
Response to Reviewer #1 

We appreciate a lot for your efforts in providing detailed comments and 

recommendation. They are very helpful to improve the quality of the manuscript. We 

have revised the manuscript according to your comments. The comments from the 

reviewers are kept in regular font, our responses use blue highlighting, and the revised 

sentences or words in the revised manuscript are highlighted with red color. 

 

This manuscript proposes a long-term (1981-2005) AVHRR land surface temperature 

(LST) dataset that includes outcomes at both daytime and nighttime. The algorithm is 

the generalized split-window (GSW) algorithm while in the production, this dataset also 

considered annual land cover change. Overall, the accuracy of the proposed dataset is 

promising, and it filled the gaps regarding long-term global LST datasets, especially at 

nighttime. Therefore, I would recommend it be published on ESSD after a major 

revision. 

Q1. Positive bias issue. Based on site validation and inter-comparison with MYD11 and 

the other two AVHRR LST products, the proposed GT-LST shows a clear positive bias 

(>1 K) nearly in all results. The authors claim the bias is due to the emissivity difference 

(Line 370), however, the proposed GT-LST has a clear bias than the other three products, 

and it seems that the emissivity used by GT-LST is not accurate. The authors mention 

that the dataset will be calibrated to remove the bias in the future (Line 436). I am 

thinking if it would be better to solve this issue in this paper as it doesn’t need to be 

done in a separate paper. 

Response: Thanks a lot for your valuable comments. First, we would like to make some 

explanations on the positive bias issue as follows: 

(1) The GT-LST product and the global daytime AVHRR LST (GD-LST) used a 

dynamic emissivity method to retrieve LST. We compared GT-LST with GD-LST on 

January 15, April 15, July 15, and October 16, 1999, with low positive bias of 0.6 K 

(Figure R1).  

(2) The MYD11A1 LST product and the regional twice-daily LST product over 



Africa (RT-LST) are generated by the spilt-window (SW) algorithm. Land surface 

emissivities of these two products are assigned according to classification-based 

method that produces emissivities with fixed values for a limited number of land cover 

types. This method works well over densely vegetated areas and water where 

emissivities are relatively stable. However, cold biases of 3-5 K are often found over 

semi-arid and arid regions because these regions have much higher emissivity 

variability, and only one fixed overestimated emissivity inferred from land cover types 

is assigned to these regions (Coll et al., 2009; Hulley and Hook 2009; Wan et al., 2002). 

In order to represent the natural variation in emissivity, we used an improved NDVI 

threshold method to dynamically retrieve daily emissivity. Based on the analysis above, 

emissivity derived from dynamic methods is lower than emissivity according to 

classification-based method, which makes the proposed GT-LST is higher than 

MYD11A1 LST and RT-LST (i.e., positive bias). We note that earlier researches on this 

issue had similar results. Reiners et al. (2022) compared AVHRR LST product of the 

TIMELINE project with MYD11_L2 LST product from 2003 to 2014, the result shows 

that the TIMELINE dynamic emissivity is lower than the MYD11_L2 fixed emissivity 

and a general positive bias (i.e., bias=2.2 K) of TIMELINE LST towards MYD11_L2 

LST. Martins et al. (2019) compared MSG LST and GOES-16 LST and revealed that a 

positive bias (MSG > GOES) of around 1.6 K persists due to the overestimation of the 

fixed emissivity of GOES. Mao et al. (2007) analyzed the retrieval result by radiative 

transfer model with neural network algorithm and MODIS product algorithm, 

indicating that MOD11_L2 LST product overestimates the emissivity, resulting in an 

underestimation of LST. 

(3) To further illustrate the positive bias issue, we present an intercomparison 

exercise between MxD11A1 LST products (Terra and Aqua/MODIS using SW 

algorithm, Collection 6) with fixed emissivity and MSG LST products (MSG/SEVIRI 

using SW algorithm) with dynamic emissivity for 4 days (January 15, April, 15, July 

15, and October 15, 2020). The criteria in Sec 3.2 were used to guarantee the reliability 

of the intercomparison results. The result is shown in Figure R2, indicating that a 

general positive bias (daytime ranges from 0.7 K to 3.3 K, nighttime ranges from 0.2 K 



to 1.4 K) of MSG LST towards MxD11A1 LST for each land cover types. 

