
 

Response to Reviewer #3 

We appreciate a lot for your efforts in providing detailed comments and 

recommendation. They are very helpful to improve the quality of the manuscript. We 

have revised the manuscript according to your comments. The comments from the 

reviewers are kept in regular font, our responses use blue highlighting, and the revised 

sentences or words in the revised manuscript are highlighted with red color. 

 

Q1. Why was the MERRA-2 atmospheric dataset selected considering its coarse spatial 

resolution? 

Response: Thank you for your comments. We would like to make some explanations 

on the selection of MERRA-2 atmospheric dataset as follows: 

(1) To the best of our knowledge, there are only two global reanalysis datasets, the 

fifth-generation European Center for Medium-Range Weather Forecasts atmospheric 

reanalysis dataset (ERA5) and the Second Modern-Era Retrospective Analysis for 

Research and Applications (MERRA-2) dataset, which could provide hourly 

atmospheric water vapor content (WVC) data from 1981 to 2005. The ERA5 and 

MERRA-2 provide hourly WVC at 0.25°×0.25° and 0.625°×0.5° spatial resolution, 

respectively. Huang et. al. (2021) systematically assessed the hourly WVC of ERA5 

and MERRA-2 by a comparison with 33 Global Navigation Satellite System stations 

from 2017 to 2018. The results of the comparison are as follows: ① The accuracies of 

the ERA5- and MERRA-2-derived WVC are very high; ② The performance of ERA5 

is slightly better than MERRA-2 due to its higher spatial resolution; ③ With the same 

grid spatial resolution, the mean root mean square difference between two reanalysis 

data sets is 0.1mm (0.01g/cm2). 

(2) To match the GT-LST pixels, these datasets all need to be resampled to 0.05° 

spatial resolution. However, selecting ERA5 will consume twice as much local storage 

space and memory as MERRA-2. 

However, the goal of this study is to develop a global historical twice-daily LST 

product from 1981 to 2005, where WVC is only one of intermediate variables that 



 

obtain the nonlinear generalized split-window (GSW) algorithm coefficients 

corresponding to the subrange of WVC. Considering the tradeoff between accuracy, 

local storage space and memory and computational burden, we choose the MERRA-2-

derived WVC to estimate LST. 

 

Q2. In my opinion, the SURFRAD measurements are not the best option for LST 

validation, especially in the case of evaluating medium/coarse spatial resolution LST, 

considering the substantial spatial heterogeneity of the sites. Moreover, the measured 

longwave radiations by pyrgeometers are different from the directional radiance 

collected by satellites, which has been reported in different studies. 

Response: Thanks a lot for your comments. We would like to make some explanations 

as follows: 

(1) In order to maximize the usefulness of GT-LST for research it is necessary to 

assess the accuracy of GT-LST using as many methods as possible. Ground-based 

validation is the most traditional and well-used method, and it provides suitable 

validation results for well-defined and dedicated sites in most cases. However, there are 

the limited number of high-quality sites (i.e., KIT stations and NASA JPL stations) 

around the world that are dedicated to LST validation due to their high cost and 

logistical barriers (Guillevic et al., 2014). Moreover, they could only provide 

measurements after 2009 (Guillevic, et al., 2018). Although the SURFRAD network 

was not initially designed for LST validation, SURFRAD can provide high-quality 

radiance measurements from 1995 to present, which are useful for validating satellite 

LST products. SURFRAD measurements have already been used for evaluating 

ASTER, GOES, MODIS, VIIRS, AVHRR and AMSR-E LST products (Wang and 

Liang, 2009; Yu et al., 2012; Guillevic et al., 2012; Liu et al., 2019; Jiménez et al., 

2017). All SURFRAD stations are selected in this study. Fig. R1 shows the 

surroundings of the sites on the AVHRR scale, where all of these sites except DRA are 

located in large flat agricultural areas covered by crops and grass. Due to not all stations 

are representative of spatially homogeneous areas at GT-LST scales, we used as much 

in situ measurements as possible in order to characterize them correctly. Considering 



 

the limitation of the ground-based validation method, we compared GT-LST with a 

large number of well documented and validated LST products derived from satellites 

to characterize GT-LST performance. 

