgGDP exposed to drought in each number of years with extremely dry compared to the countries in other
income categories (Figure 9). Areas that are exposed to at least one extreme drought from 2000 to 2009 account for an estimated
AgGDP of US$432 billion and a population of 1.2 billion. The top ten countries in total AgGDP exposure include the large
economies in the agriculture sector such as China, India, the United States and Russian Federation (Table BI). However, other
countries have a high share of their AgGDP exposed to an extreme drought (Table B2). The top 10 countries in 2010 population
exposed to dry areas include countries with the largest economies in the agriculture sector as noted above, but the list includes
countries such as the Democratic Republic of Congo, Tanzania and Uganda (Table B3).

Across the world, high income countries have less population and AgGDP in areas of absolute or severe categories of the
Water Crowding Index compared to countries in other income categories (Figure 10). The top ten countries of AgGDP exposed
to the Water Crowding Index include large economies in the agriculture sector such as China, India, Pakistan, Indonesia and
Nigeria (Table B4). However, several countries have a high share of their AgGDP exposed to the Water Crowding Index
(Table B5). The top 10 countries in 2010 population exposed to dry areas include countries with the largest economies in the

agriculture sector as noted above, but the list includes countries such as Bangladesh, the Arab Republic of Egypt and Mexico
(Table B6).
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Figure 9. The total exposure of AgGDP [A] and __ population _ [B] aggregated  from _ areas
with at  least  one extreme drought  from 2000  to 2009 measured b a 3 month SPEIL

Sources: WorldPop and Center for International Earth Science Information Network (CIESIN), Columbia University (2018); World Bank (2019); Autho
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580 5 Conclusions

A globally consistent dataset on local estimates of AgGDP could benefit research and policymaking in a wide range of areas

related to nature conservation, economic development, and disaster management. However, such data have been missing. In

this paper, we made the first attempt to create a novel global dataset that disaggregates the national and regional accounts of

the agriculture sector aeross-areas-as-aresult-of-a-model-where-we-use-ancillary-data-including-satelite-data—This-allows—

585

satellite-derived products. The gridded data format provides flexibility when the map is integrated with other data sources.
It can be aggregated to various levels using administrative boundaries or other boundaries of interest, such as natural hazard
590  zones. Since most interventions are geographically targeted, this dataset will provide important information on local variations
in agricultural production and help identify places of policy interest. We illustrate the usage of this dataset through an exposure
analysis of agriculture production to drought risk and water scarcity, and examine uneven natural hazard exposure across the
world on US$ 432 billion of agrieutturalGDP20+0-AgGDP and 1.2 billion people. With increasing frequency and severity.
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Figure 10. Total AgGDP [A] and population [B] by mean Water Crowding Index, where Absolute is less than 500 m°>/capita per year.

severe is less than or equal to 1000 m>/capita per year, moderate is less than or equal to 1700 m>/capita per year and low is the remainder,
Sources: Veldkamp et al. (2015); World Bank (2019); Authors’ calculation (2022).
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of natural hazards such as floods, droughts, and cyclones, socio-economic estimates at the local level play a more and more

important role in informing the preparations of disaster response.
These data are the result of data collection and collaboration across multiple entities to ensure the most current and widest

coverage. However, persistent challenges to data collection remain, including limited geographic levels and temporal tag-at
lags with low frequencies. Also, the reference year and spatial resolution of the local AgGDP estimates are limited to the
contemporaneous availability of the economic statistics and components such as the crop production model. We often have
to consider the fitness-for-use while considering the accuracy; the model has tower-averagespatial-resotution-higher ASR in
areas where we have little data, however these same areas may benefit from the availability of these estimates to inform policy.
Predictions are dependent on the availability and quality of the training data on which the model is based and the modeling
process is flexible to update individual countries as the data are available.

