
Response to Reviewer #1 

We appreciate a lot for your efforts in providing detailed comments and 

recommendation. They are very helpful to improve the quality of the manuscript. We 

have revised the manuscript according to your comments. The comments from the 

reviewers are kept in regular font, our responses use blue highlighting, and the revised 

sentences or words in the revised manuscript are highlighted with red color. 

 

This manuscript proposes a long-term (1981-2005) AVHRR land surface temperature 

(LST) dataset that includes outcomes at both daytime and nighttime. The algorithm is 

the generalized split-window (GSW) algorithm while in the production, this dataset also 

considered annual land cover change. Overall, the accuracy of the proposed dataset is 

promising, and it filled the gaps regarding long-term global LST datasets, especially at 

nighttime. Therefore, I would recommend it be published on ESSD after a major 

revision. 

Q1. Positive bias issue. Based on site validation and inter-comparison with MYD11 and 

the other two AVHRR LST products, the proposed GT-LST shows a clear positive bias 

(>1 K) nearly in all results. The authors claim the bias is due to the emissivity difference 

(Line 370), however, the proposed GT-LST has a clear bias than the other three products, 

and it seems that the emissivity used by GT-LST is not accurate. The authors mention 

that the dataset will be calibrated to remove the bias in the future (Line 436). I am 

thinking if it would be better to solve this issue in this paper as it doesn’t need to be 

done in a separate paper. 

Response: Thanks a lot for your valuable comments. First, we would like to make some 

explanations on the positive bias issue as follows: 

(1) The GT-LST product and the global daytime AVHRR LST (GD-LST) used a 

dynamic emissivity method to retrieve LST. We compared GT-LST with GD-LST on 

January 15, April 15, July 15, and October 16, 1999, with low positive bias of 0.6 K 

(Figure R1).  

(2) The MYD11A1 LST product and the regional twice-daily LST product over 



Africa (RT-LST) are generated by the spilt-window (SW) algorithm. Land surface 

emissivities of these two products are assigned according to classification-based 

method that produces emissivities with fixed values for a limited number of land cover 

types. This method works well over densely vegetated areas and water where 

emissivities are relatively stable. However, cold biases of 3-5 K are often found over 

semi-arid and arid regions because these regions have much higher emissivity 

variability, and only one fixed overestimated emissivity inferred from land cover types 

is assigned to these regions (Coll et al., 2009; Hulley and Hook 2009; Wan et al., 2002). 

In order to represent the natural variation in emissivity, we used an improved NDVI 

threshold method to dynamically retrieve daily emissivity. Based on the analysis above, 

emissivity derived from dynamic methods is lower than emissivity according to 

classification-based method, which makes the proposed GT-LST is higher than 

MYD11A1 LST and RT-LST (i.e., positive bias). We note that earlier researches on this 

issue had similar results. Reiners et al. (2022) compared AVHRR LST product of the 

TIMELINE project with MYD11_L2 LST product from 2003 to 2014, the result shows 

that the TIMELINE dynamic emissivity is lower than the MYD11_L2 fixed emissivity 

and a general positive bias (i.e., bias=2.2 K) of TIMELINE LST towards MYD11_L2 

LST. Martins et al. (2019) compared MSG LST and GOES-16 LST and revealed that a 

positive bias (MSG > GOES) of around 1.6 K persists due to the overestimation of the 

fixed emissivity of GOES. Mao et al. (2007) analyzed the retrieval result by radiative 

transfer model with neural network algorithm and MODIS product algorithm, 

indicating that MOD11_L2 LST product overestimates the emissivity, resulting in an 

underestimation of LST. 

(3) To further illustrate the positive bias issue, we present an intercomparison 

exercise between MxD11A1 LST products (Terra and Aqua/MODIS using SW 

algorithm, Collection 6) with fixed emissivity and MSG LST products (MSG/SEVIRI 

using SW algorithm) with dynamic emissivity for 4 days (January 15, April, 15, July 

15, and October 15, 2020). The criteria in Sec 3.2 were used to guarantee the reliability 

of the intercomparison results. The result is shown in Figure R2, indicating that a 

general positive bias (daytime ranges from 0.7 K to 3.3 K, nighttime ranges from 0.2 K 



to 1.4 K) of MSG LST towards MxD11A1 LST for each land cover types. 

(4) The comparison with in situ LST showed that a positive bias was found for all 

SURFRAD sites. However, only the bias of BND and FPK are large than 1 K. Similar 

results were obtained by Reiners et al. (2022) and Liu et al. (2019). 

Therefore, we think that positive biases obtained for GT-LST and other LST 

products are relatively reasonable. 

Next, many LST products can provide global twice-daily LST after 2000, such as 

ASTER LST, MODIS LST, VIIRS LST, AATSR LST and SLSTR LST. Users can 

obtain a relatively long-term twice-daily LST product by combining GT-LST with these 

LST products. However, integration of LST from different sensors is complicated. Due 

to the different LST inversion methods, air conditions, viewing geometries, etc., the 

sensors bias between GT-LST and other LST products is not constant. Therefore, 

developing a general method to utilize for sensor normalization is difficult and is not 

the key point of this paper. 

 
Figure R1. GT-LST versus GD-LST during the daytime on January 15, April, 15, July 

15, and October 16, 1999.  





 
Figure R2. The bias (SEVIRI LST minus MxD11A1 LST) and RMSD between the MxD11A1 product and SEVIRI during daytime (a) and 

nighttime (b) over various land cover types. 

  



 

Q2. Large RMSE (4.1 K) of the monthly mean LST result. The GT-LST is claimed to 

have the strength to generate gap-free monthly mean LST; however, the outcome has 

an RMSE of 4.1 K which is too large at a monthly scale compared to other studies (Line 

395). This part weakened the statement of the advantage of GT-LST for temporal 

upscaling based on the logic chain. I would suggest either removing this part or 

quantifying the impact of orbit drift, in other words, comparing the accuracies of 

samples that have not and have suffered from orbit drift, and then claiming the potential 

of this data after orbit drift. 

Response: Thanks for your suggestion. We used simple linear combinations of monthly 

mean daytime and nighttime LST values to estimate MMLST. The detailed revisions 

are listed as follows. 

 “…To estimate MMLST, first obtain the mean instantaneous clear-sky LST at 

daytime and nighttime, and then use these mean values to estimate MMLST according 

to the simple linear regression method (see Appendix B). In order to validate the 

accuracy of MMLST results, we compared MMLST based on GT-LST with that of in situ 

LST observations from SURFRAD sites for 1994–2005. All in situ LST measurements 

are all-sky and complete on a certain month, which means that the in situ MMLST is 

true MMLST. Fig. 15 showed that MMLST derived from GT-LST are related to the true 

MMLST, with an R2 value of 0.94 and an RMSE value of 2.7 K. This result is similar to 

that of Chen et al. (2017), who compared MMLST from MODIS day and night 

instantaneous clear-sky LST with actual MMLST from 156 flux tower stations, and 

reported RMSE bias values of approximately 2.7 K.” 

We have redrawn Fig. 13 according to the simple linear regression method. For your 

convenience, we listed it below. 



 

 

Figure 13. Monthly mean LST based on GT-LST versus monthly mean LST based on in 

situ LST from 1995 to 2005. 

We have added the following descriptions in Appendix B. 

“Impacting of the NOAA satellite orbital drift, daytime and nighttime observations 

of NOAA afternoon satellites cannot represent maximum and minimum temperatures 

well. Therefore, the MMLST according to the simple average method has a significantly 

lower accuracy than other studies (Figure A3). Xing et al. (2021) proposed to use 9 

combinations of two to four MODIS instantaneous retrievals of which at least one 

daytime LST and one nighttime LST to estimate mean LSTs, and determined the weight 

for every moment. Inspired by the work of Xing et al. (2021), we determined to use 

simple linear combinations of monthly mean daytime and nighttime LST values that 

were observed at observation times for NOAA to estimate MMLST with ground-based 



 

measurement. For the combinations of two valid monthly mean LSTs (one daytime and 

one nighttime LST), the regression models can be written as follows: 

𝑀𝑀𝐿𝑆𝑇 = 𝑎1 ∗ 𝑀𝑀𝐿𝑆𝑇𝑑𝑎𝑦 + 𝑎2 ∗ 𝑀𝑀𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡 + 𝑏      (B1) 

where 𝑀𝑀𝐿𝑆𝑇 is the ground-based monthly mean LST, 𝑎1, 𝑎2 and 𝑏 are the fitting 

coefficients, 𝑀𝑀𝐿𝑆𝑇𝑑𝑎𝑦  is the monthly mean in situ LST at the NOAA daytime 

observation, 𝑀𝑀𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡  is the monthly mean in situ LST at the NOAA nighttime 

observation.  

Taking into account the observed times of NOAA satellites with orbital drift effect since 

1981, combinations of two observations from these satellites contain eight cases: 

13:30–17:00/01:30–05:00 local solar time in 0.5-hour interval. Based on the in situ 

LST measurements during the period 2003 to 2018 at 227 flux stations operating in 

globally diverse regions, we obtained the fitting coefficients (Table A1). Then, we 

calculated the MMLST of GT-LST using GT-LST monthly mean daytime and nighttime 

LSTs, Eq. (B1), and the fitting coefficients listed in Table A1.” 

 

Table A1. Statistics for the relationship between the regressions of the eight 

combinations and actual monthly mean LST. 

Case Time a1 a2 b RMSE R2 Number 

1 13:30/01:30 0.3844 0.5783 10.3446 2.0 0.97 12095 

2 14:00/02:00 0.4010 0.5621 10.2042 1.9 0.98 12241 

3 14:30/02:30 0.4235 0.5451 8.6172 1.9 0.98 12381 

4 15:00/03:00 0.4490 0.5211 8.2652 1.8 0.98 12303 

5 15:30/03:30 0.4816 0.4840 9.5710 1.8 0.98 12165 

6 16:00/04:00 0.5250 0.4349 11.2284 2.0 0.97 11818 

7 16:30/04:30 0.5663 0.3884 12.8572 2.2 0.96 10992 

8 17:00/05:00 0.6040 0.3621 9.7302 2.4 0.96 9765 

 

 

Q3. The impact of annual land cover change. This is an interesting part of the study, 

whereas the study didn’t pay attention to the performance of such change. Traditionally 

people mainly utilized a land cover climatology map rather than annual changes to 

retrieve global LST. I would suggest including additional analysis to find some 



 

examples and compare with LST from Ma et al. (2020) to demonstrate the progress 

using annual land cover maps. 

