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 101 

Abstract  102 

As the adverse impacts of hydrological extremes increase in many regions of the world, a better 103 

understanding of the drivers of changes in risk and impacts is essential for effective flood and drought 104 

risk management and climate adaptation. However, there is currently a lack of comprehensive, 105 

empirical data about the processes, interactions and feedbacks in complex human-water systems 106 

leading to flood and drought impacts. Here we present a benchmark dataset containing socio-107 

hydrological data of paired events, i.e., two floods or two droughts that occurred in the same area. The 108 

45 paired events occurred in 42 different study areas and cover a wide range of socio-economic and 109 

hydro-climatic conditions. The dataset is unique in covering both floods and droughts, in the number 110 

of cases assessed, and in the quantity of socio-hydrological data. The benchmark dataset comprises: 111 

1) detailed review style reports about the events and key processes between the two events of a pair; 112 

2) the key data table containing variables that assess the indicators which characterise management 113 

shortcomings, hazard, exposure, vulnerability and impacts of all events; 3) a table of the indicators-of-114 

change that indicate the differences between the first and second event of a pair. The advantages of 115 

the dataset are that it enables comparative analyses across all the paired events based on the 116 

indicators-of-change and allows for detailed context- and location-specific assessments based on the 117 

extensive data and reports of the individual study areas. The dataset can be used by the scientific 118 

community for exploratory data analyses e.g. focused on causal links between risk management, 119 

changes in hazard, exposure and vulnerability and flood or drought impacts. The data can also be used 120 

for the development, calibration and validation of socio-hydrological models. The dataset is available 121 

to the public through the GFZ Data Services (Kreibich et al. 2023, link for review: 122 

https://dataservices.gfz-123 

potsdam.de/panmetaworks/review/923c14519deb04f83815ce108b48dd2581d57b90ce069bec9c948124 

361028b8c85/). 125 

 126 

1 Introduction 127 

The Panta Rhei initiative of the International Association of Hydrological Sciences (IAHS) aims to 128 

increase our knowledge of interactions and feedback between hydrological and social processes. Panta 129 

Rhei research focuses on understanding and modelling spatial and temporal dynamics of human-water 130 

systems in order to inform water management and hydrological risk reduction under global change, 131 

while supporting the achievement of water-related sustainability goals (Montanari et al., 2013; 132 
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McMillan et al., 2016; Di Baldassarre et al., 2019). In particular, a large amount of work in Panta Rhei 133 

has focused on floods and droughts and their interplay with human societies.  134 

In recent decades, flood and drought impacts have been significantly increasing in many regions of the 135 

world (Bouwer, 2011; Stahl et al., 2016), even where flow regimes are heavily engineered and 136 

regulated by dams, reservoirs and other infrastructure (Razavi et al., 2020; Van Loon et al., 2022).  Due 137 

to complex human-water system interactions, the attribution of trends in flood and drought impacts 138 

is particularly challenging (Merz et al., 2012a; Van Loon et al., 2016). For instance, trend analyses of 139 

flood impacts revealed that the observed increase in impacts is dominated by an increase in exposure, 140 

although changes in hazard, driven by climate change, may play a role as well (Bouwer, 2011; Merz et 141 

al., 2012b). It is suggested that climate signals leading to an increase in hazard might be masked by a 142 

counteracting decrease in vulnerability due to human interventions (Di Baldassarre et al., 2015; 143 

Jongman et al., 2015; Mechler and Bouwer, 2015). Vulnerability can be positively influenced by risk 144 

management practices, but it can also be negatively influenced, for example by the use of more water-145 

sensitive building materials (floods), or more water-stress sensitive crop types (droughts) (De Ruiter et 146 

al., 2021; Kuhlicke et al., 2020; Ward et al., 2020). Few datasets are available on the temporal dynamics 147 

of vulnerability and its influence on impacts (Bubeck et al., 2012; De Ruiter and Van Loon, 2022).  148 

There is an urgent need to detect trends in hazard, exposure and vulnerability as well as their joint 149 

effects on impacts, in order to understand and, in turn, model and project the dynamics of flood and 150 

drought risks (e.g. Sairam et al., 2019; Ward et al., 2020). However, due to a lack of empirical data, 151 

little is known about trends in flood and drought impacts and their causes (Kreibich et al., 2019). Impact 152 

data are seldom available and, when present, they are highly fragmented and uncertain (Downton and 153 

Pielke, 2005; Gall et al., 2009; Hayes et al., 2011; Stahl et al., 2016; Kron et al., 2012).  154 

Some trend analyses of impact data have been undertaken at continental (Barredo, 2009) and global 155 

scales (Neumayer and Barthel, 2011), since sufficient data about events and related impacts are 156 

available at such large spatial scales. Yet, these studies cannot disentangle the changes in exposure 157 

and vulnerability that influence impacts (Bouwer, 2011; Merz et al., 2012a). For such detailed analyses, 158 

case studies need to be assessed from a socio-hydrologic perspective (Mostert, 2018).  159 