In the near future, we hope to inerease-update this dataset as the currency and number of countries with subnational-data-as

ates ol the regionabaccount datand-models of the components upon which the modelrelies hecome available. sub-national
data increase along with updated data for different agricultural components. We have learned that the main input for our crop
component, SPAM, now includes data for 2017 in Sub-Saharan Africa and is in the process of producing a global crop map for
2020. Additionally, the FAQ livestock distribution maps for our livestock component have been updated to include a greater
variety of animal types for the more recent year of 2015. We also intend to utilize annually updated satellite imagery from
MODIS Land Cover and ESA-CCI in order to calculate more recent data for the forestry and fishery sectors. In future work,
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we will also make the necessary adjustments to include fuel wood production and exclude trees that are cut down for plantation
replanting and not used for further timber production in the calculation of forestry sector GDP.

Data availability. These data are available at the World Bank’s Development Data Hub under http://www.doi.org/10.57966/0j71-8d56 (IF-
PRI and World Bank, 2022).
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615 Appendix A: Figures

Figure Al. The number of years with at least one extreme drought from 2000 to 2009 measured by a 3 month SPEI. Sources:

Harris et al. (2020); Begueria and Vicente-Serrano (2017); Authors’ calculation (2022)
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Figure A2. Water Scarcity Index categories with a return period of 10 years. Sources: Veldkamp et al. (2015); Authors’ calculation (2022

Mean Water Crowding Index
10 years return period
(m3 per capita / year)

. Absolute . Severe Moderate . Low
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Appendix B: Tables

Table B1. Top 10 countries of largest total Agricultural GDP (millions of USD) exposed to dry areas with share of Agricultural GDP and

Population (thousands)

Rank  Country Ag GDP  Share of Ag GDP  Pop (2010)
1 China 146,000 0.26 323,000
2 India 60,600 0.22 255,000
3 United States 21,800 0.14 69,100
4 Russian Federation 14,300 0.26 27,100
5 Iran, Islamic Rep. 13,400 0.44 40,600
6  Brazil 12,600 0.14 9,230
6 Pakistan 12,600 0.28 42,600
7  Australia 10,900 0.44 6,130
8 Ttaly 6,560 0.17 7,120
9 Canada 5,540 0.25 5,000
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Table B2. Top 10 countries of largest share of Agricultural GDP exposed to dry areas with Agricultural GDP (millions of USD) and

Population (thousands)

Rank  Country Share of Ag GDP Ag GDP  Pop (2010)
1 Rwanda 1.00 1670 9850
1 Saint Vincent and the Grenadines 1.00 11.6 29.9
1 Micronesia, Federated States of 1.00 <1 <1
2 Burundi 0.97 732 8320
3 Brunei Darussalam 0.91 99.3 92.8
4 West Bank and Gaza 0.85 543 2770
5 Gambia, The 0.81 170 1420
6  Finland 0.79 4400 3950
7 Belize 0.79 126 208
8 Jordan 0.73 733 5400
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Table B3. Top 10 countries of 2010 population (thousands) exposed to dry areas with Agricultural GDP (millions of USD) and share of
Agricultural GDP

Rank  Country Pop (2010) Ag GDP  Share of Ag GDP
1 China 323,000 146,000 0.26
2 India 255,000 60,600 0.22
3 United States 69,100 21,800 0.14
4 Congo, Dem. Rep. 45,100 2,780 0.59
5 Pakistan 42,600 12,600 0.28
6 Iran, Islamic Rep. 40,600 13,400 0.44
7  Russian Federation 27,100 14,300 0.26
8  Tanzania 23,200 4,140 0.55
9 Uganda 18,700 2,990 0.66

10 Thailand 17,400 4,930 0.15
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Table B4. Top 10 countries of largest total Agricultural GDP exposed to WCI areas with Agricultural GDP (million of USD) and Population

(thousands)

Rank  Country Ag GDP  Share of Ag GDP  Pop (2010)
1  China 436,000 0.802 990,000

2 India 243,000 0.925 1,000,000

3 Pakistan 44,200 0.999 170,000

4 Nigeria 38,300 0.465 78,000

5 Indonesia 38,200 0.479 120,000

6 United States of America 37,800 0.247 65,000

7  Turkey 37,600 0.625 43,000

8 Italy 30,400 0.854 42,000

9  Iran, Islamic Republic of 28,100 0.943 70,000

10 Egypt, Arab Republic of 24,400 0.947 70,000
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Table BS. Top 10 countries of largest share of Agricultural GDP in country exposed to WCI areas with Agricultural GDP (million of USD)

and Population (thousands)

