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[bookmark: _heading=h.k402p8cwniog]Abstract

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesise data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data-products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the first time, an approach is shown to reconcile the difference in our ELUC estimate with the one from national greenhouse gases inventories, supporting the assessment of collective countries’ climate progress.
For the year 20202021, EFOS declinedincreased by 5.41% relative to 20192020, with fossil emissions at 9.510.1 ± 0.5 GtC yr-1 (9.39 ± 0.5 GtC yr-1 when the cement carbonation sink is included), ELUC was 0.91.1 ± 0.7 GtC yr-1, for a total anthropogenic CO2 emission of 10.211.1 ± 0.8 GtC yr-1 (37.440.8 ± 2.9 GtCO2). Also, for 20202021, GATM was 5.02 ± 0.2 GtC yr-1 (2.45 ± 0.1 ppm yr-1), SOCEAN was 3.02.9 ± 0.4 GtC yr-1 and SLAND was 23.5 ± 0.9 ± 1 GtC yr-1, with a BIM of -0.86 GtC yr-1. (i.e. total estimated sources too low or sinks too high). The global atmospheric CO2 concentration averaged over 20202021 reached 412.45414.71 ± 0.1 ppm. Preliminary data for 20212022, suggest a reboundan increase in EFOS relative to 20202021 of +4.8% (4.21.1% (0% to 5.41.7%) globally, and atmospheric CO2 concentration reaching 417.3 ppm, more than 50% above pre-industrial level. 
Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959-20202021, but discrepancies of up to 1 GtC yr-1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows: (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2022a; Friedlingstein et al., 2020; Friedlingstein et al., 2019; Le Quéré et al., 2018b, 2018a, 2016, 2015b, 2015a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2021https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 20212022b).

[bookmark: _heading=h.c9yhwcvhzwdv]Executive Summary
Global fossil CO2 emissions (excluding cement carbonation) in 2021 are returning towards further increased in 2022, being now slightly above their 2019 levels after decreasing [5.4%] in 2020.pre-COVID19 pandemic level. The 2020 decrease 2021 emission increase was 0.5246 GtC yr-1 (1.97 GtCO2 yr-1), bringing 20202021 emissions to 9.510.1 ± 0.5 GtC yr-1 (34.836.9 ± 1.8 GtCO2 yr-1), comparable to slightly below the emissions level of 20122019. Preliminary estimates based on data available in March 2022 suggest fossil CO2 emissions rebounded 4.8%continued to increase in 2022, by 1.1% relative to 2021 (4.20% to 5.41.7%), bringing emissions at 9.910.2 GtC yr-1 (36.437.3 GtCO2 yr-1), back to aboutslightly above the same2019 level as in 2019 (10.01 ± 0.5 GtC yr-1, 36.737.0 ± 1.8 GtCO2 yr-1). Emissions from coal, oil, and gas in 20212022 are expected to have reboundedbe above 2019their 2021 levels, while (by 0.8%, 2.2% and 1.1% respectively).  Regionally, emissions from oil were still below their 2019 level.  Emissionsin 2022 are expected to have been 5.7% higher in 2021 than in 2019decreasing by 1.5% in China, reaching  (3.0 GtC (, 11.1 GtCO2) and also higher in India with a 3.2% increase in 2021 relative to 2019, reaching 0.74 GtC (2.7 GtCO2). In contrast, projected 2021 emissions in the United States (1.4 GtC, 5.0 GtCO2), ), and 1% in the European Union (0.8 GtC, 2.8 GtCO2), and but increasing by 1.6% in the United States (1.4 GtC, 5.1 GtCO2), 5.6% in India (0.8 GtC, 2.9 GtCO2) and 2.5% for the rest of the world (4.02 GtC, 14.815.5 GtCO2, in aggregate) remained respectively 4.5%, 5.3%, and 4.0% below their 2019 levels. These changes in 2021 emissions  reflect the stringency of the COVID-19 confinement levels in 2020 and the pre-covid background trends in emissions in these countries. ).
Fossil CO2 emissions significantly decreased in 2324 countries during the decade 2010-2019.  Altogether, these 2324 countries contribute to about 2.54 GtC yr-1 (8.8 GtCO2) fossil fuel CO2 emissions over the last decade, only about one quarter of world CO2 fossil emissions. 
Global CO2 emissions from land-use, land-use change, and forestry (LUC) converge based on revised data of land-use change and show a small decrease over the past two decades. Near constant gross emissions estimated at 3.8 ± 0.6 GtC yr-1 in the 2011-2020 decade are only partly offset by growing carbon removals on managed land of 2.7 ± 0.4 GtC yr-1, resulting in the net emissions in managed land of 1.1 ± 0.7 GtC yr-1 (4.1 ± 2.6 GtCO2 yr-1). These net emissions decreased by 0.2 GtC in 2020 compared to 2019 levels, with large uncertainty. Preliminary estimates for emissions in 2021 suggest a 0.1 GtC decrease for 2021, giving net emissions of 0.8 GtC yr-1 (2.9 GtCO2 yr-1). ​​The small decrease in net LUC emissions amidst large uncertainty prohibits robust conclusions concerning trend changes of total anthropogenic emissions. For the first time, we link the global carbon budget models' estimates to the official country reporting of national greenhouse gases inventories. While the global carbon budget distinguishes anthropogenic from natural drivers of land carbon fluxes, country reporting is area-based and attributes part of the natural terrestrial sink on managed land to the land-use sector. Accounting for this redistribution, the two approaches are shown to be consistent with each other.
Global CO2 emissions from land-use, land-use change, and forestry (LUC) averaged at 1.2 ± 0.7 GtC yr-1 (4.5 ± 2.6 GtCO2 yr-1) for the 2012-2021 period with a preliminary projection for 2022 of 1.0 ± 0.7 GtC yr-1 (3.6 ± 2.6 GtCO2 yr-1). A small decrease over the past two decades is not robust given the large model uncertainty. Deforestation emissions remain high at 1.8 ± 0.4 GtC yr-1 over the 2012-2021 period, highlighting a substantial mitigation potential for emissions reductions. Sequestration of 0.9 ± 0.3 GtC yr-1 through re-/afforestation and forestry offsets one half of the deforestation emissions. Emissions from other transitions and from peat drainage and peat fire add further, small contributions. The highest emitters during 1959-2021 in descending order were Brazil, Indonesia, and the Democratic Republic of the Congo, with these 3 countries contributing more than half of the global total land-use emissions. 
The remaining carbon budget for a 50% likelihood to limit global warming to 1.5°C, 1.7°C and 2°C has respectively reduced to 120105 GtC (420380 GtCO2), 210200 GtC (770730 GtCO2) and 350335 GtC (12701230 GtCO2) from the beginning of 20222023, equivalent to 11, 209, 18 and 3230 years, assuming 20212022 emissions levels. Total anthropogenic emissions were 10.411.1 GtC yr-1 (38.040.8 GtCO2 yr-1) in 20202021, with a preliminary estimate of 10.711.1 GtC yr-1 (39.340.9 GtCO2 yr-1) for 20212022. The remaining carbon budget to keep global temperatures below these climate targets has shrunk by 2133 GtC (77121 GtCO2) since the release of the IPCC AR6 Working Group 1 assessment in 2019. Reaching zero CO2 emissions by 2050 entails cutting total anthropogenic CO2 emissions by about 0.4 GtC (1.4 GtCO2) each year on average, comparable to the decrease during 2020, highlighting the scale of the action needed.
The concentration of CO2 in the atmosphere is set to reach 414.7417.3 ppm in 2021, 502022, 51% above pre-industrial levels. The atmospheric CO2 growth was 5.12 ± 0.02 GtC yr-1 during the decade 2011-2020 (472012-2021 (48% of total CO2 emissions) with a preliminary 20212022 growth rate estimate of around 5.5 GtC yr-1. (2.6 ppm). 
The ocean CO2 sink resumed a more rapid growth in the past decade after low or no growth during the 1991-2002 period. However, the growth of the ocean CO2 sink in the past decade has an uncertainty of a factor of three, with estimates based on data products and estimates based on models showing an ocean sink increasetrend of +0.97 GtC yr-1 decade-1 and +0.32 GtC yr-1 decade-1 since 2010, respectively. The discrepancy in the trend originates from all latitudes but is largest in the Southern Ocean. The ocean CO2 sink was 2.89 ± 0.4 GtC yr-1 during the decade 2011-2020 (26% of total CO2 emissions), with a similar preliminary 2021 estimate of around 2.9 GtC yr-1 for 2022.  
The land CO2 sink continued to increase during the 2011-20202012-2021 period primarily in response to increased atmospheric CO2, albeit with large interannual variability.   The land CO2 sink was 3.1 ± 0.6 GtC yr-1 during the 2011-20202012-2021 decade (29% of total CO2 emissions), 0.54 GtC yr-1 larger than during the previous decade (2000-2009), with a preliminary 20212022 estimate of around 3.34 GtC yr-1. Year to year variability in the land sink is about 1 GtC yr-1, making small annual changes in anthropogenic emissions hard to detect in global atmospheric CO2 concentration.

1 Introduction
The concentration of carbon dioxide (CO2) in the atmosphere has increased from approximately 277 parts per million (ppm) in 1750 (Joos and Spahni, 2008), the beginning of the Industrial Era, to 412.4414.7 ± 0.1 ppm in 20202021 (Dlugokencky and Tans, 2022); Fig.Figure 1). The atmospheric CO2 increase above pre-industrial levels was, initially, primarily caused by the release of carbon to the atmosphere from deforestation and other land-use change activities (Canadell et al., 2021). While emissions from fossil fuels started before the Industrial Era, they became the dominant source of anthropogenic emissions to the atmosphere from around 1950 and their relative share has continued to increase until present. Anthropogenic emissions occur on top of an active natural carbon cycle that circulates carbon between the reservoirs of the atmosphere, ocean, and terrestrial biosphere on time scales from sub-daily to millennia, while exchanges with geologic reservoirs occur at longer timescales (Archer et al., 2009).
The global carbon budget (GCB) presented here refers to the mean, variations, and trends in the perturbation of CO2 in the environment, referenced to the beginning of the Industrial Era (defined here as 1750). This paper describes the components of the global carbon cycle over the historical period with a stronger focus on the recent period (since 1958, onset of atmospheric CO2 measurements), the last decade (2011-2020), the last year (2020) and the current year (2021). 2012-2021), the last year (2021) and the current year (2022). Finally, it provides cumulative emissions from fossil fuels and land-use change since the year 1750, the pre-industrial period; and since the year 1850, the reference year for historical simulations in IPCC AR6 (Eyring et al., 2016). 
We quantify the input of CO2 to the atmosphere by emissions from human activities, the growth rate of atmospheric CO2 concentration, and the resulting changes in the storage of carbon in the land and ocean reservoirs in response to increasing atmospheric CO2 levels, climate change and variability, and other anthropogenic and natural changes (Fig.Figure 2). An understanding of this perturbation budget over time and the underlying variability and trends of the natural carbon cycle is necessary to understand the response of natural sinks to changes in climate, CO2 and land-use change drivers, and to quantify  emissions compatible with a given climate stabilisation target. 
The components of the CO2 budget that are reported annually in this paper include separate and independent estimates for the CO2 emissions from (1) fossil fuel combustion and oxidation from all energy and industrial processes; also including cement production and carbonation (EFOS; GtC yr-1) and (2) the emissions resulting from deliberate human activities on land, including those leading to land-use change (ELUC; GtC yr-1); and their partitioning among (3) the growth rate of atmospheric CO2 concentration (GATM; GtC yr-1), and the uptake of CO2 (the ‘CO2 sinks’) in (4) the ocean (SOCEAN; GtC yr-1) and (5) on land (SLAND; GtC yr-1). The CO2 sinks as defined here conceptually include the response of the land (including inland waters and estuaries) and ocean (including coastscoastal and territorialmarginal seas) to elevated CO2 and changes in climate and other environmental conditions, although in practice not all processes are fully accounted for (see Section 2.7). Global emissions and their partitioning among the atmosphere, ocean and land are in reality in balance in the real world. Due to the combination of imperfect spatial and/or temporal data coverage, errors in each estimate, and smaller terms not included in our budget estimate (discussed in Section 2.7), the independent estimates (1) to (5) above do not necessarily add up to zero. We therefore (a) additionally assess a set of global atmospheric inverse modelinversion system results that by design close the global carbon balance (see Section 2.6), and (b) estimate a budget imbalance (BIM), which is a measure of the mismatch between the estimated emissions and the estimated changes in the atmosphere, land and ocean, as follows:
						(1)
GATM is usually reported in ppm yr-1, which we convert to units of carbon mass per year, GtC yr-1, using 1 ppm = 2.124 GtC (Ballantyne et al., 2012; Table 1). All quantities are presented in units of gigatonnes of carbon (GtC, 1015 gC), which is the same as petagrams of carbon (PgC; Table 1). Units of gigatonnes of CO2 (or billion tonnes of CO2) used in policy are equal to 3.664 multiplied by the value in units of GtC.
We also include a quantification ofquantify EFOS and ELUC by country, computed withincluding both territorial and consumption-based accounting for EFOS (see Section 2), and discuss missing terms from sources other than the combustion of fossil fuels (see Section 2.7). 
The global CO2 budget has been assessed by the Intergovernmental Panel on Climate Change (IPCC) in all assessment reports (Prentice et al., 2001; Schimel et al., 1995; Watson et al., 1990; Denman et al., 2007; Ciais et al., 2013; Canadell et al., 2021), and by others (e.g. Ballantyne et al., 2012). The Global Carbon Project (GCP, www.globalcarbonproject.org, last access: 11 March25 September 2022) has coordinated this cooperative community effort for the annual publication of global carbon budgets for the year 2005 (Raupach et al., 2007; including fossil emissions only), year 2006 (Canadell et al., 2007), year 2007 (GCP, 2008), year 2008 (Le Quéré et al., 2009), year 2009 (Friedlingstein et al., 2010), year 2010 (Peters et al., 2012b), year 2012 (Le Quéré et al., 2013; Peters et al., 2013), year 2013 (Le Quéré et al., 2014), year 2014 (Le Quéré et al., 2015a; Friedlingstein et al., 2014), year 2015 (Jackson et al., 2016; Le Quéré et al., 2015b), year 2016 (Le Quéré et al., 2016), year 2017 (Le Quéré et al., 2018a; Peters et al., 2017), year 2018 (Le Quéré et al., 2018b; Jackson et al., 2018)),  year 2019 (Friedlingstein et al., 2019; Jackson et al., 2019; Peters et al., 2020) and more recently the), year 2020 (Friedlingstein et al.,  2020; Le Quéré et al., 2021) .and more recently the year 2021 (Friedlingstein et al., 2022a; Jackson et al., 2022). Each of these papers updated previous estimates with the latest available information for the entire time series. 
We adopt a range of ±1 standard deviation (σ) to report the uncertainties in our estimates, representing a likelihood of 68% that the true value will be within the provided range if the errors have a Gaussian distribution, and no bias is assumed. This choice reflects the difficulty of characterising the uncertainty in the CO2 fluxes between the atmosphere and the ocean and land reservoirs individually, particularly on an annual basis, as well as the difficulty of updating the CO2 emissions from land-use change. A likelihood of 68% provides an indication of our current capability to quantify each term and its uncertainty given the available information. The uncertainties reported here combine statistical analysis of the underlying data, assessments of uncertainties in the generation of the data sets, and expert judgement of the likelihood of results lying outside this range. The limitations of current information are discussed in the paper and have been examined in detail elsewhere (Ballantyne et al., 2015; Zscheischler et al., 2017). We also use a qualitative assessment of confidence level to characterise the annual estimates from each term based on the type, amount, quality, and consistency of the evidence as defined by the IPCC (Stocker et al., 2013).