The objective of this paper is to present a Panta Rhei dataset of paired events, i.e. two floods or two 160 

droughts that occurred in the same area. The dataset contains data of 45 paired events in 42 study 161 

areas encompassing different socio-economic and hydro-climatic conditions. The benchmark dataset 162 

includes detailed reports of events and key processes between events, an overview table of key data 163 

for all events, and a table of indicators-of-change indicating the differences between the first and 164 

second event of each pair. The innovation and advantages of the dataset lie in its ability to allow 165 

detailed context- and location-specific assessments based on the extensive data and reports on each 166 
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study area, and in turn to allow indicator-based comparative analyses across all paired events. A 167 

challenge is the heterogeneity of the data in relation to the different hazard types and monitoring 168 

approaches in the study areas, which prevents a quantitative comparison between the 45 paired 169 

events. A first comparative analysis based on the dataset revealed the general pattern that risk 170 

management normally reduces the impacts of floods and droughts, but faces difficulties in reducing 171 

the impacts of unprecedented events of a magnitude not experienced before (Kreibich et al. 2022). In 172 

addition, three risk management success factors were identified based on a detailed analysis of two 173 

success stories (Kreibich et al. 2022). Additionally, this dataset has the potential to support the 174 

development of models that simulate the dynamics of flood and drought risks generated by the 175 

interplay of social and hydrological processes. As such, the dataset can support solving one of the 176 

twenty-three unsolved problems in hydrology (Blöschl et al. 2019), namely “How can we extract 177 

information from available data on human and water systems in order to inform the building process 178 

of socio-hydrological models and conceptualisations?”. 179 

 180 

2 Methods 181 

The concept of collecting and analysing paired events of floods and droughts has been developed in 182 

two preceding studies. The Panta Rhei working group “Changes in flood risk” has previously 183 

undertaken a comparative paired-event study (Kreibich et al., 2017). Eight risk reduction success 184 

stories were compiled, i.e. paired events where the second flood caused significantly lower impact in 185 

comparison with the first flood in the same catchment. Subsequently, together with the Panta Rhei 186 

working group “Drought in the Anthropocene”, the extended concept for the collection of paired 187 

events of floods and droughts was developed and presented in the opinion paper “How to improve 188 

attribution of changes in drought and flood impacts” (Kreibich et al., 2019).   189 

2.1 Definitions and concept of paired events of floods and droughts 190 

Floods can be defined as the “temporary covering by water of land not normally covered by water” (EC, 191 

2007), or as water levels higher than a defined maximum (Blöschl et al., 2015). The main types of floods 192 

are coastal floods caused by storm surges, inland pluvial floods, riverine floods, and flash floods, which 193 

are usually caused by heavy precipitation, sometimes in combination with snowmelt, ice jams, high 194 

soil moisture, or high groundwater levels (e.g. Danard et al., 2003; Gaume et al., 2009; Skougaard 195 

Kaspersen et al., 2015; Tarasova et al., 2019, Stein et al. 2019). In contrast, drought can be defined 196 

using a precipitation deficiency threshold over a predetermined period of time (WMO, 2006), or more 197 

generally as an exceptional lack of water compared to normal conditions (Van Loon et al., 2016). 198 

Besides precipitation, temperature can also play an important role as a driver of droughts, either in 199 
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relation to evapotranspiration or to changes in snow accumulation and melt (e.g. Teuling et al., 2013; 200 

Staudinger et al., 2014; Huning and AghaKouchak, 2018, 2020). Droughts are typically categorized into 201 

three types, propagating in the following order: meteorological, soil moisture and hydrological drought 202 

(Wilhite and Glantz, 1985; Tallaksen and Van Lanen, 2004).  203 

Flood and drought risks and their impacts are determined by hazard, exposure, and vulnerability 204 

(UNDRR 2017). Hazard is a process, phenomenon or human activity that may cause loss of life, injury 205 

or other health impacts, property damage, social and economic disruption or environmental 206 

degradation; exposure is the situation of people, infrastructure, housing, production capacities and 207 

other tangible human assets located in hazard-prone areas; and vulnerability are the conditions 208 

determined by physical, social, economic and environmental factors or processes which increase the 209 

susceptibility of an individual, a community, assets or systems to the impacts of hazards (UNDRR, 210 

2017). Impacts, e.g. direct impacts such as fatalities or monetary impacts but also indirect and 211 

intangible impacts such as microbial infection (De Man et al., 2014), are a manifestation of risk 212 