Rank  Country Ag GDP  Share of Ag GDP  Pop (2010)
1 United Arab Emirates 1,310 1.000 3,900
1 Cyprus 346 1.000 610
1 Djibouti 28 1.000 380
1  Dominican Republic 2,740 1.000 6,300
1 Gambia, The 147 1.000 680
1 Haiti 1,070 1.000 5,900
1 Israel 3,270 1.000 5,600
1 Jamaica 523 1.000 1,400
1 Jordan 996 1.000 5,800
1 Korea, Republic of 14,600 1.000 31,000

18 Additional countries exposed to WCI area with the 1.00 share of Ag GDP include: West Bank and Gaza; Cyprus; Kuwait; Gambia, The; Qatar; Hong
Kong (SAR, China)
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Table B6. Top 10 countries of 2010 population exposed to WCI areas with Agricultural GDP (million of USD) and Population (thousands)

Rank  Country Pop (2010) AgGDP  Share of Ag GDP
1 India 1,000,000 243,000 0.925
2 China 990,000 436,000 0.802
3 Pakistan 170,000 44,200 0.999
4 Indonesia 120,000 38,200 0.479
5 Bangladesh 110,000 13,900 0.909
6  Nigeria 78,000 38,300 0.465
7  Egypt, Arab Republic of 70,000 24,400 0.947
7  Iran, Islamic Republic of 70,000 28,100 0.943
8  United States of America 65,000 37,800 0.247
9  Mexico 64,000 14,100 0.462
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Table B7. Regional account descriptive statistics

Country First Last Number of Source
Year  Year regions
Albania 2012 2014 12 EUROSTAT
Argentina 2004 2004 24 Instituto Nacional de Estadistica y Censos
Australia 2009 2011 8 Australian Bureau of Statistics
Austria 2012 2014 9 EUROSTAT
Belarus 2011 2013 8 BELSTAT
Belgium 2012 2014 3 EUROSTAT
Bolivia 2009 2011 9 Instituto Nacional de Estadistica
Brazil 2010 2012 31 Instituto Brasileiro de Geografia e Estatistica
Bulgaria 2012 2014 2 EUROSTAT
Canada 2009 2011 13 Statistics Canada
Chile 2013 2015 13 Banco Central De Chile
China 2009 2011 32 National Bureau of Statistics China
Colombia 2009 2011 32 Departamento Administrativo Nacional de Estadistica
Croatia 2012 2014 3 EUROSTAT
Czech Republic 2012 2014 7 EUROSTAT
Denmark 2012 2014 5 EUROSTAT
Ecuador 2006 2006 23 Banco Central De Ecuador
Estonia 2012 2014 5 EUROSTAT
Finland 2012 2014 2 EUROSTAT
France 2012 2014 22 EUROSTAT
Georgia 2009 2011 9 National Statistics Office of Georgia
Germany 2012 2014 16 EUROSTAT
Greece 2012 2014 13 EUROSTAT
Hungary 2012 2014 3 EUROSTAT
India 2011 2013 32 Central Statistics Office
Indonesia 2009 2011 31 INDO-DAPOER
Iran, Islamic Rep. 2014 2014 28 Iran Statistical Yearbook 1389
Ireland 2012 2014 2 EUROSTAT
Italy 2012 2014 20 EUROSTAT
Japan 2009 2011 47 Cabinet Office Government of Japan
Kazakhstan 2010 2012 15 Agency of Statistics of the Republic of Kazakhstan
Kenya 2017 2017 48 Kenya National Bureau of Statistics and World Bank
Korea, Rep. 2009 2011 15 Korean Statistical Information Services
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Table B7. Continued.