Response: This is a good suggestion! Changes in land cover have been accelerating 

since 1980 under the impact of climate changes and human activities. As an intrinsic 

property of natural materials, land surface emissivity predominantly depends on the 

land cover type. Therefore, using only one year of land cover data to determine long-

term emissivity is not accurate. The quantitative relationship between annual land cover 

change and LST is rather complex because the changes of Land surface temperature 

were related to many factors, including changes in land cover, land surface parameters, 

seasonal variation, climatic condition and economic development, etc. Furthermore, 

GT-LST and LST from Ma et al. (2020) used different LST retrieval algorithms and 

data sources, which makes it harder to analyze the impact of annual land cover change 

between these two LST products. However, this is a meaningful research topic, and we 

will further analyze the impact in future work. 

 

 

Q4. Some processes were not introduced clearly. 

Q4.1 why does not GT-LST cover 1981 to 2022? GAC raw data is still updating. 

Response: Thanks a lot for your comment. The reasons that GT-LST only cover 1981 

to 2005 are as follows:  

Existing satellite-based global twice-daily LST products can only date back to 2000. 

Therefore, when the study began, we aimed to fill the data gap of global satellite-

derived twice-daily LST before 2000. Considering global meteorology and 

climatology-related applications urgently need more than 30 years of daily LST 

products, GT-LST can be combined with the existing satellite-derived daily LST 

product (e.g., MODIS LST, AATSR LST and ASTER LST) after 2000 to satisfy that 

requirement. However, integration of LST from different sensors need to eliminate or 

limit the bias between the sensors. We then extend the time span of GT-LST to 2005. 

Benefiting from the same observation period with other LST products, these extended 



 

data can be used to calibrate the bias between GT-LST and other LST datasets. In this 

way, users can obtain a relatively homogeneous twice-daily LST product for 1981 to 

2022. However, we will apply your suggestion to extend the time span of GT-LST to 

2022 in the near future.  

 

 

Q4.2 why did the authors only employ the site observations from 1995 to 2000? If you 

can extend it to 2005, you can include one more SURFRAD site. 

Response: Thank you for your suggestion. We have extended the observations of 

SURFRAD sites to 2005 and employed one more SURFRAD site (i.e., SXF) 

observations according to your suggestion. We have redrawn Fig. 4. For your 

convenience, we listed it below. 



 

 

Figure 4. GT-LST versus in situ LST for 1995–2005 at (a) BND, (b) DRA, (c) FPK, (d) 

GWN, (e) PSU, (f) SXF, and (g) TBL sites. 



 

Q4.3 Regarding the site validation, 6 sites seem not enough to represent the accuracy 

of the global product. I would recommend adding some BSRN sites that also have good 

data quality. 

Response: Thanks for your suggestion. Following your comments, we have added 

some BSRN sites to represent the accuracy of the GT-LST product in contrasting 

climatic zones. The following contents have been added in Section 2.5 and Section 4.1, 

respectively. 

“…The BSRN has 76 stations that detect important changes in the Earth's radiation 

field at the Earth's surface since 1992. These stations provide high-quality surface and 

upper-air meteorological observations, which are important in supporting the 

validation and confirmation of satellite. We selected four sites with measurements of 

upwelling and downwelling TIR radiances before 2000 (Table 3).” 

 “…We further compared GT-LST data with in situ LST data at BAR, NYA, PYA, and 

TAT sites for 1995–2005. Fig. 5 shows the scatterplots between GT-LST and in situ LST 

at these four BSRN sites. The accuracy of GT-LST product at BSRN sites is relatively 

worse than that at SURFRAD sites, with RMSE (bias) ranges from 3.1 K (-2.7 K) to 4.0 

K (2.5 K).” 

 

Table 3. Details of the validation sites used in this study. 

 Name Elevation(m) Land cover type Latitude Longitude Valid period 

S
U

R
F

R
A

D
 

BND 230 Croplands 40.0519 -88.3731 1995–2005 

DRA 1007 Open shrublands 36.6237 -116.0195 1998–2005 

FPK 634 Grasslands 48.3078 -105.1017 1994–2005 

GWN 98 Cropland/natural vegetation mosaic 34.2547 -89.8729 1994–2005 

PSU 376 Cropland/natural vegetation mosaic 40.7201 -77.9309 1998–2005 

TBL 1689 Grasslands 40.1250 -105.2368 1995–2005 

SXF 473 Croplands 43.7343 -96.6233 2003–2005 

B
S

R
N

 

BAR 8 Tundra 71.3230 -156.6070 1995–2005 

NYA 11 Tundra 78.9227 11.9273 1999–2005 

PAY 491 Cultivated 46.8123 6.9422 1995–2005 

TAT 25 Grass 36.0581 140.1258 1996–2005 

 



 

 

Figure 5. Scatterplots between GT-LST and in situ LST at (a) BAR, (b) NYA, (c) PYA, 

and (d) TAT. 

 

 

Q4.4 why Fig 9(b) has some considerable scattered samples? Those cases should be 

discussed in the context. 

Response: Thanks for your comment. We have added some discussion in Section 4.2 

for the revised manuscript as follows: 

“…However, as can be seen in Fig.10(b), large LST differences (GT-LST - 

MYD11A1 LST) more than 20 K are mostly distributed in red box. Through counting, 

there are 111 samples in red box, which are barren land cover type and arid climate 



 

type. Fig. A1 shows the distribution of each scattered samples in red box. 77 of 111 

samples happened in Haiya, Sudan on March 31, 2004. The samples of rest happened 

in Taif, Saudi Arabia on April 2, 2004. For these samples, we double-checked all 

variables that are essential parameters in GT-LST retrieval. The result show that all 

scope variables are reasonable except BT of TIR bands. Abnormal high BTs at these 

nighttime samples were found on March 31 and April 2, 2004 (Fig. A2), which leaded 

to extreme high LSTs. The possible reasons for abnormal high BTs are as follows: (1) 

These two regions may have experienced extreme events such as wars and natural 

disasters on March 31 or April 2, 2004. But we didn’t find relevant information from 

historical news and documents. (2) Another factor may be instrument failure on these 

two days.”  

 

Figure 6. Inter-comparison of GT-LST and MYD11A1 LST in 2004: (a) daytime; (b) 

nighttime. Red box indicates considerable scattered samples. 

 



 

 

 

Figure A1. Distribution of the 111 scattered samples. 

 

 
Figure A2. An example of abnormal high BTs on (a) March 31, 2004 and (b) April 2, 

2004. 



 

 

 

Q4.5 Line 350: as MODIS has been spatially aggregated to match with GT-LST, why 

spatial heterogeneity is still an issue here? 

Response: Thanks for your comment. We have deleted this erroneous expression. 

 

 

Q4.6 Fig10: I would suggest changing Fig10 to another format: consider RMSE and 

bias as the two dimensions of the plot, and mark each dot by their names as using color 

to show the bias is not easily quantified. 

Response: Thanks for your valuable suggestion. We have redrawn Fig. 11 according to 

your suggestion. For your convenience, we listed it below. 

 

Figure 7. RMSD and bias between GT-LST and MYD11A1 LST in 2003 for various land 

cover types. ENF: evergreen needleleaf forests, EBF: evergreen broadleaf forests, DNF: 

deciduous needleleaf forests, DBF: deciduous broadleaf forests, MXF: mixed forests, 

CSR: closed shrublands, OSR: open shrublands, WDS: woody savannas, SVN: 

savannas, GRS: grasslands, PMW: permanent wetlands, CRP: croplands, UBL: urban 

and built-up lands, CNV: cropland/natural vegetation mosaics, PSI: permanent snow 

and ice, BRN: barren, WTB: water bodies, and ALL: all land cover types. 



 

 

 

Q4.7 Line 357: why do savannas and cropland show considerable bias? 

Response: Fig. R3 shows relatively large disparities between GT-LST and MYD11A1 

LST over savannas (i.e., woody savannas and savannas) and croplands (i.e., 

cropland/natural vegetation mosaics and croplands) for the intercomparison. We would 

like to make some explanations on large disparities between these two products as 

follows: 

According to NDVI threshold method, the daily emissivity of an AVHRR pixel can 

be derived using the following formula:  

𝜀 = 𝜀𝑣𝑒𝑔 ∗ 𝐹𝑉𝐶 + 𝜀𝑠𝑜𝑖𝑙 ∗ (1 − 𝐹𝑉𝐶)          (R1) 

Here, 𝜀 is the emissivity, 𝜀𝑣𝑒𝑔  is the vegetation emissivity, 𝜀𝑠𝑜𝑖𝑙  is the bare soil 

emissivity, and 𝐹𝑉𝐶 is the fraction of vegetation cover. 

For a vegetation pixel, its FVC is less than 1 due to the influence of natural and 

human factors, which leads to the underestimation of emissivity comparing with fixed 

emissivity, resulting in an overestimation of LST. The situation is particularly evident 

over croplands and savannas. Specially, natural disasters (e.g., drought and pests) and 

agricultural activities (e.g., harvest, cropland lies fallow) can significantly decrease 

cropland density and result in higher exposure of the soil. It leads to a decrease in 

cropland emissivity, resulting in an overestimation of LST. The emissivity for savannas 

decreases because of the increasing proportion of soil by grazing, fire and annually a 

long period in which moisture inadequate, resulting in an overestimation of LST. 



 

 

Figure R3. Scatterplots of GT-LST versus MYD11A1 LST during 2004 over WDS (a), 

SVN (b), CRP (c), and CNV (d). WDS: woody savannas, SVN: savannas, CRP: 

croplands, and CNV: cropland/natural vegetation mosaics. 

 

 

Minor: 

1. Line 35: Some of them used surface air temperature rather than LST to detect climate 

change and it should be not mixed. 

Response: Thank you for your careful reading. We have removed the reference (i.e., 

Keenan and Riley, 2018) in the revised manuscript. 

 

 

2. Line 71: remove ‘the’ 

Response: Corrected as suggested. 



 

 

 

3. Line 94: polar-orbiting 

Response: Corrected as suggested. 

 

 

4. line 101: the first 

Response: Corrected as suggested. 

 

 

5. Line 179: Especially 

Response: Corrected as suggested. 

 

 

6. Line 298: identifier 

Response: Corrected as suggested. 