(Poljanšek et al., 2017). The purpose of risk management is to reduce the impact of events by modifying 213 

the hazard, exposure, and/or vulnerability. It is defined as the application of disaster risk reduction 214 

policies and strategies to prevent new disaster risk, reduce existing disaster risk and manage residual 215 

risk, contributing to the strengthening of resilience and reduction of disaster losses (UNDRR, 2017). 216 

An important challenge of trend analyses of extremes is that every event, region, situation, etc. is 217 

unique and has its own characteristics and processes. The concept of paired events aims to reduce this 218 

heterogeneity by analysing comparable events of the same event type (e.g. two riverine floods or two 219 

meteorological droughts) that occurred in the same catchment or region (Kreibich et al., 2017, 2022). 220 

This concept is analogous to the one of paired catchment studies, which is well established in 221 

hydrology, and can be used to determine the magnitude of water yield variations resulting from 222 

changes in vegetation (Brown et al., 2005). The same concept has also been used for analysing whether 223 

changes in flood discharge can be attributed to changes in land use (Prosdocimi et al., 2015) and to 224 

disentangle the role of natural and human drivers of hydrological drought severity (Van Loon et al., 225 

2019).  226 

2.2 Data acquisition 227 

The development of this Panta Rhei benchmark dataset of socio-hydrological data of paired events of 228 

floods and droughts was driven by a core group of five people (Heidi Kreibich, Kai Schröter, Giuliano di 229 

Baldassarre, Anne Van Loon, Philip Ward) from the Panta Rhei working groups “Changes in flood risk” 230 

and “Droughts in the Anthropocene”. The aim was to collect data on paired events of pluvial, riverine, 231 

groundwater and coastal floods, as well as of meteorological, soil moisture and hydrological droughts. 232 

For drought paired events, authors could choose to provide hazard data relative to one drought type 233 
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(meteorological, soil moisture, hydrological), or even two or three types, depending on the data 234 

available and/or the focus on specific impacted sectors. In contrast to the previous paired event data 235 

compilation which contained eight flood paired events (Kreibich et al., 2017), the collection of paired 236 

flood or drought events was not limited to success stories but aimed to compile a set of diverse and 237 

contrasting cases. 238 

The campaign to collect data on paired events started at the EGU General Assembly in April 2019 in 239 

Vienna and was continued with talks promoting the paired event data collection at the international 240 

conferences KOSMOS (August 2019), REKLIM (September 2019), System-Risk (September 2019), and 241 

INQUIMUS (November 2019). Communication with the Panta Rhei community and other flood and 242 

drought experts identified through snowballing technique was important. Thus, data on paired events 243 

were provided by professionals with excellent local knowledge of the events and risk management 244 

practices. The academics and practitioners involved were either based in the study areas or worked 245 

with local partners (data providers are all co-authors of this paper).  246 

Based on templates, (provided in the appendix of the data description (Kreibich et al. 2023)), detailed 247 

review-style reports describing the events and key processes between events in the study areas were 248 

collected, with a focus on characterising impacts, management, hazard, exposure and vulnerability. 249 

The paired event reports are between 3 and 18 pages long and are structured in the following sections: 250 

1) short description of events with a focus on impacts; 2) descriptions of processes between events 251 

with a focus on risk management 3) event comparison in respect to hazard; 4) event comparison in 252 

respect to exposure; 5) event comparison in respect to vulnerability; 6) summary; 7) references. The 253 

reports contain qualitative and quantitative information and data. Qualitative information includes 254 

e.g. the description of risk management, quantitative information includes e.g. the amount of 255 

discharge or the number of fatalities.  256 

2.3 Data processing and quality assurance 257 

The processes implemented to assure data quality followed the Delphi Method (Okoli and Pawlowski, 258 

2004), which is built on structured discussion and consensus building among experts. First, an internal 259 

review process of the collected reports was undertaken by the core group for quality assurance, 260 

homogenization and data gap filling. Each paired event report was reviewed by two experts from the 261 

core group. Firstly, it was important to ensure that there is sufficient information and data in the 262 

reports to comprehensively characterise management shortcomings, hazard, exposure, vulnerability 263 

and impacts of both events in the study area. Secondly, the information and data provided for the first 264 

and second events of a pair must be comparable. This means that, if possible, the same variables must 265 

be used for characterising both events. For instance, if the Standardized Precipitation Index (SPI-12) is 266 
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used to assess the severity of the first drought, it should also be used for the second drought of the 267 

pair.    268 

Based on the review-style reports, two further data sets were developed, namely the key data table 269 

and the indicators of change, which were compiled in a second table. 270 

2.3.1 Compilation of key data 271 

The core group developed the key data table. This means that information and data were compiled to 272 

assess various indicators characterising management shortcomings, hazard, exposure, vulnerability 273 

and impacts (Table 1). As far as possible, the same indicators were used for all event types. For 274 

management shortcomings, exposure and vulnerability, the indicators are the same for all event types. 275 