Country First Last Numberof Source
Year  Year regions
Latvia 2012 2014 6 EUROSTAT
Lithuania 2012 2014 10 EUROSTAT
Malaysia 2010 2012 16 Department of Statistics Malaysia
Mali 2009 2009 9 Cellule d’ Analyse et de Prospective
Malta 2012 2014 2 EUROSTAT
Mexico 2009 2011 32 Instituto Nacional de Estadistica y Geografia
Mongolia 2015 2017 23 Mongolian Statistical Information Service
Morocco 2005 2007 7 Ministry of Finance
Nepal 2019 2019 7 Central Bureau of Statistics Nepal
Netherlands 2012 2014 12 EUROSTAT
New Zealand 2009 2011 14 Statistics New Zealand
North Macedonia 2012 2014 8 EUROSTAT
Norway 2012 2014 19 EUROSTAT
Panama 2009 2011 9 Instituto Nacional de Estadistica y Censo
Peru 2009 2011 25 Instituto Nacional de Estadistica e informatica
Philippines 2009 2011 17 Philippine Statistics Authority
Poland 2012 2014 15 EUROSTAT
Romania 2012 2014 4 EUROSTAT
Russian Federation 2009 2011 82 Mordoviastat: Federal Service of State Statistics
Slovak Republic 2012 2014 4 EUROSTAT
Slovenia 2012 2014 2 EUROSTAT
South Africa 2009 2011 9 Statistics South Africa
Spain 2012 2014 19 EUROSTAT
Sri Lanka 2009 2011 9 Economic and Social Statistics of Sri Lanka
Sweden 2012 2014 3 EUROSTAT
Switzerland 2009 2011 25 Federal Statistical Office of Switzerland
Thailand 2009 2011 76 Office of the National Economic and Social Development Board
Tiirkiye 2009 2011 81 Turkish Statistical Institute
Ukraine 2010 2012 25 State Statistics Service of Ukraine
United Kingdom 2012 2014 4 EUROSTAT
United States 2009 2011 51 Bureau of Economic Analysis
Uruguay 2008 2008 19 Instituto Nacional de Estadistica
Vietnam 2009 2011 64 General Statistics Office of Viet Nam
Zambia 2015 2015 9 Central Statistics Office of Zambia
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Table B8. Share of priors in territory

Country or political area Crop Livestock Timber Non Timber  Fish
Afghanistan 0.785 0.210 0.004 0.001 0.000
Albania 0.442 0.507 0.001 0.045 0.004
Algeria 0.638 0.344 0.012 0.000 0.006
Andorra 0.002 0.241 0.671 0.085 0.001
Angola 0.976 0.012 0.003 0.002 0.007
Antigua and Barbuda 0.461 0.539 0.000 0.000 0.000
Argentina 0.577 0.364 0.037 0.010 0.012
Armenia 0.538 0.455 0.000 0.003 0.004
Australia 0.422 0.391 0.164 0.001 0.022
Austria 0.225 0.315 0.449 0.010 0.001
Azerbaijan 0.644 0.354 0.001 0.001 0.000
Bahamas, The 0.568 0.350 0.069 0.014 0.000
Bahrain 0.100 0.092 0.020 0.000 0.788
Bangladesh 0.692 0.088 0.057 0.001 0.162
Barbados 0.341 0.280 0.379 0.000 0.000
Belarus 0.527 0.439 0.018 0.014 0.002
Belgium 0.324 0.455 0.202 0.006 0.013
Belize 0.433 0.185 0.018 0.357 0.007
Benin 0.941 0.010 0.031 0.001 0.016
Bermuda (UK) 0.505 0.000 0.495 0.000 0.000
Bhutan 0.584 0.190 0.187 0.036 0.003
Bolivia 0.487 0.316 0.002 0.187 0.009
Bosnia and Herzegovina 0.545 0.293 0.012 0.138 0.012
Botswana 0.209 0.402 0.388 0.001 0.000
Brazil 0.514 0.372 0.077 0.029 0.008
British Virgin Islands (UK)  0.237 0.763 0.000 0.000 0.000
Brunei Darussalam 0.524 0.362 0.092 0.001 0.021
Bulgaria 0.608 0.293 0.034 0.058 0.007
Burkina Faso 0.623 0.266 0.098 0.000 0.013
Burundi 0.852 0.095 0.019 0.008 0.026
Cabo Verde 0.957 0.000 0.043 0.000 0.000
Cambodia 0.716 0.119 0.045 0.007 0.114
Cameroon 0.788 0.116 0.068 0.004 0.023
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Table B8. Continued.

