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Abstract. Due to our increasing understanding of the role the surrounding landscape plays in ecological processes, a detailed 10 

characterization of land cover, including both agricultural and natural habitats, is ever more important for both researchers and 

conservation practitioners. Unfortunately, in the United States, different types of land cover data are split across thematic 

datasets that emphasize agricultural or natural vegetation, but not both. To address this data gap and reduce duplicative efforts 

in geospatial processing, we merged two major datasets, the LANDFIRE National Vegetation Classification (NVC) and 

USDA-NASS Cropland Data Layer (CDL), to produce an integrated land cover map. Our workflow leveraged strengths of the 15 

NVC and the CDL to produce detailed rasters comprising both agricultural and natural land-cover classes. We generated these 

maps for each year from 2012-2021 for the conterminous United States, quantified agreement between input layers and 

accuracy of our merged product and published the complete workflow necessary to update these data. In our validation 

analyses, we found that approximately 5.5% of NVC agricultural pixels conflicted with the CDL, but we resolved most of 

these conflicts based on surrounding agricultural land, leaving only 0.6% of agricultural pixels unresolved in our merged 20 

product. These ready-to-use rasters characterizing both agricultural and natural land cover will be widely useful in 

environmental research and management. 

1. Introduction 

Most agricultural landscapes include natural and semi-natural habitat, which supports biodiversity and ecosystem 

services critical for agricultural production (Cole et al., 2015; Cusser et al., 2019). Even small amounts of semi-natural habitat 25 

can provide disproportionate benefits for ecosystem services, including water quality, erosion mitigation, pest control, and 

pollination services (Bartual et al., 2019; Kremen and M’Gonigle, 2015; Zhou et al., 2014). Ecosystem services and the 

resulting benefits for agricultural production respond to both the amount and spatial configuration of agricultural and 

natural/semi-natural habitat patches. For example, pollinator communities vary based on area and proximity of semi-natural 

habitats (Kennedy et al., 2013), mass-flowering crops (Shaw et al., 2020) and even abundance of flowering weeds in a previous 30 

year’s crop (Crochard et al., 2022). Conversely, agricultural habitats can have an inordinate impact on the ecological 

community and ecological functioning of surrounding natural areas. For instance, natural enemies, pathogens, or pesticides 
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from agricultural areas may spill over into bordering natural habitat, thus impacting the insect communities of those areas (Bell 

and Tylianakis, 2016; Long and Krupke, 2016; Rand et al., 2006). 

Though spatial information on surrounding land cover is increasingly important for researchers and conservation 35 

practitioners, a single national dataset that includes both detailed natural and agricultural data does not exist. The Cropland 

Data Layer (CDL) is a widely used layer of land cover produced by the United States Department of Agriculture, National 

Agricultural Statistics Service (USDA NASS, 2021b), but, for many applications, the CDL lacks sufficient detail about semi-

natural and natural habitats. The CDL classifies non-agricultural habitats based on the National Land Cover Dataset (Homer 

et al., 2012), which has very broad classes of semi-natural and natural habitat. For example, for the entire United States, the 40 

CDL classifies forested areas as one of three forest classes (coniferous forest, deciduous forest, or mixed forest). These broad 

classes obscure known variance within a region in forest composition (Dyer, 2006) and conveys a false equivalence between 

distant geographic regions (e.g. ‘mixed forest’ in California bears little resemblance to ‘mixed forest’ in Maine, but they are a 

single class in the CDL). Similarly, information on crop identity is necessary for many ecological questions, but most land-

cover datasets that focus on natural and semi-natural habitats represent agricultural land in broad crop classes (e.g. ‘row crop 45 

agriculture’), rather than specific crop types.  

Addressing this data gap, we combined two national datasets of land cover, the USDA-NASS Cropland Data Layer 

(CDL) and the LANDFIRE National Vegetation Classification (NVC), leveraging the strengths of both products (LANDFIRE, 

2016c; USDA NASS, 2021b). The CDL delineates 110 agricultural classes, allowing researchers to quantify, for example, 

how crop composition affects ecosystem services or biodiversity outcomes (e.g. mass-flowering canola provides abundant 50 

pollen and nectar for pollinators, while the same area of wheat has relatively few floral resources). Furthermore, because the 

CDL has been produced annually since 2008, researchers can examine temporal questions like changes in land cover or typical 

crop rotations in a specific area, although there are some caveats and best practices for these uses of the CDL (Lark et al., 

2017). For instance, compared to reference data, the CDL historically undercounts cultivated area, but this bias has decreased 

over time. To characterize change in land cover, analysts must adjust estimates of crop area to account for varying bias in the 55 

CDL (see recommendations in Lark et al., 2017).  