(4) The comparison with in situ LST showed that a positive bias was found for all 

SURFRAD sites. However, only the bias of BND and FPK are large than 1 K. Similar 

results were obtained by Reiners et al. (2022) and Liu et al. (2019). 

Therefore, we think that positive biases obtained for GT-LST and other LST 

products are relatively reasonable. 

Next, many LST products can provide global twice-daily LST after 2000, such as 

ASTER LST, MODIS LST, VIIRS LST, AATSR LST and SLSTR LST. Users can 

obtain a relatively long-term twice-daily LST product by combining GT-LST with these 

LST products. However, integration of LST from different sensors is complicated. Due 

to the different LST inversion methods, air conditions, viewing geometries, etc., the 

sensors bias between GT-LST and other LST products is not constant. Therefore, 

developing a general method to utilize for sensor normalization is difficult and is not 

the key point of this paper. 

 
Figure R1. GT-LST versus GD-LST during the daytime on January 15, April, 15, July 

15, and October 16, 1999.  





 
Figure R2. The bias (SEVIRI LST minus MxD11A1 LST) and RMSD between the MxD11A1 product and SEVIRI during daytime (a) and 

nighttime (b) over various land cover types. 

  



Q2. Large RMSE (4.1 K) of the monthly mean LST result. The GT-LST is claimed to 

have the strength to generate gap-free monthly mean LST; however, the outcome has 

an RMSE of 4.1 K which is too large at a monthly scale compared to other studies (Line 

395). This part weakened the statement of the advantage of GT-LST for temporal 

upscaling based on the logic chain. I would suggest either removing this part or 

quantifying the impact of orbit drift, in other words, comparing the accuracies of 

samples that have not and have suffered from orbit drift, and then claiming the potential 

of this data after orbit drift. 

Response: Thanks for your suggestion. We used simple linear combinations of monthly 

mean daytime and nighttime LST values to estimate MMLST. The detailed revisions 

are listed as follows. 

 “…To estimate MMLST, first obtain the mean instantaneous clear-sky LST at 

daytime and nighttime, and then use these mean values to estimate MMLST according 

to the simple linear regression method (see Appendix B). In order to validate the 

accuracy of MMLST results, we compared MMLST based on GT-LST with that of in situ 

LST observations from SURFRAD sites for 1995–2005. All in situ LST measurements 

are all-sky and complete on a certain month, which means that the in situ MMLST is 

true MMLST. Fig. 15 showed that MMLST derived from GT-LST are related to the true 

MMLST, with an R2 value of 0.94 and an RMSE value of 2.7 K. This result is similar to 

that of Chen et al. (2017), who compared MMLST from MODIS day and night 

instantaneous clear-sky LST with actual MMLST from 156 flux tower stations, and 

reported RMSE bias values of approximately 2.7 K.” 

We have redrawn Fig. 15 according to the simple linear regression method. For your 

convenience, we listed it below. 



 

Figure 15. Monthly mean LST based on GT-LST versus monthly mean LST based on in 

situ LST from 1995 to 2005. 

We have added the following descriptions in Appendix B. 

“Impacting of the NOAA satellite orbital drift, daytime and nighttime observations 

of NOAA afternoon satellites cannot represent maximum and minimum temperatures 

well. Therefore, the MMLST according to the simple average method has a significantly 

lower accuracy than other studies (Figure A3). Xing et al. (2021) proposed to use 9 

combinations of two to four MODIS instantaneous retrievals of which at least one 

daytime LST and one nighttime LST to estimate mean LSTs, and determined the weight 

for every moment. Inspired by the work of Xing et al. (2021), we determined to use 

simple linear combinations of monthly mean daytime and nighttime LST values that 

were observed at observation times for NOAA to estimate MMLST with ground-based 

measurement. For the combinations of two valid monthly mean LSTs (one daytime and 



one nighttime LST), the regression models can be written as follows: 

𝑀𝑀𝐿𝑆𝑇 = 𝑎1 ∗ 𝑀𝑀𝐿𝑆𝑇𝑑𝑎𝑦 + 𝑎2 ∗ 𝑀𝑀𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡 + 𝑏      (B1) 

where 𝑀𝑀𝐿𝑆𝑇 is the ground-based monthly mean LST, 𝑎1, 𝑎2 and 𝑏 are the fitting 

coefficients, 𝑀𝑀𝐿𝑆𝑇𝑑𝑎𝑦  is the monthly mean in situ LST at the NOAA daytime 

observation, 𝑀𝑀𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡  is the monthly mean in situ LST at the NOAA nighttime 

observation.  