The impact indicators are the same, except for ‘number of fatalities’ which was not used for droughts, 276 

since in our cases fatalities during drought events were not caused by lack of water, but by a concurrent 277 

heatwave. Necessarily, the hazard indicators are different, not only between floods and droughts, but 278 

also e.g. between coastal floods and riverine floods (Table 1).  279 

Commonly, more than one variable is provided per indicator, e.g. extreme rainfall at several 280 

meteorological stations to assess the severity of pluvial floods. Examples of how to describe or 281 

measure variables to assess the indicators of flood and drought impacts, hazard, exposure, 282 

vulnerability and management shortcomings are provided in the data description (Kreibich et al. 2023). 283 

For the assessment of the indicators, the same variables resulting from comparable measurements are 284 

used for both events of a pair as far as possible. Thus, variables compiled for the first and second event 285 

of a pair are comparable. However, the variables and the data quality differ strongly between the 286 

paired events and study areas due to the different event types, monitoring facilities and detailedness 287 

of event documentations. This data heterogeneity makes comparative analyses across the paired 288 

events challenging.    289 

In additionOur aim was to compile as complete data as possible on the data, theirevents, but not for 290 

all indicators of impacts, hazard, exposure, vulnerability and management shortcomings of all events 291 

peer-reviewed data sources were available. Thus, we also resorted to e.g. newspaper articles or expert 292 

knowledge. For transparency reasons, and to give data users the opportunity to judge the quality of 293 

the data themselves, data source information (citations, references) is also compiled in the key data 294 

table. SourcesAccording to our personal assessment, the sources of the data are classifiedcategorised 295 

in descending quality as follows: scientific study (peer reviewed paper and PhD thesis), report (by 296 

governments, administrations, non-governmental organisations (NGOs,), research organisations, 297 

projects), own analysis by authors, based on database (e.g. official statistics, monitoring data such as 298 

weather, discharge data, etc.), newspaper article, and expert judgement. 299 
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Table 1: Indicators characterising management shortcomings, hazard, exposure, vulnerability and 300 

impacts of flood and drought events. In general, the indicators are relevant for all event types. If an 301 

indicator is only relevant for certain event types, this is indicated in brackets. These indicators are 302 

column headers in the key data table. 303 

Management 
shortcomings 

Hazard Exposure Vulnerability Impacts 

• Problems with 
water 
management 
infrastructure  

• Non-structural 
risk management 
shortcomings 

• Duration of meteo. 
drought (only meteo. 
droughts)  

• Severity of meteo. 
drought (only meteo. 
droughts)   

• Duration of soil 
moisture drought (only 
soil moisture droughts) 

• Severity of soil moisture 
drought (only soil 
moisture droughts)  

• Duration of hydro. 
drought (only hydro. 
droughts)  

• Severity of hydro. 
drought (only hydro. 
droughts)  

• Tidal level (only coastal 
floods)   

• Storm surge (only 
coastal floods)  

• Antecedent conditions 
(only pluvial & riverine 
floods)  

• Precipitation / weather 
severity (only floods)  

• Severity of flood (only 
floods)  

• People/area
/assets 
exposed 

• Exposure 
hotspots
  

 

• Lack of 
awareness 
and 
precaution  

• Lack of 
preparedness 

• Imperfect 
official 
emergency / 
crisis 
management  

• Imperfect 
coping 
capacity   

• Number 
of 
fatalities 
(only 
floods) 

• Direct 
economic 
impacts 

• Indirect 
impacts 

• Intangible 
impacts 

 304 

The data compiled in the key data table were first individually quality checked by the respective data 305 

providers (i.e. report authors) for each paired event. In a second step, the whole key data table was 306 

reviewed by all authors to improve homogeneity across paired events.  307 

2.3.2 Assignment of indicators-of-change 308 

On the basis of the key data table, indicators-of-change between the first and second event of a pair 309 

were assigned to enable comparative analyses across the paired events. All indicators-of-change were 310 

designed such that consistently positive correlations with impact changes are expected, e.g. “lack of 311 
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awareness and precaution”. Thus, a decrease in “lack of awareness and precaution” is expected to lead 312 

to a decrease in impacts, and relates to a decrease in vulnerability. The first event was used as the 313 

baseline. The changes are indicated as follows, using a Likert scale ranging from -2 to 2. Values of -2/2 314 

indicate large decrease or increase, values of -1/1 indicate small decrease or increase and a value of 0 315 

indicates no change. In cases where more variables are associated with an indicator, a combination or 316 

selection of the variables was used for the derivation of the indicator-of-change based on hydrological 317 

reasoning on the most relevant piece of information. In case of quantitative variables (e.g. 318 

precipitation intensities) commonly a change of less than 50% is treated as small, and above 50% as 319 

large. For drought paired events, if more hazard indicators on different drought types (i.e., 320 

meteorological, soil moisture and hydrological drought) are provided, these were taken together to 321 

get an overall assessment of change in drought duration and severity. If the drought types showed 322 

different behaviour, the most representative value was chosen. The development of the indicators-of-323 

change had to take into account expert judgements that considered the whole context of the paired 324 

event. Representative examples are provided from flood and drought paired events showing how 325 

differences in quantitative and qualitative variables between the two events of a pair correspond to 326 

the values of the indicators-of-change (data description of Kreibich et al. 2023). 327 