Country or political area ~ Crop  Livestock Timber Non Timber  Fish
Canada 0.359 0.264 0.337 0.014 0.026
Cayman Islands (UK) 0.646 0.354 0.000 0.000 0.000
Central African Republic ~ 0.577 0.339 0.024 0.057 0.003
Chad 0.549 0.436 0.013 0.002 0.000
Chile 0.258 0.142 0.233 0.014 0.354
China 0.565 0.276 0.093 0.001 0.065
Colombia 0.507 0.368 0.001 0.101 0.023
Comoros 0.000 0.207 0.720 0.073 0.000
Congo, Dem. Rep. 0.707 0.051 0.004 0.084 0.154
Congo, Rep. of 0.732 0.181 0.056 0.001 0.030
Costa Rica 0.747 0.155 0.030 0.054 0.014
Cote d’Ivoire 0.867 0.086 0.045 0.000 0.002
Croatia 0.484 0.283 0.194 0.031 0.008
Cuba 0.896 0.056 0.000 0.046 0.002
Cyprus 0.344 0.539 0.096 0.000 0.020
Czech Republic 0.277 0.323 0.367 0.026 0.007
Denmark 0.126 0.306 0.061 0.002 0.506
Djibouti 0.199 0.801 0.000 0.000 0.000
Dominica 0.701 0.106 0.000 0.193 0.000
Dominican Republic 0.607 0.282 0.000 0.105 0.006
Ecuador 0.423 0.292 0.076 0.070 0.139
Egypt, Arab Rep. 0.567 0.367 0.011 0.000 0.055
El Salvador 0.892 0.075 0.008 0.024 0.002
Equatorial Guinea 0.544 0.109 0.320 0.006 0.021
Eritrea 0.363 0.636 0.001 0.000 0.000
Estonia 0.226 0.339 0.375 0.031 0.028
Ethiopia 0.604 0.331 0.060 0.002 0.003
Fiji 0.458 0.335 0.153 0.040 0.014
Finland 0.090 0.175 0.692 0.009 0.033
France 0.476 0.350 0.157 0.005 0.012
Gabon 0.348 0.082 0.508 0.001 0.061
Gambia, The 0.605 0.374 0.019 0.000 0.001
Georgia 0.441 0.509 0.030 0.019 0.001
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Table B8. Continued.

Country or political area Crop Livestock Timber Non Timber  Fish
Germany 0.254 0417 0.307 0.016 0.006
Ghana 0.829 0.054 0.094 0.000 0.023
Gibraltar (UK) 0.011 0.013 0.004 0.000 0.972
Greece 0.711 0.216 0.046 0.007 0.020
Grenada 0.723 0.247 0.030 0.000 0.000
Guatemala 0.642 0.108 0.002 0.245 0.003
Guinea 0.747 0.141 0.079 0.023 0.011
Guinea-Bissau 0.559 0.414 0.024 0.002 0.001
Guyana 0.696 0.031 0.007 0.257 0.009
Haiti 0.794 0.123 0.000 0.082 0.000
Honduras 0.491 0.205 0.002 0.293 0.010
Hong Kong (SAR, China) 0.000 0.280 0.674 0.000 0.046
Hungary 0.537 0.335 0.111 0.010 0.006
Iceland 0.006 0.068 0.009 0.000 0.916
India 0.683 0.219 0.073 0.001 0.024
Indonesia 0.658 0.158 0.109 0.003 0.073
Iran, Islamic Rep. 0.605 0.364 0.021 0.000 0.011
Iraq 0.564 0411 0.003 0.000 0.023
Ireland 0.091 0.787 0.093 0.000 0.028
Israel 0.523 0.395 0.074 0.000 0.009
Italy 0.463 0.310 0.207 0.006 0.014
Jamaica 0.866 0.059 0.000 0.066 0.008
Japan 0.430 0.244 0.259 0.001 0.065
Jordan 0.434 0.485 0.075 0.000 0.005
Kazakhstan 0.500 0.485 0.012 0.000 0.003
Kenya 0.555 0.380 0.031 0.001 0.033
Kiribati 0.000 0.034 0.000 0.000 0.966
Korea, Democratic People’s Republic of  0.635 0.174 0.036 0.143 0.012
Korea, Rep. 0.500 0.241 0.156 0.001 0.102
Kosovo 0.631 0.315 0.024 0.029 0.002
Kuwait 0.263 0.426 0.291 0.000 0.020
Kyrgyz Republic 0.467 0.529 0.002 0.001 0.000
Lao People’s Democratic Republic 0.735 0.164 0.046 0.017 0.038
Latvia 0.228 0.215 0.497 0.035 0.024
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Table B8. Continued.