Taking into account the observed times of NOAA satellites with orbital drift effect since 

1981, combinations of two observations from these satellites contain eight cases: 

13:30–17:00/01:30–05:00 local solar time in 0.5-hour interval. Based on the in situ 

LST measurements during the period 2003 to 2018 at 227 flux stations operating in 

globally diverse regions, we obtained the fitting coefficients (Table A1). Then, we 

calculated the MMLST of GT-LST using GT-LST monthly mean daytime and nighttime 

LSTs, Eq. (B1), and the fitting coefficients listed in Table A1.” 

 

Table A1. Statistics for the relationship between the regressions of the eight 

combinations and actual monthly mean LST. 

Case Time a1 a2 b RMSE R2 Number 

1 13:30/01:30 0.3844 0.5783 10.3446 2.0 0.97 12095 

2 14:00/02:00 0.4010 0.5621 10.2042 1.9 0.98 12241 

3 14:30/02:30 0.4235 0.5451 8.6172 1.9 0.98 12381 

4 15:00/03:00 0.4490 0.5211 8.2652 1.8 0.98 12303 

5 15:30/03:30 0.4816 0.4840 9.5710 1.8 0.98 12165 

6 16:00/04:00 0.5250 0.4349 11.2284 2.0 0.97 11818 

7 16:30/04:30 0.5663 0.3884 12.8572 2.2 0.96 10992 

8 17:00/05:00 0.6040 0.3621 9.7302 2.4 0.96 9765 

 

 
Q3. The impact of annual land cover change. This is an interesting part of the study, 

whereas the study didn’t pay attention to the performance of such change. Traditionally 

people mainly utilized a land cover climatology map rather than annual changes to 

retrieve global LST. I would suggest including additional analysis to find some 

examples and compare with LST from Ma et al. (2020) to demonstrate the progress 

using annual land cover maps. 

Response: This is a good suggestion! Changes in land cover have been accelerating 

since 1980 under the impact of climate changes and human activities. As an intrinsic 

property of natural materials, land surface emissivity predominantly depends on the 

land cover type. Therefore, using only one year of land cover data to determine long-



term emissivity is not accurate. The quantitative relationship between annual land cover 

change and LST is rather complex because the changes of Land surface temperature 

were related to many factors, including changes in land cover, land surface parameters, 

seasonal variation, climatic condition and economic development, etc. Furthermore, 

GT-LST and LST from Ma et al. (2020) used different LST retrieval algorithms and 

data sources, which makes it harder to analyze the impact of annual land cover change 

between these two LST products. However, this is a meaningful research topic, and we 

will further analyze the impact in future work. 

 

 
Q4. Some processes were not introduced clearly. 

Q4.1 why does not GT-LST cover 1981 to 2022? GAC raw data is still updating. 

Response: Thanks a lot for your comment. The reasons that GT-LST only cover 1981 

to 2005 are as follows:  

Existing satellite-based global twice-daily LST products can only date back to 2000. 

Therefore, when the study began, we aimed to fill the data gap of global satellite-

derived twice-daily LST before 2000. Considering global meteorology and 

climatology-related applications urgently need more than 30 years of daily LST 

products, GT-LST can be combined with the existing satellite-derived daily LST 

product (e.g., MODIS LST, AATSR LST and ASTER LST) after 2000 to satisfy that 

requirement. However, integration of LST from different sensors need to eliminate or 

limit the bias between the sensors. We then extend the time span of GT-LST to 2005. 

Benefiting from the same observation period with other LST products, these extended 

data can be used to calibrate the bias between GT-LST and other LST datasets. In this 

way, users can obtain a relatively homogeneous twice-daily LST product for 1981 to 

2022. However, we will apply your suggestion to extend the time span of GT-LST to 

2022 in the near future.  

 

 

Q4.2 why did the authors only employ the site observations from 1995 to 2000? If you 

can extend it to 2005, you can include one more SURFRAD site. 

Response: Thank you for your suggestion. We have extended the observations of 

SURFRAD sites to 2005 and employed one more SURFRAD site (i.e., SXF) 

observations according to your suggestion. We have redrawn Fig. 8. For your 

convenience, we listed it below. 



 
Figure 8. GT-LST versus in situ LST for 1995–2005 at (a) BND, (b) DRA, (c) FPK, (d) 

GWN, (e) PSU, (f) SXF, and (g) TBL sites. 