This paper provides a detailed description of the data sets and methodology used to compute the global carbon budget estimates for the industrial period, from 1750 to 2020, and in more detail for the period since 1959. It also provides decadal averages starting in 1960 including the most recent decade (2011-2020), results for the year 2020, and a projection for the year 2021.2022, and in more detail for the period since 1959.  Finally, it provides cumulative emissions from fossil fuels and land-use change since the year 1750, the pre-industrial period; and since the year 1850, the reference year for historical simulations in IPCC AR6 (Eyring et al., 2016). This paper is updated every year using the format of ‘living data’ to keep a record of budget versions and the changes in new data, revision of data, and changes in methodology that lead to changes in estimates of the carbon budget. Additional materials associated with the release of each new version will be posted at the Global Carbon Project (GCP) website (http://www.globalcarbonproject.org/carbonbudget, last access: 11 March25 September 2022), with fossil fuel emissions also available through the Global Carbon Atlas (http://www.globalcarbonatlas.org, last access: 11 March 2022).25 September 2022). All underlying data used to produce the budget can also be found at  https://globalcarbonbudget.org/ (last access: 25 September 2022). With this approach, we aim to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
2 Methods
Multiple organisations and research groups around the world generated the original measurements and data used to complete the global carbon budget. The effort presented here is thus mainly one of synthesis, where results from individual groups are collated, analysed, and evaluated for consistency. We facilitate access to original data with the understanding that primary data sets will be referenced in future work (see Table 2 for how to cite the data sets). Descriptions of the measurements, models, and methodologies follow below, and detailed descriptions of each component are provided elsewhere.
This is the 16th17th version of the global carbon budget and the tenth11th revised version in the format of a living data update in Earth System Science Data. It builds on the latest published global carbon budget of Friedlingstein et al. (20202022a). The main changes are: the inclusion of (1) data to year 20202021 and a projection for the global carbon budget for year 20212022; (2) a Kaya analysis to identify the driving factors behind the recent trends in fossil fuel emissions (changes in population, GDP per person, energy use per GDP, and CO2 emissions per unit energy), (3) an estimateinclusion of the ocean sink from models and data-products combined, (4) an assessmentcountry level estimates of the relative contributionsELUC; (3) a process-based decomposition of increased atmospheric CO2 and climate change in driving the land and ocean sinks, and  (5) an assessment of the current trends in anthropogenic emissions and implications for the remainingELUC into its main components (deforestation, carbon budget for specific climate targets.uptake on forests, emissions from organic soils, and net flux from other transitions).
 The main methodological differences between recent annual carbon budgets (2016-20202018-2022) are summarised in Table 3 and previous changes since 2006 are provided in Table A7.
2.1 Fossil CO2 emissions (EFOS)
2.1.1 [bookmark: _heading=h.oq92n3lz4si5]Historical period 1850-20202021
The estimates of global and national fossil CO2 emissions (EFOS) include the oxidation of fossil fuels through both combustion (e.g., transport, heating) and chemical oxidation (e.g. carbon anode decomposition in aluminium refining) activities, and the decomposition of carbonates in industrial processes (e.g. the production of cement). We also include CO2 uptake from the cement carbonation process. Several emissions sources are not estimated or not fully covered: coverage of emissions from lime production are not global, and decomposition of carbonates in glass and ceramic production are included only for the “Annex 1” countries of the United Nations Framework Convention on Climate Change (UNFCCC)  for lack of activity data. These omissions are considered to be minor. Short-cycle carbon emissions - for example from combustion of biomass - are not included here but are accounted for in the CO2 emissions from land use (see section 2.2).
Our estimates of fossil CO2 emissions are derived using the standard approach of activity data and emission factors, relying on data collection by many other parties. Our goal is to produce the best estimate of this flux, and we therefore use a prioritisation framework to combine data from different sources that have used different methods, while being careful to avoid double counting and undercounting of emissions sources. The CDIAC-FF emissions dataset, derived largely from UN energy data, forms the foundation, and we extend emissions to year Y-1 using energy growth rates reported by BP. We then proceed to replace estimates using data from what we consider to be superior sources, for example Annex 1 countries’ official submissions to the UNFCCC. All data points are potentially subject to revision, not just the latest year. For full details see Andrew and Peters (2021).
Other estimates of global fossil CO2 emissions exist, and these are compared by Andrew (2020a). The most common reason for differences in estimates of global fossil CO2 emissions is a difference in which emissions sources are included in the datasets. Datasets such as those published by BPthe energy company BP, the US Energy Information Administration, and the International Energy Agency’s ‘CO2 emissions from fuel combustion’ are all generally limited to emissions from combustion of fossil fuels. In contrast, datasets such as PRIMAP-hist, CEDS, EDGAR, and GCP’s dataset aim to include all sources of fossil CO2 emissions. See Andrew (2020a) for detailed comparisons and discussion.
Cement absorbs CO2 from the atmosphere over its lifetime, a process known as ‘cement carbonation’. We estimate this CO2 sink as the average of two studies in the literature (Cao et al., 2020; Guo et al., 2021). Both studies use the same model, developed by Xi et al. (2016), with different parameterisations and input data. The Global Cement and Concrete Association reports a much lower carbonation rate, but this is based on the highly conservative assumption of 0% mortar (GCCA, 2021). Since carbonation is a function of both current and previous cement production, we extend these estimates by one year to 20202021 by using the growth rate derived from the smoothed cement emissions (10-year smoothing) fitted to the carbonation data.
We use the Kaya Identity for a simple decomposition of CO2 emissions into the key drivers (Raupach et al., 2007). While there are variations (Peters et al 2017), we focus here on a decomposition of CO2 emissions into population, GDP per person, energy use per GDP, and CO2 emissions per energy. Multiplying these individual components together returns the CO2 emissions. Using the decomposition, it is possible to attribute the change in CO2 emissions to the change in each of the drivers. This method gives a first order understanding of what causes CO2 emissions to change each year.
2.1.2 [bookmark: _heading=h.epqr4ez1t5v0]20212022 projection
We provide a projection of global CO2 emissions in 20212022 by combining separate projections for China, USA, EU, India, and for all other countries combined. The methods are different for each of these. For China we combine monthly fossil fuel production data from the National Bureau of Statistics, import/export data from the Customs Administration, and monthly coal consumption estimates from SX Coal (20212022), giving us partial data for the growth rates to date of natural gas, petroleum, and cement, and of the consumption itself for raw coal. We then use a regression model to project full-year emissions based on historical observations. For the USA our projection is taken directly from the Energy Information Administration’s (EIA) Short-Term Energy Outlook (EIA, 2022), combined with the year-to-date growth rate of cement clinker production. For the EU we use monthly energy data from Eurostat to derive estimates of monthly CO2 emissions through July, with coal emissions extended first through SeptemberAugust using a statistical relationship with reported electricity generation from coal and other factors, then through December assuming normal seasonal patterns. EU emissions from. Given the very high uncertainty in European energy markets in 2022, we forego our usual history-based projection techniques and use instead the year-to-date growth rate as the full-year growth rate for both coal and natural gas - a strongly seasonal cycle - are extended through December using bias-adjusted Holt-Winters exponential smoothing (Chatfield, 1978).. EU emissions from oil are derived using the EIA’s projection of oil consumption for Europe. EU cement emissions are based on available year-to-date data from twothree of the largest producers, Germany and, Poland, and Spain. India’s projected emissions are derived from estimates through July (August (September for coaloil) using the methods of Andrew (2020b) and extrapolated assuming normal seasonal patterns. Emissions for the rest of the world are derived using projected growth in economic production from the IMF (2022) combined with extrapolated changes in emissions intensity of economic production. More details on the EFOS methodology and its 20212022 projection can be found in Appendix C.1.
2.2 CO2 emissions from land-use, land-use change and forestry (ELUC)
2.2.1 [bookmark: _heading=h.izt7szhqj9zw]Historical Period
The net CO2 flux from land-use, land-use change and forestry (ELUC, called land-use change emissions in the rest of the text) includes CO2 fluxes from deforestation, afforestation, logging and forest degradation (including harvest activity), shifting cultivation (cycle of cutting forest for agriculture, then abandoning), and regrowth of forests following wood harvest or abandonment of agriculture. Emissions from peat burning and drainage are added from external datasets. Compared to our earlier assessments, this year we include spatially explicit information also for peat drainage and combine three independent datasets for peat drainage. 
Three bookkeeping approaches (updated estimates each of BLUE (Hansis et al., 2015), OSCAR (Gasser et al., 2020), and H&N2017 (Houghton and Nassikas, 2017)) were used to quantify gross sources and sinks and the resulting net ELUC. Uncertainty estimates were derived from the Dynamic Global vegetation Models (DGVMs) ensemble for the time period prior to 1960, using for the recent decades an uncertainty range of ±0.7 GtC yr-1, which is a semi-quantitative measure for annual and decadal emissions and reflects our best value judgement that there is at least 68% chance (±1σ) that the true land-use change emission lies within the given range, for the range of processes considered here. This uncertainty range had been increased from 0.5 GtC yr-1 after new bookkeeping models were included that indicated a larger spread than assumed before (Le Quéré et al., 2018). Projections for 2021 are based on fire activity from tropical deforestation and degradation as well as emissions from peat fires and drainage. 

Our ELUC estimates follow the definition of global carbon cycle models of CO2 fluxes related to land-use and land management and differ from IPCC definitions adopted in National GHG Inventories (NGHGI) for reporting under the UNFCCC, which additionally generally include, through adoption of the IPCC so-called managed land proxy approach, the terrestrial fluxes occurring on land defined by countries as managed. This partly includes fluxes due to environmental change (e.g. atmospheric CO2 increase), which are part of  SLAND in our definition. This causes the global emission estimates to be smaller for NGHGI than for the global carbon budget definition (Grassi et al., 2018). The same is the case for the Food Agriculture Organization (FAO) estimates of carbon fluxes on forest land, which include, compared to SLAND, both anthropogenic and natural sources on managed land (Tubiello et al., 2021). Using the approach outlined in Grassi et al. (2021), here we map as additional information the two definitions to each other, to provide a comparison of the anthropogenic carbon budget to the official country reporting to the climate convention. More details on the ELUC methodology can be found in Appendix C.2.
2.2.2 [bookmark: _heading=h.5vi2vwvplpc2]2022 Projection
We project the 2022 land-use emissions for BLUE, the updated H&N2017 and OSCAR, starting from their estimates for 2021 assuming unaltered peat drainage, which has low interannual variability, and the highly variable emissions from peat fires, tropical deforestation and degradation as estimated using active fire data (MCD14ML; Giglio et al., 2016). More details on the ELUC methodology can be found in Appendix C.2
2.3 Growth rate in atmospheric CO2 concentration (GATM)
2.3.1 [bookmark: _heading=h.daa7ok1u8pg4]Historical period
The rate of growth of the atmospheric CO2 concentration is provided for years 1959-20202021 by the US National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL; Dlugokencky and Tans, 2022), which is updated from Ballantyne et al. (2012) and includes recent revisions to the calibration scale of atmospheric CO2 measurements (Hall et al., 2021). For the 1959-1979 period, the global growth rate is based on measurements of atmospheric CO2 concentration averaged from the Mauna Loa and South Pole stations, as observed by the CO2 Program at Scripps Institution of Oceanography (Keeling et al., 1976). For the 1980-2020 time period, the global growth rate is based on the average of multiple stations selected from the marine boundary layer sites with well-mixed background air (Ballantyne et al., 2012), after fitting a smooth curve through the data for each station with a smoothed curve as a function of time, and averaging by latitude band (Masarie and Tans, 1995). The annual growth rate is estimated by Dlugokencky and Tans (2022) from atmospheric CO2 concentration by taking the average of the most recent December-January months corrected for the average seasonal cycle and subtracting this same average one year earlier. The growth rate in units of ppm yr-1 is converted to units of GtC yr-1 by multiplying by a factor of 2.124 GtC per ppm, assuming instantaneous mixing of CO2 throughout the atmosphere (Ballantyne et al., 2012; Table 1).
Starting inSince 2020, NOAA/ESRL now provides estimates of atmospheric CO2 concentrations with respect to a new calibration scale, referred to as WMO-CO2-X2019, in line with the recommendation of the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) community (Hall et al., 2021). The WMO-CO2-X2019 scale improves upon the earlier WMO-CO2-X2007 scale by including a broader set of standards, which contain CO2 in a wider range of concentrations that span the range 250-800 ppm (versus 250–520 ppm for WMO-CO2-X2007). In addition, NOAA/ESRL made two minor corrections to the analytical procedure used to quantify CO2 concentrations, fixing an error in the second virial coefficient of CO2 and accounting for loss of a small amount of CO2 to materials in the manometer during the measurement process.  The difference in concentrations measured using WMO-CO2-X2019 versus WMO-CO2-X2007 is ~+0.18 ppm at 400 ppm and the observational record of atmospheric CO2 concentrations have been revised accordingly. The revisions have been applied retrospectively in all cases where the calibrations were performed by NOAA/ESRL, thus affecting measurements made by members of the WMO-GAW programme and other regionally coordinated programmes (e.g., Integrated Carbon Observing System, ICOS). Changes to the CO2 concentrations measured across these networks propagate to the global mean CO2 concentrations. Comparing the estimates of GATM made by Dlugokencky and Tans (2020),The re-calibrated data were first used to estimate GATM in the Global Carbon Budget 20202021 edition of the global carbon budget (Friedlingstein et al., 2020), with updated estimates from Dlugokencky and Tans (2022), used here, we find2022a). Friedlingstein et al. (2022a) verified that the change of scales from WMO-CO2-X2007 to WMO-CO2-X2019 made a negligible difference to the value of GATM reduced on average by -(-0.06 GtC yr-1 during 2010-2019 and by -0.01 GtC yr-1 during 1959-2019 due to the new calibration. These changes are, well within the uncertainty rangesrange reported below. Hence the change in analytical procedures made by NOAA/ESRL has a negligible impact on the atmospheric growth rate GATM.).
The uncertainty around the atmospheric growth rate is due to four main factors. First, the long-term reproducibility of reference gas standards (around 0.03 ppm for 1σ from the 1980s; Dlugokencky and Tans, 2022). Second, small unexplained systematic analytical errors that may have a duration of several months to two years come and go. They have been simulated by randomising both the duration and the magnitude (determined from the existing evidence) in a Monte Carlo procedure. Third, the network composition of the marine boundary layer with some sites coming or going, gaps in the time series at each site, etc (Dlugokencky and Tans, 2022). The latter uncertainty was estimated by NOAA/ESRL with a Monte Carlo method by constructing 100 "alternative" networks (Masarie and Tans, 1995; NOAA/ESRL, 2019). The second and third uncertainties, summed in quadrature, add up to 0.085 ppm on average (Dlugokencky and Tans, 2022). Fourth, the uncertainty associated with using the average CO2 concentration from a surface network to approximate the true atmospheric average CO2 concentration (mass-weighted, in 3 dimensions) as needed to assess the total atmospheric CO2 burden. In reality, CO2 variations measured at the stations will not exactly track changes in total atmospheric burden, with offsets in magnitude and phasing due to vertical and horizontal mixing. This effect must be very small on decadal and longer time scales, when the atmosphere can be considered well mixed. Preliminary estimates suggest this effect would increase the annual uncertainty, but a full analysis is not yet available. We therefore maintain an uncertainty around the annual growth rate based on the multiple stations data set ranges between 0.11 and 0.72 GtC yr-1, with a mean of 0.61 GtC yr-1 for 1959-1979 and 0.17 GtC yr-1 for 1980-2020, when a larger set of stations were available as provided by Dlugokencky and Tans (2022) but recognise further exploration of this uncertainty is required. At this time, we estimate the uncertainty of the decadal averaged growth rate after 1980 at 0.02 GtC yr-1 based on the calibration and the annual growth rate uncertainty but stretched over a 10-year interval. For years prior to 1980, we estimate the decadal averaged uncertainty to be 0.07 GtC yr-1 based on a factor proportional to the annual uncertainty prior and after 1980 (0.02 * [0.61/0.17] GtC yr-1).
