
Response to Reviewer #2 

We appreciate a lot for your efforts in providing detailed comments and 

recommendation. They are very helpful to improve the quality of the manuscript. We 

have revised the manuscript according to your comments. The comments from the 

reviewers are kept in regular font, our responses use blue highlighting, and the revised 

sentences or words in the revised manuscript are highlighted with red color. 

 

In the study titled “A global historical twice-daily (daytime and nighttime) land surface 

temperature dataset produced by AVHRR observations from 1981 to 2005”, the authors 

produce a global LST product from 1981 to 2005 at 0.05 degree using AVHRR 

observations. The study is potentially useful for understanding changes in surface 

climate over a longer time period than what we can currently examine using most 

existing LST products. However, I have several concerns that should be addressed 

before the paper is considered for publication. 

Q1. The biggest issue I have is that the dataset is restricted to 2005. Given that AVHRR 

products have large biases compared to MODIS Aqua and use different inputs (such as 

the dynamic emissivity estimates used), one cannot combine MODIS and AVHRR to 

perform long-term analysis. Since the AVHRR is still operational, the dataset needs to 

be extended to more recent years. 

Response: Thanks for your valuable suggestion. As emphasized in the introduction 

section, this study aims to fill the data gap of global satellite-derived twice-daily LST 

before 2000. However, considering global meteorology and climatology-related 

applications urgently need more than 30 years of daily LST products, there are two 

ways of satisfying that requirement based on GT-LST. One way is to combine GT-LST 

(1981-2000) with the existing satellite-derived daily LST product (2000-present), 

which depend on different products with the same observation period to eliminate or 

limit the bias between different sensors. Therefore, we extend the time span of GT-LST 

to 2005. Benefiting from the same observation period (i.e., 2000-2005) with MODIS 

LST, we will produce a global long-term (1981-present) LST data record according to 



the method of Liu et al. (2012), which will be primarily from the AVHRR (1981-2000) 

and MODIS (2000-present). 

Indeed, as you mentioned, extending the time span of GT-LST to present is another 

way to address this issue. We have already started working on generating GT-LST 

products (2006-present). Although we have proposed a framework for generating GT-

LST product, we still need spend a lot of time downloading global AVHRR GAC L1B 

data, handling large amounts of original Level-1b data, generating huge amounts of 

process variable data, and so on. After all data have been processed, we will upload GT-

LST (2006-present) to previous URL (https://doi.org/10.5281/zenodo.7134158). 

 

Q2. As an addendum to the previous point, since one of the most important use cases 

of long-term datasets is time series analysis, the long-term changes in GT-LST should 

be compared against equivalent changes from MODIS products. If the orbital drift has 

a significant impact on long-term trends, we should be very cautious about the 

suitability of this data product for this use case. This issue needs to be quantified more 

clearly instead of just discussed in text in one section. This can potentially avoid 

misleading results from future uses of this dataset. 

Response: Thanks a lot for your comments. Indeed, one of the intentions of GT-LST is 

providing effective supplementary data for global long-term time series analysis. The 

analysis requires daily, monthly or annual mean LST (i.e., DMLST, MMLST, and 

AMLST) more than instantaneous LST as these mean LSTs are key indicators when 

monitoring global LSTs over a long time series (Li et al., 2023; Liu et al., 2023; Xing 

et al., 2021). It is possible to derive an estimate of the global accurate DMLST, MMLST 

and AMLST based on twice-daily LST product. However, impacting of the NOAA 

satellite orbital drift, daytime and nighttime observations of NOAA afternoon satellites 

cannot represent maximum and minimum temperatures well. Therefore, calculating the 

daily and monthly mean LST by averaging daytime and nighttime LSTs derived from 

GT-LST has a significantly lower accuracy than other studies (Figure A4). Inspired by 

the work of Xing et al. (2021), we use simple linear combinations of daytime and 

nighttime LST values that were observed at observation times for NOAA to estimate 



DMLST and MMLST. In order to validate the accuracy of DMLST and MMLST 

according to the simple linear regression method, we compared DMLST and MMLST 

derived from GT-LST with that of in situ LST observations from SURFRAD sites, and 

reported RMSE values of approximately 2.4 K and 2.7 K, respectively. These results 

are similar to that of Xing et al. (2021) and Chen et al. (2017). In this way, we still 

obtain accurate DMLST and MMLST without satellite orbit drift correction. Then, we 

rephrase the paragraph in Line 429-436 as follows: 

