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Abstract. The European climatological high-resolution gauge-adjusted radar precipitation dataset, EURADCLIM, addresses

the need for an accurate (sub-)daily precipitation product covering 78% of Europe at high spatial resolution. A climatological

dataset of 1-h and 24-h precipitation accumulations on a 2-km grid is derived for the period 2013 through 2020. The starting

point is the European Meteorological Network (EUMETNET) Operational Program on the Exchange of weather RAdar Infor-

mation (OPERA) gridded radar dataset of 15-min instantaneous surface rain rates, which is based on data from, on average, 1385

ground-based weather radars. First, methods are applied to further remove non-meteorological echoes from these composites

by applying two statistical methods and a satellite-based cloud type mask. Second, the radar composites are merged with the

European Climate Assessment & Dataset (ECA&D) with potentially ∼7700 rain gauges from National Meteorological and

Hydrological Services (NMHS) in order to substantially improve its quality. Characteristics of the radar, rain gauge and satel-

lite datasets are presented, as well as a detailed account of the applied algorithms. The clutter removal algorithms are effective,10

while removing few precipitation echoes. The usefulness of EURADCLIM for quantitative precipitation estimation (QPE) is

confirmed by comparing against rain gauge accumulations employing scatter density plots, statistical metrics, and a spatial

verification. These show a strong improvement with respect to the original OPERA product. The potential of EURADCLIM

to derive pan-European precipitation climatologies and to evaluate extreme precipitation events is shown. Specific attention is

given to remaining artefacts in and limitations of EURADCLIM. Finally, it is recommended to further improve EURADCLIM15

by applying algorithms to 3D instead of 2D radar data, and by obtaining more rain gauge data for the radar-gauge merging.

The EURADCLIM 1-h and 24-h precipitation datasets are publicly available at https://doi.org/10.21944/7ypj-wn68 (Overeem

et al., 2022a) and https://doi.org/10.21944/1a54-gg96 (Overeem et al., 2022b).

1 Introduction

Accurate surface precipitation information at high spatiotemporal resolutions is needed for many scientific domains and appli-20

cations, such as agriculture, water management, weather prediction and climate monitoring, but is often lacking. EUMETNET

(European Meteorological Network) is a network of 31 National Meteorological and Hydrological Services (NMHS) and one

of its programs is OPERA (Operational Program on the Exchange of weather RAdar information). In OPERA, expertise on

operational ground-based weather radars is exchanged and pan-European radar products have been developed, which are dis-

1

https://doi.org/10.5194/essd-2022-334
Preprint. Discussion started: 2 November 2022
c© Author(s) 2022. CC BY 4.0 License.



seminated in near real-time (Huuskonen et al., 2014; OPERA, 2022). While the EUMETNET OPERA ground-based weather25

radar composite provides strong coverage at the km scale, it generally underestimates precipitation by tens of percent. The

spatial variability of this bias indicates that its quality is inhomogeneous in time and space. Moreover, many smaller areas

suffer from severe overestimation due to non-meteorological echoes (clutter), mainly due to signal interference (Saltikoff et al.,

2016), obstacles in the vicinity of radars, and refraction of the radar beam (e.g. Gourley et al., 2007; Fabry, 2015; Overeem

et al., 2020). A long list of possible sources of error can negatively affect radar precipitation estimates (Doviak and Zrnić,30

1993; Fabry, 2015; Rauber and Nesbitt, 2018; Ryzhkov and Zrnic, 2019): for instance, hardware-related errors such as elec-

tronic calibration and antenna pointing offsets (Frech et al., 2017), and severe underestimation due to rain-induced attenuation

along the radar beam for X- or C-band radars (e.g. Hitschfeld and Bordan, 1954; Tabary et al., 2009; Jacobi and Heistermann,

2016; Overeem et al., 2021). Another source of error are, for instance, changes in the vertical profile of reflectivity, where

the height of the radar sampling volume increases with increasing range from the radar, hence becoming less representative35

for the reflectivity at the ground (Hazenberg et al., 2013). In contrast, rain gauges often provide accurate local quantitative

precipitation estimation (QPE), but their network densities are usually too sparse to capture the spatial precipitation variability,

especially at the sub-daily time scale (Van de Beek et al., 2012). Gridded precipitation datasets based on interpolated gauge

accumulations and covering large parts of Europe, provide at best daily accumulations at 0.1◦ and 0.25◦ grids (Cornes et al.,

2018).40

A common practice on a national level is to combine the best of two worlds by merging radar with rain gauge data (e.g.

Holleman, 2007; Goudenhoofdt and Delobbe, 2016; Nelson et al., 2016; Fabry et al., 2017; Bližňák et al., 2018; Winterrath

et al., 2018; Barton et al., 2020). For Europe, Park et al. (2019) developed an operational OPERA-based radar rainfall product

for the European Rainfall-InduCed Hazard Assessment (ERICHA) system, employing data from ∼1500 rain gauges. This is

used to compute flash flood hazard for Europe for the next 5 hours for the European Flood Awareness System (EFAS). The use45

of this dataset is restricted to EFAS.

Here, we present an open climatological OPERA-based radar precipitation product over the period 2013–2020, called EU-

RADCLIM (EUropean RADar CLIMatology). It covers∼ 8×106 km2 of Europe, which is about 78% of geographical Europe,

and covers a variety of climates from Mediterranean to temperate, mountain, continental and arctic. Some differences with the

study by Park et al. (2019) are that additional algorithms to remove non-meteorological echoes are applied, and data from far50

more rain gauges are available ( ∼7700). In addition, for each 1-hour interval that is adjusted, the corresponding gauge data

are used to compute a spatial adjustment factor field for that hour, instead of applying such a field based on radar and gauge

data from the last 7 rainy days, as is the case in the Park et al. (2019) dataset. In EURADCLIM, non-meteorological echoes

are further removed by applying an open-source statistical filter taking into account large gradients and the size of contiguous

echoes (Gabella and Notarpietro, 2002; Wradlib, 2021). Since it could also be applied in (near) real-time, its evaluation is also55

relevant for the existing gridded OPERA products. Next, a climatological satellite cloud type product is employed to identify

areas with semitransparent clouds or without clouds, and set rain rates to 0 mm h−1 in those areas. Finally, for each year a static

clutter mask is computed based on outliers in annual precipitation. For these locations, 1-h radar precipitation accumulations

are replaced by spatially interpolated values. Merging these radar precipitation accumulations with those from rain gauges, re-
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sults in EURADCLIM, which can be seen as the continental European analogue of a climatological radar precipitation dataset60

developed for the United States (Fabry et al., 2017).

The outline of this paper is as follows: First, characteristics of the employed radar, rain gauge and satellite datasets, such

as data availability and coverage, are described (Sect. 2). Next, the three algorithms to remove non-meteorological echoes and

the radar-gauge merging algorithm are presented (Sect. 3). This is followed by a step-by-step evaluation of the datasets after

each processing step, including the EURADCLIM dataset, against rain gauge data (Sect. 4.1–4.2). EURADCLIM’s limitations65

are discussed and illustrated together with pan-European precipitation climatologies (Sect. 4.3). The results section ends with

extreme precipitation events derived from EURADCLIM (Sect. 4.4). Finally, conclusions and recommendations to improve

EURADCLIM are provided (Sect. 5).