Additionally, five summary indicators-of-change  were derived for management shortcomings, hazard, 328 

exposure, vulnerability and impacts to enable an easy comparison between flood and drought paired 329 

events. These summary indicators-of-change were derived by qualitatively comparing and integrating 330 

the values of their related indicators-of-change, according to Table 1. For instance, the summary 331 

indicator-of-change of exposure is derived from the two indicators-of-change of People/area/assets 332 

exposed and Exposure hotspots. 333 

Indicators-of-change were assigned in an iterative process following a quality assurance protocol: for 334 

each paired event, first a core group member suggested values for the indicators-of-change and 335 

consequently the five summary indicators-of-change based on the key data table. Next, another 336 

member of the core group reviewed these suggestions. In case of doubt, both core group members 337 

checked again the variables in the key data table and also the paired event report, and provided a joint 338 

suggestion. All suggested values for the indicators-of-change for all paired events were discussed in 339 

the core group to assure comparability across paired events. Then, again individually per paired event, 340 

the suggested values of the indicators-of-change were cross-checked with the respective data 341 

providers (i.e. report authors of the paired event). Finally, the completed table of indicators-of-change 342 

was reviewed again by all authors to improve homogeneity across paired events.  343 

 344 

3 Results  345 
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3.1 Overview of paired events 346 

In total 45 paired events of floods and droughts from all over the world were collected in 42 study 347 

areas (Table 2). In three study areas we have data on three flood events that formed two paired events, 348 

e.g. pluvial floods in 2007, 2010 and 2014 in Malmö, Sweden with the first paired event: pluvial floods 349 

in Malmö 2007 and 2010 (paired event ID 27); second paired event: pluvial floods Malmö 2010 and 350 

2014 (paired event ID 45). Our dataset includes 26 flood and 19 drought paired events. Most events 351 

occurred between 1970 and 2019, with three exceptions: the drought in 1947 in southwest Germany, 352 

the riverine flood in 1951 in Kansas, USA, and the riverine flood in 1963 at the Baiyangdian River, China 353 

(Table 2). The average time between the two events of a pair is 16 years with a range of 1 to 71 years. 354 

The geographical distribution of the paired events encompasses 3 paired events in South America, 7 355 

in North America, 2 in Africa, 22 in Europe, 10 in Asia and 1 in Australia (Figure 1).  356 

 357 

Table 2: Overview of paired events, sorted according to the summary indicator-of-change of impacts  358 

Paired 
event 

ID 
Event type 

Area: 
Catchment / 

region 

Area: 
Country 

Year(s)  
1st event 

Year(s) 2nd 

event 

indicator-
of-change 
in impact 

1 pluvial flood City of Beijing China 2012 2016 -2 

2 riverine flood Kansas 
catchment USA 1951 1993 -2 

3 riverine flood Baiyangdian 
catchment China 1963 1996 -2 

4 riverine flood Jakarta Indonesia 2007 2013 -2 
5 coastal flood North Wales UK 1990 2013 -2 

6 meteorological 
drought Maule region Chile 1998 2013 -1 

7 
meteorological & 

hydrological 
drought 

Lorraine 
region France 1976 2018 -1 

8 
meteorological & 

hydrological 
drought 

South-West 
Germany Germany 1947 2018 -1 

9 meteorological 
drought 

Central 
Europe  2003 2015 -1 

10 hydrological 
drought 

Limpopo 
catchment Mozambique 1991 2005 -1 

11 groundwater 
flood 

West 
Berkshire UK 2000-2001 2013-2014 -1 

12 pluvial flood Barcelona 
city Spain 1995 2018 -1 

13 riverine & pluvial 
flood Piura region Peru 1998 2017 -1 

14 riverine flood Mekong 
River Cambodia 2000 2011 -1 

15 riverine flood Danube 
catchment 

Austria & 
Germany 2002 2013 -1 

16 riverine flood Crete Greece 1994 2015 -1 
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17 riverine flood Sukhona 
catchment Russia 1998 2016 -1 

18 riverine flood Jakarta Indonesia 2002 2007 -1 
19 coastal flood Charleston USA 2016 2017 -1 