The National Vegetation Classification is a raster product produced by the Landscape Fire and Resource Management 

Planning Tools (LANDFIRE) program which specifies 537 vegetation classes, of which 420 are semi-natural or natural 

vegetation (LANDFIRE, 2016c) and 23 are agricultural. The NVC is released periodically, with the latest spatial product (LF 

Remap, v2.0.0) corresponding to vegetation status in 2016. As the name suggests, the NVC raster is a spatial representation of 60 

vegetation classes defined by a standard vegetation classification recently developed for the United States (USNVC, 2016). 

Specifically, the LANDFIRE NVC maps USNVC vegetation at the group level, the sixth of eight levels of USNVC hierarchy. 

USNVC defines group as:  

A vegetation classification unit of intermediate rank (6th level) defined by combinations of relatively narrow sets of 

diagnostic plant species (including dominants and co-dominants), broadly similar composition, and diagnostic growth 65 
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forms that reflect biogeographic differences in mesoclimate, geology, substrates, hydrology, and disturbance regimes 

(Federal Geographic Data Committee, Vegetation Subcommittee, 2008). 

Compared with other national vegetation maps, LANDFIRE’s National Vegetation Classification dataset confers 

several advantages to users. The USNVC publishes detailed descriptions of vegetation groups including typical geographic 

range, vegetation structure, dominant species, and a summary of climate, soils, and environmental factors (USNVC, 2016). In 70 

addition to spatial products, LANDFIRE distributes a national reference database of vegetation plots with each field plot 

labelled as an NVC vegetation class (LANDFIRE, 2016b). For some vegetation types, this reference database enables users to 

analyze plant communities of vegetation types included in the NVC raster, facilitating spatial representation of species 

distributions, plant functional traits, and ecosystem services. Also, the hierarchical structure of USNVC defines topological 

relationships between vegetation classes, allowing users to easily reclassify LANDFIRE products to coarser vegetation types 75 

(e.g. combine USNVC groups to map vegetation at the macrogroup or division level). Mapping coarser classes of land cover 

typically increases classification accuracy (Lark et al., 2021) and may be preferred for some applications.  

To date, many environmental scientists have addressed the need for integrated layers of land-use by creating custom 

spatial datasets, which meet the needs of an immediate project but can lead to duplicated research effort and variability in final 

products. Geospatial data associated with specific research projects frequently cover small spatial extents, limiting reuse, and 80 

data are not commonly archived, with details of geospatial workflows being published with research results in discipline-

specific journals, limiting findability. To address these challenges and reduce duplicative efforts in geospatial processing, we 

generated national datasets of agricultural and natural land-use from 2012-2021 and published the complete workflow 

necessary to update these data. We expect these pre-processed layers will be widely useful in environmental research, saving 

research effort by providing a ready-to-use raster characterizing detailed classes of both agricultural and natural land cover. 85 

2. Methods 

We developed a workflow to 1) merge a detailed map of natural vegetation (LANDFIRE National Vegetation 

Classification, NVC) with a detailed, annual map of agriculture (USDA-NASS Cropland Data Layer, CDL), 2) resolve 

conflicting land covers and 3) produce error statistics. We applied this workflow to the NVC v2.0.0 (also called ‘2016 Remap’, 

LANDFIRE 2016a) and the CDL from 2012-2021 (USDA NASS, 2021b) for the conterminous United States. We reassigned 90 

agricultural pixels in the LANDFIRE National Vegetation Classification to a specific crop type that best matched their identity 

in the Cropland Data Layer. By altering only NVC agricultural classes (listed in Table 1), we ensured our merged vegetation 

map defined classes of non-agricultural vegetation that match the growth form specified in LANDFIRE vegetation height and 

cover layers. For example, pixels of ‘Laurentian & Acadian Hardwood Forest’ vegetation should correspond to pixels with 

tree metrics, rather than herbaceous or shrub, in the LANDFIRE layers for vegetation height and vegetation cover.  95 
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2.1 Geospatial workflow 

For each of the 48 states in the conterminous United States, we buffered a vector layer of US state boundaries (U.S. 