2 Data

2.1 OPERA radar data70

The radar composite product “instantaneous surface rain rate” was obtained from the EUMETNET OPERA Data Centre

(ODC or Odyssey) from the period 2013–2020. It is stored in Hierarchical Data Format version 5 (HDF5) files employing

the OPERA Data Information Model (ODIM) (Michelson et al., 2019). This product has a temporal resolution of 15 min and

a spatial resolution of 2 km × 2 km (Lambert Azimuthal Equal Area projection; 2200× 1900 grid cells). As is usually the

case for gridded radar precipitation products, the effective resolution decreases for increasing distances from radars and will75

become lower than 4 km2 (typically at ∼ 115 km from a radar for a beam width of 1◦). It is based on the raw single site

radar data, which have undergone Doppler clutter filtering. Depending on the radar, beam-blockage correction and additional

(dual-polarization) clutter filtering have been applied by the respective NMHS. OPERA applies algorithms on either individual

radar data or the composite, concerning further removal of non-meteorological echoes and, since late 2015, beam-blockage

correction and a satellite cloud mask to remove non-meteorological echoes (Saltikoff et al., 2019b).80

The number of contributing radars, on average 138 based on intervals with data, gradually increases over the period 2013–

2020 (Fig. 1a). A variety of radars is employed, for instance, different manufacturers, different frequencies (mostly C-band,

some X-band and S-band) and a mixture of single-polarization and dual-polarization radars. The measurement frequency of

the radars is 5 min or 10 min, and data from the last time stamp are used in the composite product, e.g., the 5-min file from

10:15 UTC for the 10:15 UTC OPERA composite product. The lowest elevation scan data from all radars are combined to85

produce a composite of gridded horizontally polarized radar reflectivity factor (Zh) data. Before 29 Sep 2017 08:52 UTC, this

was done via logarithmic range-weighted averaging (dBZh) and afterwards via linear range-weighted averaging (Zh). Finally,

instantaneous surface rain rates are retrieved from the reflectivity composites every 15 min using the Marshall-Palmer Zh−R
relation (Zh = 200R1.6). Saltikoff et al. (2019b) provide more details on the OPERA radar data and its processing.
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Figure 1. OPERA radar data availability as a function of time over the period 2013–2020. (a) Number of contributing radars to the OPERA

composite of rain rates in case data are available for at least part of the OPERA domain. Coverage of OPERA radar datasets as a function of

time for the (b) 1-h and (c) 24-h precipitation accumulations. For (b) and (c) also time intervals without data are plotted (as 0).

For each radar grid cell (pixel) and clock-hour (i.e., every hour on the hour), 1-h precipitation accumulations are computed90

from the rain rates in case of full availability, otherwise the grid cells contain the ODIM “nodata” value, which is “used to

denote areas void of data (never radiated)” (Michelson et al., 2019). And “undetect” values, “used to denote areas below

the measurement detection threshold (radiated but nothing detected)” (Michelson et al., 2019), are set to 0 mm. These 1-h

precipitation accumulations are used to compute 24-h accumulations every clock-hour as well as annual accumulations. For

each radar grid cell, a minimum data availability of underlying 1-h accumulations of 83.3% is demanded (i.e., at least 20 of 2495

hours, or∼304.2 of 365 days). Grid cells with too low availability are set to the OPERA “nodata” value. The availability of 1-h

and 24-h precipitation accumulations is generally high (Fig. 1b–c). For the large majority of the OPERA domain, availability of

1-h precipitation accumulations is at least 95% over the period 2013–2020 (Fig. 2a). The distance to the nearest radar displays

quite some variability, but is generally shorter than 175 km (Fig. 2c). The median and mean distance to the nearest radar is 110

km and 133 km, respectively. Some countries do have radars but these do not contribute to the OPERA composite yet (e.g.,100

Austria and Italy). All derived radar datasets are kept in ODIM-HDF5 format on the default OPERA grid of 2 km resolution.

2.2 ECA&D and E-OBS rain gauge data

Daily precipitation series were obtained mid June 2022 from the European Climate Assessment and Dataset (ECA&D, https:

//www.ecad.eu) project (Klein Tank and coauthors, 2002; Klok and Klein Tank, 2008). In total, ∼7700 rain gauges from 29
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Figure 2. (a) Map of the OPERA domain with fraction of available radar composites over the period 2013–2020. (b) Map with combined

radar-gauge availability over the period 2013–2020. (c) Map of distance to nearest radar per grid cell assuming full availability of radar

data (note that some of the radars only contributed part of the period). (d) Map of distance to nearest rain gauge per grid cell assuming full

availability of radar and gauge data. This shows the best possible result. In reality, the average minimum distance will be longer because

sometimes gauge data are missing. Maps made with Natural Earth. Free vector and raster map data ©naturalearthdata.com.
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different countries and 37 different data providers, including non-downloadable series (i.e., included in ECA&D for production105

of derived data but only accessible through the data-owning NMHS), are covered by OPERA radars during (part of) the 2013–

2020 period. Combined radar-gauge data availability is at least 90% for most regions (Fig. 2b). Figure 2d displays the distance

to the nearest gauge for the OPERA domain if all ∼7700 gauges would be available. The large variability in space of the

underlying rain gauge network density is obvious. The median and mean distance to the nearest rain gauge is 42 km and 92

km, respectively. These relatively long distances are mainly caused by areas above land surface with low rain gauge network110

densities, and above sea. The ECA&D rain gauge dataset will be used to evaluate the various radar precipitation datasets and

will be merged with 1-h radar accumulations.

The rain gauge data have undergone quality control by the ECA&D team (Project team ECA&D, Royal Netherlands Meteo-

rological Institute KNMI, 2021) and often by NMHS. Given the latency in gauge data provided to ECA&D for some networks

and to prevent spatial differences in the quality of merged radar-gauge QPE, only data up to and including 2020 are used. At115

the time of data production (mid June 2022) it was found for some countries that the density of gauge networks from which

data were available is relatively sparse (Bosnia and Herzegovina, Croatia, Denmark, Hungary, Iceland, Lithuania, Portugal,

Romania, Slovakia, Spain, Switzerland), no data are available (e.g., Bulgaria, Greece, Kosovo, North Macedonia) or not com-

plete for the entire period (e.g., for Romania it ends 31 September 2020, for Serbia it ends 31 December 2017, only a few years

for Montenegro, and time series from most stations in the United Kingdom end 31 December 2019).120

The daily measurement interval of gauges is often not exactly known to ECA&D. For instance, the metadata for some

networks is imprecise as aggregation intervals ending at 06:00, 07:00 or 08:00 UTC are lumped together. Sometimes, additional

information on the measurement interval end time from the respective NMHS was available and selected. In order to determine

the exact measurement interval for other gauge networks, gauge accumulations are compared to OPERA 24-h accumulations

by testing different measurement interval end times. For each network, distributions of correlation coefficients for all gauge125

locations are evaluated for each interval end time using Ridgeline plots. The measurement interval end time with the highest

correlations is selected for that given network. The end times of the observations display a large variability across Europe from

0 UTC (9 networks), 6 UTC (16 networks), 6 UTC in summer and 7 UTC in winter (1 network), 7 UTC (1 network), 8 UTC

(3 networks), 9 UTC (2 networks), 18 UTC (3 networks), 21 UTC (1 network), to 22 UTC in summer and 23 UTC in winter

(1 network).130

A pan-European dataset, E-OBS version 25.0e (https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles),

of gridded, daily, interpolated ECA&D gauge accumulations (Cornes et al., 2018) is used to compute annual precipitation ac-

cumulations. These will be used for comparison with EURADCLIM accumulations.