(2) Indeed, as you mentioned, longwave radiations from satellite and ground 

measurements may differ according to their measurement methods. AVHRR measures 

directional measurements in the atmospheric window, while the measured longwave 

radiations by pyrgeometers are hemispheric, wider spectrum derivations. If the surface 

is black body, the LSTs derived from these two measurements are the same (Wang et 

al., 2005; Li et al., 2023). However, most natural objects are not black bodies. AVHRR 

view zenith angles were considered to be an important factor influencing the results 

when comparisons were made with in situ measurements. Fig. R2 shows the 

relationship between view zenith angles and bias in instantaneous LST at station pixels. 

Our result shows that a high view angle does not necessarily bring a high bias or a low 

view angle does not necessarily always bring a low bias. This means that view angle 

should not be a significant source for the bias of GT-LST at a 0.05° pixel size. 



 

 

Figure R1: Aerial photos of the SURFRAD sites. The black dot marks the position of 

the site, and the blue square marks the size of an AVHRR pixel 

 

 

Figure R2: The relationship between bias of land surface temperature (GT-LST minus 

in situ observations) and view zenith angle.  

 



 

 

Q3. Why was the MYD11 LST product selected instead of the MYD21 LST, or 

geostationary LST products that have closer spatial resolutions to the GT-LST product? 

In the inter-comparison, the MDY11A1 LST was spatially aggregated to the spatial 

resolution of the GT-LST product with a simpler arithmetic mean. I doubt the validity 

of the MYD11 LST after the simple aggregation. 

Response: Thank you for your comments. The reason that we selected MYD11A1 LST 

product instead of the MYD21A1 is that the MYD11A1 LST products have been well 

validated by using the temperature-based method and radiance-based method methods 

with an accuracy of approximately 1 K (Wan, 2014; Li et al., 2023). To reduce the 

discrepancies induced by viewing location, time, geometry and quality control (QC), 

we used five criteria to guarantee the reliability of the intercomparison results. As for 

the criterion of collocation in space, besides that MYD11A1 LST was aggregated to the 

spatial resolution of the GT-LST product by averaging all MYD11A1 pixels, it also 

requires all MYD11A1 pixels with QC = 0 (i.e., the highest quality) within a coarse 

spatial resolution pixel (0.05°×0.05°). 

In addition, according to your suggestion, we have compared GT-LST with 

MYD21A1 LST (Aqua/MODIS LST product using the TES algorithm, Collection 6.1). 

Spatially, this intercomparison was conducted at the global scale. Temporally, it was 

performed on 4 months in 2004 (January, April, July, and October) which cover 

different seasons. The result of the inter-comparison, in Fig. 9, is as follows: The 

daytime and nighttime RMSD values of 3.2 K and 2.5 K and that of bias of 0.1 K and 

1.3 K. Compared to the result of MYD11A1, the significantly smaller bias was obtained 

for MYD21A1. The possible reason is attributed to the fact that the MYD21A1 LST 

uses the same observations with MYD11A1 but uses TES method to dynamically 

retrieve LSE. The following contents have been added in Line 184-187 and Line 405-

412, respectively. 

“In this study, Collection-6.1 MYD11A1 of 2004 was selected for sensor-to-sensor 

comparison. MYD21A1 LST product, which uses the same observations with MYD11A1 



 

but uses temperature–emissivity separation method to dynamically retrieve LST and 

emissivity, was also selected to make an intercomparison with GT-LST in this study. 

This inter-comparison was conducted on 4 months in 2004 (January, April, July, and 

October) which cover different seasons.” 