Census Bureau, 2021) by 90m to accommodate edge effects of our raster processing. We clipped national CDL and NVC 

rasters to state boundaries and split each state raster into tiles of approximately 1000 km2 with a 90m overlap between adjacent 100 

tiles. For each pair of CDL and NVC tiles, we executed the merge process, then joined output tiles together to generate state 

and national raster layers. We combined the NVC with CDL layers from 2012-2021 to create ten national annual rasters as our 

final output. We processed geospatial data by state to generate an archive of state rasters and facilitate joining land-use data 

with accuracy statistics from the CDL, which USDA-NASS publishes by state (see Technical Validation below). 

We merged CDL and NVC tiles in two steps (Figure 1). First, for pixels specified as agricultural land in NVC and CDL layers, 105 

we reassigned the NVC agricultural class to a more specific crop type from the CDL (see Table 1 for NVC/CDL class matches). 

We defined NVC/CDL matches based on crop classes that are synonyms (e.g. NVC wheat = CDL wheat), subsets (e.g. NVC 

orchard = CDL apple, peach, cherry, etc.), or potential components of a crop rotation. For example, we considered NVC row 

crop as a match for all annual crops (e.g. corn, soybeans, wheat, vegetables) and perennial vegetation that can be rotated with 

annual crops (e.g. alfalfa, hay, or pasture). In some areas of the western United States, including fallow years in crop rotations 110 

is a common strategy for moisture conservation (Hansen et al., 2012), so we considered NVC ‘Fallow-Idle Cropland’ as a 

match to most CDL crops (Table 1). It was necessary to consider mismatch due to crop rotations because we combined the 

single 2016 NVC raster with CDL data from 2012-2021, where a single CDL pixel could have multiple crop designations 

across the timespan.   

The second step of our workflow was reassigning NVC agricultural pixels were not agriculture in the CDL (or the 115 

two agricultural class identities did not match according to Table 1). For these pixels, we identified the most likely crop type 

based on surrounding agricultural pixels. Specifically, we calculated the dominant CDL crop type within 90 m (7 x 7 pixel 

neighborhood) and assumed the focal pixel was the same crop. To account for edge effects and ensure that the dominant crop 

type was accurately identified from a complete 7x7 neighborhood, we created raster tiles that overlap by 90 m (see above). 

We executed the merge procedure on overlapping tiles, then clipped each tile to remove the overlapping area. If there were no 120 

agricultural pixels within 90m of a mismatched pixel, we assigned that focal cell a value of -1001 indicating unresolved land 

cover due to mismatch between input rasters. In the technical validation (see below), we summarized the frequency of initial 

pixel mismatch between CDL & NVC input rasters (after workflow step one) and unresolved pixels remaining in merged raster 

(after workflow step 2). 

We executed all geospatial operations in R v4.1.2 (R Core Team, 2021) using terra v1.5-22 (Hijmans, 2021), raster 125 

v3.5-15 (Hijmans, 2022), SpaDES.tools v0.3.10 (Chubaty and McIntire, 2022), and gdalUtils v2.0.3.2 (Greenberg and 

Mattiuzzi, 2020) within a Singularity container (available with code archive, Kammerer, 2022). To facilitate processing large 

geographic extents, we utilized a high-performance computing cluster via the USDA-ARS SCINet Initiative. 
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2.2 Technical Validation 

We validated merged raster products to verify that our geospatial workflow produced the desired output and quantified 130 

spatial agreement between source layers. To ensure valid output, for all merged rasters, we verified that file size, spatial extent, 

coordinate reference system, and pixel values matched expected values (see data file x for attribute table for merged raster). 

All rasters in the linked archive (cite data archive) passed our automated testing regime. 

We quantified spatial agreement between the NVC and the CDL by calculating the number and proportion of mismatched 

pixels present after step one of our geospatial workflow (Figure 1). We defined mismatched pixels as NVC agricultural pixels 135 

that were not a relevant agricultural class in the CDL (Table 1). This included CDL pixels that were not agricultural (developed 

or natural land) or agricultural pixels that we deemed in conflict with the NVC agricultural class (see ‘Geospatial workflow’ 

above for rationale of class matching). After we re-assigned values for mismatched pixels (workflow step 2), we also 

summarized the number and proportion of pixels with unresolved land cover in our output rasters. From preliminary analyses, 

we determined that there was relatively little variation in mismatched pixels over time (Figure S1, Figure S2), so we presented 140 

results for one representative year of the CDL, 2017 (Figure 2). 