2.3 Satellite cloud type product

Information on the occurrence and type of clouds was obtained from the Spinning Enhanced Visible and Infrared Imager (SE-135

VIRI) onboard the geostationary Meteosat Second Generation (MSG) satellites operated by the European Organisation for the

Exploitation of Meteorological Satellites (EUMETSAT). The CLoud property dAtAset using SEVIRI edition 2 (CLAAS-2)

was used, produced by EUMETSAT’s Satellite Application Facility on Climate Monitoring (CM SAF). CLAAS-2 (Finken-
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sieper et al., 2016; Benas et al., 2017) is a climate data record of cloud properties derived from SEVIRI measurements and

extending from 2004 to present. The CLAAS-2 cloud type product was derived with the MSGv2012 software package devel-140

oped by the SAF on Nowcasting and Very Short Range Forecasting (NWC SAF). Further details on the retrieval algorithm

can be found in Derrien and Le Gléau (2005) and NWC SAF (2013). The temporal resolution of CLAAS-2 is 15 minutes. Its

spatial resolution is 3 km× 3 km at the sub-satellite point and around 4 km× 7 km in the centre of the OPERA domain (∼ 52◦

N). The cloud type was converted from the CLAAS-2/SEVIRI grid to the native OPERA radar grid of 2 km by 2 km using

nearest neighbour resampling. This dataset is available day and night and is used to remove non-meteorological echoes from145

the OPERA radar data. Over the period 2013-2020, 99.7% of the 15-min intervals have valid data.

3 Methodology

The flowchart in Fig. 3 provides an overview of the input datasets, the applied processing, and the output dataset EURADCLIM.

Three algorithms are applied to further remove non-meteorological echoes from the OPERA radar data. Finally, the radar data

are merged with the ECA&D rain gauge data.150

3.1 Gabella clutter filter

The function clutter.gabella from the open-source Python library for weather radar data processing wradlib version 1.9.0

(Heistermann et al., 2013; Mühlbauer et al., 2020) is employed to classify non-meteorological echoes. This Gabella filter is a

two-part algorithm (Gabella and Notarpietro, 2002; Wradlib, 2021), which uses as input the radar reflectivity factors. For this,

rain rates are converted to radar reflectivity factors employing Zh = 200R1.6 (beforehand “undetect” and “nodata” values are155

set to 0 mm h−1). Then the Gabella filter is used to classify grid cells using the Cartesian radar reflectivity factor data. In the

first part of the filter, strong spatial gradients are identified by checking for each grid cell how many cells surrounding it in a

square lattice of 5× 5 cells are less than 6 dBZh lower than the central cell. When this number of cells is lower than 6, the

central cell is identified as clutter. In the second part of the filter, the ratio between the area and circumference for contiguous

echo regions is computed, where these consist of cells with a value above 0 dBZh. When the absolute value of this ratio is160

lower than 1.3, the central cell is identified as clutter. Next, the original surface rain rates are set to 0 mm h−1 in case one or two

of the parts of the Gabella filter identify clutter. Central cells that have “nodata” values in the original rain rates are unaffected

by the Gabella filter, and “undetect” values are kept in case of no clutter. A successful example of applying the Gabella clutter

filter for the Netherlands and surroundings is provided in Fig. 4a–b.

3.2 Satellite cloud type mask clutter filter165

A satellite cloud type mask is employed to classify remaining non-meteorological echoes. Localisation errors (e.g., advection,

timing differences between radar and satellite, parallax) are taken into account by considering all grid cells in a square lattice

of 7× 7 cells containing the central cell for which the classification is performed. The rain rate for this central cell is set

to 0 mm h−1 when all cells in the square lattice are either classified as cloud-free or as containing semitransparent clouds
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OPERA 15-min instantaneous
surface rain rate radar composites

CLAAS2 satellite
cloud type mask

ECA&D daily rain
gauge accumulations

Apply statistical processing to remove
non-meteorological echoes (Fig. 4, 1st row)

Apply satellite cloud type mask to remove
non-meteorological echoes (Fig. 4, 2nd row)

Accumulate to 1-h radar precipitation
composites every clock-hour

Accumulate to annual radar
precipitation composites

Compute static clutter map per year (Fig. 4, 3rd row)

Apply static clutter map to 1-h radar precipitation
composites and fill with interpolated values

Accumulate to 24-h radar
precipitation composites every clock-hour

Convert daily ECA&D gauge data
to 1-h data using 1-h and 24-h
radar precipitation composites
(disaggregation)

Merge 1-h radar precipitation
composites with 1-h rain gauge data
via local mean-field bias & spatial
adjustment (Fig. 4, 4th row)

EURADCLIM: Gauge-
adjusted 1-h radar
precipitation composites
every clock-hour

EURADCLIM: Gauge-
adjusted 24-h radar
precipitation composites
every clock-hour

Figure 3. Flowchart of radar and gauge data processing for EURADCLIM.

(which are assumed to be non-raining). Concretely, these cases correspond to the following MSGv2012 cloud type categories:170

cloud free land, cloud free sea, land contaminated by snow, sea contaminated by snow/ice, high semitransparent thin clouds,

high semitransparent meanly thick clouds, and high semitransparent thick clouds. In case satellite data is not available for

a given pixel (category “non-processed containing no data or corrupted data” or no file/image available), that pixel is not

used as a neighbouring pixel and the radar pixel directly beneath it will not be labelled as clutter. Figure 4c–e illustrates the

working of this algorithm by providing a 15-min radar rain rate, before and after applying the satellite cloud type mask, which175

is also displayed. Because the satellite images are referenced to with the start time of observation and the radar composites
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are referenced to with the end time of observation, a satellite image of, for example, 12:00 UTC is combined with the radar

composite of 12:15 UTC.

3.3 Static clutter filter

The 15-min radar rain rates are accumulated to 1-h and these to annual precipitation accumulations. The function clut-180

ter.histo_cut from the open-source Python library for weather radar data processing wradlib version 1.9.0 (Heistermann et al.,

2013; Mühlbauer et al., 2020; Wradlib, 2022) is employed to classify non-meteorological echoes in the annual precipitation

accumulation. First, a histogram of 50 classes is computed from the annual precipitation from a given year using all grid cells.

Next, the class with the largest frequency is determined. An iterative procedure detects those classes with a frequency below

5% of the frequency of the class with the largest frequency (the hard-coded default value is 1%). The procedure stops when the185

changes in the maximum annual rainfall from the remaining classes becomes (smaller than) 1 mm compared to the previous

iteration. The grid cells corresponding to the detected classes become the static clutter mask. For each year a separate static

clutter mask is obtained. This algorithm identifies areas with static clutter and may also detect areas affected by beam-blockage.

Next, inverse distance weighted interpolated values are computed for the identified grid cells (inverse distance weighting power

of 2; maximum of 4 neighbours). This value replaces the original value only in case it is lower than the original value. The190

original “nodata” values are kept in the output dataset. The interpolation is performed on the 1-h precipitation accumulations.