“As a result, the dynamic emissivity of GT-LST is typically lower than that of 

MYD11A1, which leads to overestimation of the LST (Hulley et al., 2016; Guillevic et 

al., 2014; Reiners et al., 2021; Ren et al., 2011). To further demonstrate this point, we 

compared GT-LST with MYD21A1 LST. Fig. 9 shows the daytime and nighttime RMSD 

values of 3.2 K and 2.5 K and that of bias of 0.1 K and 1.3 K between GT-LST and 

MYD21A1 LST for 4 months in 2004. Compared to the result of MYD11A1, the 

significantly smaller bias was obtained for MYD21A1. The possible reason is attributed 

to the fact that the MYD21A1 LST uses the same observations with MYD11A1 but uses 

a physics-based method to dynamically retrieve emissivity.” 

 

Figure 9: Intercomparison of GT-LST and MYD21A1 LST in January, April, July, and 

October 2004: (a) daytime; (b) nighttime. 

 

 

Q4. Typo in Eq. 5. It should be ‘AVH’ rather than ‘AST’ on the left side of the equation. 

Response: Thank you for your careful reading. We have corrected this issue. 

 

Q5. The description of the emissivity retrieval process is unclear. How were the soil 



 

type data used? 

Response: Sorry for the unclear expression. To make it clear, the paragraph in Line 

254-258 has been revised to as follows:  

“…where 𝜀𝑖,𝑠
𝐴𝑆𝑇 is the bare soil emissivity in ASTER channel 𝑖 (i=10, …, 14), and 

𝜀𝑖,𝑣
𝐴𝑆𝑇 is the emissivity of dense vegetation in ASTER channel 𝑖. Because the emissivity 

spectra of dense vegetation are similar and vary slightly in the TIR region, we used the 

dense vegetation emissivity of ASTER channel 𝑖 provided by Meng et al. (2016). 𝜀𝑖
𝐴𝑆𝑇 

is the emissivity of the ASTER GED product in channel 𝑖. 𝑃𝑣 is calculated from the 

NDVI of the ASTER GED product according to Eq. (3). For long-term cloud cover 

pixels and dense vegetation pixels (𝑃𝑣 = 1), the bare soil emissivity of these ASTER 

pixels are null values. To generate a global gap-free bare soil emissivity map of ASTER, 

we used the average emissivity of the same soil type within 5×5 neighborhood pixels to 

fill these null values. Because of some pixels with no valid neighbor pixel for averaging 

we needed to enlarge the neighborhood until all null values are filled. Soil-type data 

are described in Section 2.3.” 

 

Q6. Why were the RMSEs over savannas and croplands the largest amongst different 

land surface types? 

Response: Fig. R3 shows the intercomparison results between GT-LST and MYD11A1 

LST over savannas (i.e., woody savannas and savannas) and croplands (i.e., 

cropland/natural vegetation mosaics and croplands). We would like to make some 

explanations on relatively large disparities over savannas and croplands between these 

two products as follows: 

According to NDVI threshold method, the daily emissivity of an AVHRR pixel can 

be derived using the following formula:  

𝜀 = 𝜀𝑣𝑒𝑔 ∗ 𝐹𝑉𝐶 + 𝜀𝑠𝑜𝑖𝑙 ∗ (1 − 𝐹𝑉𝐶)          (R1) 

Here, 𝜀 is the emissivity, 𝜀𝑣𝑒𝑔  is the vegetation emissivity, 𝜀𝑠𝑜𝑖𝑙  is the bare soil 

emissivity, and 𝐹𝑉𝐶 is the fraction of vegetation cover. 