Q4.3 Regarding the site validation, 6 sites seem not enough to represent the accuracy 

of the global product. I would recommend adding some BSRN sites that also have good 

data quality. 

Response: Thanks for your suggestion. Following your comments, we have added 

some BSRN sites to represent the accuracy of the GT-LST product in contrasting 

climatic zones. The following contents have been added in Section 2.5 and Section 4.1, 

respectively. 

“…The BSRN has 76 stations that detect important changes in the Earth's radiation 

field at the Earth's surface since 1992. These stations provide high-quality surface and 

upper-air meteorological observations, which are important in supporting the 

validation and confirmation of satellite. We selected four sites with measurements of 

upwelling and downwelling TIR radiances before 2000 (Table 3).” 

 “…We further compared GT-LST data with in situ LST data at BAR, NYA, PYA, and 

TAT sites for 1995–2005. Fig. 9 shows the scatterplots between GT-LST and in situ LST 

at these four BSRN sites. The accuracy of GT-LST product at BSRN sites is relatively 

worse than that at SURFRAD sites, with RMSE (bias) ranges from 3.1 K (-2.7 K) to 4.0 

K (2.5 K).” 

 

Table 3. Details of the validation sites used in this study. 

 Name Elevation(m) Land cover type Latitude Longitude Valid period 

S
U

R
F

R
A

D
 

BND 230 Croplands 40.0519 -88.3731 1995–2005 

DRA 1007 Open shrublands 36.6237 -116.0195 1998–2005 

FPK 634 Grasslands 48.3078 -105.1017 1994–2005 

GWN 98 Cropland/natural vegetation mosaic 34.2547 -89.8729 1994–2005 

PSU 376 Cropland/natural vegetation mosaic 40.7201 -77.9309 1998–2005 

TBL 1689 Grasslands 40.1250 -105.2368 1995–2005 

SXF 473 Croplands 43.7343 -96.6233 2003–2005 

B
S

R
N

 BAR 8 Tundra 71.3230 -156.6070 1995–2005 

NYA 11 Tundra 78.9227 11.9273 1999–2005 

PAY 491 Cultivated 46.8123 6.9422 1995–2005 

TAT 25 Grass 36.0581 140.1258 1996–2005 

 



 
Figure 9. Scatterplots between GT-LST and in situ LST at (a) BAR, (b) NYA, (c) PYA, 

and (d) TAT. 

 

 
Q4.4 why Fig 9(b) has some considerable scattered samples? Those cases should be 

discussed in the context. 

Response: Thanks for your comment. We have added some discussion in Section 4.2 

for the revised manuscript as follows: 

“…However, as can be seen in Fig.10(b), large LST differences (GT-LST - 

MYD11A1 LST) more than 20 K are mostly distributed in red box. Through counting, 

there are 111 samples in red box, which are barren land cover type and arid climate 

type. Fig. A2 shows the distribution of each scattered samples in red box. 77 of 111 

samples happened in Haiya, Sudan on March 31, 2004. The samples of rest happened 

in Taif, Saudi Arabia on April 2, 2004. For these samples, we double-checked all 



variables that are essential parameters in GT-LST retrieval. The result show that all 

scope variables are reasonable except BT of TIR bands. Abnormal high BTs at these 

nighttime samples were found on March 31 and April 2, 2004 (Fig. A3), which leaded 

to extreme high LSTs. The possible reasons for abnormal high BTs are as follows: (1) 

These two regions may have experienced extreme events such as wars and natural 

disasters on March 31 or April 2, 2004. But we didn’t find relevant information from 

historical news and documents. (2) Another factor may be instrument failure on these 

two days.”  

 

Figure 10. Inter-comparison of GT-LST and MYD11A1 LST in 2004: (a) daytime; (b) 

nighttime. Red box indicates considerable scattered samples. 

 

 



 
Figure A1. Distribution of the 111 scattered samples. 

 

 
Figure A2. An example of abnormal high BTs on (a) March 31, 2004 and (b) April 2, 

2004. 

 

 

Q4.5 Line 350: as MODIS has been spatially aggregated to match with GT-LST, why 

spatial heterogeneity is still an issue here? 

Response: Thanks for your comment. We have deleted this erroneous expression. 