 

 

7. Line 301: difference 

Response: Corrected as suggested. 

 

 

8. Line 317: due to -> because 

Response: Corrected as suggested. 

 

 

9. Line 327: RMSEs 

Response: Corrected as suggested. 



 

 

 

10. Line 403: remove ‘in’ 

Response: Corrected as suggested. 

 

 

11. Line 404: ‘due to’ should be followed by a noun rather than a sentence, suggest 

revising the whole manuscript for this issue. 

Response: Thank you for your careful reading. Following your suggestion, we have 

checked the whole manuscript and corrected this issue. 

 

 

12. Line 411: considers 

Response: Corrected as suggested. 

 

 

13. Line 446: open-source 

Response: Corrected as suggested. 

 

 

14. Line 451: cloud mask 

Response: Corrected as suggested. 

 

 

 

 

References for the above responses are listed below: 
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Response to second comments of reviewer #1 

We appreciate a lot for your efforts in providing detailed comments and 

recommendation. They are very helpful to improve the quality of the manuscript. We 

have revised the manuscript according to your comments. The comments from the 

reviewers are kept in regular font, our responses use blue highlighting, and the revised 

sentences or words in the revised manuscript are highlighted with red color. 

 

Thank you for your response which resolved many of my concerns. However, I am still 

wondering if you have addressed some key issues of the AVHRR GAC data: 

Q1. As the archived historical data, the AVHRR GAC raw data have a serious 

geolocation issue that has been criticized by Wu et al. (2020), especially when the view 

zenith angle is larger than 40-deg, thus I would suggest the authors deal with this issue 

or at least quantify the impact. Please double-check previous literature and collect such 

data issues and give a comprehensive discussion.  

Response: Thanks for your valuable suggestion. Indeed, Wu et al. (2020) provides a 

preliminary geolocation assessment for AVHRR GAC data of NOAA-17, MetOp-A, 

and MetOp-B, which present shifts that stay within the range of 4 km for satellite zenith 

angles smaller than 40° and can reach 6 km when the satellite zenith angle is larger than 

40°. To be more clearly for readers, we have added the detail of the geolocation issue 

according to the work of Wu et al. (2020) in Line 105-107 as follows:  

“Therefore, AVHRR Level-1b GAC data are generally treated as having a coarse 

resolution of 4 km at the nadir, and the pixel size increases with the satellite zenith angle 

(VZA). Furthermore, as the VZA increases, the geolocation accuracy of the AVHRR 

GAC scene become lower, particularly when VZAs larger than 40° (Wu et al., 2020).”. 

In addition, considering the influence of geolocation issue, we used an open-source 

package, Pygac, to pre-process AVHRR GAC data. Pygac, which is based on ephemeris 

data, orbit model and time of onboard clock, uses correction of satellite location method, 

correction of scanline timestamps method, correction of geolocation method to improve 

the geolocation accuracy of the AVHRR GAC data. After the GAC data are treated 



 

through above methods, we believe that their geolocation accuracy basically meets the 

demand of global applications at 0.05° spatial resolution. However, if users need high 

geolocation quality GAC data, we suggested that the GAC data less than 40° should be 

preferred. We have clarified this point in Line 473-476 with the expression as follows: 

“…A variety of factors such as cloud cover, orbital gaps, and instrument failure are 

responsible for this limitation. And finally, the geolocation accuracy of GT-LST product 

basically meets the demand of global applications at 0.05° spatial resolution. However, 

if users need very high geolocation quality GT-LST data, we suggested that the GT-LST 

data with VZAs less than 40° should be preferred.” 

 

Q2. It still doesn't make sense that the data ended in 2005 artificially and the other 

reviewer also agreed with my suggestion. 

Response: Thanks for your comment. We are sorry for the previously unclear 

explanations. As emphasized in the introduction section, this study aims to fill the data 

gap of global satellite-derived twice-daily LST before 2000. However, considering 

global meteorology and climatology-related applications urgently need more than 30 

years of daily LST products, there are two ways of satisfying that requirement based on 

GT-LST. One way is to combine GT-LST (1981-2000) with the existing satellite-

derived daily LST product (2000-present), which depend on different products with the 

same observation period to eliminate or limit the bias between different sensors. 

Therefore, we extend the time span of GT-LST to 2005. Benefiting from the same 

observation period (i.e., 2000-2005) with MODIS LST, we will produce a global long-

term (1981-present) LST data record according to the method of Liu et al. (2012), which 

will be primarily from the AVHRR (1981-2000) and MODIS (2000-present). 

Indeed, as you mentioned, extending the time span of GT-LST to present is another 

way to address this issue. We have already started working on generating GT-LST 

products (2006-present). Although we have proposed a framework for generating GT-

LST product, we still need spend a lot of time downloading global AVHRR GAC L1B 

data, handling large amounts of original Level-1B data, generating huge amounts of 

process variable data, and so on. After all data have been processed, we will upload GT-



 

LST (2006-present) to previous URL (https://doi.org/10.5281/zenodo.7134158). 

 

Q3. The monthly mean LST still has an overall bias of 1.3 K compared to site 

observations, please double-check the code or provide a discussion and comparison 

with previous work. 

Response: Thanks for your suggestion. According to your suggestion, we have double-

checked the code but not found problems. In addition, we have added the discussion of 

positive bias between monthly mean GT-LST and in situ LST in Line 439-441 as 

follows:  

“…This result is similar to that of Chen et al. (2017), who compared MMLST from 

MODIS day and night instantaneous clear-sky LST with actual MMLST from 156 flux 

tower stations, and reported RMSE value of approximately 2.7 K. However, it should 

be noted that a positive bias of 1.3 K between GT-LST MMLST and in situ MMLST. One 

possible reason is that in situ MMLST of some sites does not represent the MMLST over 

the 0.05°×0.05° pixel.” 

 

References for the above responses are listed below: 

Liu, Y., Liu, R., and Chen, J. M.: Retrospective retrieval of long‐term consistent global 

leaf area index (1981–2011) from combined AVHRR and MODIS data, J. Geophys. 

Res-Biogeo., 117, 1-14, https://doi.org/10.1029/2012JG002084, 2012. 

 

Wu, X., Naegeli, K., and Wunderle, S.: Geometric accuracy assessment of coarse-

resolution satellite datasets: a study based on AVHRR GAC data at the sub-pixel level, 

Earth Syst. Sci. Data, 12, 539–553, https://doi.org/10.5194/essd-12-539-2020, 2020. 

 

 

  

https://doi.org/10.1029/2012JG002084


 

Response to Reviewer #2 

We appreciate a lot for your efforts in providing detailed comments and 

recommendation. They are very helpful to improve the quality of the manuscript. We 

have revised the manuscript according to your comments. The comments from the 

reviewers are kept in regular font, our responses use blue highlighting, and the revised 

sentences or words in the revised manuscript are highlighted with red color. 

 

In the study titled “A global historical twice-daily (daytime and nighttime) land surface 

temperature dataset produced by AVHRR observations from 1981 to 2005”, the authors 

produce a global LST product from 1981 to 2005 at 0.05 degree using AVHRR 

observations. The study is potentially useful for understanding changes in surface 

climate over a longer time period than what we can currently examine using most 

existing LST products. However, I have several concerns that should be addressed 

before the paper is considered for publication. 

Q1. The biggest issue I have is that the dataset is restricted to 2005. Given that AVHRR 

products have large biases compared to MODIS Aqua and use different inputs (such as 

the dynamic emissivity estimates used), one cannot combine MODIS and AVHRR to 

perform long-term analysis. Since the AVHRR is still operational, the dataset needs to 

be extended to more recent years. 

Response: Thanks for your valuable suggestion. As emphasized in the introduction 

section, this study aims to fill the data gap of global satellite-derived twice-daily LST 

before 2000. However, considering global meteorology and climatology-related 

applications urgently need more than 30 years of daily LST products, there are two 

ways of satisfying that requirement based on GT-LST. One way is to combine GT-LST 

(1981-2000) with the existing satellite-derived daily LST product (2000-present), 

which depend on different products with the same observation period to eliminate or 

limit the bias between different sensors. Therefore, we extend the time span of GT-LST 

to 2005. Benefiting from the same observation period (i.e., 2000-2005) with MODIS 

LST, we will produce a global long-term (1981-present) LST data record according to 



 

the method of Liu et al. (2012), which will be primarily from the AVHRR (1981-2000) 

and MODIS (2000-present). 

Indeed, as you mentioned, extending the time span of GT-LST to present is another 

way to address this issue. We have already started working on generating GT-LST 

products (2006-present). Although we have proposed a framework for generating GT-

LST product, we still need spend a lot of time downloading global AVHRR GAC L1B 

data, handling large amounts of original Level-1b data, generating huge amounts of 

process variable data, and so on. After all data have been processed, we will upload GT-

LST (2006-present) to previous URL (https://doi.org/10.5281/zenodo.7134158). 

 

Q2. As an addendum to the previous point, since one of the most important use cases 

of long-term datasets is time series analysis, the long-term changes in GT-LST should 

be compared against equivalent changes from MODIS products. If the orbital drift has 

a significant impact on long-term trends, we should be very cautious about the 

suitability of this data product for this use case. This issue needs to be quantified more 

clearly instead of just discussed in text in one section. This can potentially avoid 

misleading results from future uses of this dataset. 