We assign a high confidence to the annual estimates of GATM because they are based on direct measurements from multiple and consistent instruments and stations distributed around the world (Ballantyne et al., 2012; Hall et al., 2021).
To estimate the total carbon accumulated in the atmosphere since 1750 or 1850, we use an atmospheric CO2 concentration of 277 ± 3 ppm or 286 ± 3 ppm, respectively, based on a cubic spline fit to ice core data (Joos and Spahni, 2008). For the construction of the cumulative budget shown in Figure 3, we use the fitted estimates of CO2 concentration from Joos and Spahni (2008) to estimate the annual atmospheric growth rate using the conversion factors shown in Table 1.  The uncertainty of ±3 ppm (converted to ±1σ) is taken directly from the IPCC’s AR5 assessment (Ciais et al., 2013). Typical uncertainties in the growth rate in atmospheric CO2 concentration from ice core data are equivalent to ±0.1-0.15 GtC yr-1 as evaluated from the Law Dome data (Etheridge et al., 1996) for individual 20-year intervals over the period from 1850 to 1960 (Bruno and Joos, 1997).
2.3.2 [bookmark: _heading=h.nb70fqi5xqbi]20212022 projection
We provide an assessment of GATM for 20212022 based on the monthly calculated global atmospheric CO2 concentration (GLO) through August (Dlugokencky and Tans, 2022), and bias-adjusted Holt–Winters exponential smoothing with additive seasonality (Chatfield, 1978) to project to January 20222023. Additional analysis suggests that the first half of the year (the boreal winter-spring-summer transition) shows more interannual variability than the second half of the year (the boreal summer-autumn-winter transition), so that the exact projection method applied to the second half of the year has a relatively smaller impact on the projection of the full year.  Uncertainty is estimated from past variability using the standard deviation of the last 5 years' monthly growth rates.
2.4 Ocean CO2 sink 
2.4.1 [bookmark: _heading=h.ojiveuagjf8z]Historical Period
The reported estimate of the global ocean anthropogenic CO2 sink SOCEAN is derived as the average of two estimates. The first estimate is derived as the mean over an ensemble of eightten global ocean biogeochemistry models (GOBMs, Table 4 and Table A2). The second estimate is obtained as the mean over an ensemble of seven observation-based data-products (Table 4 and Table A3). An eighth product (Watson et al., 2020) is shown, but is not included in the ensemble average as it differs from the other products by adjusting the flux to a cool, salty ocean surface skin (see Appendix C.3.1 for a discussion of the Watson product).  The GOBMs simulate both the natural and anthropogenic CO2 cycles in the ocean. They constrain the anthropogenic air-sea CO2 flux (the dominant component of SOCEAN) by the transport of carbon into the ocean interior, which is also the controlling factor of present-day ocean carbon uptake in the real world. They cover the full globe and all seasons and were recently evaluated against surface ocean carbon observations, suggesting they are suitable to estimate the annual ocean carbon sink (Hauck et al., 2020). The data-products are tightly linked to observations of fCO2 (fugacity of CO2, which equals pCO2 corrected for the non-ideal behaviour of the gas; Pfeil et al., 2013), which carry imprints of temporal and spatial variability, but are also sensitive to uncertainties in gas-exchange parameterizations and data-sparsity. Their asset is the assessment of interannual and spatial variability (Hauck et al., 2020).  We further use two diagnostic ocean models to estimate SOCEAN over the industrial era (1781-1958). 
The global fCO2-based flux estimates were adjusted to remove the pre-industrial ocean source of CO2 to the atmosphere of 0.6165 GtC yr-1 from river input to the ocean (the average of 0.45 ± 0.18 GtC yr-1 by JacobsonRegnier et al. (2007) and 0.78 ± 0.41 GtC yr-1 by Resplandy et al., 2018., 2022), to satisfy our definition of SOCEAN (Hauck et al., 2020). The river flux adjustment was distributed over the latitudinal bands using the regional distribution of Aumont et al. (2001; North: 0.17 GtC yr-1, Tropics: 0.16 GtC yr-1, Tropics: 0.15 GtC yr-1, South: 0.3032 GtC yr-1), acknowledging that the boundaries of Aumont et al (2001; namely 20°S and 20°N) are not consistent with the boundaries otherwise used in the GCB (30°S and 30°N). A recent modelling study based on one ocean biogeochemical model (Lacroix et al., 2020) suggests that more of the riverine outgassing is located in the tropics than in the Southern Ocean; and hence this regional distribution is associated with a major uncertainty. Anthropogenic perturbations of river carbon and nutrient transport to the ocean are not considered (see section 2.7).
We derive SOCEAN from GOBMs by using a simulation (sim A) with historical forcing of climate and atmospheric CO2, accounting for model biases and drift from a control simulation (sim B) with constant atmospheric CO2 and normal year climate forcing. A third simulation (sim C) with historical atmospheric CO2 increase and normal year climate forcing is used to attribute the ocean sink to CO2 (sim C minus sim B) and climate (sim A minus sim C) effects. A fourth simulation (sim D; historical climate forcing and constant atmospheric CO2) is used to compare the change in anthropogenic carbon inventory in the interior ocean (sim A minus sim D) to the observational estimate of Gruber et al. (2019) with the same flux components (steady state and non-steady state anthropogenic carbon flux). Data-products are adjusted to represent the full ice-free ocean area by a simple scaling approach when coverage is below 9899%. GOBMs and data-products fall within the observational constraints over the 1990s (2.2 ± 0.7 GtC yr-1 , Ciais et al., 2013) after applying adjustments . 
SOCEAN is calculated as the average of the GOBM ensemble mean and data-product ensemble mean from 1990 onwards. Prior to 1990, it is calculated as the GOBM ensemble mean plus half of the offset between GOBMs and data-products ensemble means over 1990-2001.
We assign an uncertainty of ± 0.4 GtC yr-1 to the ocean sink based on a combination of random (ensemble standard deviation) and systematic uncertainties (GOBMs bias in anthropogenic carbon accumulation, previously reported uncertainties in fCO2-based data-products; see section C.3.3). We assess a medium confidence level to the annual ocean CO2 sink and its uncertainty because it is based on multiple lines of evidence, it is consistent with ocean interior carbon estimates (Gruber et al., 2019, see section 3.5.5) and the results are consistent in that the interannual variability in the GOBMs and data-based estimates are all generally small compared to theis largely consistent and can be explained by climate variability in the growth rate of atmospheric CO2 concentration. We refrain from assigning a high confidence because of the systematic deviation between the GOBM and data-product trends since around 2002. More details on the SOCEAN methodology can be found in Appendix C.3.
2.4.2 [bookmark: _heading=h.j1oph4q3eyn]2022 Projection
The ocean CO2 sink forecast for the year 20212022 is based on the annual historical and estimated 20212022 atmospheric CO2 concentration (Dlugokencky and Tans 2021), the historical and estimated 20212022 annual global fossil fuel emissions from this year’s carbon budget, and the spring (March, April, May) Oceanic Niño Index (ONI) index (NCEP, 2022). Using a non-linear regression approach, i.e., a feed-forward neural network, atmospheric CO2, the ONI index and the fossil fuel emissions are used as training data to best match the annual ocean CO2 sink (i.e. combined SOCEAN estimate from GOBMs and data products) from 1959 through 20202021 from this year’s carbon budget. Using this relationship, the 20212022 SOCEAN can then be estimated from the projected 2021 input data using the non-linear relationship established during the network training. To avoid overfitting, the neural network was trained with a variable number of hidden neurons (varying between 2-5) and 20% of the randomly selected training data were withheld for independent internal testing. Based on the best output performance (tested using the 20% withheld input data), the best performing number of neurons was selected. In a second step, we trained the network 10 times using the best number of neurons identified in step 1 and different sets of randomly selected training data. The mean of the 10 trainings is considered our best forecast, whereas the standard deviation of the 10 ensembles provides a first order estimate of the forecast uncertainty. This uncertainty is then combined with the SOCEAN uncertainty (0.4 GtC yr-1) to estimate the overall uncertainty of the 2021 prediction2022 projection.
2.5 Terrestrial CO2 sink
2.5.1 [bookmark: _heading=h.u458t5qs8uad]Historical Period
The terrestrial land sink (SLAND) is thought to be due to the combined effects of fertilisation by rising atmospheric CO2 and N inputs on plant growth, as well as the effects of climate change such as the lengthening of the growing season in northern temperate and boreal areas. SLAND does not include land sinks directly resulting from land-use and land-use change (e.g., regrowth of vegetation) as these are part of the land-use flux (ELUC), although system boundaries make it difficult to attribute exactly CO2 fluxes on land between SLAND and ELUC (Erb et al., 2013).
SLAND is estimated from the multi-model mean of 1716 DGVMs (Table A1). As described in Appendix C.4, DGVMs simulations include all climate variability and CO2 effects over land, with 1211 DGVMs also including the effect of N inputs. The DGVMs estimate of SLAND does not include the export of carbon to aquatic systems or its historical perturbation, which is discussed in Appendix D3. See Appendix C.4 for DGVMs evaluation and uncertainty assessment for SLAND, using the International Land Model Benchmarking system (ILAMB; Collier et al., 2018). More details on the SLAND methodology can be found in Appendix C.4.
2.5.2 [bookmark: _heading=h.e2ymhp6ewa5i]2022 Projection
Like for the ocean forecast, the land CO2 sink (SLAND) forecast is based on the annual historical and estimated 20212022 atmospheric CO2 concentration (Dlugokencky and Tans 2021), historical and estimated 20212022 annual global fossil fuel emissions from this year’s carbon budget, and the summer (June, July, August) ONI index (NCEP, 20212022). All training data are again used to best match SLAND from 1959 through 20202021 from this year’s carbon budget using a feed-forward neural network. To avoid overfitting, the neural network was trained with a variable number of hidden neurons (varying between 2-15), larger than for SOCEAN prediction due to the stronger land carbon interannual variability. As done for SOCEAN, a pre-training selects the optimal number of hidden neurons based on 20% withheld input data, and in a second step, an ensemble of 10 forecasts is produced to provide the mean forecast plus uncertainty. This uncertainty is then combined with the SLAND uncertainty for 2020 (1.2021 (0.9 GtC yr-1) to estimate the overall uncertainty of the 2021 prediction2022 projection.
2.6 [bookmark: _heading=h.hwwf1y347ttg]The atmospheric perspective
The world-wide network of in-situ atmospheric measurements and satellite derived atmospheric CO2 column (xCO2) observations put a strong constraint on changes in the atmospheric abundance of CO2. This is true globally (hence our large confidence in GATM), but also regionally in regions with sufficient observational density found mostly in the extra-tropics. This allows atmospheric inversion methods to constrain the magnitude and location of the combined total surface CO2 fluxes from all sources, including fossil and land-use change emissions and land and ocean CO2 fluxes. The inversions assume EFOS to be well known, and they solve for the spatial and temporal distribution of land and ocean fluxes from the residual gradients of CO2 between stations that are not explained by fossil fuel emissions. By design, such systems thus close the carbon balance (BIM = 0) and thus provide an additional perspective on the independent estimates of the ocean and land fluxes. 
This year’s release includes sixnine inversion systems that are described in Table A4. Each system is rooted in Bayesian inversion principles but uses slightly different methodologies. These differences concern the selection of atmospheric CO2 data or xCO2, and the choice of a-priori fluxes to refine with these datas. They also differ in spatial and temporal resolution, assumed correlation structures, and mathematical approach of the models (see references in Table A4 for details). Importantly, the systems use a variety of transport models, which was demonstrated to be a driving factor behind differences in atmospheric inversion-based flux estimates, and specifically their distribution across latitudinal bands (Gaubert et al., 2019; Schuh et al., 2019). MultipleFour inversion systems (UoE, CTE, and CAMS) were previously tested with -FT21r2, CMS-flux, GONGGA, THU) used satellite xCO2 retrievals from GOSAT and/or OCO-2 measurements, but their results at , scaled to the larger scales (as discussed in this work) did not deviate substantially from their in-situ counterparts and are therefore not separately included.WMO 2019 calibration scale. One inversion this year (CMS-Flux) used ACOS-GOSAT v9 retrievals between July 2009 and Dec 2014 and OCO-2 b10 retrievals between Jan 2015 to Dec 2015,these xCO2 datasets in addition to the in-situ observational CO2 mole fraction records. 
The original products delivered by the inverse modellers were modified to facilitate the comparison to the other elements of the budget, specifically on 3two accounts: (1) global total fossil fuel emissions, (2) riverine CO2 transport, and (3) including cement carbonation CO2 uptake, and (2) riverine CO2 transport. Details are given below. We note that with these adjustments the inverse results no longer represent the net atmosphere-surface exchange over land/ocean areas as sensed by atmospheric observations. Instead, for land, they become the net uptake of CO2 by vegetation and soils that is not exported by fluvial systems, similar to the DGVMs estimates. For oceans, they become the net uptake of anthropogenic CO2, similar to the GOBMs estimates.
The inversion systems prescribe global fossil fuel emissions based on the GCP’s Gridded Fossil Emissions Dataset version 2021versions 2022.1 or 2022.2 (GCP-GridFEDv2021.2GridFED; Jones et al., 2021b2022), which is an updateare updates to 2019 of the first version of GCP-GridFEDGCP-GridFEDv2021 presented by Jones et al. (2021a2021). GCP-GridFEDv2021.2GridFEDv2022 scales gridded estimates of CO2 emissions from EDGARv4.3.2 (Janssens-Maenhout et al., 2019) within national territories to match national emissions estimates provided by the GCB for the years 1959-20202021, which were compiled following the methodology described in Section 2.1 with all datasets available on August 14th 2021 (R. Andrew, pers. comm.).. Small differences between the systems due to for instance regridding to the transport model resolution are corrected for, or use of different GridFED versions with different cement carbonation sinks (which were only present starting with GridFEDv2022.1), are adjusted in the latitudinal partitioning we present, to ensure agreement with the estimate of EFOS in this budget. We also note that the ocean fluxes used as prior by 56 out of 69 inversions are part of the suite of the ocean process model or fCO2 data products listed in Section 2.4. Although these fluxes are further adjusted by the atmospheric inversions, it makes the inversion estimates of the ocean fluxes not completely independent of SOCEAN assessed here.
To facilitate comparisons to the independent SOCEAN and SLAND, we used the same corrections for transport and outgassing of carbon transported from land to ocean, as done for the observation-based estimates of SOCEAN (see Appendix C.3). Furthermore, the inversions did not include a cement carbonation sink (see section 2.1) and therefore this GCB component is implicitly part of their total land sink estimate. In the numbers presented in this budget, each year’s global carbonation sink from cement was subtracted from each year’s estimated land sink in each inversion, distributed proportional to fossil fuel emissions per region (North-Tropics-South). 
The atmospheric inversions are evaluated using vertical profiles of atmospheric CO2 concentrations (Fig.Figure B4). More than 30 aircraft programs over the globe, either regular programs or repeated surveys over at least 9 months, (except for SH programs), have been used to assess modelsystem performance (with space-time observational coverage sparse in the SH and tropics, and denser in NH mid-latitudes; Table A6). The six modelsnine systems are compared to the independent aircraft CO2 measurements between 2 and 7 km above sea level between 2001 and 20202021. Results are shown in Fig.Figure B4 and discussed in Section 3.7.
With a relatively small ensemble (N=69) of systems that moreover share some a-priori fluxes used with one another, or with the process-based models, it is difficult to justify using their mean and standard deviation as a metric for uncertainty across the ensemble. We therefore report their full range (min-max) without their mean. More details on the atmospheric inversions methodology can be found in Appendix C.5.