For a vegetation pixel, its FVC varies greatly due to the influence of natural and 

human factors, which leads to the underestimation of emissivity comparing with fixed 

emissivity, resulting in an overestimation of LST. The situation is particularly evident 



 

over croplands and savannas. Specially, natural disasters (e.g., drought and pests) and 

agricultural activities (e.g., harvest, cropland lies fallow) can significantly decrease 

cropland density and result in higher exposure of the soil. It leads to a decrease in 

cropland emissivity, resulting in an overestimation of LST. The emissivity for savannas 

decreases because of the increasing proportion of soil by grazing, fire and annually a 

long period in which moisture inadequate, resulting in an overestimation of LST. We 

have added the following descriptions in Line 391-393: 

“Savannas and croplands, including woody savannas and savannas, croplands and 

cropland/natural vegetation mosaics, respectively, had the largest RMSD. The possible 

reason is that the fraction of vegetation cover of savannas and croplands vary greatly 

due to the influence of natural and human factors, which leads to the underestimation 

of emissivity comparing with fixed emissivity of MYD11A1, resulting in an 

overestimation of LST. Snow and ice and water bodies had the smallest RMSD.” 

 

Figure R3. Scatterplots of GT-LST versus MYD11A1 LST during 2004 over WDS (a), 

SVN (b), CRP (c), and CNV (d). WDS: woody savannas, SVN: savannas, CRP: 



 

croplands, and CNV: cropland/natural vegetation mosaics. 

 

Q7. Any explanations for the higher uncertainties in spring and summer? 

Response: Thanks a lot for your comments. A reasonable explanation could be that 

differences seasons associated with different atmospheric conditions: cool and dry in 

autumn and winter, hot and wet in spring and summer. Generally, large differences 

between different LST products were found under high temperatures and high 

atmospheric water vapor content conditions. Some literatures got similar result. For 

example, Reiners et al. (2021) compared AVHRR LST product of the TIMELINE 

project with MYD11_L2 LST product from 2003 to 2014. The result shows the seasonal 

pattern, with lower accordance and higher bias in summer and higher accordance and 

lower bias in winter. 

 

Q8. Line 370, why is the ASTER GED-based emissivity retrieval used in the GT-LST 

product lower than the classification-based emissivity used in the MYD11 product? 

Response: Thanks a lot for your valuable comments. We would like to make some 

explanations on the lower emissivity of GT-LST product as follows: 

(1) The MYD11A1 LST product is generated by the spilt-window (SW) algorithm. 

Land surface emissivities of this product are assigned according to classification-based 

method that produces emissivities with fixed values for a limited number of land cover 

types. This method works well over densely vegetated areas and water where 

emissivities are relatively stable. However, cold biases of 3-5 K are often found over 

semi-arid and arid regions because these regions have much higher emissivity 

variability, and only one fixed overestimated emissivity inferred from land cover types 

is assigned to these regions (Coll et al., 2009; Hulley and Hook 2009; Wan et al., 2002). 

In order to represent the natural variation in emissivity, we used an improved NDVI 

threshold method to dynamically retrieve daily emissivity. Based on the analysis above, 

emissivity derived from dynamic methods is lower than emissivity according to 

classification-based method, which makes the proposed GT-LST is higher than 



 

MYD11A1 LST (i.e., positive bias). We note that earlier researches on this issue had 

similar results. Reiners et al. (2021) compared AVHRR LST product of the TIMELINE 

project with MYD11_L2 LST product from 2003 to 2014, the result shows that the 

TIMELINE dynamic emissivity is lower than the MYD11_L2 fixed emissivity and a 

general positive bias (i.e., bias=2.2 K) of TIMELINE LST towards MYD11_L2 LST. 

Martins et al. (2019) compared MSG LST and GOES-16 LST and revealed that a 

positive bias (MSG > GOES) of around 1.6 K persists due to the overestimation of the 

fixed emissivity of GOES. Mao et al. (2007) analyzed the retrieval result by radiative 

transfer model with neural network algorithm and MODIS product algorithm, 

indicating that MOD11_L2 LST product overestimates the emissivity, resulting in an 

underestimation of LST. 