20 coastal flood Coastal 
Region Bangladesh 2007 2009 -1 

21 soil moisture 
drought 

Wielkopolska 
Province Poland 2006 2015 0 

22 hydrological 
drought 

Ver 
catchment UK 2003-2006 2010-2012 0 

23 
meteorological & 

hydrological 
drought 

 UK 2003-2004 2005-2006 0 

24 hydrological 
drought 

Meuse and 
Rhine 

catchments 

The 
Netherlands, 
Germany & 

Belgium 

1976 2003 0 

25 

meteorological 
soil moisture & 

hydrological 
drought 

Don 
catchment Russia 1972 2010 0 

26 meteorological 
drought 

Seyhan River 
basin Turkey 1973 2014 0 

27 pluvial flood Malmö Sweden 2007 2010 0 

28 pluvial flood Ho Chi Minh 
City Vietnam 2010 2016 0 

29 riverine & pluvial 
flood Birmingham UK 2008 2016 0 

30 riverine & pluvial 
flood Birmingham UK 2016 2018 0 

31 riverine flood Assiniboine 
catchment Canada 2011 2014 0 

32 riverine, pluvial & 
coastal flood 

Can Tho city, 
Hau River Vietnam 2011 2016 0 

33 

Meteorological 
soil moisture & 

hydrological 
drought 

North 
Carolina US 2000-2002 2007-2009 1 

34 meteorological 
drought Catalonia Spain 1986-1989 2004-2008 1 

35 meteorological 
drought Melbourne Australia 1982-1983 2001-2009 1 

36 hydrological 
drought California USA 1987-1992 2012-2017 1 

37 hydrological 
drought Sao Paulo Brazil 1985-1986 2013-2015 1 

38 
meteorological & 

hydrological 
drought 

Raam 
catchment 

The 
Netherlands 2003 2018-2019 1 

39 

meteorological 
soil moisture & 

hydrological 
drought 

Central 
Highlands Vietnam 2004-2005 2015-2016 1 

40 pluvial flood Corigliano-
Rossano city Italy 2000 2015 1 

41 riverine flood Ottawa River Canada 2017 2019 1 
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42 riverine flood Delaware 
catchment USA 2004 2006 1 

43 riverine flood Cumbria UK 2009 2015 1 

44 meteorological 
drought 

Cape Town 
area South Africa 2003-2004 2015-2017 2 

45 pluvial flood Malmö Sweden 2010 2014 2 
 359 

 360 

 361 

Figure 1: Geographical distribution of the paired events, numbers represent the IDs of the paired 362 

events. 363 

 364 

3.2 Content of the Panta Rhei benchmark dataset  365 

The dataset comprises: 1) the paired event reports, i.e. review style reports about the events and key 366 

processes between the events, particularly with respect to changes in risk management; 2) the key 367 

data table containing variables that assess the indicators which characterise management 368 

shortcomings, hazard, exposure, vulnerability and impacts of all events; and 3) the table containing 369 

the indicators-of-change, including the summary indicators-of-change. These three parts of the dataset 370 

are described in detail in the following sections.  371 

3.2.1 Paired event Reports 372 

The reports about the paired events are all written in the style of review papers, i.e. they primarily 373 

compile and analyse available information and data from various sources about the events and key 374 

processes between the events. For some reports, the authors also undertook their own analyses and 375 

included statements based on their expert judgement. The reports are between 3 and 18 pages long 376 

and are structured in the following sections: 1) short description of both events with a focus on 377 

impacts; 2) description of processes between events with a focus on risk management; 3) event 378 
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comparison in respect to hazard; 4) event comparison in respect to exposure; 5) event comparison in 379 

respect to vulnerability; 6) summary; and 7) references. In the three cases where we have three events, 380 

i.e. two paired events in one study area, all three events and processes between events are described 381 

in one report. Thus, the dataset contains 43 reports which enable detailed contextual insights into 382 

physical and socio-economic changes between the paired drought or flood events in an area.  383 

3.2.2 Key data table 384 

The key data table is an Excel file with the following 2two spreadsheets: 1) “key data”, which contains 385 

the data of the flood and drought paired events, 2) “references”, which contains the references cited 386 

in the key data compilationspreadsheet, separated by paired events and linked via the paired event 387 

IDs. 388 

The key data spreadsheet is structured as follows: The first columns identify and roughly characterise 389 

the paired event and study area, i.e. their headers are: “Paired event ID”, ”Event type”, “Area: 390 

Catchment/region”, “Area: Country”, “Year of event”. The following columns contain the data (every 391 

second column) and the category of the data source (every second column). The data columns contain 392 

variables that assess the management shortcomings, hazard, exposure, vulnerability and impacts 393 

indicators, structured in analogue to Table 1. Citations leading to the source of the data are included, 394 

e.g. citation of a scientific paper. In the following column, the category of the data source is provided. 395 

to give data users the opportunity to judge the quality of the data themselves. Always 2 rows belong 396 

to one paired event, the first line contains the information of the first event, the second line contains 397 

the information of the second event. The variables compiled for the first and second event of a pair 398 

are comparable, i.e. the same variables resulting from comparable measurements are provided as far 399 

as possible. Any missing data which could not be retrieved for the specific event is indicated as not 400 

available (NA). The indicators which are not relevant for the specific event type are indicated as not 401 

relevant (NR).  402 

The references spreadsheet contains the following columns: “Paired event ID”, “DOI”, “Web-link”, 403 