We assessed error of our merged data product by integrating accuracy statistics for the CDL and the NVC 

(LANDFIRE, 2016a; USDA NASS, 2021a). For each year and CDL class, USDA-NASS defines accuracy as the match 

between CDL raster and a reference dataset of administrative crop data and the National Land Cover Dataset (Homer et al., 

2012), another remotely sensed map of land cover. For each NVC region, LANDFIRE quantifies agreement between NVC 145 

raster and field plots in the LANDFIRE reference database (LANDFIRE, 2016b) labelled as specific NVC vegetation types. 

Due to error associated with labelling LANDFIRE field plots, ‘agreement’ rather than ‘accuracy’ is a more appropriate term 

for NVC assessment (LANDFIRE, 2016a). But, to utilize consistent language for both datasets, we referred to agreement 

between spatial and reference data as ‘accuracy’. To summarize accuracy of CDL, NVC, and merged rasters, we calculated an 

area-weighted mean of accuracy data per county in the conterminous United States.  150 

To aid interpretation of our accuracy maps, we also generated county-level maps of the proportional area of land 

cover classes with ground-truth data (reference data coverage) for CDL, NVC, and merged raster layers. NVC accuracy data 

are only available for vegetation types with at least 30 field-surveyed plots in the LANDFIRE reference database (LANDFIRE, 

2016b), and in some regions, many NVC classes were lacking accuracy values due to insufficient field plots. For the CDL and 

NVC, we calculated coverage of reference data considering only agricultural and unmanaged classes, respectively, while 155 

coverage values for the merged product included agricultural and unmanaged classes. Like our assessment of pixel mismatch, 

we showed data on accuracy and coverage of reference data using the 2017 CDL. 

3. Results 

In our technical validation, we found that 5.5% of NVC agricultural pixels conflicted with the CDL (i.e., the CDL 

was not an agricultural class or two agricultural class identities did not match according to Table 1). NVC classes for 160 
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pasture/hayland, and row crop had the highest number of conflicting pixels with CDL, with fewer mismatches for less common 

agricultural classes such as vineyard, orchard, fallow/idle, and aquaculture (Figure 2). Like other studies (Goslee, 2011; Lark 

et al., 2021), we found classification of pasture/hayland was a challenge, with 12.4% of NVC pixels of pasture/hayland 

conflicting with the 2017 CDL. For other common agricultural classes in the NVC (classes totaling more than 5% of U.S. 

agricultural land), pixels in conflict with the CDL did not exceed 5.1% of class area (Figure S3). Agricultural classes that were 165 

less common in the NVC had fewer mismatched pixels but higher proportional mismatch with CDL. For example, 65% of 

aquaculture pixels in the NVC were not classified as aquaculture in the CDL, although the approximately 94,000 ha of NVC 

aquaculture represents only 0.05% of agricultural land in the United States. Greater than 18% of bush fruit and berries, orchard, 

vineyard, and aquaculture area conflicted with CDL, although total area of these classes only represents approximately 1.8% 

of U.S. agricultural land.  170 

Mismatch between NVC and CDL land cover represented a median of 6.4% of county area, although mismatch was 

more prevalent in the Western United States. Most U.S. counties had low to moderate mismatch with less than 13% and 24% 

area mismatch in 77% and 90% of counties, respectively. Counties in the Western U.S. had higher mismatch, with some 

counties in the Southwest, California, Minnesota, Idaho, and Montana exceeding 65% of agricultural land in the NVC 

conflicting with the CDL. In counties with >65% mismatch, the most common mismatches were pixels classified as 175 

pasture/hayland or orchard in the NVC and shrubland in the CDL. 