“…To estimate MMLST, first obtain the mean instantaneous clear-sky LST at 

daytime and nighttime, and then use these mean values to estimate MMLST according 

to the simple linear regression method (see Appendix B). In order to validate the 

accuracy of MMLST results, we compared MMLST based on GT-LST with that of in situ 

LST observations from SURFRAD sites for 1994–2005. All in situ LST measurements 

are all-sky and complete on a certain month, which means that the in situ MMLST is 

true MMLST. Fig. 13 showed that MMLST derived from GT-LST are related to the true 

MMLST, with an R2 value of 0.94 and an RMSE value of 2.7 K. This result is similar to 

that of Chen et al. (2017), who compared MMLST from MODIS day and night 

instantaneous clear-sky LST with actual MMLST from 156 flux tower stations, and 

reported RMSE bias values of approximately 2.7 K.” 

We have redrawn Fig. 13 according to the simple linear regression method. For 

your convenience, we listed it below. 



 

Figure 13: Monthly mean LST based on GT-LST versus monthly mean LST based on in 

situ LST from 1994 to 2005. 

In addition, as for some details of the simple linear regression method, we have 

added the following descriptions in Appendix B. 

“Impacting of the NOAA satellite orbital drift, daytime and nighttime observations 

of NOAA afternoon satellites cannot represent maximum and minimum temperatures 

well. Therefore, the MMLST according to the simple average method has a significantly 

lower accuracy than other studies (Fig. A4). Xing et al. (2021) proposed to use 9 

combinations of two to four MODIS instantaneous retrievals of which at least one 

daytime LST and one nighttime LST to estimate mean LSTs, and determined the weight 

for every moment. Inspired by the work of Xing et al. (2021), we determined to use 

simple linear combinations of monthly mean daytime and nighttime LST values that 



were observed at observation times for NOAA to estimate MMLST with ground-based 

measurement. For the combinations of two valid monthly mean LSTs (one daytime and 

one nighttime LST), the regression models can be written as follows: 

𝑀𝑀𝐿𝑆𝑇 = 𝑎1 ∗ 𝑀𝑀𝐿𝑆𝑇𝑑𝑎𝑦 + 𝑎2 ∗ 𝑀𝑀𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡 + 𝑏      (B1) 

where 𝑀𝑀𝐿𝑆𝑇 is the ground-based monthly mean LST, 𝑎1, 𝑎2 and 𝑏 are the fitting 

coefficients, 𝑀𝑀𝐿𝑆𝑇𝑑𝑎𝑦  is the monthly mean in situ LST at the NOAA daytime 

observation, 𝑀𝑀𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡  is the monthly mean in situ LST at the NOAA nighttime 

observation.  

Taking into account the observed times of NOAA satellites with orbital drift effect since 

1981, combinations of two observations from these satellites contain eight cases: 

13:30–17:00/01:30–05:00 local solar time in 0.5-hour interval. Based on the in situ 

LST measurements during the period 2003 to 2018 at 227 flux stations operating in 

globally diverse regions, we obtained the fitting coefficients (Table A1). Then, we 

calculated the MMLST of GT-LST using GT-LST monthly mean daytime and nighttime 

LSTs, Eq. (B1), and the fitting coefficients listed in Table A1.” 

 

Table A1. Statistics for the relationship between the regressions of the eight 

combinations and actual monthly mean LST. 

Case Time a1 a2 b RMSE R2 Number 

1 13:30/01:30 0.3844 0.5783 10.3446 2.0 0.97 12095 

2 14:00/02:00 0.4010 0.5621 10.2042 1.9 0.98 12241 

3 14:30/02:30 0.4235 0.5451 8.6172 1.9 0.98 12381 

4 15:00/03:00 0.4490 0.5211 8.2652 1.8 0.98 12303 

5 15:30/03:30 0.4816 0.4840 9.5710 1.8 0.98 12165 

6 16:00/04:00 0.5250 0.4349 11.2284 2.0 0.97 11818 

7 16:30/04:30 0.5663 0.3884 12.8572 2.2 0.96 10992 

8 17:00/05:00 0.6040 0.3621 9.7302 2.4 0.96 9765 

 

Q3. A second major source of concern is the dynamic emissivity method used. There 

are several vegetation-adjusted emissivity methods available, which can give different 

values, different enough to account for some of the biases seen. Of note, at 0.05 degree, 

you would start resolving larger urban areas, which is a major use case for satellite-



derived LST (Voogt & Oke, 2003). Different emissivity methods perform differently 

over urban surfaces, which impacts this important use case (Chakraborty et al. 2021). 