2.7 [bookmark: _heading=h.dbw7ed34wwda]Processes not included in the global carbon budget
The contribution of anthropogenic CO and CH4 to the global carbon budget is not fully accounted for in Eq. (1) and is described in Appendix D1. The contributions of other carbonates to CO2 emissions of decomposition of carbonates not accounted for is described in Appendix D2. The contribution of anthropogenic changes in river fluxes is conceptually included in Eq. (1) in SOCEAN and in SLAND, but it is not represented in the process models used to quantify these fluxes. This effect is discussed in Appendix D3. Similarly, the loss of additional sink capacity from reduced forest cover is missing in the combination of approaches used here to estimate both land fluxes (ELUC and SLAND) and its potential effect is discussed and quantified in Appendix D4. 

3 Results
For each component of the global carbon budget, we present results for three different time periods: the full historical period, from 1850 to 20202021, the six decades in which we have atmospheric concentration records from Mauna Loa (1960-20202021), a specific focus on last year (20202021), and the projection for the current year (20212022). Subsequently, we assess the combined constraints from the budget components (often referred to as a bottom-up budget) against the top-down constraints from inverse modelling of atmospheric observations. We do this for the global balance of the last decade, as well as for a regional breakdown of land and ocean sinks by broad latitude bands.
3.1 [bookmark: _heading=h.s6dmez9e62zc]Fossil CO2 Emissions
3.1.1 [bookmark: _heading=h.vzwrovjvbhps]Historical period 1850-20202021
Cumulative fossil CO2 emissions for 1850-20202021 were 455465 ± 25 GtC, including the cement carbonation sink (Fig.Figure 3, Table 8) ., all cumulative numbers are rounded to the nearest 5GtC). 
In this period, 46% of fossil CO2 emissions came from coal, 35% from oil, 1415% from natural gas, 3% from decomposition of carbonates, and 1% from flaring.
In 1850, the UK stood for 62% of global fossil CO2 emissions. In 1891 the combined cumulative emissions of the current members of the European Union reached and subsequently surpassed the level of the UK. Since 1917 US cumulative emissions have been the largest. Over the entire period 1850-20202021, US cumulative emissions amounted to 110GtC (25115GtC (24% of world total) ,), the EU’s to 80 GtC (1817%), and China’s to 6070 GtC (14%).
There are three additional global datasets with long time series that include all sources of fossil CO2 emissions: CDIAC-FF (Gilfillan and Marland, 2021), CEDS version v_2021_04_21 (Hoesly et al., 2018); O’Rourke et al., 2021) and PRIMAP-hist version 2.3.1 (Gütschow et al., 2016, 2021), although these datasets are not entirely independent from each other. CDIAC-FF has the lowest cumulative emissions over 1750-2018 at 437 GtC, GCP has 443 GtC, CEDS 445 GtC, PRIMAP-hist TP 453 GtC, and PRIMAP-hist CR 455 GtC. CDIAC-FF excludes emissions from lime production, while neither CDIAC-FF nor GCP explicitly include emissions from international bunker fuels prior to 1950. CEDS has higher emissions from international shipping in recent years, while PRIMAP-hist has higher fugitive emissions than the other datasets. However, in general these four datasets are in relative agreement as to total historical global emissions of fossil CO2.
3.1.2 [bookmark: _heading=h.gtcm8upqsmt6]Recent period 1960-20202021
Global fossil CO2 emissions, EFOS (including the cement carbonation sink), have increased every decade from an average of 3.0 ± 0.2 GtC yr-1 for the decade of the 1960s to an average of 9.56 ± 0.5 GtC yr-1 during 2011-20202012-2021 (Table 6, Fig.Figure 2 and Fig.Figure 5). The growth rate in these emissions decreased between the 1960s and the 1990s, from 4.3% yr-1 in the 1960s (1960-1969), 3.2% yr-1 in the 1970s (1970-1979), 1.6% yr-1 in the 1980s (1980-1989), to 0.9% yr-1 in the 1990s (1990-1999). After this period, the growth rate began increasing again in the 2000s at an average growth rate of 3.0% yr-1, decreasing to 0.65% yr-1 for the last decade (2011-20202012-2021). China’s emissions increased by +1.05% yr-1 on average over the last 10 years dominating the global trend, followed byand India’s emissions increaseincreased by +3.98% yr-1, while emissions decreased in EU27 by –1.98% yr-1, and in the USA by –1.1% yr-1. Fig.Figure 6 illustrates the spatial distribution of fossil fuel emissions for the 2011-20202012-2021 period.
EFOS includes the uptake of CO2 by cement via carbonation which has increased with increasing stocks of cement products, from an average of 20 MtC yr-1 (0.02 GtC yr-1) in the 1960s to an average of 200 MtC yr-1 (0.2 GtC yr-1) during 2011-2020 (Fig.2012-2021 (Figure 5). 
3.1.3 [bookmark: _heading=h.kqlycns5oejf]Final year 20202021
Global fossil CO2 emissions were  5.4% lower1% higher in 20202021 than in 20192020, because of the global rebound from the worst of the COVID-19 pandemic, with a declinean increase of  0.5 GtC to reach 9.510.1 ± 0.5 GtC (9.39 ± 0.5 GtC when including the cement carbonation sink) in 2020 (Fig.2021 (Figure 5), distributed among coal (4041%), oil (32%), natural gas (2122%), cement (5%) and others (21%). Compared to the previous year, 20202021 emissions from coal, oil and gas declinedincreased by 4.4%, 95.7%, 5.8% and 2.34.8% respectively, while emissions from cement increased by 0.82.1%. All growth rates presented are adjusted for the leap year, unless stated otherwise. 
In 20202021, the largest absolute contributions to global fossil CO2 emissions were from China (31%), the USA (14%), the EU27 (78%), and India (7%). These four regions account for 59% of global CO2 emissions, while the rest of the world contributed 41%, including international aviation and marine bunker fuels (2.98% of the total). Growth rates for these countries from 2019 to 2020 to 2021 were +1.43.5% (China), -10.6.2% (USA), –10.96.8% (EU27), and -7.311.1% (India), with -7.0+4.5% for the rest of the world. The per-capita fossil CO2 emissions in 20202021 were 1.23 tC person-1 yr-1 for the globe, and were 3.94.0 (USA), 2.02 (China), 1.67 (EU27) and 0.5 (India) tC person-1 yr-1 for the four highest emitting countries (Fig.Figure 5).
The post-COVID-19 induced decline rebound in emissions of -5.41% in 20202021 is close to the projected decline of -6.7%, which was the median of four approaches,increase of 4.8% published in Friedlingstein et al. (2020). Of the four approaches, the ‘GCP’ method was closest at -5.8%. That method was based on national emissions projections for China, the USA, the EU27, and India using reported monthly activity data when available and projections of gross domestic product corrected for trends in fossil fuel intensity (IFOS) for the rest of the world.(2021) (Table 7). Of the regions, the projection for the EU27‘rest of world’ region was least accurate, and the reasons for this are discussed by Andrew (2021).largely because of poorly projected emissions from international transport (bunker fuels), which were subject to very large changes during this period. 
3.1.4 [bookmark: _heading=h.v5i9ccsfm4gv]Year 20212022 Projection
Globally, we estimate that global fossil CO2 emissions will rebound 4.8grow by 1.1% in 2021 (4.22022 (0.0% to 5.41.7%) to 9.910.2 GtC (36.437.3 GtCO2), returning nearexceeding their 2019 emission levels of 10.0 GtC (36.7 GtCO2). Global increase in 20212022 emissions per fuel types are +6.3% projected to be +0.8% (range 5.50.0% to 1.7.0%) for coal, +4.02.2% (range 2.6-0.7% to 5.42.9%) for oil, +3.81.1% (range 2.80.0% to 4.82.2%) for natural gas, and +3.-2.8% (range 1.7-5.5% to 4.6-0.2%) for cement.
For China, projected fossil emissions in 20212022 are expected to increasedecline by 4.31.5% (range -3.0% to 5.4+0.1%) compared with 20202021 emissions, bringing 20212022 emissions for China around 3.0 GtC yr-1 (11.1 GtCO2 yr-1). Chinese emissions appear to have risen in both 2020 and 2021 despite the economic disruptions of COVID-19. IncreasesChanges in fuel specific projections for China are +4.1-0.5% for coal, +4.4-2.3% for oil, +12.8-1.1% natural gas, and a decrease of 0.1-9.2% for cement.
For the USA, the Energy Information Administration (EIA) emissions projection for 20212022 combined with cement clinker data from USGS gives an increase of 1.6.8% (range 6.6-0.9% to 7.0+4.1%) compared to 20202021, bringing USA 20212022 emissions to around 1.4 GtC yr-1 (5.01 GtCO2 yr-1). This is based on separate projections for coal +17.1-2.8%, oil +1.9.0%, natural gas -0.8+4.1%, and cement +0.37%.
For the European Union, our projection for 20212022 is for an increasea decline of 6.31.0% (range 4.3-2.9% to 8.3+1.0%) over 20202021, with 20212022 emissions around 0.8 GtC yr-1 (2.8 GtCO2 yr-1). This is based on separate projections for coal of +14.67.5%, oil +3.70.6%, natural gas +4.6-11.0%, and cement 0.3%.unchanged.
For India, our projection for 20212022 is an increase of 11.25.6% (range of 10.73.5% to 117.7%) over 20202021, with 20212022 emissions around 0.78 GtC yr-1 (2.79 GtCO2 yr-1). This is based on separate projections for coal of +13.95.0%, oil +3.48.0%, natural gas +4.8-3.0%, and cement +21.610.0%.
For the rest of the world, the expected growth rate for 20212022 is 3.2.5% (range 2.0% to 4.3%). This is computed using the GDP projection for the world (excluding China, the USA, the EU, and India) of 4.4% made by the IMF (2022) and a decrease in IFOS of -1.7%yr-1, which is the average over 2011-2020.0.1% to 2.3%). The uncertainty range is based on the standard deviation of the interannual variability in IFOS during 2011–2020 of 0.6%yr-1 and our estimates of uncertainty in the IMF’s GDP forecast of 0.6%. The methodology allows independent projections for coal, oil, natural gas, cement, and other components, which add to the total emissions in the rest of the world. The fuel fuel-specific projected 20212022 growth rates for the rest of the world are: +3.21.4% (range -0.7% to 5.8%) for coal, +2.3% (-0.36% to +3.4.9%) for oil, +4.coal, +3.2% (1% (2.6% to 5.7+4.9%) for oil, +2.6% (1.1% to 4.1%) for natural gas, +42.8% (+2.70.6% to +6.95.1%) for cement. 
Independently, the IEA has published two forecasts of global fossil energy CO2 emissions (i.e., a subset of fossil CO2 emissions), first in April (4.8%; IEA, 2021a) and so revised in October at 4% (IEA, 2021b). In March 2022 they also published a new, preliminary estimate of 6% growth (IEA, 2021a). Carbon Monitor produces estimates of global emissions with low temporal lag, and their estimates suggest that emissions were 5.1% higher than in 2020 (Carbon Monitor, 2022).
3.2 Emissions from Land Use Changes
3.2.1 [bookmark: _heading=h.irs4cs1me9p7]Historical period 1850-20202021
 Cumulative CO2 emissions from land-use changes (ELUC) for 1850-20202021 were 200 ± 65205 ± 60 GtC (Table 8; Fig.Figure 3; Fig. 13Figure 14). The cumulative emissions from ELUC are particularly uncertain, with large spread among individual estimates of 140 GtC (updated H&N2017), 270280 GtC (BLUE), and 195190 GtC (OSCAR) for the three bookkeeping models and a similar wide estimate of 190185 ± 60 GtC for the DGVMs (all cumulative numbers are rounded to the nearest 5GtC). These estimates are broadly consistent with indirect constraints from vegetation biomass observations, giving a cumulative source of 155 ± 50 GtC over the 1901-2012 period  (Li et al., 2017). However, given the large spread, a best estimate is difficult to ascertain. 
3.2.2 [bookmark: _heading=h.9aphxahz6bbk]Recent period 1960-20202021
In contrast to growing fossil emissions, CO2 emissions from land-use, land-use change, and forestry have remained relatively constant, at around 1.3 ± 0.7 GtC yr-1 over the 19701960-1999 period, and even showbut showing a slight decrease over the last 20 yearsof about 0.1 GtC per decade since the 1990s, reaching 1.12 ± 0.7 GtC yr-1 for the 2011-20202012-2021 period (Table 6), but with large spread across estimates (Table 5, Fig. 7). Emissions are relatively constant in the DGVMs ensemble of models since the 1970s, with similar mean values until the 1990s asFigure 7). Different from the bookkeeping mean and large average, the DGVMs model spread (Table 5, Fig. 7). The DGVMs average grows slightly larger thanover the bookkeeping average in the recent decades1970-2021 period and shows no sign of decreasing emissions, which in the recent decades (Table 5, Figure 7). This is, however, expected as DGVM-based estimates include the loss of additional sink capacity, which grows with time, while the bookkeeping estimates do not (Appendix D4). 
ELUC is a net term of various gross fluxes, which comprise emissions and removals. Gross emissions are on average 2-4over the 1850-2021 period are two (BLUE, OSCAR) to three (updated H&N2017) times larger than the net ELUC emissions, and remained largely constant over the last 60 years, with a moderate increase from an average of 3.42 ± 0.9 GtC yr-1 for the decade of the 1960s to an average of 3.8 ± 0.67 GtC yr-1 during 2011-2020 (Fig.7, Table 52012-2021 (Figure 7), showing the relevance of land management such as harvesting or rotational agriculture. Increases in gross removals, from 1.98 ± 0.4 GtC yr-1 for the 1960s to 2.76 ± 0.4 GtC yr-1 for 2011-20202012-2021, were slightly larger than the increase in gross emissions. Since the processes behind gross removals, foremost forest regrowth and soil recovery, are all slow, while gross emissions include a large instantaneous component, short-term changes in land-use dynamics, such as a temporary decrease in deforestation, influences gross emissions dynamics more than gross removals dynamics. It is these relative changes to each other that explain the small decrease in net ELUC emissions over the last two decades and the last few years. Gross fluxes often differ more across the three bookkeeping estimates than net fluxes, which is expected due to different process representation; in particular, treatment of shifting cultivation, which increases both gross emissions and removals, differs across models.