“Accessed (web-link)”, “References”. If possible, DOIs are given, which is mainly the case for scientific 404 

studies. Otherwise, the web link is given if possible, this is often the case for reports. In these cases, 405 

additionally the date is provided on which the data source provided via a web-link was last accessed. 406 

References are provided for all citations contained in the key data spreadsheet, this is mainly the case 407 

for scientific study and report categories of the data source.  408 

 409 

3.2.3 Table of indicators-of-change 410 
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The table containing the indicators-of-change is structured in analogue to the key data spreadsheet of 411 

the key data table. Differences are the following: 1) the indicators-of-change characterising drought 412 

hazard are aggregated into two indicators-of-change: “Duration of drought” and “Severity of drought”, 413 

for all drought types; 2) the five summary indicators-of-change are additionally included; 3) Each event 414 

pair is represented by one row, since the indicators-of-change represent the difference between the 415 

data of the first event (1st row of paired event in key data) and of the second event (2nd row of paired 416 

event in key data).     417 

Overall, the flood and drought paired events have similar amounts of data availability for the 418 

indicators-of-change, with only 12% and 14% NAs, respectively. However, for both floods and 419 

droughts, data on indirect and intangible impacts are scarce (Figure 2). For droughts, hazard and 420 

exposure data are readily available, while data on coping capacity is scarce. Additionally, storm surge 421 

data for coastal floods is scarce (Figure 2).  422 

 423 

Figure 2: Fraction of entries in [%] (in contrast to NA values) for each indicator-of-change of flood (A) 424 

and drought (B) paired events. 425 

Across all paired events, a small decrease and no change were the most common values across all 426 

summary indicators-of-change, with 43% and 25%, respectively (Figure 3). Large changes (-2/2) are 427 

rare, with counts below 10% across all indicators-of-change. Changes in hazard, exposure and impact 428 

show a relatively even distribution (except for large changes), whereas changes in vulnerability and 429 

management shortcomings mainly show a decrease. 430 

Differences between the collected flood and drought paired events are apparent for exposure and 431 

impacts. Flood paired events include one pair with a large decrease in exposure, two pairs with a large 432 

increase in exposure and a rather even distribution across small decreases, no change and a small 433 

increase for the rest of the pairs. However, most common is a small decrease in exposure, apparent in 434 

38% of the flood paired events. In contrast, no large changes (-2/2), and only one pair with a small 435 

decrease in exposure occurred among the drought paired events. Most common is a small increase in 436 
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exposure, reported in 53% of the drought paired events, with the remaining 42% reporting no change 437 

in exposure. In five flood paired events, a large decrease in impacts was reported and many flood 438 

paired events showed a small decrease in impacts (38%). In the collected drought paired events, no 439 

large decrease in impacts occurred and most common is a small increase in impacts (37%).  440 

 441 

 442 

Figure 3: Histograms of summary indicators-of-change for flood and drought paired events, indicating 443 

large decrease or increase (-2/2), small decrease or increase (-1/1) and no change (0) between the fist 444 

and the second event. 445 

 446 

4 Potential uses of the dataset 447 

The presented dataset supports detailed context- and location-specific assessments of the paired 448 

events, based on the paired event reports and the key data table. Based on the descriptions and the 449 

comparable variables per paired event that characterise the management shortcomings, hazard, 450 

exposure, vulnerability and impacts, it is possible to qualitatively attribute changes in impact to their 451 

drivers and identify successful or unsuccessful risk management strategies. During the first data 452 

analyses, only two paired events, i.e. “Pluvial floods in Barcelona, Spain” and “Riverine floods in 453 

Danube catchment in Germany and Austria” were analysed in detail and successful risk management 454 

strategies identified (Kreibich et al. 2022). This leaves a lot of room for further detailed analyses, e.g. 455 

of drought success stories (e.g. droughts in the Wielkopolska Province in Poland and in the Don River 456 

catchment in Russia), or impact attribution studies. Detailed suggestions for the attribution of changes 457 

in drought and flood impacts are provided by Kreibich et al. (2019).  458 

The table of indicators-of-change can support comparative analyses across all paired events or 459 

separately for flood paired events and drought paired events. The latter eases the comparison of the 460 

hazard indicators-of-change, since these differ between floods and droughts. SuchWhile the variables 461 

describing the first and second event of a pair are comparable, variables and data quality differ strongly 462 

between the paired events. The great heterogeneity of data and events represents both the strength 463 