Ideally, this issue needs to be tested further using different emissivity methods. 

Response: This is a good suggestion! As you mentioned, to date, various land surface 

emissivity (LSE) estimation methods have been proposed with the same goal but 

different advantages, and limitations, e.g., classification-based method, NDVI 

threshold method, TES method, and physics-based day/night method and so on (Li et 

al., 2013). With their advantages and limitations, these methods have different 

accuracies and are applicable for various sensors and applications. To reflect the 

performance for the emissivity-retrieved methods and account for the positive bias 

between GT-LST and MYD11A1 LST, according to your suggestion, we compared GT-

LST with MYD21A1 LST that uses the same observations with MYD11A1 but uses a 

physics-based algorithm to dynamically retrieve both LST and spectral emissivity. The 

intercomparison results of MYD21A1 LST showed a very lower bias. As for the 

comparison with MYD21A1, a brief explanation was analyzed below in Q4. There is 

no denying that it is important and significative to evaluate emissivity methods under 

different circumstances and for various applications. However, the goal of this study is 

to develop a global historical twice-daily LST product from 1981 to 2005, where LSE 

is only one of the key parameters. Therefore, we choose an improved NDVI threshold 

method to estimate LSEs from space for a global case by taking the sensor 

characteristics, the required accuracy, as well as computation time into account. 

Although evaluating emissivity methods under different circumstances is not be 

discussed in more detail in this study, this is a meaningful research topic. Inspired by 

your suggestion and the work of Chakraborty et al. (2021), we will evaluate these 

methods on an identical standard and to give the quality and accuracy on their 

applications in future work. After evaluating them we may attempt to generate the first 

estimates of LST at a global scale using AVHRR GAC data by combining all these 

approaches. 

 

Q4. The comparison with MODIS MYD11 is somewhat difficult because of the 



different emissivity method used. The comparison should be done against MODIS 

MYD21, which uses the same observations, but a temperature-emissivity separation 

method instead of classification-based prescribed emissivity. 

Response: Thanks for your valuable comments. According to your comments, we have 

compared GT-LST with MYD21A1 LST (Aqua/MODIS LST product using the TES 

algorithm, Collection 6.1). Spatially, this intercomparison was conducted at the global 

scale. Temporally, it was performed on 4 months in 2004 (January, April, July, and 

October) which cover different seasons. The results of the daytime and nighttime 

comparison, in Fig. 9, are as follows: The daytime and nighttime RMSD values of 3.2 

K and 2.5 K and that of bias of 0.1 K and 1.3 K. Compared to the result of MYD11A1, 

the significantly smaller bias was obtained for MYD21A1. The possible reason is 

attributed to the fact that the MYD21A1 LST uses the same observations with 

MYD11A1 but uses TES method to dynamically retrieve LSE. The following contents 

have been added in Line 184-187 and Line 405-412, respectively. 

“In this study, Collection-6.1 MYD11A1 of 2004 was selected for sensor-to-sensor 

comparison. MYD21A1 LST product, which uses the same observations with MYD11A1 

but uses temperature–emissivity separation method to dynamically retrieve LST and 

emissivity, was also selected to make an intercomparison with GT-LST in this study. 

This inter-comparison was conducted on 4 months in 2004 (January, April, July, and 

October) which cover different seasons.” 

“As a result, the dynamic emissivity of GT-LST is typically lower than that of 

MYD11A1, which leads to overestimation of the LST (Hulley et al., 2016; Guillevic et 

al., 2014; Reiners et al., 2021; Ren et al., 2011). To further demonstrate this point, we 

compared GT-LST with MYD21A1 LST. Fig. 9 shows the daytime and nighttime RMSD 

values of 3.2 K and 2.5 K and that of bias of 0.1 K and 1.3 K between GT-LST and 

MYD21A1 LST for 4 months in 2004. Compared to the result of MYD11A1, the 

significantly smaller bias was obtained for MYD21A1. The possible reason is attributed 

to the fact that the MYD21A1 LST uses the same observations with MYD11A1 but uses 

a physics-based method to dynamically retrieve emissivity.” 