There is a smaller decrease in net CO2 emissions from land-use change overin the last decade (Fig.few years (Figure 7, Table 6), in contrast to earlier) than in our last year’s estimate (Friedlingstein et al., 2021), which places our updated estimates of no clear trend across ELUC estimatesbetween last year’s estimate and the estimate from the GCB2020 (Friedlingstein et al., 2020, Hong et al., 2021). The trend in the last decade is now about -4% per year, compared to the +1.8% per year reported by Friedlingstein et al. (2020).). This decreasechange is principally attributable to changes in ELUC estimates from BLUE and OSCAR, which relate to changes in the underlying land-use forcing, LUH2 (Chini et al. 2021, Hurtt et al. 2020) based on HYDE3.3 (Klein Goldewijk et al., 2017a, b): HYDE3.3 now incorporates updated estimates of agricultural areas by the FAO and uses multi-annual land cover maps from satellite remote sensing (ESA CCI Land Cover) to constrain contemporary land cover patterns (see Appendix C.2.2 for details) . These changes lead to lower global ELUC estimates in the last two decades compared to earlier versions of the global carbon budget due most notably to lower emissions from cropland expansion, particularly in the tropical regions. Rosan et al. (2021) showed that for Brazil, the new HYDE3.3 version is closer to independent, regional estimates of land-use and land cover change (MapBiomas, 2021) with respect to spatial patterns, but it shows less land-use and land cover changes than these independent estimates, while HYDE3.2-based estimates had shown higher changes and lower emissions. The update in land-use forcing leads to a decrease in estimated emissions in Brazil across several models after the documented deforestation peak of 2003-2004 that preceded policies and monitoring systems decreasing deforestation rates (Rosan et al., 2021). However, estimated emissions based on the new land-use forcing do not (see Appendix C.2.2 for details). These changes address issues identified with last year’s land-use forcing (see Friedlingstein et al., 2022) and remove/attenuate several emission peaks in Brazil and the DR Congo and lead to higher net emissions in Brazil in the last decades compared to last year’s global carbon budget. While we deem these changes in land-use forcing and emissions an improvement, the estimated emissions based on the new land-use forcing still do not fully reflect the rise in Brazilian deforestation in the recent few years (Silva Junior, 2021), and associated increasing emissions from deforestation would have been missed here. The update in FAO agricultural areas in Brazil also implied that substantial interannual variability reported to earlier FAO assessment and captured by the HYDE3.2 version since 2000 was removed. Due to the asymmetry of (fast) decay (like clearing by fire) and (slower) regrowth, such reduced variability is expected to decrease annual emissions. Also, the approach by Houghton and Nassikas (2017) smooths land use area changes before calculating carbon fluxes by a 5-year running mean, hence the three emission estimates are in better agreement than in previous GCB estimates. However, differencesDifferences still exist, which highlight the need for accurate knowledge of land-use transitions and their spatial and temporal variability. A further caveat is that global land-use change data for model input does not capture forest degradation, which often occurs on small scale or without forest cover changes easily detectable from remote sensing and poses a growing threat to forest area and carbon stocks that may surpass deforestation effects (e.g., Matricardi et al., 2020, Qin et al., 2021). 
Overall, therefore, we assign low confidence to the change towards a decreasing trend of land-use emissions over the last two decades as seen compared to the estimate of the global carbon budget 2020 (Friedlingstein et al., 2020). Our approach aims at using the most up to date data and methods, such as accounting for revisions of living databases of country-level agricultural statistics from FAO or including satellite remote-sensing information for spatial allocation. While we start from a well-documented methodology to provide gridded land-use data (Chini et al., 2021), not all changes in individual components are always documented, complicating the explanation of changes from one GCB to the next. The rising number of pan-tropical or global estimates of carbon stock changes based on satellite remote sensing of carbon densities and forest cover changes (Fan  et al. 2019; Qin et al., 2021; Xu et al., 2021; Feng et al., 2022) may seem a promising path for independent evaluation of the land-use emissions term. However, comparison of satellite-derived fluxes to global model estimates is hampered for several reasons discussed by Pongratz et al. (2021). Most importantly, satellite-based estimates usually do not distinguish between anthropogenic drivers and natural forest cover losses (e.g., from drought or natural wildfires), which have also increased over time in some regions, including the tropics; ancillary information would be needed to attribute the observed signal of vegetation or carbon stock change to different drivers. Further, satellite-based estimates often only provide sub-component fluxes of ELUC, excluding soil or product pool changes. Since forest cover loss is better detectable from space than regrowth, satellite-based products often limit their estimates to emissions from forest loss, neglecting carbon uptake from regrowth of forests, as may occur following wood harvesting, abandonment, or natural disturbances; such products thus provide a subset of the gross emissions term (Fig. 7b) and cannot be compared to net emissions. Lastly, satellite-based fluxes typically quantify committed instead of actual emissions, i.e., legacy CO2 fluxes from potentially slow processes such as slash, soil carbon or product decay, or forest regrowth are not captured at the time they actually occur, but are attributed to the time of the land-use change event (Pongratz et al., 2021). Using data on drivers of forest cover loss to isolate fluxes from agricultural expansion, and looking into gross emissions instead of the net land-use change flux, Feng et al. (2022) suggest a stronger increase in global gross emissions (though generally a smaller flux) than the bookkeeping models do (see gross fluxes in Fig. 7b). This is in line with Rosan et al. (2021) suggesting that the trend of net emissions in Brazil may be underestimated by the updated land-use data (though patterns have improved). Further studies are needed to robustly estimate the trend of global net land-use emissions. Progress is also needed on accurate quantifications of land use dynamics, including less well observable management types such as shifting cultivation and wood harvesting, and their distinction from natural disturbances (Pongratz et al, 2021).
HighestWe additionally separate the net ELUC into component fluxes to gain further insight into the drivers of gross sources and sinks and how the bookkeeping models compare to each other (Figure 7; Sec. C.2.1). On average over the 2012-2021 period and over the three bookkeeping estimates, emissions from deforestation amount to 1.8 ± 0.4 GtC yr-1 and carbon uptake in forests to -0.9 ± 0.3 GtC yr-1 (Table 5). Emissions from organic soils caused by peat drainage or peat fires (with 0.2 ± 0.1 GtC yr-1) and the net flux from other transitions (with 0.1 ± 0.1 GtC yr-1) are substantially less important globally, but emissions from organic soils contribute over proportionally to interannual variability (related in particular to peat fires in dry years in Southeast Asia). Deforestation is thus the main driver of global gross sources. The relatively small deforestation flux in comparison to the gross source estimate above is explained by the fact that emissions associated with wood harvesting, while they do constitute a source of emissions to the atmosphere, are contained in the component flux on forest, together with the associated carbon uptake in regrowth, because wood harvesting does not change the land cover. For the same reason the flux on forest, being a net flux of sources from slash and product decay following wood harvest and sinks due to regrowth after wood harvest or after abandonment, is smaller than the gross sink estimates above. This split into component fluxes thus clarifies better the potentials for emission reduction and carbon dioxide removal than the gross fluxes do: the emissions from deforestation could be halted (largely) without compromising carbon uptake in other component fluxes and contribute to emissions reduction; reforestation following agricultural abandonment does not directly depend on deforestation and can independently provide carbon dioxide removal. By contrast, reducing wood harvesting to reduce emissions to the atmosphere is associated with less forest regrowth; sinks and sources cannot be decoupled here. Last, we compare our component flux estimates to NGHGI (Grassi et al., 2022b): With 1.1 GtC yr-1 averaged over 2012-2021, deforestation emissions are reported to be smaller by countries than the bookkeeping estimate. A reason for this lies in the fact that country reports do not (fully) capture the carbon flux consequences of shifting cultivation. With 0.3 GtC yr-1 and 0.2 GtC yr-1, emissions from organic soils and the net flux from other transitions, respectively, are similar (slightly larger) than the estimates based on the bookkeeping approach and the external peat drainage and burning datasets. With 1.75 GtC yr-1 , carbon uptake in forests is substantially larger, owing to the inclusion of natural CO2 fluxes on managed land in the NGHGI (see below).
Overall, highest land-use emissions occur in the tropical regions of all three continents, including the . The top three emitters (both cumulatively 1959-2021 and on average over 2012-2021) are Brazil (in particular the Amazon Arc of Deforestation in the Amazon basin (Fig.), Indonesia and the Democratic Republic of the Congo, with these 3 countries contributing 0.7 GtC yr-1 or 58% of the global total land-use emissions (average over 2012-2021) (Figure 6b). This is related to massive expansion of cropland, particularly in the last few decades in Latin America, Southeast Asia, and sub-Saharan Africa Emissions (Hong et al., 2021), to a substantial part for export (Pendrill et al., 2019). Emission intensity is high in many tropical countries, particularly of Southeast Asia, due to high rates of land conversion in regions of carbon-dense and often still pristine, undegraded natural forests (Hong et al., 2021). Emissions are further increased by peat fires in equatorial Asia (GFED4s, van der Werf et al., 2017). Uptake due to land-use change occurs, particularly in Europe, partly related to expanding forest area as a consequence of the forest transition in the 19th and 20th century and subsequent regrowth of forest (Fig.Figure 6b) (Mather 2001; McGrath et al., 2015).
While the mentioned patterns are supported by independent literature and robust, we acknowledge that model spread is substantially larger on regional than global level, as has been shown for bookkeeping models (Bastos et al., 2021) as well as DGVMs (Obermeier et al., 2021). A detailed analysis of country-level or regional uncertainties globally is beyond the scope of this study. Assessments for individual regions will be performed as part of REgional Carbon Cycle Assessment and Processes (RECCAP2; Ciais et al., 2020) or already exist for selected regions (e.g., for Europe by Petrescu et al., 2020, for Brazil by Rosan et al., 2021)., for 8 selected countries/regions in comparison to inventory data by Schwingshackl et al., subm.).
National GHG inventory data (NGHGI) under the LULUCF sector or data submitted by countries to FAOSTAT differ from the global models’ definition of ELUC we adopt here in that in the NGHGI reporting, the natural fluxes (SLAND) are counted towards ELUC when they occur on managed land (Grassi et al., 2018). In order to compare our results to the NGHGI approach, we perform a re-mapping of our ELUC estimate by including the SLAND over managed forest from the DGVMs simulations (following Grassi et al., 2021) to the bookkeeping ELUC estimate (see Appendix C.2.3). For the 2011-20202012-2021 period, we estimate that 1.58 GtC yr-1 of SLAND occurred on managed forests and is then reallocated to ELUC here, as done in the NGHGI method. Doing so, our mean estimate of ELUC is reduced from a source of 1.1 GtC to a sink of -0.4 GtC, very similar to the NGHGI estimate of -0.6 GtC (Table A.8). 2 GtC to a sink of 0.6 GtC, very similar to the NGHGI estimate of a 0.5 GtC sink (Table 9). The re-mapping approach has been shown to be generally applicable also on country-level (Schwingshackl et al., subm.). Country-level analysis suggests, e.g., that the bookkeeping mean estimates higher deforestation emissions than the national report in Indonesia, but estimates less CO2 removal by afforestation than the national report in China. The fraction of the natural CO2 sinks that the NGHGI estimates include differs substantially across countries, related to varying proportions of managed vs all forest areas (Schwingshackl et al., subm.).
Though estimates between GHGI, FAOSTAT, individual process-based models and the mapped budget estimates still differ in value and need further analysis, the approach taken here provides a possibility to relate the global models’ and NGHGI approach to each other routinely and thus link the anthropogenic carbon budget estimates of land CO2 fluxes directly to the Global Stocktake, as part of UNFCCC Paris Agreement.
3.2.3 [bookmark: _heading=h.kvjd7goz8dhc]Final year 20202021
The global CO2 emissions from land-use change are estimated as 1.1 ± 0.7 GtC in 2021, similar to the 2020 estimate. However, confidence in the annual change remains low. The global CO2 emissions from land-use change are estimated as 0.9 ± 0.7 GtC in 2020, 0.2 GtC lower than 2019, which had featured particularly large peat and tropical deforestation/degradation fires. The surge in deforestation fires in the Amazon, causing about 30% higher emissions from deforestation and degradation fires in 2019 over the previous decade, continued into 2020
 (GFED4.1s, van der Werf et al., 2017). However, the unusually dry conditions for a non-El Niño year that occurred in Indonesia in 2019 and led to fire emissions from peat burning, deforestation and degradation in equatorial Asia to be about twice as large as the average over the previous decade (GFED4.1s, van der Werf et al., 2017) ceased in 2020. However, confidence in the annual change remains low. While the mentioned fires are clearly attributable to land-use activity, foremost deforestation and peat burning, and may have been reinforced by dry weather conditions, as was the case in Indonesia in 2019, wildfires also occur naturally. In particular, the extreme fire events in recent years in Australia, Siberia or California were unrelated to land-use change and are thus not attributed to ELUC, but to the natural land sink and are discussed in Section 3.6.2.
Land-use change and related emissions may have been affected by the COVID-19 pandemic (e.g. Poulter et al., 2021). Although emissions from tropical deforestation and degradation fires have been decreasing from 2019 to 2020 on the global scale, they increased in Latin America (GFED4s; van der Werf et al., 2017). During the period of the pandemic, environmental protection policies and their implementation may have been weakened in Brazil (Vale et al., 2021). In other countries, too, monitoring capacities and legal enforcement of measures to reduce tropical deforestation have been reduced due to budget restrictions of environmental agencies or impairments to ground-based monitoring that prevents land grabs and tenure conflicts (Brancalion et al., 2020, Amador-Jiménez et al., 2020). Effects of the pandemic on trends in fire activity or forest cover changes are hard to separate from those of general political developments and environmental changes and the long-term consequences of disruptions in agricultural and forestry economic activities (e.g., Gruère and Brooks, 2020; Golar et al., 2020; Beckman and Countryman, 2021) remain to be seen. Overall, there is limited evidence so far that COVID-19 was a key driver of changes in LULUCF emissions at global scale. Impacts vary across countries and deforestation-curbing and enhancing factors may partly compensate each other (Wunder et al., 2021).
3.2.4 [bookmark: _heading=h.65crbgk7ij3]Year 20212022 Projection
With wet conditions inIn Indonesia and a below-average, peat fire emissions are very low, potentially related to a relatively wet dry season in(GFED4.1s, van der Werf et al., 2017). In South America our preliminary estimate of ELUC for 2021 is substantially lower than, the 2011-2020trajectory of tropical deforestation and degradation fires resembles the long-term average. By the end of September 2021; global emissions from tropical deforestation and degradation fires were estimated to be 222116 TgC by August 23 (GFED4.1s, van der Werf et al., 2017). , down from 347 TgC in 2019 and 288 in 2020 (315 TgC 1997-2020 average). Peat fire emissions in Equatorial Asia were estimated to be 1 TgC, down from 117 TgC in 2019 and 2 TgC in 2020 (74 TgC 1997-2020 average) (GFED4.1s, van der Werf et al., 2017). Our preliminary estimate of ELUC for 2022 is substantially lower than the 2012-2021 average, which saw years of anomalously dry conditions in Indonesia and high deforestation fires in South America (Friedlingstein et al., 2022). Based on the fire emissions until the end of SeptemberAugust 23, we expect ELUC emissions of around 1.0.8 GtC in 20212022. Note that although our extrapolation is based on tropical deforestation and degradation fires, degradation attributable to selective logging, edge-effects or fragmentation will not be captured. Further, deforestation and fires in deforestation zones may become more disconnected, partly due changes in legislation in some regions. For example, Van Wees et al. (2021) found that the contribution from fires to forest loss decreased in the Amazon and in Indonesia over the period of 2003-2018. More recent years, however, saw an uptick in the Amazon again (Tyukavina et al., 2022 with update) and more work is needed to understand fire-deforestation relations.
The fires in Mediterranean Europe in summer 2022 and in the U.S. in spring 2022, though above average for those regions, only contribute a small amount to global emissions. However, they were unrelated to land-use change and are thus not attributed to ELUC, but would be captured by the natural land sink.
Land use dynamics may be influenced by the disruption to the global food market associated with the war in Ukraine, but scientific evidence so far is very limited. High food prices, which preceded but were exacerbated by the war (Torero 2022), are generally linked to higher deforestation (Angelsen and Kaimowitz 1999), while high prices on agricultural inputs such as fertilizers and fuel, which are also under pressure from embargoes, may impair yields.
3.3 Total anthropogenic emissions 
Cumulative anthropogenic CO2 emissions for 1850-20202021 totalled 660670 ± 65 GtC (24202455 ± 240 GtCO2), of which almost 70% (455470 GtC) occurred since 1960 and more than 30% (20533% (220 GtC) since 2000 (Table 6 and 8). Total anthropogenic emissions more than doubled over the last 60 years, from 4.65 ± 0.7 GtC yr-1 for the decade of the 1960s to an average of 10.69 ± 0.8 GtC yr-1 during 2011-2020.   