Country or political area Crop Livestock Timber Non Timber  Fish
Lebanon 0.667 0.257 0.072 0.000 0.003
Lesotho 0.303 0.597 0.092 0.007 0.001
Liberia 0.663 0.086 0.203 0.043 0.005
Libya 0.579 0.278 0.026 0.000 0.118
Liechtenstein 0.013 0.318 0.631 0.038 0.000
Lithuania 0.385 0.353 0.202 0.033 0.027
Luxembourg 0.161 0.493 0.338 0.008 0.000
Macedonia, FYR 0.681 0.255 0.002 0.061 0.001
Madagascar 0.498 0.431 0.055 0.005 0.011
Malawi 0.877 0.080 0.005 0.003 0.036
Malaysia 0.672 0.143 0.162 0.001 0.023
Maldives 0.982 0.018 0.000 0.000 0.000
Mali 0.440 0.452 0.059 0.000 0.049
Malta 0.374 0.482 0.069 0.000 0.075
Mauritania 0.226 0.771 0.003 0.000 0.001
Mauritius 0.858 0.000 0.077 0.000 0.065
Mexico 0.433 0.404 0.057 0.072 0.034
Micronesia, Federated States of  0.962 0.038 0.000 0.000 0.000
Moldova 0.630 0.319 0.001 0.045 0.005
Monaco 0.024 0.024 0.903 0.046 0.003
Mongolia 0.230 0.739 0.027 0.001 0.003
Montenegro 0.566 0.249 0.001 0.179 0.004
Montserrat (UK) 0.247 0.753 0.000 0.000 0.000
Morocco 0.615 0.351 0.022 0.000 0.012
Mozambique 0.645 0.279 0.048 0.022 0.005
Myanmar 0.805 0.108 0.016 0.010 0.061
Namibia 0.374 0.511 0.020 0.000 0.095
Nepal 0.733 0.232 0.004 0.020 0.011
Netherlands 0.257 0.547 0.147 0.004 0.045
New Caledonia (Fr.) 0.208 0.429 0.267 0.095 0.000
New Zealand 0.124 0.671 0.157 0.000 0.048
Nicaragua 0.526 0.275 0.001 0.194 0.003
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Table B8. Continued.