By reassigning cells based on the most common agricultural land in the surrounding area, we resolved most 

mismatched pixels. In our final raster product, most U.S. counties had very little area of unresolved pixels, but southern 

California, Texas, Louisiana along the Gulf of Mexico, and Florida were hotspots of conflicting pixels with no agricultural 

land within 90m. In 96% of U.S. counties, unresolved pixels in the final raster were less than 0.4% of county area. Excepting 180 

one county in Louisiana, in hotspot areas, pixels with unresolved land cover represented 0.4-4.6% of county area. The most 

common cause of unresolved pixels was conflict related to classifying pasture/hayland, shrublands, wetlands, vineyard, and 

tree fruits. For example, in hotspots of unresolved pixels in Texas and Florida, pixels that the NVC classified as pasture/hayland 

were shrubland, wetland, or forest classes in the CDL. We could not resolve conflicts in these areas because there was no 

agricultural land within the 90m search radius due to high proportion of non-agricultural land. In some counties in southern 185 

California, up to 4.6% of county area was unresolved land cover because 1) NVC orchard or vineyard pixels were assigned to 

grass/pasture or shrubland in the CDL or 2) NVC row crop or vineyard pixels were tree nuts (almonds, walnuts, or pistachios) 

in the CDL. When conflicting land cover in California included orchard or vineyard classes, unresolved pixels typically 

represented a whole field (large, regular shape). If users are focusing on counties with more unresolved pixels, we recommend 

collecting ground-truth data or consulting additional imagery or land cover data to resolve mismatch between CDL and NVC 190 

layers. 

The LANDFIRE program uses the CDL to classify broad agricultural types in the NVC, and one aspect of the 

LANDFIRE workflow likely contributed to mismatched pixels between the NVC and the CDL. In previous years, CDL models 
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sometimes generated noise pixels scattered across a field that were misclassified as other crops. To address this, LANDFIRE 

executed a zonal smooth reclassifying CDL to the majority crop type within polygons of ownership. Then, LANDFIRE utilized 195 

the smoothed CDL to define agricultural classes for NVC (LANDFIRE program, personal communication). We could not 

replicate the LANDFIRE methodology because the spatial layer of ownership polygons (Common Land Unit) is not publicly 

available (USDA, 2017) but, when CDL and NVC conflicted, we also determined crop identity from surrounding crop pixels. 

Also, in recent years, USDA-NASS improved within-field classification of the CDL and, starting with a 2020 update to 

LANDFIRE products depicting fuels, fire, and vegetation height/cover, LANDFIRE dropped the zonal smooth from their 200 

workflow (LANDFIRE program, personal communication).   

At a national scale, classification accuracy of the CDL was higher than the NVC and accuracy of our merged product 

was between the CDL and NVC values because we calculated accuracy of the merged product as a weighted average of 

accuracy of the input layers. For CDL, NVC, and the merged product, we calculated accuracy per county yielding a distribution 

of accuracy values (Figure S4). For user’s and producer’s accuracy of the 2017 CDL, the median of county accuracy values 205 

was 75.8% and 81.5%, respectively, compared with 49.5% and 51% for the NVC (Figure S4). For our merged product, median 

user’s accuracy was 57% and producer’s accuracy was 56.7%. Accuracy of our merged dataset fell between 2017 CDL and 

NVC values (Figure S4), albeit closer to the NVC due to high proportion of natural land in many counties.  

Accuracy of the CDL, NVC, and our merged product varied geographically. The 2017 CDL was most accurate in 

high agricultural areas, especially the Great Plains and much of the Midwestern Corn Belt, with lower accuracy in the Mid-210 

Atlantic, Southeast, Upper Midwest, Pacific Northwest, and Southwest regions (Figure 3). For the NVC, we did not find any 

relationship between accuracy and the amount of natural land in each county, likely because large areas of natural land can 

comprise many habitat types, while large swaths of agriculture are typically simplified landscapes with relatively few crop 

types. We found a regional hotspot of user’s accuracy exceeding 72% from Iowa and western Missouri south to central Texas 

(Figure 3). User’s and producer’s accuracy of the NVC were both low (< 37%) in Florida, eastern Missouri, and some areas 215 

in Ohio and Indiana. In regions including Florida, western Texas, and Missouri and Arkansas, the LANDFIRE program had 

very little reference data and was not able to assess accuracy of many vegetation types (see coverage of reference data below). 

Even for vegetation types included in the accuracy assessment, the resulting accuracy values were likely lower due to the lack 

of reference data from these areas. Accuracy of our merged product most closely resembled the NVC, with higher accuracy in 

the Midwestern Corn Belt due to prevalence of agriculture in this region (Figure 3). It would be interesting to analyse 220 

relationships between environmental and vegetation characteristics and classification accuracy, but this was beyond the scope 

of the current work. 