From the cleaned 1-h accumulations, which are used for merging with rain gauge accumulations, 24-h accumulations for every

clock-hour are derived. Figure 4f–h shows an example of an annual precipitation accumulation, the derived annual precipitation

accumulations after applying the static clutter mask including interpolation on the underlying 1-h radar precipitation compos-

ites, and the corresponding static clutter mask. The mask seems to correspond mostly to areas with high annual precipitation.195

In theory, the interpolation could decrease precipitation estimates for areas with beam-blockage. Areas with beam-blockage

are not abundant, though. Also note that a beam-blockage correction has already been applied by OPERA.
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Figure 4. Illustration of application of all three clutter removal steps and the rain gauge adjustment, i.e., of all processing steps in EU-

RADCLIM. (a)–(b) Application of the Gabella clutter filter (map data ©OpenStreetMap contributors 2022. Distributed under the Open Data

Commons Open Database License (ODbL) v1.0), and of (c)–(e) the cloud type mask to remove non-meteorological echoes from a 15-min

OPERA composite of rain rates. For the cloud type mask, the grey areas indicate where the cloud type does not belong to the seven categories

listed in Sect. 3.2, and for which the radar rain rates were thus left untouched. (f)–(h) Illustration of application of the static clutter mask,

derived from the annual precipitation map, to 1-h radar precipitation composites, which are accumulated to an annual precipitation map.

(i)–(k) Application of the radar-gauge merging algorithm going from unadjusted to adjusted 1-h rainfall accumulations employing the 1-h

adjustment factor field. (c)–(k) Maps made with Natural Earth. Free vector and raster map data ©naturalearthdata.com.
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3.4 Merging radar with ECA&D rain gauge data

Starting point of the merging algorithm is that radar and rain gauge data are used from the same 1-h interval, instead of com-

puting adjustment factor fields based on preceding time intervals, such as in Park et al. (2019). Since the measurement interval200

of daily rain gauge accumulations varies across Europe, a daily adjustment factor field would not be entirely representative.

And since the aim is to derive 1-h adjusted radar precipitation accumulations, ideally, 1-h adjustment factor fields would be

computed. To achieve this, the daily gauge accumulations are disaggregated to 1-h accumulations employing the 1-h and 24-h

radar accumulations from the previous processing step. It is assumed that the gauges observed precipitation only during the

intervals for which radar data were available. So in case of missing radar data, at most 4 hours per 24-h interval, the daily gauge205

precipitation is only distributed over the remaining (at least 20) hours. Next, to decrease computation time of the radar-gauge

merging, only 1-h radar-gauge pairs for which gauge precipitation exceeds 0.25 mm are used for merging. This is expected to

have limited effect on the quality of the merged dataset.

The radar-gauge merging algorithm is based on Barnes’ Objective Analysis (Barnes, 1964) but has been extended to make

it robust in case of sparse gauge network densities for short durations (1 h), when spatial precipitation variability is often210

large. A spatial adjustment factor field Fc is computed from the distance-weighted interpolation of the raw radar precipitation

accumulations (Sw,r) and the interpolation of the corresponding gauge precipitation accumulations (Sw,g), implying that it is

computed for each radar grid cell, which has position (x,y):

Fc(x,y) =





Sw,r
Sw,g

if Sw,r > T
∨
Sw,g > T

T
Sw,g

if Sw,r ≤ T
∨
Sw,g > T

Sw,r
T if Sw,r > T

∨
Sw,g ≤ T

1 if Sw,r ≤ T
∨
Sw,g ≤ T,

(1)

with T a threshold value of 0.25 mm. Sw,X, with X an indicator being g (gauge) or r (radar), is defined as:215

Sw,X =
Np∑

n=1

wnRX,n, (2)

which is computed over NP radar-gauge pairs. Rr,n and Rg,n are the precipitation accumulations at the gauge location n for

radar and gauge, respectively. In case the value of Sw,X is below T , it is set equal to T . This is done to prevent outliers in

the gauge-adjusted radar precipitation accumulations. The weighting function wn depends on the distance of a grid cell to the

gauge location:220

wn =
Gw (n,rs) + v ·Gw (n,rl)

1 + v
, (3)

where Gw (n,rd) is a Gaussian function:

Gw (n,rd) =





exp

(
−4

(x−xn)2+(y−yn)2

r2
d

)
−exp(−4)

1−exp(−4) if (x−xn)2 + (y− yn)2 ≤ rd

0 if (x−xn)2 + (y− yn)2 > rd,

(4)
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and (xn,yn) the position of gauge n. Equation 3 employs two Gaussian functions, each with its own characteristic distance rd

for which the influence of a gauge is reduced to 0. The shorter range, rs, results in a local adjustment in the neighbourhood225

of gauges. The value of rs is taken as the range of an isotropic spherical variogram model, which has been expressed as a

function of day of year (DOY) and duration (1–24 h) using a 30-year rain gauge dataset from the Netherlands from the period

1979–2009 (Van de Beek et al., 2012). When distances from a grid cell to gauges are longer than rs, this short range component

does not contribute to the adjustment. The longer range, rl, set at 500 km, is used to also adjust when gauge network density is

sparse and the nearest gauges are far away (e.g., over sea). The value of v controls the contribution of this long range component230

with respect to the short range component. Apart from the actual adjustment in which all selected gauges are used, leave-one-

out-statistics (LOOS) are also provided. These statistics are computed based on adjusted radar precipitation accumulations

computed for a given gauge location without using that particular gauge in the adjustment. This is repeated for each gauge

location, thus allowing for an independent verification of the gauge-adjusted radar dataset.

The algorithm can also run two adjustments consecutively with different settings, while still providing LOOS. Here, first an235

adjustment is performed with v = 100000, implying a local mean-field bias adjustment taking into account all gauges within a

radius of 500 km. The short range component does not play a role then. This helps to remove systematic underestimations as

much as possible in regions with low gauge network densities. Tests indicated that underestimations could not be effectively

removed when also the short range component contributed. Next, v is set to 0, implying that only a local spatial adjustment

is performed on top of the already mean-field bias adjusted precipitation estimates. The adjustment factor fields from both240

adjustments are combined into one 1-h spatial adjustment factor field. The 1-h radar precipitation composite is divided by this

adjustment factor field to obtain the 1-h adjusted radar precipitation composite (EURADCLIM). Figure 4i–k illustrates the

adjustment by showing an unadjusted radar composite, the adjusted radar composite and the adjustment factor field. The effect

of the long and short range components is visible in the adjustment factor field.

3.5 Evaluation245

The radar precipitation accumulations are evaluated against rain gauge accumulations by means of scatter density plots, maps

with station-based spatial verification, comparison of annual precipitation maps to those based on gridded rain gauge data

(E-OBS), and statistical metrics. In addition, maps of the mean hourly precipitation and the relative frequency of exceeding

a threshold value of 1-h precipitation are compared between different processing steps. Statistical metrics used for evaluation

are the relative bias of radar precipitation accumulations compared to the corresponding gauge precipitation accumulations,250

the residual standard deviation divided by the mean gauge precipitation accumulation (i.e., the coefficient of variation, CV),

the Pearson correlation coefficient (ρ) and the mean absolute error (MAE). Here, a residual is defined as the radar precipitation

accumulation minus the gauge precipitation accumulation. Results are provided for all radar-gauge pairs as well as for the

subset where the gauge exceeds a threshold of 1.0, 10.0, and 20.0 mm day−1. Note that representativeness errors can be

significant when comparing radar and gauge accumulations (Kitchen and Blackall, 1992), especially for shorter durations,255

such as 1 h, and in case of larger differences in measurement volumes. The grid cell size of 4 km2 is relatively large. Radars
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measure aloft, and rain gauges measure at the Earth’s surface, but only over a small area. Hence, differences between radar and

gauge accumulations can be partly attributed to representativeness errors.

4 Results

The radar precipitation datasets are assessed by first systematically evaluating the influence of the clutter removal algorithms260

on QPE, followed by an evaluation of the performance of the EURADCLIM precipitation estimates. EURADCLIM’s pan-

European precipitation climatologies are shown and EURADCLIM’s limitations are discussed. Finally, extreme precipitation

events derived from EURADCLIM are presented.