Response: Thanks a lot for your comments. Indeed, one of the intentions of GT-LST is 

providing effective supplementary data for global long-term time series analysis. The 

analysis requires daily, monthly or annual mean LST (i.e., DMLST, MMLST, and 

AMLST) more than instantaneous LST as these mean LSTs are key indicators when 

monitoring global LSTs over a long time series (Li et al., 2023; Liu et al., 2023; Xing 

et al., 2021). It is possible to derive an estimate of the global accurate DMLST, MMLST 

and AMLST based on twice-daily LST product. However, impacting of the NOAA 

satellite orbital drift, daytime and nighttime observations of NOAA afternoon satellites 

cannot represent maximum and minimum temperatures well. Therefore, calculating the 

daily and monthly mean LST by averaging daytime and nighttime LSTs derived from 

GT-LST has a significantly lower accuracy than other studies (Figure A4). Inspired by 

the work of Xing et al. (2021), we use simple linear combinations of daytime and 

nighttime LST values that were observed at observation times for NOAA to estimate 



 

DMLST and MMLST. In order to validate the accuracy of DMLST and MMLST 

according to the simple linear regression method, we compared DMLST and MMLST 

derived from GT-LST with that of in situ LST observations from SURFRAD sites, and 

reported RMSE values of approximately 2.4 K and 2.7 K, respectively. These results 

are similar to that of Xing et al. (2021) and Chen et al. (2017). In this way, we still 

obtain accurate DMLST and MMLST without satellite orbit drift correction. Then, we 

rephrase the paragraph in Line 429-436 as follows: 

“…To estimate MMLST, first obtain the mean instantaneous clear-sky LST at 

daytime and nighttime, and then use these mean values to estimate MMLST according 

to the simple linear regression method (see Appendix B). In order to validate the 

accuracy of MMLST results, we compared MMLST based on GT-LST with that of in situ 

LST observations from SURFRAD sites for 1994–2005. All in situ LST measurements 

are all-sky and complete on a certain month, which means that the in situ MMLST is 

true MMLST. Fig. 13 showed that MMLST derived from GT-LST are related to the true 

MMLST, with an R2 value of 0.94 and an RMSE value of 2.7 K. This result is similar to 

that of Chen et al. (2017), who compared MMLST from MODIS day and night 

instantaneous clear-sky LST with actual MMLST from 156 flux tower stations, and 

reported RMSE bias values of approximately 2.7 K.” 

We have redrawn Fig. 13 according to the simple linear regression method. For 

your convenience, we listed it below. 



 

 

Figure 13: Monthly mean LST based on GT-LST versus monthly mean LST based on in 

situ LST from 1994 to 2005. 

In addition, as for some details of the simple linear regression method, we have 

added the following descriptions in Appendix B. 

“Impacting of the NOAA satellite orbital drift, daytime and nighttime observations 

of NOAA afternoon satellites cannot represent maximum and minimum temperatures 

well. Therefore, the MMLST according to the simple average method has a significantly 

lower accuracy than other studies (Fig. A4). Xing et al. (2021) proposed to use 9 

combinations of two to four MODIS instantaneous retrievals of which at least one 

daytime LST and one nighttime LST to estimate mean LSTs, and determined the weight 

for every moment. Inspired by the work of Xing et al. (2021), we determined to use 

simple linear combinations of monthly mean daytime and nighttime LST values that 



 

were observed at observation times for NOAA to estimate MMLST with ground-based 

measurement. For the combinations of two valid monthly mean LSTs (one daytime and 

one nighttime LST), the regression models can be written as follows: 

𝑀𝑀𝐿𝑆𝑇 = 𝑎1 ∗ 𝑀𝑀𝐿𝑆𝑇𝑑𝑎𝑦 + 𝑎2 ∗ 𝑀𝑀𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡 + 𝑏      (B1) 

where 𝑀𝑀𝐿𝑆𝑇 is the ground-based monthly mean LST, 𝑎1, 𝑎2 and 𝑏 are the fitting 

coefficients, 𝑀𝑀𝐿𝑆𝑇𝑑𝑎𝑦  is the monthly mean in situ LST at the NOAA daytime 

observation, 𝑀𝑀𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡  is the monthly mean in situ LST at the NOAA nighttime 

observation.  

Taking into account the observed times of NOAA satellites with orbital drift effect since 

1981, combinations of two observations from these satellites contain eight cases: 

13:30–17:00/01:30–05:00 local solar time in 0.5-hour interval. Based on the in situ 

LST measurements during the period 2003 to 2018 at 227 flux stations operating in 

globally diverse regions, we obtained the fitting coefficients (Table A1). Then, we 

calculated the MMLST of GT-LST using GT-LST monthly mean daytime and nighttime 

LSTs, Eq. (B1), and the fitting coefficients listed in Table A1.” 

 

Table A1. Statistics for the relationship between the regressions of the eight 

combinations and actual monthly mean LST. 

Case Time a1 a2 b RMSE R2 Number 

1 13:30/01:30 0.3844 0.5783 10.3446 2.0 0.97 12095 

2 14:00/02:00 0.4010 0.5621 10.2042 1.9 0.98 12241 

3 14:30/02:30 0.4235 0.5451 8.6172 1.9 0.98 12381 

4 15:00/03:00 0.4490 0.5211 8.2652 1.8 0.98 12303 

5 15:30/03:30 0.4816 0.4840 9.5710 1.8 0.98 12165 

6 16:00/04:00 0.5250 0.4349 11.2284 2.0 0.97 11818 

7 16:30/04:30 0.5663 0.3884 12.8572 2.2 0.96 10992 

8 17:00/05:00 0.6040 0.3621 9.7302 2.4 0.96 9765 

 

Q3. A second major source of concern is the dynamic emissivity method used. There 

are several vegetation-adjusted emissivity methods available, which can give different 

values, different enough to account for some of the biases seen. Of note, at 0.05 degree, 

you would start resolving larger urban areas, which is a major use case for satellite-



 

derived LST (Voogt & Oke, 2003). Different emissivity methods perform differently 

over urban surfaces, which impacts this important use case (Chakraborty et al. 2021). 

Ideally, this issue needs to be tested further using different emissivity methods. 

Response: This is a good suggestion! As you mentioned, to date, various land surface 

emissivity (LSE) estimation methods have been proposed with the same goal but 

different advantages, and limitations, e.g., classification-based method, NDVI 

threshold method, TES method, and physics-based day/night method and so on (Li et 

al., 2013). With their advantages and limitations, these methods have different 

accuracies and are applicable for various sensors and applications. To reflect the 

performance for the emissivity-retrieved methods and account for the positive bias 

between GT-LST and MYD11A1 LST, according to your suggestion, we compared GT-

LST with MYD21A1 LST that uses the same observations with MYD11A1 but uses a 

physics-based algorithm to dynamically retrieve both LST and spectral emissivity. The 

intercomparison results of MYD21A1 LST showed a very lower bias. As for the 

comparison with MYD21A1, a brief explanation was analyzed below in Q4. There is 

no denying that it is important and significative to evaluate emissivity methods under 

different circumstances and for various applications. However, the goal of this study is 

to develop a global historical twice-daily LST product from 1981 to 2005, where LSE 

is only one of the key parameters. Therefore, we choose an improved NDVI threshold 

method to estimate LSEs from space for a global case by taking the sensor 

characteristics, the required accuracy, as well as computation time into account. 

Although evaluating emissivity methods under different circumstances is not be 

discussed in more detail in this study, this is a meaningful research topic. Inspired by 

your suggestion and the work of Chakraborty et al. (2021), we will evaluate these 

methods on an identical standard and to give the quality and accuracy on their 

applications in future work. After evaluating them we may attempt to generate the first 

estimates of LST at a global scale using AVHRR GAC data by combining all these 

approaches. 

 

Q4. The comparison with MODIS MYD11 is somewhat difficult because of the 



 

different emissivity method used. The comparison should be done against MODIS 

MYD21, which uses the same observations, but a temperature-emissivity separation 

method instead of classification-based prescribed emissivity. 

Response: Thanks for your valuable comments. According to your comments, we have 

compared GT-LST with MYD21A1 LST (Aqua/MODIS LST product using the TES 

algorithm, Collection 6.1). Spatially, this intercomparison was conducted at the global 

scale. Temporally, it was performed on 4 months in 2004 (January, April, July, and 

October) which cover different seasons. The results of the daytime and nighttime 

comparison, in Fig. 9, are as follows: The daytime and nighttime RMSD values of 3.2 

K and 2.5 K and that of bias of 0.1 K and 1.3 K. Compared to the result of MYD11A1, 

the significantly smaller bias was obtained for MYD21A1. The possible reason is 

attributed to the fact that the MYD21A1 LST uses the same observations with 

MYD11A1 but uses TES method to dynamically retrieve LSE. The following contents 

have been added in Line 184-187 and Line 405-412, respectively. 

“In this study, Collection-6.1 MYD11A1 of 2004 was selected for sensor-to-sensor 

comparison. MYD21A1 LST product, which uses the same observations with MYD11A1 

but uses temperature–emissivity separation method to dynamically retrieve LST and 

emissivity, was also selected to make an intercomparison with GT-LST in this study. 

This inter-comparison was conducted on 4 months in 2004 (January, April, July, and 

October) which cover different seasons.” 

“As a result, the dynamic emissivity of GT-LST is typically lower than that of 

MYD11A1, which leads to overestimation of the LST (Hulley et al., 2016; Guillevic et 

al., 2014; Reiners et al., 2021; Ren et al., 2011). To further demonstrate this point, we 

compared GT-LST with MYD21A1 LST. Fig. 9 shows the daytime and nighttime RMSD 

values of 3.2 K and 2.5 K and that of bias of 0.1 K and 1.3 K between GT-LST and 

MYD21A1 LST for 4 months in 2004. Compared to the result of MYD11A1, the 

significantly smaller bias was obtained for MYD21A1. The possible reason is attributed 

to the fact that the MYD21A1 LST uses the same observations with MYD11A1 but uses 

a physics-based method to dynamically retrieve emissivity.” 



 

 

Figure 9: Intercomparison of GT-LST and MYD21A1 LST in January, April, July, and 

October 2004: (a) daytime; (b) nighttime. 

 

Q5. For comparison with SURFAD stations, did the authors check that the emissivity 

used to generate the LST in the ground observations is same as the LST in the GT-LST 

product? If they are different, would be good to adjust by the emissivity difference and 

check if that improves the accuracy. 

Response: The GT-LST use directional measurements of AVHRR in the atmospheric 

window, while the SURFRAD stations provide upwelling and downwelling broadband 

hemispherical TIR radiances using pyrgeometers in the spectral range from 3.5 to 50 

µm, from which estimates of LSTs can be derived using Stefan–Boltzmann’s law. To 

retrieve LST using Stefan–Boltzmann’s law, the surface broadband emissivity must be 

known a priori. In this study, these broadband emissivities were estimated from ASTER 

emissivity product using a spectral-to-broadband linear regression equation according 

to the work of Duan et al. (2019), as follows: BND(0.968), TBL(0.972), DRA(0.967), 

FPK(0.973), GCM(0.971), PSU(0.970), and SXF(0.970). According to the study of 

Liang (2005), the surface broadband emissivity of sites can be obtained from AVHRR 

LSE in AVHRR LSE for channel centered at 11 and 12 µm via the empirical relationship: 

𝜀 = 0.2489 + 0.2386𝜀11 + 0.4998𝜀12          (R1) 

According to Eq. (R1), the surface broadband emissivities are 0.976, 0.975, 0.972, 

0.973, 0.973, 0.968 and 0.974 for BND, TBL, DRA, FPK, GCM, PSU, and SXF, 



 

respectively. Different empirical relationships perform an error less than 0.01 in the 

broadband emissivity. According to the study of Xing et al. (2021), the emissivity 

changes by 0.01, and the change in in-situ LST will not exceed 0.37 K. Therefore, while 

this error is not negligible, it does not appear to be a dominant source of uncertainty in 

the ground-based validation. 