(2) To further illustrate the MYD11A1 LST product overestimates the emissivity, 

we present an intercomparison exercise between MxD11A1 LST products (Terra and 

Aqua/MODIS using SW algorithm, Collection 6) with fixed emissivity and MSG LST 

products (MSG/SEVIRI using SW algorithm) with dynamic emissivity for 4 days 

(January 15, April, 15, July 15, and October 15, 2020). The criteria in Sec 3.2 were used 

to guarantee the reliability of the intercomparison results. The result is shown in Fig. 

R4, indicating that a general positive bias (daytime ranges from 0.7 K to 3.3 K, 

nighttime ranges from 0.2 K to 1.4 K) of MSG LST towards MxD11A1 LST for each 

land cover types.  

Based on the analysis above, it is reasonable to conclude that the GT-LST dynamic 

emissivity is lower than the MYD11A1 classification-based emissivity. 

  



 

 

  



 

 

Figure R4: The bias (SEVIRI LST minus MxD11A1 LST) and RMSD between the MxD11A1 product and SEVIRI during daytime (a) and 

nighttime (b) over various land cover types.  



 

Q9. Line 400, why is the emissivity of GT-LST lower than that of RT-LST? The analysis 

is too simple to understand the intercomparison between different LST products. More 

in-depth investigations are needed for the comparison with the existing AVHRR LST 

data. 

Response: RT-LST product provided only a rough estimation of emissivity using a land 

cover classification map, the FAO soil map of Africa and additional maps of tree, 

herbaceous, and bare soil percent cover. All of these data sets are static and therefore 

authors do not account for local phenological, environmental changes, and human 

factors in time. Based on the analysis above, emissivity derived from dynamic methods 

is lower than emissivity according to static method. 

 

Q10. There are quite some minor grammatical errors, e.g., Line 411, ‘an improved 

method that consider annual changes’. Please check them carefully. 

Response: Thank you for your careful reading. Following your suggestion, we have 

checked the whole manuscript and corrected these issues. 

 

Q11. The authors mentioned the increased uncertainties of AVHRR LST with time due 

to the orbital drift. It would be useful to add some analyses of the variation in the 

accuracy of the GT-LST product in the time series. 

Response: Thanks a lot for your comments. Indeed, one of the intentions of GT-LST is 

providing effective supplementary data for global long-term time series analysis. The 

analysis requires daily, monthly or annual mean LST (i.e., DMLST, MMLST, and 

AMLST) more than instantaneous LST as these mean LSTs are key indicators when 

monitoring global LSTs over a long time series (Li et al., 2023; Liu et al., 2023; Xing 

et al., 2021). It is possible to derive an estimate of the global accurate DMLST, MMLST 

and AMLST based on twice-daily LST product. However, impacting of the NOAA 

satellite orbital drift, daytime and nighttime observations of NOAA afternoon satellites 

cannot represent maximum and minimum temperatures well. Therefore, calculating the 

daily and monthly mean LST by averaging daytime and nighttime LSTs derived from 

GT-LST has a significantly lower accuracy than other studies (Fig. A4). Inspired by the 



 

work of Xing et al. (2021), we use simple linear combinations of daytime and nighttime 

LST values that were observed at observation times for NOAA to estimate DMLST and 

MMLST. In order to validate the accuracy of DMLST and MMLST according to the 

simple linear regression method, we compared DMLST and MMLST derived from GT-

LST with that of in situ LST observations from SURFRAD sites, and reported RMSE 

values of approximately 2.4 K and 2.7 K, respectively. These results are similar to that 

of Xing et al. (2021) and Chen et al. (2017). In this way, we still obtain accurate DMLST 

and MMLST without satellite orbit drift correction. Then, we rephrase the paragraph in 

Line 429-436 as follows: 

“…To estimate MMLST, first obtain the mean instantaneous clear-sky LST at 

daytime and nighttime, and then use these mean values to estimate MMLST according 

to the simple linear regression method (see Appendix B). In order to validate the 

accuracy of MMLST results, we compared MMLST based on GT-LST with that of in situ 