4.1 Evaluation of clutter removal algorithms

Maps of mean hourly precipitation over the period 2013–2020 (Fig. 5a–b) show that the Gabella clutter filter removes and265

reduces many non-meteorological echoes, e.g., sea clutter at the North Sea, rings around Denmark, a radial pattern around

Estonia, and spokes caused by interference over Slovakia. Also areas belonging to the highest precipitation class become

smaller in Romania and southern France. Additional reductions are less pronounced when the cloud type mask is applied (Fig.

5b–c). A clear reduction in interferences in eastern Spain stands out and again areas falling in the highest precipitation class

generally become smaller. The static clutter mask is effective in (strongly) reducing many of the remaining non-meteorological270

echoes, but note that for some areas values may still be too high (Fig. 5c–d). And the area in Europe known for the highest

annual precipitation, the coastal area of Norway, also shows a strong reduction, which may point to unwarranted classification

of non-meteorological echoes.

From the maps of relative frequency of 1-h precipitation exceeding 0.1 mm (Fig. 5e–f) and 5 mm (Fig. 5i–j) it can be

concluded that the Gabella filter successfully removes non-meteorological echoes, especially sea clutter and suspicious noisy275

areas above land. The circles and radial patterns found for mean precipitation are not apparent, indicating that these do not

occur frequently. For the 0.1 mm threshold, application of the cloud type mask clearly reduces the impact of interference

above Spain and some areas belonging to the highest precipitation class become smaller, especially in eastern Europe and

south of the French Mediterranean coast. Apparent is that larger areas above Germany and Spain now belong to a lower

frequency class, which could point to unwarranted classification of non-meteorological echoes. The cloud type mask hardly280

adds value in removing non-meteorological echoes for the 5 mm threshold (Fig. 5j–k). The static clutter mask successfully

removes non-meteorological echoes for the 0.1 mm threshold (Fig. 5g–h) in eastern Europe and for the 5 mm threshold (Fig.

5k–l) remaining interferences are successfully removed over all of Europe. The fraction in mean rainfall and the fraction in

relative frequencies of these datasets, which have undergone additional clutter removal, with respect to the OPERA dataset are

presented in Appendix A1,285

Conclusion is that the algorithms remove many and also severe non-meteorological echoes. To evaluate the unwarranted

removal of precipitation echoes, daily radar accumulations are compared to daily gauge accumulations in Table 1. This in-

dependent evaluation for different threshold values, shows that differences in the value of MAE between the four datasets
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Figure 5. Comparison between 1-h precipitation accumulations from four datasets to study the effect of non-meteorological echo removal

algorithms over the period 2013–2020. Results are only shown for grid cells with a minimum availability of 83.3%. (a)–(d) Maps of mean

hourly precipitation, and (e)–(l) maps of relative frequency of exceedance of 0.1 and 5 mm in an hour. These are obtained by dividing by

the number of available values for each individual radar grid cell (i.e., not equal to “nodata” or not missing). This implies that periods with

missing radar data are not taken into account and the number of intervals that is used will vary in space. Maps made with Natural Earth. Free

vector and raster map data ©naturalearthdata.com.

are small, the value of CV usually decreases and the value of ρ usually increases after each additional processing step. The

strongest improvement is found for the Gabella clutter filter and the static clutter filter. The relative bias in the mean daily290

precipitation becomes much more negative, though. The non-meteorological echoes may have compensated for the large un-

derestimation that is typical for mid-to-high latitude radar-only precipitation estimation (Overeem et al., 2009b). Because of
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the general improvement for other statistical metrics, it is concluded that the clutter removal algorithms are effective and re-

move few precipitation echoes. Concluding, the radar dataset that will be used for merging with rain gauge data has improved

considerably over the dataset where no additional filtering is applied, in terms of the correlation and CV.295

As a final check of the effectiveness of the clutter filter, daily radar accumulations are selected when the daily gauge accu-

mulation is 0 mm. This results in average daily accumulations of 0.5 mm when no filtering is applied and this decreases to

0.3 mm for the Gabella filter and to 0.2 mm when also the cloud type mask is applied. It remains 0.2 mm when also the static

clutter filter is applied. This confirms the effectiveness of the algorithms to further remove non-meteorological echoes.

4.2 Evaluation of EURADCLIM300

In Table 1, a dependent verification of daily radar precipitation accumulations against rain gauges is performed to quantify the

influence of the adjustment employing gauge data (i.e., with respect to the “Gabella + CTM + static filter” dataset). Results

are presented for all values and for those where gauges exceed specific thresholds. Note that all selected values are used to

compute the statistical metrics. A number of conclusions can be drawn from Table 1: 1) the severe average underestimation

of precipitation of ∼45% turns into an overestimation of ∼11%; 2) for daily gauge precipitation above 1 mm the relative bias305

is near zero; 3) the large underestimation for very heavy precipitation days (over 20 mm per day) is reduced from ∼ 65% to

about∼ 10%; 4) the values for the correlation coefficient strongly increases from 0.59 to 0.89 based on all precipitation events;

5) the values for CV strongly decrease with a factor between 1.3 and 1.7; 5) the values for MAE decreases to values that are

between 1.7 and 3.2 times smaller. The scatter density plots provide a more complete overview of the improvement and show

the much better alignment along the 1:1 line compared to the unadjusted dataset for daily gauge precipitation above 1 mm (Fig.310

6a–b). The quality of daily precipitation accumulations is higher in summer than in winter (Fig. 6c–d). Although differences

in the values of statistical metrics are relatively small, the spread in the scatter density plot for summer is clearly lower than in

winter.

For hourly precipitation, both an independent verification via leave-one-out-statistics and a dependent verification are per-

formed. The scatter density plots show the radar-gauge pairs for 1-h gauge precipitation larger than 0.25 mm (Fig. 6e–g). The315

remaining underestimation becomes small and the value for the coefficient of determination (ρ2) increases with respect to the

unadjusted radar dataset, especially for the dependent verification. For EURADCLIM, the value for CV increases for the inde-

pendent verification. The second lowest count class becomes rather wide above the 1:1 line. For the dependent verification the

scatter density plot is much better aligned to the 1:1 line and the value for CV becomes much lower compared to the unadjusted

dataset. Conclusion is that the quality of the EURADCLIM dataset is good and much better than the dataset that has undergone320

the clutter filtering but no gauge adjustment. Note that the verification via LOOS is not entirely independent, because the 1-h

and 24-h radar accumulations have been employed to disaggregate the daily gauge accumulations to hourly accumulations.

Next, a spatial verification per rain gauge location is performed for the radar dataset before gauge adjustment and for

EURADCLIM, again for an independent (LOOS) and a dependent verification (Fig. 7). The quality of the radar composite for

the unadjusted radar dataset displays quite some variability and there seems some connection with areas further away from the325

nearest radar (Fig. 2c). Also different environmental conditions, e.g., beam-blockage due to mountainous terrain, can play a
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Table 1. Evaluation of radar daily precipitation accumulations against the ECA&D rain gauge network over the period 2013–2020 at their

default measurement interval for all radar-gauge pairs and for those above a threshold value. The mean daily precipitation and the threshold

value are based on the gauge data.