We found that coverage of reference data for the CDL was consistently high, but, for the NVC (and therefore our 

merged products), coverage ranged from 1.3% to nearly 100% by county (Figure 4, Figure S5). For CDL, coverage of reference 

data was >93% for the whole conterminous United States because the CDL accuracy assessment included nearly all crop 225 

classes. For the NVC and our merged raster, median coverage was 77.2% and 84.4%, respectively. Most counties with NVC 

reference coverage less than approximately 50% were in the Midwest, Texas, Florida, and coastal areas along the Gulf of 
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Mexico and Atlantic Ocean (Figure 4). In Florida, western Texas, and Missouri and Arkansas, reference coverage for the NVC 

was low in many counties that had moderate to high proportional area of natural vegetation (Figure S6). This suggests that 

even relatively abundant vegetation types in these areas had insufficient reference data to be included in LANDFIRE’s 230 

accuracy assessment. Lack of reference data in these areas likely also contributed to low accuracy values. For the NVC, 

reference coverage less than approximately 30% corresponded to lower accuracy values (Figure S7). Like our accuracy results, 

for our merged product, spatial patterns of reference coverage resembled NVC with higher values in the Midwestern Corn Belt 

(Figure 4). 

4. Usage Notes 235 

We created a new spatial dataset that integrates both agricultural and natural land cover and that can be used by 

environmental scientists and managers who are interested landscape-scale processes involving both land cover categories. 

Though we were able to reduce additional inaccuracies from artifacts of our geospatial processing, the product we created is 

still subject to limitations of the source data. Accuracy of CDL is highest in regions dominated by agriculture and lower in 

states with more developed or semi-natural land cover, particularly mixed-use landscapes (USDA NASS, 2021a; Lark et al., 240 

2021). LANDFIRE vegetation products like the NVC are designed to be used at landscape, regional, or national scales and 

are likely less accurate for very small spatial extents (LANDFIRE, 2016a). For rare vegetation classes, LANDFIRE does not 

publish data on agreement between field plots and NVC raster. If projects are targeting small spatial extents or rare vegetation 

types, we recommend users review our land cover maps and adjust based on local knowledge or additional vegetation surveys. 

Data Availability 245 

All data files generated in this work are archived with the USDA Ag Data Commons as follows:  

1. Tabular data from technical validation, county accuracy statistics, and an attribute table for merged rasters are 

available at https://doi.org/10.15482/USDA.ADC/1527977 (Kammerer et al., 2022b). 

2. National merged rasters from 2012-2021 are available at https://doi.org/10.15482/USDA.ADC/1527978 (Kammerer 

et al., 2022a). 250 

Code Availability 

To facilitate updating these spatial layers with new versions of LANDFIRE NVC or additional years of CD, we archived all 

code to generate merged rasters on Zenodo at https://doi.org/10.5281/zenodo.6803199 (Kammerer, 2022).  
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Figures 350 

Figure 1: Geospatial workflow to combine USDA-NASS Cropland Data Layer (CDL) and LANDFIRE National Vegetation Classification 

(NVC) rasters. Panel A shows input raster layers. Panel B shows results of reclassifying NVC agricultural pixels to CDL values. 

Mismatched pixels in Panel B were the result of conflicts between the NVC and CDL (see Table 1 for class matches). We resolved pixel 

conflicts by assigning mismatched pixels to the most common CDL agricultural class within a 3 pixel radius (Panel C). When there were 

no proximate CDL agricultural pixels, we could not resolve mismatch, leaving some unresolved pixels in our final rasters (Panel C). Top 355 
and bottom rows are, respectively, all classes of land cover and land cover reclassified to binary agriculture or non-agriculture. 
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Figure 2: Frequency of disagreement between LANDFIRE National Vegetation Classification (NVC) agricultural classes and 2017 

Cropland Data Layer (CDL). Panels A and B depict frequency of pixel disagreement in the original land-cover rasters (after step 1 

of our geospatial processing, Figure 1). Panel A shows specific CDL classes that conflicted with NVC agricultural classes and, for 360 
each county in the conterminous United States, Panel B depicts the percentage of NVC agricultural pixels that did not match CDL. 

For the final merged raster (output of workflow step 2), Panel C shows the percentage of each county where conflict between CDL 

and NVC layers could not be resolved. To facilitate mapping, we converted percentages to discrete intervals using Jenks natural 

breaks algorithm. 