LST observations from SURFRAD sites for 1994–2005. All in situ LST measurements 

are all-sky and complete on a certain month, which means that the in situ MMLST is 

true MMLST. Fig. 15 showed that MMLST derived from GT-LST are related to the true 

MMLST, with an R2 value of 0.94 and an RMSE value of 2.7 K. This result is similar to 

that of Chen et al. (2017), who compared MMLST from MODIS day and night 

instantaneous clear-sky LST with actual MMLST from 156 flux tower stations, and 

reported RMSE bias values of approximately 2.7 K.” 

We have redrawn Fig. 13 according to the simple linear regression method. For 

your convenience, we listed it below. 



 

 

Figure 13: Monthly mean LST based on GT-LST versus monthly mean LST based on in 

situ LST from 1994 to 2005. 

In addition, as for some details of the simple linear regression method, we have 

added the following descriptions in Appendix B. 

“Impacting of the NOAA satellite orbital drift, daytime and nighttime observations 

of NOAA afternoon satellites cannot represent maximum and minimum temperatures 

well. Therefore, the MMLST according to the simple average method has a significantly 

lower accuracy than other studies (Fig. A4). Xing et al. (2021) proposed to use 9 

combinations of two to four MODIS instantaneous retrievals of which at least one 

daytime LST and one nighttime LST to estimate mean LSTs, and determined the weight 

for every moment. Inspired by the work of Xing et al. (2021), we determined to use 

simple linear combinations of monthly mean daytime and nighttime LST values that 



 

were observed at observation times for NOAA to estimate MMLST with ground-based 

measurement. For the combinations of two valid monthly mean LSTs (one daytime and 

one nighttime LST), the regression models can be written as follows: 

𝑀𝑀𝐿𝑆𝑇 = 𝑎1 ∗ 𝑀𝑀𝐿𝑆𝑇𝑑𝑎𝑦 + 𝑎2 ∗ 𝑀𝑀𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡 + 𝑏      (B1) 

where 𝑀𝑀𝐿𝑆𝑇 is the ground-based monthly mean LST, 𝑎1, 𝑎2 and 𝑏 are the fitting 

coefficients, 𝑀𝑀𝐿𝑆𝑇𝑑𝑎𝑦  is the monthly mean in situ LST at the NOAA daytime 

observation, 𝑀𝑀𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡  is the monthly mean in situ LST at the NOAA nighttime 

observation.  

Taking into account the observed times of NOAA satellites with orbital drift effect since 

1981, combinations of two observations from these satellites contain eight cases: 

13:30–17:00/01:30–05:00 local solar time in 0.5-hour interval. Based on the in situ 

LST measurements during the period 2003 to 2018 at 227 flux stations operating in 

globally diverse regions, we obtained the fitting coefficients (Table A1). Then, we 

calculated the MMLST of GT-LST using GT-LST monthly mean daytime and nighttime 

LSTs, Eq. (B1), and the fitting coefficients listed in Table A1.” 

 

Table A1. Statistics for the relationship between the regressions of the eight 

combinations and actual monthly mean LST. 

Case Time a1 a2 b RMSE R2 Number 

1 13:30/01:30 0.3844 0.5783 10.3446 2.0 0.97 12095 

2 14:00/02:00 0.4010 0.5621 10.2042 1.9 0.98 12241 

3 14:30/02:30 0.4235 0.5451 8.6172 1.9 0.98 12381 

4 15:00/03:00 0.4490 0.5211 8.2652 1.8 0.98 12303 

5 15:30/03:30 0.4816 0.4840 9.5710 1.8 0.98 12165 

6 16:00/04:00 0.5250 0.4349 11.2284 2.0 0.97 11818 

7 16:30/04:30 0.5663 0.3884 12.8572 2.2 0.96 10992 

8 17:00/05:00 0.6040 0.3621 9.7302 2.4 0.96 9765 
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