 

Q6. Finally, given the view angle of AVHRR, a broader discussion needs to be added 

about thermal anisotropy (DUffour et al. 2015). Satellites only provide a 2d directional 

view of LST, and this is not directly comparable across satellites (Landsat vs MODIS) 

or against ground observations that have a downward pointing radiometer. This is of 

particular concern over heterogeneous terrain, such as mixed forests and over cities. 

Response: Thanks a lot for your valuable comments. we would like to make some 

explanations on the thermal anisotropy issue as follows: 

(1) Previous multi-sensor comparison studies (Guillevic et al., 2012; Trigo et al., 

2008) found differences up to 12 K between MODIS and SEVIRI LST due to 

directional effects. Appropriate matchups significantly reduce the discrepancies 

induced by directional effects (Guillevic et al., 2014). In this study, to avoid the 

uncertainties induced by directional effects, a strict criterion of viewing geometry 

alignment was established to guarantee the reliability of the intercomparison results (Li 

et al., 2023): the difference in VZA between MYD11A1 and GT-LST is limited to be 

less than 15°. 

(2) LST from satellite and ground measurements may differ according to their 

measurement methods. AVHRR use directional measurements in the atmospheric 

window, while ground-based longwave radiation measurements are hemispheric, wider 

spectrum derivations. If the surface is black body, the two LSTs are the same (Wang et 

al., 2005, Li et al., 2023). However, most natural objects are not black bodies. AVHRR 

view zenith angles were considered to be an important factor influencing the results 

when comparisons were made with in situ measurements. Figure R1 shows the 

relationship between view angles and bias in instantaneous LST at station pixels. Our 

result is that a high view angle does not necessarily show a high bias and a low view 



 

angle does not necessarily always show a low bias. This means that view angle should 

not be a significant source for the bias of GT-LST at a 0.05° pixel size. 

 

Figure R1: The relationship between bias of land surface temperature (GT-LST minus 

in situ observations) and view zenith angle.  

 

References for the above responses are listed below: 

Chakraborty, T. C., Lee, X., Ermida, S., and Zhan, W.: On the land emissivity 

assumption and Landsat-derived surface urban heat islands: A global analysis, Remote 

Sens. Environ., 265, 112682, https://doi.org/10.1016/j.rse.2021.112682, 2021. 

 

Chen, X., Su, Z., Ma, Y., Cleverly, J., Liddell, M.: An accurate estimate of monthly 

mean land surface temperatures from MODIS clear-sky retrievals, J. Hydrometeorol., 

18, 2827-2847, https://doi.org/10.1175/JHM-D-17-0009.1, 2017. 

 

Duan, S.-B., Li, Z.-L., Li, H., Göttsche, F.-M., Wu, H., Zhao, W., Leng, P., Zhang, X., 

Coll, C.: Validation of Collection 6 MODIS land surface temperature product using in 

situ measurements, Remote Sens. Environ. 225, 16–29, 

https://doi.org/10.1016/j.rse.2019.02.020, 2019. 

 

Guillevic, P. C., Biard, J. C., Hulley, G. C., Privette, J. L., Hook, S. J., Olioso, A., 

Göttsche F. M., Radocinski, R., Román, M. O., Yu, Y., and Csiszar, I.: Validation of 

https://doi.org/10.1016/j.rse.2021.112682
https://doi.org/10.1175/JHM-D-17-0009.1


 

Land Surface Temperature products derived from the Visible Infrared Imaging 

Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements, 

Remote Sens. Environ., 154, 19-37, https://doi.org/10.1016/j.rse.2014.08.013, 2014. 

 

Guillevic, P. C., Privette, J. L., Coudert, B., Palecki, M. A., Demarty, J., Ottlé, C., and 

Augustine, J. A.: Land Surface Temperature product validation using NOAA's surface 

climate observation networks—Scaling methodology for the Visible Infrared Imager 

Radiometer Suite (VIIRS), Remote Sens. Environ., 124, 282-298, 

https://doi.org/10.1016/j.rse.2012.05.004, 2012. 

 

Li, Z.-L., Wu, H., Duan, S.-B., Zhao, W., Ren, H., Liu, X., Leng, P., Tang R., Ye, X., 

Zhu, J., Sun, Y., Si, M., Liu, M., Li, J., Zhang, X., Shang, G., Tang, B.-H., Yan, G., and 

Zhou, C.: Satellite remote sensing of global land surface temperature: Definition, 

methods, products, and applications, Rev. Geophys., 61, e2022RG000777, 

https://doi.org/10.1029/2022RG000777, 2023. 

 

Li, Z.-L., Wu, H., Wang, N., Qiu, S., Sobrino, J. A., Wan, Z., Tang, B.-H., and Yan, G.: 

Land surface emissivity retrieval from satellite data, Int. J. Remote Sens., 34, 3084-

3127, https://doi.org/10.1080/01431161.2012.716540, 2013. 

 

Liang, S.: Estimation of Surface Radiation Budget: I. Broadband Albedo, in 

Quantitative Remote Sensing of Land Surfaces, John Wiley & Sons, Inc., Hoboken, NJ, 

USA, 310–344, 2005. 

 

Liu, X., Li, Z.-L., Li, J.-H., Leng, P., Liu, M., and Gao. M.: Temporal upscaling of 

MODIS 1-km instantaneous land surface temperature to monthly mean value: Method 

evaluation and product generation, IEEE Trans. Geosci. Remote Sens., 

https://doi.org/10.1109/TGRS.2023.3247428, 2023. 
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global leaf area index (1981–2011) from combined AVHRR and MODIS data, J. 
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Estimation of surface long wave radiation and broadband emissivity using Moderate 
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G.: Estimation of daily mean land surface temperature at global scale using pairs of 
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Response to Reviewer #3 

We appreciate a lot for your efforts in providing detailed comments and 

recommendation. They are very helpful to improve the quality of the manuscript. We 

have revised the manuscript according to your comments. The comments from the 

reviewers are kept in regular font, our responses use blue highlighting, and the revised 

sentences or words in the revised manuscript are highlighted with red color. 

 

Q1. Why was the MERRA-2 atmospheric dataset selected considering its coarse spatial 

resolution? 

Response: Thank you for your comments. We would like to make some explanations 

on the selection of MERRA-2 atmospheric dataset as follows: 

(1) To the best of our knowledge, there are only two global reanalysis datasets, the 

fifth-generation European Center for Medium-Range Weather Forecasts atmospheric 

reanalysis dataset (ERA5) and the Second Modern-Era Retrospective Analysis for 

Research and Applications (MERRA-2) dataset, which could provide hourly 

atmospheric water vapor content (WVC) data from 1981 to 2005. The ERA5 and 

MERRA-2 provide hourly WVC at 0.25°×0.25° and 0.625°×0.5° spatial resolution, 

respectively. Huang et. al. (2021) systematically assessed the hourly WVC of ERA5 

and MERRA-2 by a comparison with 33 Global Navigation Satellite System stations 

from 2017 to 2018. The results of the comparison are as follows: ① The accuracies of 

the ERA5- and MERRA-2-derived WVC are very high; ② The performance of ERA5 

is slightly better than MERRA-2 due to its higher spatial resolution; ③ With the same 

grid spatial resolution, the mean root mean square difference between two reanalysis 

data sets is 0.1mm (0.01g/cm2). 

(2) To match the GT-LST pixels, these datasets all need to be resampled to 0.05° 

spatial resolution. However, selecting ERA5 will consume twice as much local storage 

space and memory as MERRA-2. 

However, the goal of this study is to develop a global historical twice-daily LST 

product from 1981 to 2005, where WVC is only one of intermediate variables that 



 

obtain the nonlinear generalized split-window (GSW) algorithm coefficients 

corresponding to the subrange of WVC. Considering the tradeoff between accuracy, 

local storage space and memory and computational burden, we choose the MERRA-2-

derived WVC to estimate LST. 

 

Q2. In my opinion, the SURFRAD measurements are not the best option for LST 

validation, especially in the case of evaluating medium/coarse spatial resolution LST, 

considering the substantial spatial heterogeneity of the sites. Moreover, the measured 

longwave radiations by pyrgeometers are different from the directional radiance 

collected by satellites, which has been reported in different studies. 

Response: Thanks a lot for your comments. We would like to make some explanations 

as follows: 

(1) In order to maximize the usefulness of GT-LST for research it is necessary to 

assess the accuracy of GT-LST using as many methods as possible. Ground-based 

validation is the most traditional and well-used method, and it provides suitable 

validation results for well-defined and dedicated sites in most cases. However, there are 

the limited number of high-quality sites (i.e., KIT stations and NASA JPL stations) 

around the world that are dedicated to LST validation due to their high cost and 

logistical barriers (Guillevic et al., 2014). Moreover, they could only provide 

measurements after 2009 (Guillevic, et al., 2018). Although the SURFRAD network 

was not initially designed for LST validation, SURFRAD can provide high-quality 

radiance measurements from 1995 to present, which are useful for validating satellite 

LST products. SURFRAD measurements have already been used for evaluating 

ASTER, GOES, MODIS, VIIRS, AVHRR and AMSR-E LST products (Wang and 

Liang, 2009; Yu et al., 2012; Guillevic et al., 2012; Liu et al., 2019; Jiménez et al., 

2017). All SURFRAD stations are selected in this study. Fig. R1 shows the 

surroundings of the sites on the AVHRR scale, where all of these sites except DRA are 

located in large flat agricultural areas covered by crops and grass. Due to not all stations 

are representative of spatially homogeneous areas at GT-LST scales, we used as much 

in situ measurements as possible in order to characterize them correctly. Considering 



 

the limitation of the ground-based validation method, we compared GT-LST with a 

large number of well documented and validated LST products derived from satellites 

to characterize GT-LST performance. 