The total anthropogenic CO2 emissions from fossil plus land-use change amounted to 10.62012-2021, and reaching 11.1 ± 0.89 GtC (38.9 ± 2.9 GtCO2) for the 2011-2020 decade, reaching 10.2 ± 0.8 GtC (37.2 ± 2.9 GtCO240.8 ± 3.3 GtCO2) in 2020, while for 2021. For 2022, we project global total anthropogenic CO2 emissions from fossil and land use changes to be also around 10.711.1 GtC (39.340.9 GtCO2). 
During the historical period 1850-20202021, 30% of historical emissions were from land use change and 7079% from fossil emissions. However, fossil emissions have grown significantly since 1960 while land use changes have not, and consequently the contributions of land use change to total anthropogenic emissions were smaller during recent periods (1718% during the period 1960-20202021 and 1011% during 2011-20202012-2021). 
3.4 Atmospheric CO2
3.4.1 [bookmark: _heading=h.rj51hqcvfsuu]Historical period 1850-20202021
Atmospheric CO2 concentration was approximately 277 parts per million (ppm) in 1750 (Joos and Spahni, 2008), reaching 300ppm300 ppm in the 1910s, 350ppm350 ppm in the late 1980s, and reaching 412.44414.71 ± 0.1 ppm in 20202021 (Dlugokencky and Tans, 2022); Fig.Figure 1). The mass of carbon in the atmosphere increased by 48% from 590 GtC in 1750 to 876879 GtC in 20202021. Current CO2 concentrations in the atmosphere are unprecedented in the last 2 million years and the current rate of atmospheric CO2 increase is at least 10 times faster than at any other time during the last 800,000 years (Canadell et al., 2021).
3.4.2 [bookmark: _heading=h.yn89ysk4vejz]Recent period 1960-20202021
The growth rate in atmospheric CO2 level increased from 1.7 ± 0.07 GtC yr-1 in the 1960s to 5.12 ± 0.02 GtC yr-1 during 2011-20202012-2022 with important decadal variations (Table 6, Fig.Figure 3 and FigFigure 4). 
During the last decade (2011-20202012-2021), the growth rate in atmospheric CO2 concentration continued to increase, albeit with large interannual variability (Fig.Figure 4). 
The airborne fraction (AF), defined as the ratio of atmospheric CO2 growth rate to total anthropogenic emissions:
						(2)
provides a diagnostic of the relative strength of the land and ocean carbon sinks in removing part of the anthropogenic CO2 perturbation. The evolution of AF over the last 60 years shows no significant trend, remaining nearly at around 4544%, albeit showing a large interannual and decadal variability driven by the year-to-year variability in GATM (Fig. 8Figure 9). The observed stability of the airborne fraction over the 1960-2020 period indicates that the ocean and land CO2 sinks have been removing on average about 55% of the anthropogenic emissions (see sections 3.5 and 3.6).
3.4.3 [bookmark: _heading=h.z3zz2tgk7vm0]Final year 20202021
The growth rate in atmospheric CO2 concentration was 5.02 ± 0.2 GtC (2.3746 ± 0.08 ppm) in 2020 (Fig.2021 (Figure 4; Dlugokencky and Tans, 2022), very closeslightly above the 2020 growth rate (5.0 GtC) but similar to the 2011-2020 average. The 2020 decrease in EFOS and ELUC of about 0.7 GtC propagated to an atmospheric CO2 growth rate reduction of 0.38 (5.2 GtC (0.18 ppm), given the significant interannual variability of the land carbon sink.). 
3.4.4 [bookmark: _heading=h.5s605g6qrsmy]Year 20212022 Projection
The 20212022 growth in atmospheric CO2 concentration (GATM) is projected to be about 5.35 GtC (2.4958 ppm) based on GLO observations until the end of December 2021August 2022, bringing the atmospheric CO2 concentration to an expected level of 414.67417.3 ppm averaged over the year, 5051% over the pre-industrial level. 
3.5 Ocean Sink
3.5.1 [bookmark: _heading=h.1ek59on3x359]Historical period 1850-20202021
Cumulated since 1850, the ocean sink adds up to 170175 ± 35 GtC, with more than two thirds of this amount (120 GtC) being taken up by the global ocean since 1960. Over the historical period, the ocean sink increased in pace with the anthropogenic emissions exponential increase (Fig.Figure 3b). Since 1850, the ocean has removed 26% of total anthropogenic emissions.
3.5.2 [bookmark: _heading=h.7dusshjvx7os]Recent period 1960-20202021
The ocean CO2 sink increased from 1.1 ± 0.4 GtC yr-1 in the 1960s to 2.89 ± 0.4 GtC yr-1 during 2011-20202012-2021 (Table 6), with interannual variations of the order of a few tenths of GtC yr-1 (Fig. 9Figure 10). The ocean-borne fraction (SOCEAN/(EFOS+ELUC) has been remarkably constant around 25% on average (Fig. 8Figure 9). Variations around this mean illustrate decadal variability of the ocean carbon sink. So far, there is no indication of a decrease in the ocean-borne fraction from 1960 to 20202021. The increase of the ocean sink is primarily driven by the increased atmospheric CO2 concentration, with the strongest CO2 induced signal in the North Atlantic and the Southern Ocean (Fig. 10aFigure 11a). The effect of climate change is much weaker, reducing the ocean sink globally by 0.1211 ± 0.0709 GtC yr-1 or 5% (2011-20204.2% (2012-2021, nine models simulate a weakening of the ocean sink by climate change, range -0.83.2 to -7.48.9% and one model a strengthening by 4.8%), and does not show clear spatial patterns across the GOBMs ensemble (Fig. 10bFigure 11b). This is the combined effect of change and variability in all atmospheric forcing fields, previously attributed to wind and temperature changes in one model (LeQuéré et al., 2010).
The global net air-sea CO2 flux is a residual of large natural and anthropogenic CO2 fluxes into and out of the ocean with distinct regional and seasonal variations (Fig.Figure 6 and B1). Natural fluxes dominate on regional scales, but largely cancel out when integrated globally (Gruber et al., 2009). Mid-latitudes in all basins and the high-latitude North Atlantic dominate the ocean CO2 uptake where low temperatures and high wind speeds facilitate CO2 uptake at the surface (Takahashi et al., 2009). In these regions, formation of mode, intermediate and deep-water masses transport anthropogenic carbon into the ocean interior, thus allowing for continued CO2 uptake at the surface. Outgassing of natural CO2 occurs mostly in the tropics, especially in the equatorial upwelling region, and to a lesser extent in the North Pacific and polar Southern Ocean, mirroring a well-established understanding of regional patterns of air-sea CO2 exchange (e.g., Takahashi et al., 2009, Gruber et al., 2009). These patterns are also noticeable in the Surface Ocean CO2 Atlas (SOCAT) dataset, where an ocean fCO2 value above the atmospheric level indicates outgassing (Fig.Figure B1). This map further illustrates the data-sparsity in the Indian Ocean and the southern hemisphere in general.
Interannual variability of the ocean carbon sink is driven by climate variability with a first-order effect from a stronger ocean sink during large El Niño events (e.g., 1997-1998) (Fig. 9Figure 10; Rödenbeck et al., 2014, Hauck et al., 2020). The GOBMs show the same patterns of decadal variability as the mean of the fCO2-based data products, with a stagnation of the ocean sink in the 1990s and a strengthening since the early 2000s (Fig. 9Figure 10, Le Quéré et al., 2007; Landschützer et al., 2015, 2016; DeVries et al., 2017; Hauck et al., 2020; McKinley et al., 2020). Different explanations have been proposed for this decadal variability, ranging from the ocean’s response to changes in atmospheric wind and pressure systems (e.g., Le Quéré et al., 2007, Keppler and Landschützer, 2019), including variations in upper ocean overturning circulation (DeVries et al., 2017) to the eruption of Mount Pinatubo and its effects on sea surface temperature and slowed atmospheric CO2 growth rate in the 1990s (McKinley et al., 2020). The main origin of the decadal variability is a matter of debate with a number of studies initially pointing to the Southern Ocean (see review in Canadell et al., 2021), but also contributions from the North Atlantic and North Pacific (Landschützer et al., 2016, DeVries et al., 2019), or a global signal (McKinley et al., 2020) were proposed.
Although all individual GOBMs and data-products fall within the observational constraint, the ensemble means of GOBMs, and data-products adjusted for the riverine flux diverge over time with a mean offset increasing from 0.2428 GtC yr-1 in the 1990s to 0.6661 GtC yr-1 in the decade 2011-20202012-2021 and reaching 1.10.79 GtC yr-1 in 20202021. The SOCEAN positive trend over time diverges withby a factor two difference since 2002 (GOBMs: 0.328 ± 0.107 GtC yr-1 per decade, data-products: 0.761 ± 0.217 GtC yr-1 per decade, best estimateSOCEAN: 0.545 GtC yr-1 per decade) and withby a factor of three since 2010 (GOBMs: 0.3  ± 0.1 GtC yr-1 per decade, data-products:21 ± 0.9  ± 0.314 GtC yr-1 per decade , best estimate:, data-products: 0.66 ± 0.638 GtC yr-1 per decade, SOCEAN: 0.44 GtC yr-1 per decade). The GOBMs estimate is lowerslightly higher (<0.1 GtC yr-1) than in the previous global carbon budget (Friedlingstein et al., 20202022), because one high-sinknew model was not available. The effect of twois included (CESM2) and four models (CNRM, MOM6-COBALT) revising their estimates downwards was largely balanced by two models revisingrevised their estimate upwards (FESOMCESM-ETHZ, CNRM, FESOM2-REcoM, PlankTOM). The data-product estimate is higher by about 0.1 GtC yr-1 compared to Friedlingstein et al. (2022) as a result of an upward correction in three products (Jena-MLS, MPI-SOMFFN, OS-ETHZ-Gracer), the submission of LDEO-HPD which is above average, the non-availability of the CSIR product, and the small upward correction of the river flux adjustment.
The discrepancy between the two types of estimates stems mostly from a larger Southern Ocean sink in the data-products prior to 2001, and from a larger SOCEAN trend in the northern and southern extra-tropics since then (Fig. 12). PossibleFigure 13). Note that the location of the mean offset (but not its trend) depends strongly on the choice of regional river flux adjustment and would occur in the tropics rather than in the Southern Ocean when using the dataset of Lacroix et al. (2020) instead of Aumont et al. (2001). Other possible explanations for the discrepancy in the Southern Ocean could be missing winter observations and data sparsity in general (Bushinsky et al., 2019, Gloege et al., 2021), or model biases (as indicated by the large model spread in the South, Figure 1213, and the larger model-data mismatch, Figure B2), or uncertainties in the regional river flux adjustment (Hauck et al., 2020, Lacroix et al., 2020). 
In GCB releases until 2021, the ocean sink 1959-1989 was only estimated by GOBMs due to the absence of fCO2 observations. Now, the first data-based estimates extending back to 1957/58 are becoming available (Jena-MLS, Rödenbeck et al., 2022, LDEO-HPD, Bennington et al., 2022; Gloege et al. 2022). These are based on a multi-linear regression of pCO2 with environmental predictors (Rödenbeck et al., 2022, included here) or on model-data pCO2 misfits and their relation to environmental predictors (Bennington et al., 2022). The Jena-MLS estimate falls well within the range of GOBM estimates and has a correlation of 0.98 with SOCEAN (1959-2021 as well as 1959-1989). It agrees well on the mean SOCEAN estimate since 1977 with a slightly higher amplitude of variability (Figure 10). Until 1976, Jena-MLS is 0.2-0.3 GtCyr-1 below the central SOCEAN estimate. The agreement especially on phasing of variability is impressive, and the discrepancies in the mean flux 1959-1976 could be explained by an overestimated trend of Jena-MLS (Rödenbeck et al., 2022). Bennington et al. (2022) report a larger flux into the pre-1990 ocean than in Jena-MLS.  
The reported SOCEAN estimate from GOBMs and data-products is 2.1 ± 0.4 GtC yr-1 over the period 1994 to 2007, which is in agreement with the ocean interior estimate of 2.2 ± 0.4 GtC yr−1 which accounts for the climate effect on the natural CO2 flux of −0.4 ± 0.24 GtC yr−1 (Gruber et al., 2019) to match the definition of SOCEAN used here (Hauck et al., 2020). This comparison depends critically on the estimate of the climate effect on the natural CO2 flux, which is smaller from the GOBMs (-0.1 GtC yr−1) than in Gruber et al. (2019). Uncertainties of these two estimates would also overlap when using the GOBM estimate of the climate effect on the natural CO2 flux.
During 2010-2016, the ocean CO2 sink appears to have intensified in line with the expected increase from atmospheric CO2 (McKinley et al., 2020). This effect is stronger in the fCO2-based data products (Fig. 9Figure 10, ocean sink 2016 minus 2010, GOBMs: +0.4342 ± 0.09 GtC yr-1, data-products: +0.5652 ± 0.22 GtC yr-1). The reduction of -0.09 GtC yr-1 (range: -0.3039 to +0.1201 GtC yr-1) in the ocean CO2 sink in 2017 is consistent with the return to normal conditions after the El Niño in 2015/16, which caused an enhanced sink in previous years. After 2017, the GOBMs ensemble mean suggests the ocean sink levelling off at about 2.56 GtC yr-1, whereas the data-products’ estimate increases by 0.324 ± 0.17 GtC yr-1 over the same period.
3.5.3 [bookmark: _heading=h.1ia67du12brq]Final year 20202021
The estimated ocean CO2 sink was 3.02.9 ± 0.4 GtC in 20202021. This is the average of GOBMs and data-products, and is a small increasedecrease of 0.0212 GtC compared to 20192020, in line with the competing effects from an expected sink strengthening from atmospheric CO2 growth and expected sink weakening from persistent La Niña conditions. There is, however, a substantial difference between GOBMs and fCO2-based data-productsGOBM and data-product estimates consistently result in their mean 2020 a stagnation of SOCEAN estimate (GOBMs: 2.5-0.09 ±0.15 GtC, data-products: 3.5-0.15 ±0.24 GtC). While the GOBMs simulate a stagnation of the sink from 2019 to 2020 (-0.02 ±0.11 GtCGtC), the data-products suggest an increase by 0.06 GtC, although not significant at the 1σ level (±0.13 GtC). Four Seven models and foursix data products show a decrease in SOCEAN (GOBMs down to -0.31 GtC, data-products down to -0.58 GtC), while three models and two data products show an increase ofin SOCEAN (GOBMs up to +0.1815 GtC, data-productproducts up to +0.21 GtC), while four models and three data products show no change or a decrease of SOCEAN (GOBMs down to -0.0.12 GtC, data-products down to -0.13 GtC; Fig. 9; Figure 10). The data-products have a larger uncertainty at the tails of the reconstructed time series (e.g., Watson et al., 2020). Specifically, the data-products’ estimate of the last year is regularly adjusted in the following release owing to the tail effect and an incrementally increasing data availability with 1-5 years lag (Figure 9 bottom10 inset). 
3.5.4 [bookmark: _heading=h.u7ju2gntv0yf]Year 20212022 Projection
Using a feed-forward neural network method (see section 2.4) we project an ocean sink of 2.9 GtC for 20212022.  This is a reduction of the sink by 0.1 GtC relativesimilar to the 2020 value which we attribute to year 2021 as the La Niña conditions persist in January to May 2021 and projections of a re-emergence of La Niña later in the year.2022.   