Threshold value (mm) Mean daily precipitation Rel. bias (%) Correlation MAE (mm) CV n

No filtering:

2.41 -25.3 0.11 1.85 8.40 18946028

1.0 7.41 -42.7 0.17 4.50 2.44 5970041

10.0 19.52 -55.3 0.22 11.88 0.85 1299677

20.0 32.05 -61.4 0.25 20.69 0.56 401277

Gabella clutter filter:

2.41 -38.8 0.19 1.61 5.06 18930248

1.0 7.41 -47.9 0.42 4.34 1.15 5964987

10.0 19.52 -57.6 0.35 11.91 0.63 1299043

20.0 32.05 -63.0 0.29 20.86 0.50 401049

Gabella + CTM clutter filter:

2.41 -42.0 0.21 1.58 4.47 18936402

1.0 7.41 -49.5 0.45 4.40 1.11 5967504

10.0 19.52 -58.5 0.35 12.06 0.62 1299285

20.0 32.05 -63.7 0.29 21.07 0.50 401091

Gabella + CTM + static clutter filter:

2.41 -44.9 0.59 1.55 2.01 18930115

1.0 7.41 -51.0 0.59 4.39 0.96 5964938

10.0 19.52 -59.9 0.41 12.16 0.57 1299042

20.0 32.05 -65.2 0.32 21.30 0.47 401049

EURADCLIM:

2.41 10.8 0.89 0.89 1.18 18929782

1.0 7.41 -0.1 0.88 1.88 0.58 5964696

10.0 19.52 -7.1 0.78 4.03 0.42 1298998

20.0 32.05 -10.2 0.73 6.75 0.36 401047

role. The values for ρ, CV and relative bias in the mean strongly improve for the EURADCLIM dataset (dependent verification;

Fig. 7c,f,i) with respect to the unadjusted radar dataset. In addition, the spatial variability in performance becomes much

smaller. However, for the independent verification for regions with low gauge network densities, the value for ρ sometimes

decreases, the value for CV often increases and the underestimation becomes either less severe or turns into large overestimation330
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(Fig. 7b,e,h) with respect to the unadjusted radar dataset. Note that the dependent verification shows the actual performance of

EURADCLIM at those locations, and that the independent verification is meant to give an impression of the quality between

those locations. In reality, results are expected to be better than found for the independent verification, because the distance to

the nearest gauge will be much shorter. After all, the gauges that are left out for LOOS have been used in the final EURADCLIM

dataset. Finally, for some gauge locations large differences are found. For instance, for two nearby stations in Poland a large335

overestimation and a large underestimation are found. Also the values for CV are high. This may point to erroneous rain gauge

data. For other regions, radar beam-blockage could play a role.
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Figure 6. Scatter density plots of (a)–(d) daily and (e)–(g) 1-h radar precipitation accumulations against rain gauges over the period 2013–

2020. For daily accumulations the gauge accumulations at their default measurement interval are employed, whereas for 1-h accumulations

the disaggregated clock-hourly gauge precipitation accumulations are employed. Results are shown for the unadjusted dataset that has

undergone all clutter filtering steps and for the gauge-adjusted EURADCLIM dataset. For EURADCLIM, independent verification is done

via leave-one-out-statistics (LOOS), when indication. Otherwise, the verification is dependent.
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Figure 7. Spatial verification of 1-h precipitation accumulations against the disaggregated clock-hourly gauge precipitation accumulations

over the period 2013–2020. (a, d, g) For the unadjusted radar dataset that has undergone all clutter filtering steps. Results from the gauge-

adjusted EURADCLIM dataset are shown for (b, e, h) an independent verification employing leave-one-out-statistics (LOOS) and for (c, f,

i) a dependent verification. Maps made with Natural Earth. Free vector and raster map data ©naturalearthdata.com.
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4.3 EURADCLIM radar precipitation climatologies and its limitations

Despite the efforts by NMHS and OPERA to remove non-meteorological echoes, and the three additional clutter removal

algorithms employed to derive EURADCLIM, still non-meteorological echoes can be persistent for some areas (Fig. 5h). Two340

cases with strong artefacts are shown in Fig. 8 for the original OPERA surface rain rates. For the first case, the entire radar

domain of a Spanish radar has very high rates, which seems to be caused by a constant signal source that lasted the first 7 hours

of 29 April 2018 (Fig. 8a). Since this occurs over an entire radar domain, the algorithms can only partly remove and reduce

these non-meteorological echoes (unless entirely cloud-free or only semi-transparent clouds). This is much reduced by the

gauge adjustment, although still 24-h precipitation accumulations of more than 50 mm are found in EURADCLIM (Fig. 8b).345

For the second case (Fig. 8c) with strong artefacts from a French radar, the 1-h precipitation accumulations are substantially

reduced by the EURADCLIM algorithms (Fig. 8d). Again, this reduction is primarily caused by the gauge adjustment.

Now the quality of EURADCLIM has been quantified, precipitation climatologies are derived to show its potential (Fig.

9). A map of mean hourly precipitation over the period 2013–2020 is shown in Fig. 9a. There are still some signatures of

beam-blockage, probably caused by obstacles near radar sites, and of non-meteorological echoes, such as interference. The350

highest precipitation values are found in the coastal areas of Norway and in some mountainous areas (e.g., the Alps, Bosnia

and Herzegovina, Croatia, Ireland, Norway, Scotland, and Wales). The seasonality of mean hourly precipitation is visualized

in Fig. 9b–e. In Western Europe, precipitation is highest in autumn and winter. The Mediterranean areas are typically dry in

winter and summer and relatively wet in spring and autumn. Apparent is the high seasonal precipitation in the Alps in summer.

Relative frequencies of exceeding 0.1 mm are displayed in Fig. 9f, revealing that 1-h precipitation is most frequent in Denmark,355

Ireland, large parts of the United Kingdom, parts of Norway, and a patchy band from France to Switzerland and Germany to

parts of Eastern Europe. The southern part of Spain has the lowest frequency of 1-h precipitation exceeding 0.1 mm. The

relative frequency of exceeding 5 mm (Fig. 9g) shows that more extreme precipitation occurs most often in parts of southern

Europe and parts of Ireland and the United Kingdom. It is difficult to tell to what extent non-meteorological echoes play a role

here. For instance, some of the localized areas with high frequencies of exceeding 5 mm may be related to obstacles near radar360

sites. This becomes even more apparent for downpours of more than 25 mm in 1 hour (Fig. 9h), where large areas are found

with at least 13 occurrences in 8 years, sometimes present over a large part of a radar domain. These large values at the edge

of radar coverage are suspicious, especially when no nearby rain gauges are available, such as east of the island of Corsica

(France).