and the weakness of the Panta Rhei dataset with regard to comparative analyses. As quantitative 464 

comparative analyses across all paired events are impossible, such analyses can only be undertaken 465 
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on the basis of the indicators-of-change. Although these indicators were created with great care 466 

according to the quality assurance protocol, they are subject to uncertainties and caution is required 467 

when interpreting the results.  Still, such comparative analyses are analogous to other comparative 468 

studies in hydrology, which have shown their value especially for obtaining more generic, transferable 469 

results (Duan et al., 2006; Blöschl et al., 2013). Conclusions can be drawn about the attribution of 470 

impacts or the effectiveness of risk management, based on common patterns of the paired events 471 

across socio-economic and hydro-climatic situations. During the first data analyses, only the five 472 

summary indicators-of-change for management shortcomings, hazard, exposure, vulnerability and 473 

impact were analysed. So, there is still much scope for further more detailed comparative analysis by 474 

including all indicators-of-change. Examples of comparative analyses of socio-hydrological data of 475 

paired events are provided by Kreibich et al. (2017, 2022). 476 

The table of key data can further support the development of socio-hydrological models, individually 477 

per paired event. The empirical data available for two points in time (i.e. first data points: data of first 478 

event in first row of paired event and second data points: data of second event in second row of paired 479 

event) can be used to estimate the parameters of socio-hydrological flood or drought risk models 480 

through Bayesian inference (Barendrecht et al. 2019; Schoppa et al. 2022). Even better would be if 481 

complementary data for some of the variable extentvariables extended the two points in time to build 482 

a time series. This might be rather easily possible for monitored data like precipitation amounts or 483 

discharge as well as statistical data like exposed population or assets. Bayesian inference is suitable for 484 

the incorporation of different types of socio-hydrology data, i.e. qualitative and quantitative data, less 485 

or more uncertain data, many data points versus only a few data points (Gelman et al., 2014). The gain 486 

of using a socio-hydrological modelling approach in combination with empirical data is that it allows 487 

for a consistent interpretation of all available data together, including their interactions (Barendrecht 488 

et al. 2019). This approach enables the simulation of historical risk dynamics for the study areas and 489 

allows to inform adaptation planning by exploring the possible system evolutions in the future 490 

(Schoppa et al. 2023). The dataset has not yet been used to calibrate socio-hydrological models. Due 491 

to the diversity of hazard types as well as diverse socio-economic and hydro-climatic situations covered 492 

by the 45 paired events from all continents, the table of key data can be used to benchmark the 493 

performance of socio-hydrological flood or drought risk models. Examples of how heterogenous socio-494 

hydrological data (e.g. discharge time series, level of protection, settlement density, flood awareness, 495 

level of private precaution, direct economic damage) can be used to estimate the parameters of socio-496 

hydrological flood models are provided by Barendrecht et al. (2019) and Schoppa et al. (2022).       497 

 498 

5 Data availability 499 
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The “Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts 500 

(version 2)” is published under the Creative Commons Attribution International 4.0 Licence (CC BY 4.0) 501 

via GFZ Data Services (Kreibich et al., 2023, the review link is the following: https://dataservices.gfz-502 

potsdam.de/panmetaworks/review/923c14519deb04f83815ce108b48dd2581d57b90ce069bec9c948503 

361028b8c85/ 504 

Conclusions 505 

Developing sustainable and efficient risk management strategies under non-stationary conditions 506 

requires understanding of the temporal changes of flood and drought impacts and their causes. The 507 

comprehensive Panta Rhei dataset presented in this paper can support detailed context and location-508 

specific assessments of changes in impacts and their drivers and of risk management strategies based 509 

on the detailed paired event reports and key data regarding the individual paired events. The dataset 510 

can support indicator-based comparative analyses across all paired events, and eventually reveal 511 

generic and transferable conclusions in the occurrence of common patterns. Such analyses might be 512 

particularly useful to attribute changes in flood and drought impacts, including understanding of the 513 

role of human activities and decisions in reducing or exacerbating the impacts of drought and flood 514 

events. Ultimately, the dataset can support the development and benchmarking of socio-hydrological 515 

models and as such can supports solving the following unsolved problem in hydrology “How can we 516 

extract information from available data on human and water systems in order to inform the building 517 

process of socio-hydrological models and conceptualisations?” (Blöschl et al. 2019). 518 

Additionally, we want to encourage more collection of socio-hydrological data of floods and droughts, 519 

but also of other water-related phenomena. Such data are scarce, but essential to understand spatial 520 

and temporal dynamics of human-water systems and inform and support improved water 521 

management under global change. The contact author, Heidi Kreibich, will be happy to advise and help 522 

with data collection if desired. Templates for the collection of socio-hydrological data on paired events 523 

of floods and droughts are provided in the appendix of the data description (Kreibich et al. 2023). 524 
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