Country or political area Crop Livestock Timber Non Timber  Fish
Niger 0.657 0.306 0.025 0.000 0.012
Nigeria 0.865 0.094 0.015 0.001 0.026
Norway 0.087 0.292 0.229 0.008 0.383
Oman 0.575 0.290 0.135 0.000 0.000
Pakistan 0.477 0.485 0.027 0.000 0.011
Panama 0.211 0414 0.001 0.047 0.327
Papua New Guinea 0.443 0.158 0.042 0.033 0.325
Paraguay 0.602 0.313 0.010 0.074 0.001
Peru 0.369 0.253 0.029 0.037 0.312
Philippines 0.492 0.230 0.009 0.003 0.266
Poland 0.368 0.406 0.190 0.027 0.008
Portugal 0.392 0.273 0.280 0.012 0.042
Puerto Rico (US) 0.324 0.542 0.050 0.084 0.000
Qatar 0.229 0.445 0.326 0.000 0.000
Romania 0.540 0.329 0.113 0.017 0.001
Russian Federation 0.378 0.394 0.086 0.019 0.122
Rwanda 0.894 0.069 0.029 0.003 0.004
Saint Kitts and Nevis 0.703 0.297 0.000 0.000 0.000
Saint Lucia 0.552 0.255 0.000 0.193 0.000
Saint Vincent and the Grenadines  0.642 0.239 0.000 0.119 0.000
San Marino 0.776 0.185 0.036 0.003 0.000
Sao Tomé and Principe 0.935 0.065 0.000 0.000 0.000
Saudi Arabia 0.548 0.406 0.039 0.000 0.007
Senegal 0.756 0.084 0.085 0.000 0.074
Serbia 0.649 0.291 0.015 0.040 0.005
Seychelles 0.922 0.078 0.000 0.000 0.000
Sierra Leone 0.785 0.042 0.137 0.007 0.030
Singapore 0.072 0.145 0.607 0.000 0.176
Slovak Republic 0.289 0.228 0.453 0.029 0.001
Slovenia 0.230 0.346 0.390 0.030 0.004
Solomon Islands 0.586 0.018 0.285 0.112 0.000
Somalia 0.113 0.872 0.008 0.007 0.000
South Africa 0.417 0.375 0.152 0.000 0.057
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Table B8. Continued.

Country or political area Crop Livestock Timber Non Timber  Fish
South Sudan 0.873 0.112 0.007 0.000 0.008
Spain 0.531 0.247 0.152 0.006 0.064
Sri Lanka 0.758 0.100 0.071 0.020 0.052
Sudan 0.419 0.562 0.000 0.000 0.019
Suriname 0.534 0.255 0.072 0.115 0.023
Swaziland 0.618 0.115 0.265 0.002 0.001
Sweden 0.094 0.150 0.740 0.014 0.002
Switzerland 0.182 0.401 0.410 0.007 0.000
Syrian Arab Republic 0.594 0.374 0.020 0.001 0.012
Tajikistan 0.791 0.206 0.002 0.000 0.001
Tanzania 0.798 0.038 0.051 0.006 0.106
Thailand 0.744 0.165 0.062 0.001 0.028
Timor-Leste 0.661 0.237 0.006 0.006 0.089
Togo 0.657 0.310 0.021 0.004 0.008
Tonga 0.588 0.000 0.412 0.000 0.000
Trinidad and Tobago 0.306 0.550 0.073 0.070 0.000
Tunisia 0.572 0.336 0.059 0.000 0.033
Tiirkiye 0.656 0.284 0.053 0.001 0.007
Turkmenistan 0.451 0.547 0.000 0.000 0.001
Uganda 0.637 0.090 0.086 0.002 0.185
Ukraine 0.671 0.287 0.005 0.032 0.005
United Arab Emirates 0.504 0.298 0.197 0.000 0.000
United Kingdom 0.285 0.437 0.235 0.004 0.040
United States 0.454 0.302 0.207 0.014 0.023
United States 0.954 0.036 0.000 0.000 0.010
Uruguay 0.239 0.295 0.076 0.003 0.388
Uzbekistan 0.758 0.240 0.001 0.000 0.001
Vanuatu 0912 0.035 0.020 0.032 0.000
Vatican City 0.366 0.234 0.000 0.397 0.003
Venezuela, Republica Bolivariana de  0.569 0.364 0.015 0.028 0.025
Vietnam 0.599 0.259 0.044 0.003 0.095
West Bank and Gaza 0.231 0.752 0.015 0.000 0.002
Yemen, Rep. 0.516 0.472 0.012 0.000 0.000
Zambia 0.517 0.169 0.233 0.006 0.075
Zimbabwe 0.517 0.351 0.105 0.013 0.013
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