(2) Indeed, as you mentioned, longwave radiations from satellite and ground 

measurements may differ according to their measurement methods. AVHRR measures 

directional measurements in the atmospheric window, while the measured longwave 

radiations by pyrgeometers are hemispheric, wider spectrum derivations. If the surface 

is black body, the LSTs derived from these two measurements are the same (Wang et 

al., 2005; Li et al., 2023). However, most natural objects are not black bodies. AVHRR 

view zenith angles were considered to be an important factor influencing the results 

when comparisons were made with in situ measurements. Fig. R2 shows the 

relationship between view zenith angles and bias in instantaneous LST at station pixels. 

Our result shows that a high view angle does not necessarily bring a high bias or a low 

view angle does not necessarily always bring a low bias. This means that view angle 

should not be a significant source for the bias of GT-LST at a 0.05° pixel size. 



 

 

Figure R1: Aerial photos of the SURFRAD sites. The black dot marks the position of 

the site, and the blue square marks the size of an AVHRR pixel 

 

 

Figure R2: The relationship between bias of land surface temperature (GT-LST minus 

in situ observations) and view zenith angle.  

 



 

 

Q3. Why was the MYD11 LST product selected instead of the MYD21 LST, or 

geostationary LST products that have closer spatial resolutions to the GT-LST product? 

In the inter-comparison, the MDY11A1 LST was spatially aggregated to the spatial 

resolution of the GT-LST product with a simpler arithmetic mean. I doubt the validity 

of the MYD11 LST after the simple aggregation. 

Response: Thank you for your comments. The reason that we selected MYD11A1 LST 

product instead of the MYD21A1 is that the MYD11A1 LST products have been well 

validated by using the temperature-based method and radiance-based method methods 

with an accuracy of approximately 1 K (Wan, 2014; Li et al., 2023). To reduce the 

discrepancies induced by viewing location, time, geometry and quality control (QC), 

we used five criteria to guarantee the reliability of the intercomparison results. As for 

the criterion of collocation in space, besides that MYD11A1 LST was aggregated to the 

spatial resolution of the GT-LST product by averaging all MYD11A1 pixels, it also 

requires all MYD11A1 pixels with QC = 0 (i.e., the highest quality) within a coarse 

spatial resolution pixel (0.05°×0.05°). 

In addition, according to your suggestion, we have compared GT-LST with 

MYD21A1 LST (Aqua/MODIS LST product using the TES algorithm, Collection 6.1). 

Spatially, this intercomparison was conducted at the global scale. Temporally, it was 

performed on 4 months in 2004 (January, April, July, and October) which cover 

different seasons. The result of the inter-comparison, in Fig. 9, is as follows: The 

daytime and nighttime RMSD values of 3.2 K and 2.5 K and that of bias of 0.1 K and 

1.3 K. Compared to the result of MYD11A1, the significantly smaller bias was obtained 

for MYD21A1. The possible reason is attributed to the fact that the MYD21A1 LST 

uses the same observations with MYD11A1 but uses TES method to dynamically 

retrieve LSE. The following contents have been added in Line 184-187 and Line 405-

412, respectively. 

“In this study, Collection-6.1 MYD11A1 of 2004 was selected for sensor-to-sensor 

comparison. MYD21A1 LST product, which uses the same observations with MYD11A1 



 

but uses temperature–emissivity separation method to dynamically retrieve LST and 

emissivity, was also selected to make an intercomparison with GT-LST in this study. 

This inter-comparison was conducted on 4 months in 2004 (January, April, July, and 

October) which cover different seasons.” 

“As a result, the dynamic emissivity of GT-LST is typically lower than that of 

MYD11A1, which leads to overestimation of the LST (Hulley et al., 2016; Guillevic et 

al., 2014; Reiners et al., 2021; Ren et al., 2011). To further demonstrate this point, we 

compared GT-LST with MYD21A1 LST. Fig. 9 shows the daytime and nighttime RMSD 

values of 3.2 K and 2.5 K and that of bias of 0.1 K and 1.3 K between GT-LST and 

MYD21A1 LST for 4 months in 2004. Compared to the result of MYD11A1, the 

significantly smaller bias was obtained for MYD21A1. The possible reason is attributed 

to the fact that the MYD21A1 LST uses the same observations with MYD11A1 but uses 

a physics-based method to dynamically retrieve emissivity.” 

 

Figure 9: Intercomparison of GT-LST and MYD21A1 LST in January, April, July, and 

October 2004: (a) daytime; (b) nighttime. 

 

 

Q4. Typo in Eq. 5. It should be ‘AVH’ rather than ‘AST’ on the left side of the equation. 

Response: Thank you for your careful reading. We have corrected this issue. 

 

Q5. The description of the emissivity retrieval process is unclear. How were the soil 



 

type data used? 

Response: Sorry for the unclear expression. To make it clear, the paragraph in Line 

254-258 has been revised to as follows:  

“…where 𝜀𝑖,𝑠
𝐴𝑆𝑇 is the bare soil emissivity in ASTER channel 𝑖 (i=10, …, 14), and 

𝜀𝑖,𝑣
𝐴𝑆𝑇 is the emissivity of dense vegetation in ASTER channel 𝑖. Because the emissivity 

spectra of dense vegetation are similar and vary slightly in the TIR region, we used the 

dense vegetation emissivity of ASTER channel 𝑖 provided by Meng et al. (2016). 𝜀𝑖
𝐴𝑆𝑇 

is the emissivity of the ASTER GED product in channel 𝑖. 𝑃𝑣 is calculated from the 

NDVI of the ASTER GED product according to Eq. (3). For long-term cloud cover 

pixels and dense vegetation pixels (𝑃𝑣 = 1), the bare soil emissivity of these ASTER 

pixels are null values. To generate a global gap-free bare soil emissivity map of ASTER, 

we used the average emissivity of the same soil type within 5×5 neighborhood pixels to 

fill these null values. Because of some pixels with no valid neighbor pixel for averaging 

we needed to enlarge the neighborhood until all null values are filled. Soil-type data 

are described in Section 2.3.” 

 

Q6. Why were the RMSEs over savannas and croplands the largest amongst different 

land surface types? 

Response: Fig. R3 shows the intercomparison results between GT-LST and MYD11A1 

LST over savannas (i.e., woody savannas and savannas) and croplands (i.e., 

cropland/natural vegetation mosaics and croplands). We would like to make some 

explanations on relatively large disparities over savannas and croplands between these 

two products as follows: 

According to NDVI threshold method, the daily emissivity of an AVHRR pixel can 

be derived using the following formula:  

𝜀 = 𝜀𝑣𝑒𝑔 ∗ 𝐹𝑉𝐶 + 𝜀𝑠𝑜𝑖𝑙 ∗ (1 − 𝐹𝑉𝐶)          (R1) 

Here, 𝜀 is the emissivity, 𝜀𝑣𝑒𝑔  is the vegetation emissivity, 𝜀𝑠𝑜𝑖𝑙  is the bare soil 

emissivity, and 𝐹𝑉𝐶 is the fraction of vegetation cover. 

For a vegetation pixel, its FVC varies greatly due to the influence of natural and 

human factors, which leads to the underestimation of emissivity comparing with fixed 

emissivity, resulting in an overestimation of LST. The situation is particularly evident 



 

over croplands and savannas. Specially, natural disasters (e.g., drought and pests) and 

agricultural activities (e.g., harvest, cropland lies fallow) can significantly decrease 

cropland density and result in higher exposure of the soil. It leads to a decrease in 

cropland emissivity, resulting in an overestimation of LST. The emissivity for savannas 

decreases because of the increasing proportion of soil by grazing, fire and annually a 

long period in which moisture inadequate, resulting in an overestimation of LST. We 

have added the following descriptions in Line 391-393: 

“Savannas and croplands, including woody savannas and savannas, croplands and 

cropland/natural vegetation mosaics, respectively, had the largest RMSD. The possible 

reason is that the fraction of vegetation cover of savannas and croplands vary greatly 

due to the influence of natural and human factors, which leads to the underestimation 

of emissivity comparing with fixed emissivity of MYD11A1, resulting in an 

overestimation of LST. Snow and ice and water bodies had the smallest RMSD.” 

 

Figure R3. Scatterplots of GT-LST versus MYD11A1 LST during 2004 over WDS (a), 

SVN (b), CRP (c), and CNV (d). WDS: woody savannas, SVN: savannas, CRP: 



 

croplands, and CNV: cropland/natural vegetation mosaics. 

 

Q7. Any explanations for the higher uncertainties in spring and summer? 

Response: Thanks a lot for your comments. A reasonable explanation could be that 

differences seasons associated with different atmospheric conditions: cool and dry in 

autumn and winter, hot and wet in spring and summer. Generally, large differences 

between different LST products were found under high temperatures and high 

atmospheric water vapor content conditions. Some literatures got similar result. For 

example, Reiners et al. (2021) compared AVHRR LST product of the TIMELINE 

project with MYD11_L2 LST product from 2003 to 2014. The result shows the seasonal 

pattern, with lower accordance and higher bias in summer and higher accordance and 

lower bias in winter. 

 

Q8. Line 370, why is the ASTER GED-based emissivity retrieval used in the GT-LST 

product lower than the classification-based emissivity used in the MYD11 product? 

Response: Thanks a lot for your valuable comments. We would like to make some 

explanations on the lower emissivity of GT-LST product as follows: 

(1) The MYD11A1 LST product is generated by the spilt-window (SW) algorithm. 

Land surface emissivities of this product are assigned according to classification-based 

method that produces emissivities with fixed values for a limited number of land cover 

types. This method works well over densely vegetated areas and water where 

emissivities are relatively stable. However, cold biases of 3-5 K are often found over 

semi-arid and arid regions because these regions have much higher emissivity 

variability, and only one fixed overestimated emissivity inferred from land cover types 

is assigned to these regions (Coll et al., 2009; Hulley and Hook 2009; Wan et al., 2002). 

In order to represent the natural variation in emissivity, we used an improved NDVI 

threshold method to dynamically retrieve daily emissivity. Based on the analysis above, 

emissivity derived from dynamic methods is lower than emissivity according to 

classification-based method, which makes the proposed GT-LST is higher than 



 

MYD11A1 LST (i.e., positive bias). We note that earlier researches on this issue had 

similar results. Reiners et al. (2021) compared AVHRR LST product of the TIMELINE 

project with MYD11_L2 LST product from 2003 to 2014, the result shows that the 

TIMELINE dynamic emissivity is lower than the MYD11_L2 fixed emissivity and a 

general positive bias (i.e., bias=2.2 K) of TIMELINE LST towards MYD11_L2 LST. 