365 
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Figure 3: For 2017 CDL, NVC, and new merged product (CDL+NVC), accuracy of land cover classification compared against 

reference data. Accuracy statistics were calculated per county as an area-weighted mean of accuracy values assigned to each land 

cover class. For visualization purposes, we converted accuracy values to discrete intervals using Jenks natural breaks algorithm. 
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Figure 4. Percentage of county area with reference data for the conterminous United States. For 2017 CDL, reference data were 370 
from a USDA administrative crop database and National Land Cover Dataset imagery. For NVC, reference data were field plots in 

LANDFIRE reference database, with a minimum of 30 field plots per NVC class. For CDL and NVC, we calculated coverage of 

reference data as a fraction of agricultural and unmanaged classes, respectively, while, for the merged product, coverage of reference 

data included agricultural and unmanaged classes. To facilitate mapping, we converted values to discrete intervals using Jenks 

natural breaks. 375 
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Tables 

Table 1: Agricultural land cover classes in LANDFIRE National Vegetation Classification (NVC) we considered a match to the 

indicated classes in USDA-NASS Cropland Data Layer (CDL). 

 380 

*All Other Crops = Alfalfa, Asparagus, Avocados, Barley, Broccoli, Buckwheat, Cabbage, Camelina, Caneberries, Canola, Cantaloupes, Carrots, Cauliflower, 

Celery, Chick Peas, Clover/Wildflowers, Corn, Cotton, Cucumbers, Dbl Crop Barley/Corn, Dbl Crop Barley/Sorghum, Dbl Crop Barley/Soybeans,     Dbl 

Crop Corn/Soybeans, Dbl Crop Durum Wht/Sorghum, Dbl Crop Lettuce/Barley, Dbl Crop Lettuce/Cantaloupe, Dbl Crop Lettuce/Cotton, Dbl Crop 
Lettuce/Durum Wht, Dbl Crop Oats/Corn, Dbl Crop Soybeans/Cotton, Dbl Crop Soybeans/Oats, Dbl Crop Triticale/Corn,     Dbl Crop WinWht/Corn, Dbl 

Crop WinWht/Cotton, Dbl Crop WinWht/Sorghum, Dbl Crop WinWht/Soybeans, Dry Beans, Durum Wheat, Eggplants, Flaxseed, Garlic, Gourds, Greens, 385 
Herbs, Honeydew Melons, Hops, Lentils, Lettuce, Millet, Mint, Misc Vegs & Fruits, Mustard, Oats, Onions, Other Crops, Other Small Grains, Peanuts, Peas, 
Peppers, Pop or Orn Corn, Potatoes, Pumpkins, Radishes, Rape Seed, Rice, Rye, Safflower, Sod/Grass Seed, Sorghum, Soybeans, Speltz, Spring Wheat, 

Squash, Strawberries, Sugarbeets, Sugarcane, Sunflower, Sweet Corn, Sweet Potatoes, Switchgrass, Tobacco, Tomatoes, Triticale, Turnips, Vetch, 

Watermelons, Winter Wheat 

 390 

 

 

 

 

NVC Name NVC Value(s) Name(s) of Matching CDL Classes
Value(s) of Matching 

CDL Classes

Vineyard 7961, 7971, 7981, 7991 Grapes 69

Bush fruit and berries 7962, 7972, 7982, 7992 Blueberries, Cranberries 242, 250

Orchard 7960, 7970, 7980, 7990

Almonds, Apples, Apricots, Avocados, 

Cherries, Christmas Trees, Citrus, Nectarines, 

Olives, Oranges, Other Tree Crops, Peaches, 

Pears, Pecans, Pistachios, Plums, 

Pomegranates, Prunes, Walnuts

75, 68, 223, 215, 66, 70, 

72, 218, 211, 212, 71, 67, 

77, 217, 210, 76

Aquaculture 7979, 7989, 7999 Aquaculture, Open Water 92, 111

Row Crop - Close Grown 

Crop
7963, 7973, 7983, 7993

Row Crop 7964, 7974, 7984, 7994

Close Grown Crop 7965, 7975, 7985, 7995

Fallow/Idle 7966, 7976, 7986, 7996

Pasture and hayland 7967, 7977, 7987, 7997

Wheat 7968, 7978, 7988, 7998

Fallow/Idle Cropland, Grass/Pasture, Other 

Hay/Non Alfalfa, All Other Crops*
61, 176, 37, various
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