 

 

Q4.6 Fig10: I would suggest changing Fig10 to another format: consider RMSE and 

bias as the two dimensions of the plot, and mark each dot by their names as using color 

to show the bias is not easily quantified. 

Response: Thanks for your valuable suggestion. We have redrawn Fig. 11 according to 

your suggestion. For your convenience, we listed it below. 



 
Figure 11. RMSD and bias between GT-LST and MYD11A1 LST in 2003 for various 

land cover types. ENF: evergreen needleleaf forests, EBF: evergreen broadleaf forests, 

DNF: deciduous needleleaf forests, DBF: deciduous broadleaf forests, MXF: mixed 

forests, CSR: closed shrublands, OSR: open shrublands, WDS: woody savannas, SVN: 

savannas, GRS: grasslands, PMW: permanent wetlands, CRP: croplands, UBL: urban 

and built-up lands, CNV: cropland/natural vegetation mosaics, PSI: permanent snow 

and ice, BRN: barren, WTB: water bodies and ALL: all land cover types. 

 

 

Q4.7 Line 357: why do savannas and cropland show considerable bias? 

Response: Fig. R3 shows relatively large disparities between GT-LST and MYD11A1 

LST over savannas (i.e., woody savannas and savannas) and croplands (i.e., 

cropland/natural vegetation mosaics and croplands) for the intercomparison. We would 

like to make some explanations on large disparities between these two products as 

follows: 

According to NDVI threshold method, the daily emissivity of an AVHRR pixel can 

be derived using the following formula:  

𝜀 = 𝜀𝑣𝑒𝑔 ∗ 𝐹𝑉𝐶 + 𝜀𝑠𝑜𝑖𝑙 ∗ (1 − 𝐹𝑉𝐶) 

Here, 𝜀 is the emissivity, 𝜀𝑣𝑒𝑔  is the vegetation emissivity, 𝜀𝑠𝑜𝑖𝑙  is the bare soil 

emissivity, and 𝐹𝑉𝐶 is the fraction of vegetation cover. 

For a vegetation pixel, its FVC is less than 1 due to the influence of natural and 



human factors, which leads to the underestimation of emissivity comparing with fixed 

emissivity, resulting in an overestimation of LST. The situation is particularly evident 

over croplands and savannas. Specially, natural disasters (e.g., drought and pests) and 

agricultural activities (e.g., harvest, cropland lies fallow) can significantly decrease 

cropland density and result in higher exposure of the soil. It leads to a decrease in 

cropland emissivity, resulting in an overestimation of LST. The emissivity for savannas 

decreases because of the increasing proportion of soil by grazing, fire and annually a 

long period in which moisture inadequate, resulting in an overestimation of LST. 

 
Figure R3. Scatterplots of GT-LST versus MYD11A1 LST during 2004 over WDS (a), 

SVN (b), CRP (c), and CNV (d). WDS: woody savannas, SVN: savannas, CRP: 

croplands, and CNV: cropland/natural vegetation mosaics. 

 

 
Minor: 

1. Line 35: Some of them used surface air temperature rather than LST to detect climate 

change and it should be not mixed. 

Response: Thank you for your careful reading. We have removed the reference (i.e., 

Keenan and Riley, 2018) in the revised manuscript. 

 



 
2. Line 71: remove ‘the’ 

Response: Corrected as suggested. 

 

 
3. Line 94: polar-orbiting 

Response: Corrected as suggested. 

 

 
4. line 101: the first 

Response: Corrected as suggested. 

 

 

5. Line 179: Especially 

Response: Corrected as suggested. 

 

 

6. Line 298: identifier 

Response: Corrected as suggested. 

 

 

7. Line 301: difference 

Response: Corrected as suggested. 

 

 

8. Line 317: due to -> because 

Response: Corrected as suggested. 

 

 

9. Line 327: RMSEs 

Response: Corrected as suggested. 

 

 

10. Line 403: remove ‘in’ 

Response: Corrected as suggested. 



 

 

11. Line 404: ‘due to’ should be followed by a noun rather than a sentence, suggest 

revising the whole manuscript for this issue. 

Response: Thank you for your careful reading. Following your suggestion, we have 

checked the whole manuscript and corrected this issue. 

 

 

12. Line 411: considers 

Response: Corrected as suggested. 

 

 

13. Line 446: open-source 

Response: Corrected as suggested. 

 

 

14. Line 451: cloud mask 

Response: Corrected as suggested. 
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