Martins et al. (2019) compared MSG LST and GOES-16 LST and revealed that a 

positive bias (MSG > GOES) of around 1.6 K persists due to the overestimation of the 

fixed emissivity of GOES. Mao et al. (2007) analyzed the retrieval result by radiative 

transfer model with neural network algorithm and MODIS product algorithm, 

indicating that MOD11_L2 LST product overestimates the emissivity, resulting in an 

underestimation of LST. 

(2) To further illustrate the MYD11A1 LST product overestimates the emissivity, 

we present an intercomparison exercise between MxD11A1 LST products (Terra and 

Aqua/MODIS using SW algorithm, Collection 6) with fixed emissivity and MSG LST 

products (MSG/SEVIRI using SW algorithm) with dynamic emissivity for 4 days 

(January 15, April, 15, July 15, and October 15, 2020). The criteria in Sec 3.2 were used 

to guarantee the reliability of the intercomparison results. The result is shown in Fig. 

R4, indicating that a general positive bias (daytime ranges from 0.7 K to 3.3 K, 

nighttime ranges from 0.2 K to 1.4 K) of MSG LST towards MxD11A1 LST for each 

land cover types.  

Based on the analysis above, it is reasonable to conclude that the GT-LST dynamic 

emissivity is lower than the MYD11A1 classification-based emissivity. 

  



 

 

  



 

 

Figure R4: The bias (SEVIRI LST minus MxD11A1 LST) and RMSD between the MxD11A1 product and SEVIRI during daytime (a) and 

nighttime (b) over various land cover types.  



 

Q9. Line 400, why is the emissivity of GT-LST lower than that of RT-LST? The analysis 

is too simple to understand the intercomparison between different LST products. More 

in-depth investigations are needed for the comparison with the existing AVHRR LST 

data. 

Response: RT-LST product provided only a rough estimation of emissivity using a land 

cover classification map, the FAO soil map of Africa and additional maps of tree, 

herbaceous, and bare soil percent cover. All of these data sets are static and therefore 

authors do not account for local phenological, environmental changes, and human 

factors in time. Based on the analysis above, emissivity derived from dynamic methods 

is lower than emissivity according to static method. 

 

Q10. There are quite some minor grammatical errors, e.g., Line 411, ‘an improved 

method that consider annual changes’. Please check them carefully. 

Response: Thank you for your careful reading. Following your suggestion, we have 

checked the whole manuscript and corrected these issues. 

 

Q11. The authors mentioned the increased uncertainties of AVHRR LST with time due 

to the orbital drift. It would be useful to add some analyses of the variation in the 

accuracy of the GT-LST product in the time series. 

Response: Thanks a lot for your comments. Indeed, one of the intentions of GT-LST is 

providing effective supplementary data for global long-term time series analysis. The 

analysis requires daily, monthly or annual mean LST (i.e., DMLST, MMLST, and 

AMLST) more than instantaneous LST as these mean LSTs are key indicators when 

monitoring global LSTs over a long time series (Li et al., 2023; Liu et al., 2023; Xing 

et al., 2021). It is possible to derive an estimate of the global accurate DMLST, MMLST 

and AMLST based on twice-daily LST product. However, impacting of the NOAA 

satellite orbital drift, daytime and nighttime observations of NOAA afternoon satellites 

cannot represent maximum and minimum temperatures well. Therefore, calculating the 

daily and monthly mean LST by averaging daytime and nighttime LSTs derived from 

GT-LST has a significantly lower accuracy than other studies (Fig. A4). Inspired by the 

work of Xing et al. (2021), we use simple linear combinations of daytime and nighttime 

LST values that were observed at observation times for NOAA to estimate DMLST and 

MMLST. In order to validate the accuracy of DMLST and MMLST according to the 

simple linear regression method, we compared DMLST and MMLST derived from GT-



 

LST with that of in situ LST observations from SURFRAD sites, and reported RMSE 

values of approximately 2.4 K and 2.7 K, respectively. These results are similar to that 

of Xing et al. (2021) and Chen et al. (2017). In this way, we still obtain accurate DMLST 

and MMLST without satellite orbit drift correction. Then, we rephrase the paragraph in 

Line 429-436 as follows: 

“…To estimate MMLST, first obtain the mean instantaneous clear-sky LST at 

daytime and nighttime, and then use these mean values to estimate MMLST according 

to the simple linear regression method (see Appendix B). In order to validate the 

accuracy of MMLST results, we compared MMLST based on GT-LST with that of in situ 

LST observations from SURFRAD sites for 1994–2005. All in situ LST measurements 

are all-sky and complete on a certain month, which means that the in situ MMLST is 

true MMLST. Fig. 15 showed that MMLST derived from GT-LST are related to the true 

MMLST, with an R2 value of 0.94 and an RMSE value of 2.7 K. This result is similar to 

that of Chen et al. (2017), who compared MMLST from MODIS day and night 

instantaneous clear-sky LST with actual MMLST from 156 flux tower stations, and 

reported RMSE bias values of approximately 2.7 K.” 

We have redrawn Fig. 13 according to the simple linear regression method. For 

your convenience, we listed it below. 



 

 

Figure 13: Monthly mean LST based on GT-LST versus monthly mean LST based on in 

situ LST from 1994 to 2005. 

In addition, as for some details of the simple linear regression method, we have 

added the following descriptions in Appendix B. 

“Impacting of the NOAA satellite orbital drift, daytime and nighttime observations 

of NOAA afternoon satellites cannot represent maximum and minimum temperatures 

well. Therefore, the MMLST according to the simple average method has a significantly 

lower accuracy than other studies (Fig. A4). Xing et al. (2021) proposed to use 9 

combinations of two to four MODIS instantaneous retrievals of which at least one 

daytime LST and one nighttime LST to estimate mean LSTs, and determined the weight 

for every moment. Inspired by the work of Xing et al. (2021), we determined to use 

simple linear combinations of monthly mean daytime and nighttime LST values that 

were observed at observation times for NOAA to estimate MMLST with ground-based 



 

measurement. For the combinations of two valid monthly mean LSTs (one daytime and 

one nighttime LST), the regression models can be written as follows: 

𝑀𝑀𝐿𝑆𝑇 = 𝑎1 ∗ 𝑀𝑀𝐿𝑆𝑇𝑑𝑎𝑦 + 𝑎2 ∗ 𝑀𝑀𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡 + 𝑏      (B1) 

where 𝑀𝑀𝐿𝑆𝑇 is the ground-based monthly mean LST, 𝑎1, 𝑎2 and 𝑏 are the fitting 

coefficients, 𝑀𝑀𝐿𝑆𝑇𝑑𝑎𝑦  is the monthly mean in situ LST at the NOAA daytime 

observation, 𝑀𝑀𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡  is the monthly mean in situ LST at the NOAA nighttime 

observation.  

Taking into account the observed times of NOAA satellites with orbital drift effect since 

1981, combinations of two observations from these satellites contain eight cases: 

13:30–17:00/01:30–05:00 local solar time in 0.5-hour interval. Based on the in situ 

LST measurements during the period 2003 to 2018 at 227 flux stations operating in 

globally diverse regions, we obtained the fitting coefficients (Table A1). Then, we 

calculated the MMLST of GT-LST using GT-LST monthly mean daytime and nighttime 

LSTs, Eq. (B1), and the fitting coefficients listed in Table A1.” 

 

Table A1. Statistics for the relationship between the regressions of the eight 

combinations and actual monthly mean LST. 

Case Time a1 a2 b RMSE R2 Number 

1 13:30/01:30 0.3844 0.5783 10.3446 2.0 0.97 12095 

2 14:00/02:00 0.4010 0.5621 10.2042 1.9 0.98 12241 

3 14:30/02:30 0.4235 0.5451 8.6172 1.9 0.98 12381 

4 15:00/03:00 0.4490 0.5211 8.2652 1.8 0.98 12303 

5 15:30/03:30 0.4816 0.4840 9.5710 1.8 0.98 12165 

6 16:00/04:00 0.5250 0.4349 11.2284 2.0 0.97 11818 

7 16:30/04:30 0.5663 0.3884 12.8572 2.2 0.96 10992 

8 17:00/05:00 0.6040 0.3621 9.7302 2.4 0.96 9765 
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Response to Reviewer #4 
We appreciate a lot for your efforts in providing detailed comments and 

recommendation. They are very helpful to improve the quality of the manuscript. We 

have revised the manuscript according to your comments. The comments from the 

reviewers are kept in regular font, our responses use blue highlighting, and the revised 

sentences or words in the revised manuscript are highlighted with red color. 

 

This paper developed a global historical twice-daily LST dataset (GT-LST) with a 

spatial resolution of 0.05° from 1981 to 2005. I believe this is an important study and it 

does make sense for earth science communities. The data and methods are clearly 

described, and the main results are well presented. However, there are some issues that 

need to be addressed or clarified before the paper can be published. Therefore, I 

recommend a major revision. 

 

Some major comments: 

 

1. This paper has inter-compared the GT-LST and MODIS LST over a variety of land 

cover types such as savannas and cropland/natural vegetation, permanent snow and ice, 

water bodies and etc., yet I wonder how much are the accuracies (such as RMSD and 

bias) over urban surfaces?  

Response: Thanks a lot for your comments. To clearly quantify the RMSD and bias 

over various land cover types, we have redrawn Fig. 7, including urban and built-up 

lands (UBL). For your convenience, we listed it below. For UBL, the RMSD and bias 

are 3.4 K and 2.7 K, respectively. 



 

 
Figure 7: RMSD and bias between GT-LST and MYD11A1 LST in 2003 for various 

land cover types. ENF: evergreen needleleaf forests, EBF: evergreen broadleaf forests, 

DNF: deciduous needleleaf forests, DBF: deciduous broadleaf forests, MXF: mixed 

forests, CSR: closed shrublands, OSR: open shrublands, WDS: woody savannas, SVN: 

savannas, GRS: grasslands, PMW: permanent wetlands, CRP: croplands, UBL: urban 

and built-up lands, CNV: cropland/natural vegetation mosaics, PSI: permanent snow 

and ice, BRN: barren, WTB: water bodies, and ALL: all land cover types. 

 
2. Why did you choose January 15 and July 15, 1997 for the GT-LST and RT-LST 

comparison over continental Africa? Please clarify the selection criteria. 