 

Figure 9: Intercomparison of GT-LST and MYD21A1 LST in January, April, July, and 

October 2004: (a) daytime; (b) nighttime. 

 

Q5. For comparison with SURFAD stations, did the authors check that the emissivity 

used to generate the LST in the ground observations is same as the LST in the GT-LST 

product? If they are different, would be good to adjust by the emissivity difference and 

check if that improves the accuracy. 

Response: The GT-LST use directional measurements of AVHRR in the atmospheric 

window, while the SURFRAD stations provide upwelling and downwelling broadband 

hemispherical TIR radiances using pyrgeometers in the spectral range from 3.5 to 50 

µm, from which estimates of LSTs can be derived using Stefan–Boltzmann’s law. To 

retrieve LST using Stefan–Boltzmann’s law, the surface broadband emissivity must be 

known a priori. In this study, these broadband emissivities were estimated from ASTER 

emissivity product using a spectral-to-broadband linear regression equation according 

to the work of Duan et al. (2019), as follows: BND(0.968), TBL(0.972), DRA(0.967), 

FPK(0.973), GCM(0.971), PSU(0.970), and SXF(0.970). According to the study of 

Liang (2005), the surface broadband emissivity of sites can be obtained from AVHRR 

LSE in AVHRR LSE for channel centered at 11 and 12 µm via the empirical relationship: 

𝜀 = 0.2489 + 0.2386𝜀11 + 0.4998𝜀12          (R1) 

According to Eq. (R1), the surface broadband emissivities are 0.976, 0.975, 0.972, 

0.973, 0.973, 0.968 and 0.974 for BND, TBL, DRA, FPK, GCM, PSU, and SXF, 



respectively. Different empirical relationships perform an error less than 0.01 in the 

broadband emissivity. According to the study of Xing et al. (2021), the emissivity 

changes by 0.01, and the change in in-situ LST will not exceed 0.37 K. Therefore, while 

this error is not negligible, it does not appear to be a dominant source of uncertainty in 

the ground-based validation. 

 

Q6. Finally, given the view angle of AVHRR, a broader discussion needs to be added 

about thermal anisotropy (DUffour et al. 2015). Satellites only provide a 2d directional 

view of LST, and this is not directly comparable across satellites (Landsat vs MODIS) 

or against ground observations that have a downward pointing radiometer. This is of 

particular concern over heterogeneous terrain, such as mixed forests and over cities. 

Response: Thanks a lot for your valuable comments. we would like to make some 

explanations on the thermal anisotropy issue as follows: 

(1) Previous multi-sensor comparison studies (Guillevic et al., 2012; Trigo et al., 

2008) found differences up to 12 K between MODIS and SEVIRI LST due to 

directional effects. Appropriate matchups significantly reduce the discrepancies 

induced by directional effects (Guillevic et al., 2014). In this study, to avoid the 

uncertainties induced by directional effects, a strict criterion of viewing geometry 

alignment was established to guarantee the reliability of the intercomparison results (Li 

et al., 2023): the difference in VZA between MYD11A1 and GT-LST is limited to be 

less than 15°. 

(2) LST from satellite and ground measurements may differ according to their 

measurement methods. AVHRR use directional measurements in the atmospheric 

window, while ground-based longwave radiation measurements are hemispheric, wider 

spectrum derivations. If the surface is black body, the two LSTs are the same (Wang et 

al., 2005, Li et al., 2023). However, most natural objects are not black bodies. AVHRR 

view zenith angles were considered to be an important factor influencing the results 

when comparisons were made with in situ measurements. Figure R1 shows the 

relationship between view angles and bias in instantaneous LST at station pixels. Our 

result is that a high view angle does not necessarily show a high bias and a low view 



angle does not necessarily always show a low bias. This means that view angle should 

not be a significant source for the bias of GT-LST at a 0.05° pixel size. 

 

Figure R1: The relationship between bias of land surface temperature (GT-LST minus 

in situ observations) and view zenith angle.  
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