Outliers, such as presented in Fig. 8 and visible in the frequency of downpours (Fig. 9h), limit the applicability of EURAD-365

CLIM at the grid cell scale, especially for use in extreme value modelling (e.g. Frederick et al., 1977; Durrans et al., 2002;

Allen and DeGaetano, 2005; Overeem et al., 2009a, 2010; Marra and Morin, 2015; McGraw et al., 2019). One way to deal with

this is to apply an algorithm that does not take into account entire composites that have severe artefacts over larger areas. These

could be automatically identified by radar-gauge comparison, possibly followed by a visual inspection and selection. Another

approach would be to set grid cells above a certain threshold to a lower (e.g., interpolated) value. Or always discard such a grid370

cell if it experienced such a high value at least once during the period 2013–2020. A drawback of this approach is that such a
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Figure 8. Illustration of remaining non-meteorological echoes in radar data for the original instantaneous OPERA rain rates and the corre-

sponding 24-h or 1-h precipitation accumulations from EURADCLIM. (a)–(b) “Extreme precipitation” in central Spain on 29 April 2018

0100 UTC (rain rate) and from 28 April 2018 0700 UTC – 29 April 2018 0700 UTC (24-h precipitation accumulation). The gauge adjustment

helps to lower the accumulations in EURADCLIM. (c–d) An extreme case with more than 500 mm h−1 over large parts of a French radar

domain on 28 November 2018 for 1100 UTC. Clutter removal algorithms hardly help, but the gauge adjustment substantially reduces the

1-h precipitation accumulations from EURADCLIM from 1000-1100 UTC. Maps made with Natural Earth. Free vector and raster map data

©naturalearthdata.com.

threshold is a bit arbitrary and that it influences statistics of extreme precipitation. A more sophisticated approach would be to

remove more non-meteorological echoes by applying a satellite cloud mask that employs cloud optical thickness, i.e., also in

case of thicker non-precipitating clouds. Finally, in the future, MSG will be replaced by Meteosat Third Generation that allows

for a more local correction due to higher spatial and temporal resolution, provided that parallax effects are accounted for.375
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Figure 9. (a)–(e) Maps of mean hourly precipitation over the entire period and per season over the period 2013–2020 (winter: December,

January, February; spring: March, April, May; summer: June, July, August; autumn: September, October, November). (f)–(g) Relative fre-

quency of exceedance of 0.1 and 5 mm in an hour over the period 2013–2020, respectively. (h) Frequency of exceedance of 25 mm in an hour,

a downpour, over the period 2013–2020. Relative frequencies of exceedance ((f)–(g)) are obtained by dividing by the number of available

values for each individual radar grid cell (i.e., not equal to “nodata” or not missing). This implies that periods with missing radar data are

not taken into account and the number of intervals that is used will vary in space. For (a)–(g) results are only shown for grid cells with a

minimum availability of 83.3%. Maps made with Natural Earth. Free vector and raster map data ©naturalearthdata.com.
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An additional comparison is presented in Appendix A2, where the eight EURADCLIM annual precipitation accumulations

are compared to those from the gridded rain gauge dataset E-OBS. Generally, precipitation patterns agree, but many local

differences can be found. At far range from radars and rain gauges, a decrease in annual precipitation is found (e.g., above

sea). Artefacts in radar accumulations, especially spokes caused by interference, result in overestimation in some regions. The

E-OBS data are based on all days, whereas EURADCLIM has some missing data, especially the first ∼three weeks of 2013380

do not have data. Note that E-OBS has a grid of 0.1◦, which is much coarser than the 2-km radar grid. More importantly, the

underlying gauge network density can be sparse, whereas EURADCLIM provides full coverage. Hence, differences between

EURADCLIM and E-OBS are expected and Appendix A2 is meant as an illustration and sanity check for both datasets.

4.4 EURADCLIM extreme precipitation events

Figure 10 shows EURADCLIM’s precipitation estimates for three precipitation events: a wide-spread event across Europe385

showing the associated precipitation pattern of an extratropical cyclone with locally more than 60 mm in 24 hours (Fig. 10a).

An extreme event in eastern Europe with at least 120 mm in 24 hours (Fig. 10b). And a very extreme event in southern France

with at least 350 mm locally in 24 hours, of which at least 80 mm in the last hour (Fig. 10c–d). These events illustrate that

EURADCLIM can capture extreme precipitation events across Europe, which can especially be valuable for regions where

climatological radar precipitation datasets do not exist or are not open, and where the affected area spans multiple countries.390

5 Conclusions

We presented a climatological gauge-adjusted radar dataset of 1-h and 24-h precipitation accumulations, EURADCLIM, cov-

ering a large part of Europe over the period 2013–2020. Clearly, EURADCLIM will not outperform national (climatological)

radar precipitation datasets (e.g. Overeem et al., 2009b; Goudenhoofdt and Delobbe, 2016; Winterrath et al., 2018; Saltikoff

et al., 2019a; KNMI, 2022). The spatiotemporal resolution of (the underlying) composites will often be higher, e.g., 5 min395

or 10 min instead of 15 min and 1 km2 instead of 4 km2. In addition, they may have undergone additional processing (e.g.,

based on 3D radar data) or may use more rain gauge data. These are expected to increase the accuracy of QPE with respect to

EURADCLIM. However, such national datasets often do not exist or are not freely available for research or other purposes.

Moreover, EURADCLIM allows users to use a common dataset for a large part of Europe, instead of using different datasets

from multiple countries. EURADCLIM will also benefit from possible future improvements in the OPERA surface rain rate400

product.

Apart from the evaluation of EURADCLIM, the performance of the OPERA precipitation product and three clutter removal

algorithms were evaluated over an 8-year period. Some of the processing steps could also be applied in (near) real-time and

would help to further improve the OPERA precipitation products. As is shown, the Gabella clutter filter would clearly decrease

non-meteorological echoes in the OPERA product and would be directly applicable. OPERA already uses a satellite cloud405

mask. The static clutter mask could be applied if the annual precipitation accumulations from the previous year would be

used. When sub-daily near real-time gauge accumulations would become available, this would pave the way for merging with
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Figure 10. Three precipitation events that led to flooding. (a) A widespread event over Europe from 30 May 2013 1400 UTC – 31 May 2013

1400 UTC (24-h precipitation accumulation), which is also presented as Supplement (Movie S1). (b) An event in eastern Europe from 14

May 2014 0000 UTC – 15 May 2014 0000 UTC (1-h precipitation accumulation), and (c)–(d) a very extreme event north of Nice, southern

France from 1 October 2020 1400 UTC – 2 October 2020 1400 UTC (24-h precipitation accumulation) and its last hour (1-h precipitation

accumulation). (a) Map made with Natural Earth. Free vector and raster map data ©naturalearthdata.com. (b)–(d) map data ©OpenStreetMap

contributors 2022. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.
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OPERA radar accumulations in near real-time, e.g., by merging data from the last clock-hour. We think this would be a useful

improvement of the product developed by Park et al. (2019). The correction for motion of the precipitation field from Park

et al. (2019) could be a valuable addition to EURADCLIM. Moreover, in line with Park et al. (2019), the temporal resolution410

of EURADCLIM could be increased to 15 min. Finally, the period of the evaluation by Park et al. (2019) of OPERA-based

QPE as a function of time, could be extended, and this daily monitoring could also be applied to EURADCLIM.