Response: Thanks a lot for your comments. The RT-LST is a twice-daily LST product 

at 8-km resolution over continental Africa, which spans of 6 years from 1995 to 2000. 

Two days, January 15 and July 15, 1997, were chosen because they represent the median 

time of different seasons (winter and summer, respectively). In addition, the number of 

matchups is enough to guarantee the reliability of the intercomparison. We have added 

some descriptions in Line 334-335 as follows: 

“Two days, January 15 and July 15, 1997, were selected to implement the 

comparison over continental Africa because they represent the median time of different 

seasons (winter and summer, respectively)”  



 

 

3. I just suggest combining Figs. 3 to 7 into a single figure for clarity.  

Response: Thank you for the suggestion. We have redrawn the schematic of the 

workflow according to your suggestion. For your convenience, we listed it below. 

 
Figure 3: Schematic of the workflow used to generate the GT-LST product 

 
4. To what extent the differences in the emissivity between MODIS LSTs and GT-LST 

will influence their inter-comparison results, can you provide some quantitative results? 

Response: Thanks a lot for your comments. From Fig.R1, one can conclude that a 

negative relationship between the GT-LST and MYD11A1 LST difference and their 

corresponding emissivity difference. The mean biases (GT-LST – MYD11A1) for LSTs 

calculated with emissivity differences less than -0.05, between -0.05 and -0.03, between 

-0.03 and -0.01, between -0.01 and 0.01 and more than 0.01 are 7.0, 4.3, 2.3, 0.8 and 

0.7 K, respectively. We have added some descriptions in Line 406-408 as follows: 

“As a result, the dynamic emissivity of GT-LST is typically lower than that of MYD11A1, 

which leads to overestimation of the LST (Hulley et al., 2016; Guillevic et al., 2014; 



 

Reiners et al., 2021; Ren et al., 2011). Fig. A3 shows that the mean biases (GT-LST – 

MYD11A1) for LSTs calculated with emissivity differences less than -0.05, between -

0.05 and -0.03, between -0.03 and -0.01, between -0.01 and 0.01 and more than 0.01 

are 7.0, 4.3, 2.3, 0.8 and 0.7 K, respectively.” 

 
Figure A3: Difference between GT-LST and MYD11A1 LST stratified by the difference 

between GT-LST and MYD11A1 emissivity (water vapor content < 5 g/cm2; satellite 

zenith angle < 50°) 

 
5. As you stated, the LSTs for a long period such as > 40 years are important for 

monitoring and evaluating global long-term climate change. Thus, the validation of 

tendency consistency for the generated GT-LST products is also of vital importance in 

addition to its spatiotemporal pattern. Could you test the accuracy of time series GT-

LSTs over several typical regions, as I guess the orbit drift of AVHRR could also 

introduce uncertainty for the tendency estimation.  

Response: Thanks a lot for your comments. Indeed, global long-term climate change 

requires daily, monthly or annual mean LST (i.e., DMLST, MMLST, and AMLST) 

more than instantaneous LST as these mean LSTs are key indicators when monitoring 

global LSTs over a long time series (Li et al., 2023; Liu et al., 2023; Xing et al., 2021). 

Impacting of the NOAA satellite orbital drift, daytime and nighttime observations of 

NOAA afternoon satellites cannot represent maximum and minimum temperatures well. 

Therefore, calculating the daily and monthly mean LST by averaging daytime and 

nighttime LSTs derived from GT-LST has a significantly lower accuracy than other 



 

studies (Fig. A4). Inspired by the work of Xing et al. (2021), we use simple linear 

combinations of daytime and nighttime LST values that were observed at observation 

times for NOAA to estimate DMLST and MMLST. In order to validate the accuracy of 

DMLST and MMLST according to the simple linear regression method, we compared 

DMLST and MMLST derived from GT-LST with that of in situ LST observations from 

SURFRAD sites, and reported RMSE values of approximately 2.4 K and 2.7 K, 

respectively. These results are similar to that of Xing et al. (2021) and Chen et al. (2017). 

In this way, we still obtain accurate DMLST and MMLST without satellite orbit drift 

correction. In order to demonstrate the tendency consistency of GT-LST products, Fig. 

R1 shows time series of MMLST using the simple linear regression method from 1981 

to 2005 for two small area (5°×5°) in the Sahara Desert and the Tibetan plateau: no 

significant inconsistencies can be seen. 

 

 
Figure R1: Monthly mean LST time series for 1981 to 2005 over two small area (5°×5°) 

in the Sahara Desert (a) and the Tibetan plateau (b). 

Then, we rephrase the paragraph in Line 429-436 as follows: 

“…To estimate MMLST, first obtain the mean instantaneous clear-sky LST at 

daytime and nighttime, and then use these mean values to estimate MMLST according 

to the simple linear regression method (see Appendix B). In order to validate the 

accuracy of MMLST results, we compared MMLST based on GT-LST with that of in situ 

LST observations from SURFRAD sites for 1994–2005. All in situ LST measurements 

are all-sky and complete on a certain month, which means that the in situ MMLST is 

true MMLST. Fig. 15 showed that MMLST derived from GT-LST are related to the true 

MMLST, with an R2 value of 0.94 and an RMSE value of 2.7 K. This result is similar to 

that of Chen et al. (2017), who compared MMLST from MODIS day and night 



 

instantaneous clear-sky LST with actual MMLST from 156 flux tower stations, and 

reported RMSE bias values of approximately 2.7 K.” 

We have redrawn Fig. 13 according to the simple linear regression method. For 

your convenience, we listed it below. 

 

Figure 13: Monthly mean LST based on GT-LST versus monthly mean LST based on in 

situ LST from 1994 to 2005. 

In addition, as for some details of the simple linear regression method, we have 

added the following descriptions in Appendix B. 

“Impacting of the NOAA satellite orbital drift, daytime and nighttime observations 

of NOAA afternoon satellites cannot represent maximum and minimum temperatures 

well. Therefore, the MMLST according to the simple average method has a significantly 

lower accuracy than other studies (Fig. A4). Xing et al. (2021) proposed to use 9 

combinations of two to four MODIS instantaneous retrievals of which at least one 



 

daytime LST and one nighttime LST to estimate mean LSTs, and determined the weight 

for every moment. Inspired by the work of Xing et al. (2021), we determined to use 

simple linear combinations of monthly mean daytime and nighttime LST values that 

were observed at observation times for NOAA to estimate MMLST with ground-based 

measurement. For the combinations of two valid monthly mean LSTs (one daytime and 

one nighttime LST), the regression models can be written as follows: 

𝑀𝑀𝐿𝑆𝑇 = 𝑎1 ∗ 𝑀𝑀𝐿𝑆𝑇𝑑𝑎𝑦 + 𝑎2 ∗ 𝑀𝑀𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡 + 𝑏      (B1) 

where 𝑀𝑀𝐿𝑆𝑇 is the ground-based monthly mean LST, 𝑎1, 𝑎2 and 𝑏 are the fitting 

coefficients, 𝑀𝑀𝐿𝑆𝑇𝑑𝑎𝑦  is the monthly mean in situ LST at the NOAA daytime 

observation, 𝑀𝑀𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡  is the monthly mean in situ LST at the NOAA nighttime 

observation.  

Taking into account the observed times of NOAA satellites with orbital drift effect since 

1981, combinations of two observations from these satellites contain eight cases: 

13:30–17:00/01:30–05:00 local solar time in 0.5-hour interval. Based on the in situ 

LST measurements during the period 2003 to 2018 at 227 flux stations operating in 

globally diverse regions, we obtained the fitting coefficients (Table A1). Then, we 

calculated the MMLST of GT-LST using GT-LST monthly mean daytime and nighttime 

LSTs, Eq. (B1), and the fitting coefficients listed in Table A1.” 

 

Table A1. Statistics for the relationship between the regressions of the eight 

combinations and actual monthly mean LST. 

Case Time a1 a2 b RMSE R2 Number 

1 13:30/01:30 0.3844 0.5783 10.3446 2.0 0.97 12095 

2 14:00/02:00 0.4010 0.5621 10.2042 1.9 0.98 12241 

3 14:30/02:30 0.4235 0.5451 8.6172 1.9 0.98 12381 

4 15:00/03:00 0.4490 0.5211 8.2652 1.8 0.98 12303 

5 15:30/03:30 0.4816 0.4840 9.5710 1.8 0.98 12165 

6 16:00/04:00 0.5250 0.4349 11.2284 2.0 0.97 11818 

7 16:30/04:30 0.5663 0.3884 12.8572 2.2 0.96 10992 

8 17:00/05:00 0.6040 0.3621 9.7302 2.4 0.96 9765 

 

Some minor Comments: 

 



 

1. Line 125: Is there a writing mistake on this sentence? “we used 54 land surface 

emissivity spectra to represent different land surface types, including 41 soil types, four 

vegetation types, four water body 125 types and five ice/snow types were selected.”  

Response: We appreciate your careful reading, the phrase “were selected” was removed. 

 

2. Line 165: “The instrumental error of the SURFRAD station give rise to uncertainty 

in the retrieved LST value of less than 1 K”. Should be “gives rise to”. 

Response: Corrected as suggested.  

 

3. Line 266 to 268: “Therefore, to obtain relatively accurate emissivity values, we 

developed an improved method that consider annual changes in land cover from the 

GLASS-GLC dataset and combines ASTER GED data with the NDVI threshold 

method to estimate the emissivity” The verb forms need to be unified. 

Response: Thank you for your careful reading. Following your suggestion, we have 

checked the whole manuscript and corrected this issue. 

 

4. Line 313 to 315: This sentence seems redundant, please write it in a more explicit 

way.  

Response: Thank you for the suggestion. We have rewritten this part according to your 

suggestion.: 

“In contrast to the ground-based validation and satellite product inter-comparison 

mentioned above, the comparisons for AVHRR LST products were performed using 

different strategies. Concretely, GT-LST compared with GD-LST using a strategy that 

compares GT-LST and GD-LST with same SURFRAD measurements concurrently 

with the satellite overpass, to evaluate the difference in the absolute accuracy of these 

two products.” 

 

5. You can use either RMSE or RMSD, but keep consistency throughout the paper and 

all figures.  

Response: Corrected as suggested. 

 

6. Please unify the format of all references. 

Response: Thank you for the suggestion. Following your suggestion, we have checked 

the whole manuscript and corrected this issue. 
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