3.5.5 [bookmark: _heading=h.j0udjrglkx6b]Model Evaluation
The additional simulation D allows to separate the anthropogenic carbon component (steady state and non-steady state, sim D - sim A) and to compare the model flux and DIC inventory change directly to the interior ocean estimate of Gruber et al. (2019) without further assumptions. The GOBMs ensemble average of anthropogenic carbon inventory changes 1994-2007 amounts to 2.2 GtC yr-1 and is thus lower than the 2.6 ± 0.3 GtC yr-1 estimated by Gruber et al (2019). Only four models with the highest sink estimate fall within the range reported by Gruber et al. (2019). This suggests that most of the GOBMs underestimate anthropogenic carbon uptake by the ocean. Analysis of Earth System Models indicate that this may be due to biases in ocean carbon transport and mixing from the surface mixed layer to the ocean interior (Goris et al., 2018, Terhaar et al., 2021, Bourgeois et al., 2022, Terhaar et al., 2022,), biases in the chemical buffer capacity (Revelle factor) of the ocean (Vaittinada Ayar et al., 2022; Terhaar et al., 2022) and partly due to a late starting date of the simulations (mirrored in atmospheric CO2 chosen for the preindustrial control simulation, Table A2, Bronselaer et al., 2017, Terhaar et al., 2022). Interestingly, and in contrast to the uncertainties in the surface CO2 flux, we find the largest mismatch in interior ocean carbon accumulation in the tropics (93% of the mismatch), with minor contribution from the north (1%) and the south (6%). This highlights the role of interior ocean carbon redistribution for those inventories (Khatiwala et al., 2009).
The evaluation of the ocean estimates (Fig.Figure B2) shows an RMSE from annually detrended data of 1.30.4 to 2.86 µatm for the seven fCO2-based data products over the globe, relative to the fCO2 observations from the SOCAT v2021v2022 dataset for the period 1990-20202021. The GOBMs RMSEs are larger and range from 3.30 to 5.94.8 µatm. The RMSEs are generally larger at high latitudes compared to the tropics, for both the data products and the GOBMs. The data products have RMSEs of 1.30.4 to 3.62 µatm in the tropics, 1.30.8 to 2.78 µatm in the north, and 2.20.8 to 3.6.1 µatm in the south. Note that the data products are based on the SOCAT v2021v2022 database, hence the latter areSOCAT is not an independent dataset for the evaluation of the data products. The GOBMs RMSEs are more spread across regions, ranging from 2.75 to 4.3.9 µatm in the tropics, 2.93.1 to 6.95 µatm in the North, and 65.4 to 7.9.8 µatm in the South. The higher RMSEs occur in regions with stronger climate variability, such as the northern and southern high latitudes (poleward of the subtropical gyres). The upper- range of the model RMSEs have decreased somewhat relative to Friedlingstein et al. (2020), owing to one model with upper-end RMSE not being represented this year, and the reduction of RMSE in one model (MPIOM-HAMOCC6), presumably related to the inclusion of riverine carbon fluxes.(2022).
The additional simulation C allows to separate the steady-state anthropogenic carbon component (sim C - sim B) and to compare the model flux and DIC inventory change directly to the interior ocean estimate of Gruber et al (2019) without further assumptions. The GOBMs ensemble average of steady-state anthropogenic carbon inventory change 1994-2007 amounts to 2.1 GtC yr-1, and is significantly lower than the 2.6 ± 0.3 GtC yr-1 estimated by Gruber et al (2019). Only the three models with the highest sink estimate fall within the range reported by Gruber et al. (2019). This suggests that most of the models underestimates anthropogenic carbon uptake by the ocean likely due to biases in ocean carbon transport and mixing from the surface mixed layer to the ocean interior. 
The reported SOCEAN estimate from GOBMs and data-products is 2.1 ± 0.4 GtC yr-1 over the period 1994 to 2007, which is in agreement with the ocean interior estimate of 2.2 ± 0.4 GtC yr−1 when accounting for the climate effect on the natural CO2 flux of −0.4 ± 0.24 GtC yr−1 (Gruber et al., 2019) to match the definition of SOCEAN used here (Hauck et al., 2020). This comparison depends critically on the estimate of the climate effect on the natural CO2 flux, which is smaller from the GOBMs (section 3.5.2) than in Gruber et al. (2019).
3.6 Land Sink
3.6.1 [bookmark: _heading=h.rpfe5vxr27qx]Historical period 1850-20202021
Cumulated since 1850, the terrestrial CO2 sink amounts to 195210 ± 45 GtC, 3031% of total anthropogenic emissions. Over the historical period, the sink increased in pace with the anthropogenic emissions exponential increase (Fig.Figure 3b).
3.6.2 [bookmark: _heading=h.xf8zwcqsm1rf]Recent period 1960-20202021
The terrestrial CO2 sink increased from 1.2 ± 0.54 GtC yr-1 in the 1960s to 3.1 ± 0.6 GtC yr-1 during 2010-20192012-2021, with important interannual variations of up to 2 GtC yr-1 generally showing a decreased land sink during El Niño events (Fig. 7Figure 8), responsible for the corresponding enhanced growth rate in atmospheric CO2 concentration. The larger land CO2 sink during 2010-20192012-2021 compared to the 1960s is reproduced by all the DGVMs in response to the combinedincrease in both atmospheric CO2 increase and nitrogen deposition, and the changes in climate, and is consistent with constraints from the other budget terms (Table 5). 
Over the period 1960 to present the increase in the global terrestrial CO2 sink is largely attributed to the CO2 fertilisation effect in the models (Prentice et al., 2001, Piao et al., 2009), directly stimulating plant photosynthesis and increased plant water use in water limited systems, with a small negative contribution of climate change (Fig. 10Figure 11). There is a range of evidence to support a positive terrestrial carbon sink in response to increasing atmospheric CO2, albeit with uncertain magnitude (Walker et al., 2021). As expected from theory, the greatest CO2 effect is simulated in the tropical forest regions, associated with warm temperatures and long growing seasons (Hickler et al., 2008) (Fig. 10aFigure 11a). However, evidence from tropical intact forest plots indicate an overall decline in the land sink across Amazonia (1985-2011), attributed to enhanced mortality offsetting productivity gains (Brienen et al., 2005, Hubau et al., 2020). During 2011-20202012-2021 the land sink is positive in all regions (Fig.Figure 6) with the exception of central and eastern Brazil, Southwest USA and northern Mexico, Southeast Europe and Central Asia, North and South Africa, and eastern Australia, where the negative effects of climate variability and change (i.e. reduced rainfall) counterbalance CO2 effects. This is clearly visible on Figure 1011 where the effects of CO2 (Fig. 10aFigure 11a) and climate (Fig. 10bFigure 11b) as simulated by the DGVMs are isolated. The negative effect of climate is the strongest in most of South America, Central America, Southwest US and, Central Europe (Fig. 10b)., western Sahel, southern Africa, Southeast Asia and southern China, and eastern Australia (Figure 11b).  Globally, climate change reduces the land sink by 0.4563 ± 0.3952 GtC yr-1 or 15% (2011-2020).17% (2012-2021). 
Since 2020 the globe has experienced La Niña conditions which would be expected to lead to an increased land carbon sink. A clear peak in the global land sink is not evident in SLAND, and we find that a La Niña- driven increase in tropical land sink is offset by a reduced high latitude extra-tropical land sink, which may be linked to the land response to recent climate extremes. In the past years several regions experienced record-setting fire events. While global burned area has declined over the past decades mostly due to declining fire activity in savannas (Andela et al., 2017), forest fire emissions are rising and have the potential to counter the negative fire trend in savannas (Zheng et al., 2021). Noteworthy events include the 2019-2020 Black Summer event in Australia (emissions of roughly 0.2 GtC; van der Velde et al., 2021) and Siberia in 2021 where emissions approached 0.4 GtC or three times the 1997-2020 average according to GFED4s. While other regions, including Western US and Mediterranean Europe, also experienced intense fire seasons in 2021 their emissions are substantially lower.
Despite these regional negative effects of climate change on SLAND, the efficiency of land to remove anthropogenic CO2 emissions has remained broadly constant over the last six decades, with a land-borne fraction (SLAND/(EFOS+ELUC))) of ~30% (Fig 8Figure 9).
3.6.3 [bookmark: _heading=h.ew69yvcicqag]Final year 20202021
The terrestrial CO2 sink from the DGVMs ensemble was 23.5 ± 0.9 ± 1.0 GtC in 20202021, slightly belowabove the decadal average of 3.1 GtC± 0.6GtC yr-1 (Fig.Figure 4, Table 6). We note that the DGVMs estimate for 20202021 is significantly larger, but within the uncertainty, than the 2.18 ± 0.9 GtC yr-1 estimate from the residual sink from the global budget (EFOS+ELUC-GATM-SOCEAN) (Table 5). 
3.6.4 [bookmark: _heading=h.wjwkkoxewb7l]Year 20212022 Projection
Using a feed-forward neural network method (see section 2.5) we project a land sink of 3.34 GtC for 2021.  This is an increase of the land sink by 0.3 GtC relative2022, very similar to the 2020 value which2021 estimate. As for the ocean sink, we attribute this to the persistence of La Niña conditions in 20212022. 
3.6.5 [bookmark: _heading=h.g7orcobf2bga]Model Evaluation
The evaluation of the DGVMs (Fig.Figure B3) shows generally high skill scores across models for runoff, and to a lesser extent for vegetation biomass, GPP, and ecosystem respiration (Fig.Figure B3, left panel). Skill score was lowest for leaf area index and net ecosystem exchange, with a widest disparity among models for soil carbon. Further analysis of the results will be provided separately, focusing on the strengths and weaknesses in the DGVMs ensemble and its validity for use in the global carbon budgetThese conclusions are supported by a more comprehensive analysis of DGVM performance in comparison with benchmark data (Seiler et al., 2022). Furthermore, results show how DGVM differences are often of similar magnitude compared with the range across observational datasets.

3.7 [bookmark: _heading=h.wufjo1x2wx0]Partitioning the carbon sinks
3.7.1 [bookmark: _heading=h.ar4rlnhu93sr]Global sinks and spread of estimates
In the period 2011-20202012-2021, the bottom-up view of total global carbon sinks provided by the GCB (, SOCEAN + for the ocean and SLAND– ELUC) for the land (to be comparable to inversions), agrees closely with the top-down budgetglobal carbon sinks delivered by the atmospheric inversions. Figure 1112 shows both total sink estimates of the last decade split by ocean and land and ocean,(including ELUC), which match the difference between GATM and EFOS to within 0.06–01-0.1712 GtC yr-1 for inverse modelssystems, and to 0.334 GtC yr-1 for the GCB mean. The latter represents the BIM discussed in Section 3.8, which by design is minimal for the inverse modelssystems. 
The distributions based on the individual models and data products reveal substantial spread but converge near the decadal means quoted in Tables 5 and 6. Sink estimates for SOCEAN and from inverse modelssystems are mostly non-Gaussian, while the ensemble of DGVMs appears more normally distributed justifying the use of a multi-model mean and standard deviation for their errors in the budget. Noteworthy is that the tails of the distributions provided by the land and ocean bottom-up estimates would not agree with the global constraint provided by the fossil fuel emissions and the observed atmospheric CO2 growth rate (EFOS – GATM). This illustrates the power of the atmospheric joint constraint from GATM and the global CO2 observation network it derives from. 
3.7.2 [bookmark: _heading=h.5wl7fwoqs4l7]Total atmosphere-to-land fluxes
The total atmosphere-to-land fluxes (SLAND – ELUC), calculated here as the difference between SLAND from the DGVMs and ELUC from the bookkeeping models, amounts to a 1.9 ± 0.9 GtC yr-1 sink during 2011-20202012-2021 (Table 5). Estimates of total atmosphere-to-land fluxes (SLAND – ELUC) from the DGVMs alone (1.65 ± 0.65 GtC yr-1) are consistent with this estimate and also with the global carbon budget constraint (EFOS – GATM – SOCEAN, 1.75 ± 0.86 GtC yr-1 Table 5). Consistent with the bookkeeping models estimates, the DGVM-based ELUC is substantially lower than in Friedlingstein et al., (2020) due to the improved land cover forcing (see section 3.2.2), increasing their total atmosphere-to-land fluxes and hence the consistency with the budget constraint. For the last decade (2011-20202012-2021), the inversions estimate the net atmosphere-to-land uptake to lie within a range of 1.31 to 2.01.7 GtC yr-1, consistent with the GCB and DGVMs estimates of SLAND – ELUC (Figure 11, Figure 1213 top row). 
3.7.3 Total atmosphere-to-ocean fluxes
For the 2011-20202012-2021 period, the GOBMs (2.56 ± 0.65 GtC yr-1) produce a lower estimate for the ocean sink than the fCO2-based data products (3.12 ± 0.56 GtC yr-1), which shows up in Figure 1112 as a separate peak in the distribution from the GOBMs (triangle symbols pointing right) and from the fCO2-based products (triangle symbols pointing left). Atmospheric inversions (2.67 to 3.13 GtC yr-1) also suggest higher ocean uptake in the recent decade (Figure 11, Figure 1213 top row). In interpreting these differences, we caution that the riverine transport of carbon taken up on land and outgassing from the ocean is a substantial (0.665 GtC yr-1) and uncertain term that separates the various methods. A recent estimate of decadal ocean uptake from observed O2/N2 ratios (Tohjima et al., 2019) also points towards a larger ocean sink, albeit with large uncertainty (2012-2016: 3.1 ± 1.5 GtC yr-1). 
3.7.4 [bookmark: _heading=h.4vfco2idjf0o]Regional breakdown and interannual variability
Figure 1213 also shows the latitudinal partitioning of the total atmosphere-to-surface fluxes excluding fossil CO2 emissions (SOCEAN + SLAND – ELUC) according to the multi-model average estimates from GOBMs and ocean fCO2-based products (SOCEAN) and DGVMs (SLAND – ELUC), and from atmospheric inversions (SOCEAN and SLAND – ELUC). 
3.7.4.1 North
Despite being one of the most densely observed and studied regions of our globe, annual mean carbon sink estimates in the northern extra-tropics (north of 30°N) continue to differ by about 0.5 GtC yr-1.. The atmospheric inversions suggest an atmosphere-to-surface sink (SOCEAN+ SLAND – ELUC) for 2011-20202012-2021 of 2.0 to 3.42 GtC yr-1, which is higher than the process models’ estimate of 2.12 ± 0.54 GtC yr-1 (Fig. 12Figure 13). The GOBMs (1.12 ± 0.2 GtC yr-1), fCO2-based data products (1.34 ± 0.1 GtC yr-1), and inversion modelssystems (0.9 to 1.54 GtC yr-1) produce consistent estimates of the ocean sink. Thus, the difference mainly arises from the total land flux (SLAND – ELUC) estimate, which is 1.0 ± 0.4 GtC yr-1 in the DGVMs compared to 0.76 to 2.40 GtC yr-1 in the atmospheric inversions (Figure 1213, second row).
Discrepancies in the northern land fluxes conforms with persistent issues surrounding the quantification of the drivers of the global net land CO2 flux (Arneth et al., 2017; Huntzinger et al., 2017; O’Sullivan et al., 2022) and the distribution of atmosphere-to-land fluxes between the tropics and high northern latitudes (Baccini et al., 2017; Schimel et al., 2015; Stephens et al., 2007; Ciais et al. 2019; Gaubert et al,.., 2019). 
In the northern extratropics, the process models, inversions, and fCO2-based data products consistently suggest that most of the variability stems from the land (Fig. 12Figure 13). Inversions generally estimate similar interannual variations (IAV) over land to DGVMs (0.2830 – 0.4737 vs 0.2017 – 0.7369 GtC yr−1, averaged over 1990-20202021), and they have higher IAV in ocean fluxes (0.0305 – 0.1909 GtC yr−1)  relative to GOBMs  (0.0302 – 0.0506 GtC yr−1, Fig.Figure B2), and fCO2-based data products (0.03 – 0.09 GtC yr−1). 