This first version of EURADCLIM should be seen as a starting point. Despite the different algorithms to remove non-

meteorological echoes applied by NMHS, OPERA and in EURADCLIM, these echoes do still pose a problem. We claim that

precipitation climatologies derived from EURADCLIM have a reasonable accuracy and that extreme events can be captured415

at a much higher spatiotemporal resolution, but that EURADCLIM is not directly suited yet for extreme value modelling at

the grid cell scale, which requires records of the most extreme events, such as annual maxima. EURADCLIM may already

be suitable for extreme value modelling in case of longer durations or larger area sizes than the grid cell scale, such as larger

hydrological catchments. Then non-meteorological echoes may average out. QPE could be further improved, especially in

areas with sparse rain gauge network density or far away from weather radars. Some regions are far away from rain gauges,420

making the merging algorithm less effective. In some cases no merging is even carried out because of the long distance to the

nearest rain gauge (e.g., Iceland, Malta). To improve EURADCLIM, but also the OPERA near real-time products, we provide

the following main recommendations:

– Start with the volumetric radar data and apply algorithms (Goudenhoofdt and Delobbe, 2016) such as fuzzy logic clut-

ter removal (Berenguer et al., 2006; Gourley et al., 2007; Crisologo et al., 2014; Krause, 2016; Overeem et al., 2020),425

attenuation correction (Carey et al., 2000; Testud et al., 2000; Vulpiani et al., 2012; Al-Sakka et al., 2013; Jacobi and

Heistermann, 2016; Overeem et al., 2021) and vertical profile of reflectivity correction (Hazenberg et al., 2013). Es-

pecially the use of polarimetric variables would add value, also in the conversion to rain rates. Moreover, differences

between weather radars, e.g., polarimetric or not, and climate would require careful local analyses and optimization of

parameters (e.g., fuzzy logic settings, precipitation retrieval relations for rain/snow).430

– Obtain gauge data from more locations and update the rain gauge records that overlap with the (extended) EURADCLIM

time span. Additional high quality data might come from, e.g., NMHS, water and river authorities, and other data-

holding institutes. Instead of using only daily data, ideally also clock-hourly data would become available, which would

avoid possible errors introduced by disaggregating daily precipitation. This is desirable given the often large spatial and

temporal variability in precipitation and in sources of error in radar QPE.435

– Specifically, third party data could be employed after appropriate quality control (and retrieval) algorithms have been

applied. This also requires efforts from NMHS to bring these from research to operations (Garcia-Marti et al., 2022).

Examples of such third-party data sources are rain gauge data from personal weather stations (PWS) connected to the

internet (De Vos et al., 2019; Graf et al., 2021) and commercial microwave link (CML) data (Messer et al., 2006;

Leijnse et al., 2007; Overeem et al., 2016; Graf et al., 2020, 2021). The merging of these kind of datasets with radar440

data is studied in the COST action OPENSENSE (https://opensenseaction.eu/). These data sources could potentially be
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available in (near) real-time and would give a vast increase in the density of surface precipitation estimates. However, the

increase over time of the number of available third party data, challenges the aim of EURADCLIM to provide a climatic

perspective on hourly rainfall.

– Develop a radar-gauge merging algorithm that takes into account the local rain gauge network density. For the current445

method, the local mean-field bias adjustment followed by a spatial adjustment could then be replaced by a spatial ad-

justment where the value of the short range parameter varies seamlessly in space as a function of network density. In

addition, the value of the short range parameter should be based on the local precipitation climatology instead on the

precipitation climatology from the Netherlands. Also other adjustment methods could be evaluated (Goudenhoofdt and

Delobbe, 2009).450

– Add uncertainty information to radar and gauge data and use this in the radar-gauge merging. For instance, by using the

OPERA quality index and additional information on the radar quality and the rain gauge network density. Alternatively,

it could be studied whether a meaningful relationship can be established between the quality of EURADCLIM and the

distance to the nearest gauge or radar. Then maps with distance to the nearest gauge or radar (Fig. 2c–d) could guide the

user to judge the suitability of using a certain grid cell or region of EURADCLIM for a given application. Ideally, such455

quality maps would be computed for each 1-h interval, taking into account the gauges actually used in the merging and

the radar coverage and quality for that time interval. To facilitate this, we recommend to add the actual radar coordinates

for each individual time interval to the OPERA products.

EURADCLIM’s strategic value encompasses:

– Much better reference for validation of weather prediction model output (e.g., HARMONIE/ECMWF) (Van der Plas460

et al., 2017), Regional Climate Model simulations (Berg et al., 2019), satellite precipitation products (Skofronick-Jackson

et al., 2018; Sun et al., 2018), and opportunistic sensing data (e.g., CML and PWS), which allows for improving their

retrieval algorithms.

– Better monitoring of (trends in) precipitation extremes and their spatial extent, except for the most extreme events at the

grid cell scale, such as annual maxima, due to remaining non-meteorological echoes. This facilitates better understanding465

of the drivers behind such events (e.g., the relation to dew point temperature, atmospheric circulation, diurnal cycle,

clustering of showers) and climate attribution (Lochbihler et al., 2017; Lengfeld et al., 2019). Deriving a catalogue of

extreme precipitation events becomes possible, as is done for Germany by Lengfeld et al. (2021). This is all highly

relevant for anticipating future extremes in a changing climate.

– Better evaluation of extreme precipitation events and their impact (e.g., landslides, flooding). Specifically, use as input470

for hydrological models in order to improve these models, especially for flash flood forecasting.

We expect to rerun EURADCLIM once a year over the entire period, using all available ECA&D rain gauge data, and

extend it with one year of data. This will result in a new version of this dataset. Hence, we invite NMHS or other institutes
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to make all their rain gauge data available to ECA&D. We encourage to start using EURADCLIM and discover its value and

shortcomings for a variety of applications, and we appreciate any feedback on this. It is expected that EURADCLIM will be475

of use to various (scientific) domains and applications and that future collaborations and funding will lead to improved next

versions of EURADCLIM.

6 Code availability

The following tools, written in programming language Python (version 3), are publicly available at the GitHub repository

EURADCLIM-tools (https://github.com/overeem11/EURADCLIM-tools), to process OPERA-based radar precipitation files:480

a script to accumulate data, a script to perform climatological analyses (e.g., to compute the mean and the relative frequency of

exceedance), two scripts to visualize precipitation, one of them with an OpenStreetMap or Google Maps as background. This

helps end users to reproduce results from this study and to further explore and analyze the EURADCLIM dataset.

7 Data availability

The EURADCLIM 1-h and 24-h precipitation datasets are available from the KNMI Data Platform. The dataset of 1-h precipi-485

tation is available at https://doi.org/10.21944/7ypj-wn68 (Overeem et al., 2022a). The dataset of 24-h precipitation is available

at https://doi.org/10.21944/1a54-gg96 (Overeem et al., 2022b). For each year a zip file is provided. The data are in UTC, where

the time in the unzipped filenames is the end time of observation in UTC.

Video supplement. The supplemental video visualizes a widespread precipitation event on 30 and 31 May 2013 over Europe that led to

flooding. Supplement (Movie S1).490
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Appendix A1: Effect of additional clutter removal algorithms on 1-h precipitation

Figure A1. Comparison between 1-h precipitation accumulations from three datasets to study the effect of non-meteorological echo removal

algorithms over the period 2013–2020. (a)–(c) Maps of the ratio of mean hourly precipitation with respect to the OPERA dataset, and (d)–(i)

maps of the ratio of relative frequency of exceedance of 0.1 and 5 mm in an hour with respect to the OPERA dataset. The purple areas imply

that the ratio is 1. The uncolored areas do not have data or have a relative frequency of 0 for one or both datasets. Map made with Natural

Earth. Free vector and raster map data ©naturalearthdata.com.

27

https://doi.org/10.5194/essd-2022-334
Preprint. Discussion started: 2 November 2022
c© Author(s) 2022. CC BY 4.0 License.



Appendix A2: Annual precipitation EURADCLIM versus E-OBS

Figure A2. Annual precipitation accumulations over the period 2013–2020 for EURADCLIM (4 km2) and interpolated rain gauge obser-

vations (E-OBS version 25.0e; release April 2022; 0.1◦× 0.1◦, which is ∼ 11 km in latitude and ∼ 4− 9 km in longitude, depending on

the latitude). Coastlines are plotted in orange to ease the comparison between EURADCLIM and E-OBS, due to the coverage above open

water by radars for which E-OBS does not provide precipitation estimates. Map made with Natural Earth. Free vector and raster map data

©naturalearthdata.com.
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