3.7.4.2 Tropics
In the tropics (30°S-30°N), both the atmospheric inversions and process models estimate a total carbon balance (SOCEAN+SLAND-ELUC) that is close to neutral over the past decade. The GOBMs (0.06 ± 0 ± 0.3.34 GtC yr-1), fCO2-based data products (0.0300 ± 0.206 GtC yr-1), and inversion modelssystems (-0.2 to 0.25 GtC yr-1) all indicate an approximately neutral tropical ocean flux (see Fig.Figure B1 for spatial patterns). DGVMs indicate a net land sink (SLAND-ELUC) of 0.65 ± 0.3 GtC yr-1, whereas the inversion modelssystems indicate a net land flux between -0.79 and 0.97 GtC yr-1, though with high uncertainty (Figure 1213, third row).  
The tropical lands are the origin of most of the atmospheric CO2 interannual variability (Ahlström et al., 2015), consistently among the process models and inversions (Fig. 12Figure 13). The interannual variability in the tropics is similar among the ocean data products (0.07 – 0.1516 GtC yr−1) and the modelsGOBMs (0.07 – 0.1516 GtC yr−1, Fig.Figure B2), which is the highest ocean sink variability of all regions. The DGVMs and inversions indicate that atmosphere-to-land CO2 fluxes are more variable than atmosphere-to-ocean CO2 fluxes in the tropics, with interannual variability of 0.45 to 1.21 and 0.68 to 1.10 GtC yr−1 for DGVMs and inversions, respectively. 
3.7.4.3 South
In the southern extra-tropics (south of 30°S), the atmospheric inversions suggest a total atmosphere-to-surface sink (SOCEAN+SLAND-ELUC) for 2011-20202012-2021 of 1.6 to 1.9 GtC yr-1, slightly higher than the process models’ estimate of 1.4 ± 0.3 GtC yr-1 (Fig. 12Figure 13). An approximately neutral total land flux (SLAND-ELUC) for the southern extra-tropics is estimated by both the DGVMs (0.02 ± 0.0506 GtC yr-1) and the inversion modelssystems (sink of -0.12 to 0.2 GtC yr-1). This means nearly all carbon uptake is due to oceanic sinks south of 30°S.  The southern oceanSouthern Ocean flux in the fCO2-based data products (1.78 ± 0.1 GtC yr-1 ) and inversion estimates (1.46 to 1.89 GtCyr-1) is higher than in the GOBMs (1.4 ± 0.3 GtC yr-1 ) (Figure 1213, bottom row). This might bediscrepancy in the mean flux is likely explained by the data-products potentially underestimating the winter CO2 outgassing south of the Polar Front (Bushinsky et al., 2019), by model biases, or by the uncertainty in the regional distribution of the river flux adjustment (Aumont et al., 2001, Lacroix et al., 2020) applied to fCO2-based data products and inverse modelssystems to isolate the anthropogenic SOCEAN flux. Other possibly contributing factors are that the data-products potentially underestimate the winter CO2 outgassing south of the Polar Front (Bushinsky et al., 2019) and model biases. CO2 fluxes from this region are more sparsely sampled by all methods, especially in wintertime (Fig.Figure B1).
The interannual variability in the southern extra-tropics is low because of the dominance of ocean areaareas with low variability compared to land areas. The split between land (SLAND-ELUC) and ocean (SOCEAN) shows a substantial contribution to variability in the south coming from the land, with no consistency between the DGVMs and the inversions or among inversions. This is expected due to the difficulty of separating exactly the land and oceanic fluxes when viewed from atmospheric observations alone. The SOCEAN interannual variability was found to be higher in the fCO2-based data products (0.09 to 0.1419 GtC yr−1) compared to GOBMs (0.0403 to 0.06 GtC yr−1) in 1990-2020 (Fig.2021 (Figure B2). Model subsampling experiments recently illustrated that observation-based products may overestimate decadal variability in the Southern Ocean carbon sink by 30% due to data sparsity, based on one data product with the highest decadal variability (Gloege et al., 2021).
3.7.4.4 Tropical vs northern land uptake
A continuing conundrum is the partitioning of the global atmosphere-land flux between the northern hemisphere land and the tropical land (Stephens et al., 2017; Pan et al., 2011; Gaubert et al., 2019). It is of importance because each region has its own history of land-use change, climate drivers, and impact of increasing atmospheric CO2 and nitrogen deposition. Quantifying the magnitude of each sink is a prerequisite to understanding how each individual driver impacts the tropical and mid/high-latitude carbon balance.
  We define the North-South (N-S) difference as net atmosphere-land flux north of 30N30°N minus the net atmosphere-land flux south of 30°N. For the inversions, the N-S difference ranges from -0.1 GtC yr-1 to 2.9 GtC yr-1 across this year’s inversion ensemble with an equala preference across models for either a smallsmaller Northern land sink and a tropical land sink (small N-S difference),with a medium Northern land sink and anear neutral tropical land flux (medium N-S difference), or a large Northern land sink and a tropical land source (large N-S difference). 
In the ensemble of DGVMs the N-S difference is 0.56 ± 0.5 GtC yr-1, a much narrower range than the one from inversions. Only threetwo DGVMs have a N-S difference larger than 1.0 GtC yr-1. The larger agreement across DGVMs than across inversions is to be expected as there is no correlation between Northern and Tropical land sinks in the DGVMs as opposed to the inversions where the sum of the two regions being well-constrained leads to an anti-correlation between these two regions. The much smaller spread in the N-S difference between the DGVMs could help to scrutinise the inverse modelssystems further. For example, a large northern land sink and a tropical land source in an inversion would suggest a large sensitivity to CO2 fertilisation (the dominant factor driving the land sinks) for Northern ecosystems, which would be not mirrored by tropical ecosystems. Such a combination could be hard to reconcile with the process understanding gained from the DGVMs ensembles and independent measurements (e.g. Free Air CO2 Enrichment experiments). Such investigations will be further pursued in the upcoming assessment from REgional Carbon Cycle Assessment and Processes (RECCAP2; Ciais et al., 2020).
3.8 [bookmark: _heading=h.s2100rjiecud]Closing the Global Carbon Cycle
3.8.1 [bookmark: _heading=h.y0wtak9s7ucw]Partitioning of Cumulative Emissions and Sink Fluxes
The global carbon budget over the historical period (1850-20202021) is shown in Fig.Figure 3. 
Emissions during the period 1850-20202021 amounted to 660670 ± 65 GtC and were partitioned among the atmosphere (270275 ± 5 GtC; 41%), ocean (170175 ± 35 GtC; 26%), and the land (195210 ± 45 GtC; 3031%). The cumulative land sink is almost equal to the cumulative land-use emissions (200 ± 6560 GtC), making the global land nearly neutral over the whole 1850-20202021 period. 
The use of nearly independent estimates for the individual terms of the global carbon budget shows a cumulative budget imbalance of 2515 GtC (4%)2% of total emissions) during 1850-2020 (Fig.2021 (Figure 3, Table 8), which, if correct, suggests that emissions arecould be slightly too high by the same proportion (42%) or that the combined land and ocean sinks are slightly underestimated (by about 7%). The bulk3%), although these are well within the uncertainty range of each component of the budget. Nevertheless, part of the imbalance could originate from the estimation of largesignificant increase in EFOS and ELUC between the mid 1920s and the mid 1960s which is unmatched by a similar growth in atmospheric CO2 concentration as recorded in ice cores (Fig.Figure 3). However, the known loss of additional sink capacity of 30-40 GtC (over the 1850-2020 period) due to reduced forest cover has not been accounted for in our method and would further exacerbate the budget imbalance (Section 2.7.4). 
For the more recent 1960-20202021 period where direct atmospheric CO2 measurements are available, 375 ± 20 GtC (82%) of the total emissions (EFOS + ELUC) amounted to 470 ± 50 GtC, of which 385 ± 20 GtC (82%) were caused by fossil CO2 emissions, and 8085 ± 45 GtC (18%) by land-use change (Table 8). The total emissions were partitioned among the atmosphere (205210 ± 5 GtC; 4745%), ocean (115120 ± 25 GtC; 2526%), and the land (135 ± 25145 ± 30 GtC; 30%), with a near zero (-5 GtC) unattributed budget imbalance. All components except land-use change emissions have significantly grown since 1960, with important interannual variability in the growth rate in atmospheric CO2 concentration and in the land CO2 sink (Fig.Figure 4), and some decadal variability in all terms (Table 6). Differences with previous budget releases are documented in Fig.Figure B5. 
The global carbon budget averaged over the last decade (2011-20202012-2021) is shown in Fig.Figure 2, Fig. 13Figure 14 (right panel) and Table 6. For this time period, 9089% of the total emissions (EFOS + ELUC) were from fossil CO2 emissions (EFOS), and 1011% from land-use change (ELUC). The total emissions were partitioned among the atmosphere (4748%), ocean (26%) and land (29%), with a near-zero unattributed budget imbalance (~3%). For single years, the budget imbalance can be larger (Figure 4). For 20202021, the combination of our estimated sources (10.9 ± 0.9 GtC yr−1) and sinks estimates(11.6 ± 1.0 GtC yr−1) leads to a BIM of -0.86 GtC, suggesting ana slight underestimation of the anthropogenic sources (potentially ELUC),, and/or an overestimation of the combined land and ocean sinks
3.8.2 [bookmark: _heading=h.mg7h0g1ryo5r]Carbon Budget Imbalance trend and variability
The carbon budget imbalance (BIM; Eq. 1, Fig.Figure 4) quantifies the mismatch between the estimated total emissions and the estimated changes in the atmosphere, land, and ocean reservoirs. The mean budget imbalance from 1960 to 20202021 is very small (4.6 GtC over the period, i.e. average of 0.0307 GtC yr-1) and shows no trend over the full time series. (Figure 4). The process models (GOBMs and DGVMs) and data-products have been selected to match observational constraints in the 1990s, but no further constraints have been applied to their representation of trend and variability. Therefore, the near-zero mean and trend in the budget imbalance is seen as evidence of a coherent community understanding of the emissions and their partitioning on those time scales (Fig.Figure 4). However, the budget imbalance shows substantial variability of the order of ±1 GtC yr-1, particularly over semi-decadal time scales, although most of the variability is within the uncertainty of the estimates. The positive carbon imbalance during the 1960s, and early 1990s, indicates that either the emissions were overestimated, or the sinks were underestimated during these periods. The reverse is true for the 1970s, 1980s, and to a lower extent for the 2011-20201980s and 2012-2021 period (Fig.Figure 4, Table 6).  
We cannot attribute the cause of the variability in the budget imbalance with our analysis, we only note that the budget imbalance is unlikely to be explained by errors or biases in the emissions alone because of its large semi-decadal variability component, a variability that is untypical of emissions and has not changed in the past 60 years despite a near tripling in emissions (Fig.Figure 4). Errors in SLAND and SOCEAN are more likely to be the main cause for the budget imbalance, especially on interannual to semi-decadal timescales. For example, underestimation of the SLAND by DGVMs has been reported following the eruption of Mount Pinatubo in 1991 possibly due to missing responses to changes in diffuse radiation (Mercado et al., 2009). Although insince GCB2021 we have for the first time accounted for aerosol effects on solar radiation quantity and quality (diffuse vs direct), most DGVMs only used the former as input (i.e., total solar radiation) (Table A1). Thus, the ensemble mean may not capture the full effects of volcanic eruptions, i.e. associated with high light scattering sulphate aerosols, on the land carbon sink (O’Sullivan et al., 2021). DGVMs are suspected to overestimate the land sink in response to the wet decade of the 1970s (Sitch et al., 2008). Quasi-decadal variability in the ocean sink has also been reported, with all methods agreeing on a smaller than expected ocean CO2 sink in the 1990s and a larger than expected sink in the 2000s (Fig. 9Figure 10; Landschützer et al., 2016, DeVries et al., 2019, Hauck et al., 2020, McKinley et al., 2020). Errors in sink estimates could also be driven by errors in the climatic forcing data, particularly precipitation for SLAND and wind for SOCEAN. 
The budget imbalance (BIM) was negative (-0.3 GtC yr-1) on average over 2011-2020, although the BIM uncertainty is large (1.1 GtC yr-1 over the decade). Also, the BIM shows substantial departure from zero on yearly time scales (Fig. 4Figure 4e), highlighting unresolved variability of the carbon cycle, likely in the land sink (SLAND), given its large year to year variability (Fig. 4eFigure 4d and 78). 
Both the budget imbalance (BIM, Table 6) and the residual land sink from the global budget (EFOS+ELUC-GATM-SOCEAN, Table 5) include an error term due to the inconsistencies that arises from using ELUC from bookkeeping models, and SLAND from DGVMs, most notably the loss of additional sink capacity (see section 2.7). Other differences include a better accounting of land use changes practices and processes in bookkeeping models than in DGVMs, or the bookkeeping models error of having present-day observed carbon densities fixed in the past. That the budget imbalance shows no clear trend towards larger values over time is an indication that these inconsistencies probably play a minor role compared to other errors in SLAND or SOCEAN.
Although the budget imbalance is near zero for the recent decades, it could be due to compensation of errors. We cannot exclude an overestimation of CO2 emissions, particularly from land-use change, given their large uncertainty, as has been suggested elsewhere (Piao et al., 2018), combined with an underestimate of the sinks. A larger DGVM (SLAND-ELUC) over the extra-tropics would reconcile model results with inversion estimates for fluxes in the total land during the past decade (Fig. 12Figure 13; Table 5). Likewise, a larger SOCEAN is also possible given the higher estimates from the data-products (see section 3.1.2, Fig. 9Figure 10 and Fig. 12)Figure 13), the underestimation of interior ocean anthropogenic carbon accumulation in the GOBMs (section 3.5.5), and the recently suggested upward correctionadjustments of the ocean carbon sink in Earth System Models (Terhaar et al., 2022), and in data-products, here related to a potential temperature bias and skin effects (Watson et al., 2020, Fig. 9).Dong et al., 2022, Figure 10). If SOCEAN were to be based on data-products alone, with all data-products including the Watson et al. (2020)this adjustment, this would result in a 2011-20202012-2021  SOCEAN of nearly 3.8 GtC yr-1 (Dong et al., 2022) or >4 GtC yr-1, (Watson et al., 2020), i.e., outside of the range supported by the atmospheric inversions, and with aan implied negative BIM of more than -1 GtC yr-1 indicating that a closure of the budget could only be achieved with either anthropogenic emissions being significantly larger and/or the net land sink being substantially smaller than estimated here. More integrated use of observations in the Global Carbon Budget, either on their own or for further constraining model results, should help resolve some of the budget imbalance (Peters et al., 2017). 

4 [bookmark: _heading=h.96gux2ojybso]Tracking progress towards mitigation targets 
FossilThe average growth in global fossil CO2 emissions growth peaked at +3% per year during the 2000s, driven by the rapid growth in Chinese emissions in China. In the last decade, however, the global growth rate for the preceding 10 years has slowly declined, reaching a low +0.45% per year fromover 2012-2021 (including the 2020 global decline and the expected 2021 emissions rebound). While this slowdown in global fossil CO2 emissions growth is welcome, it is far from what isthe emission decrease needed to be consistent with the temperature goals of the Paris Agreement. 
Since the 1990s, the average growth rate of fossil CO2 emissions has continuously declined across the group of developed countries of the Organisation for Economic Co-operation and Development (OECD), with emissions peaking in around 2005 and now declining at around 1% yr-1 (Le Quéré et al., 2021). In the decade 2010-20192012-2021, territorial fossil CO2 emissions decreased significantly (at the 95% confidence level) in 2324 countries whose economies grew significantly (also at the 95% confidence level): Barbados, Belgium, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hong Kong, Israel, Italy, Japan, Luxembourg, North Macedonia, Malta, Mexico, Netherlands, SlovakiaNorway, Singapore, Slovenia, Solomon Islands, Sweden, Switzerland, Tuvalu, United Kingdom, USA, and the USAUruguay (updated from Le Quéré et al., 2019). Altogether, these 2324 countries contribute toemitted 2.54 GtC yr-1 (8.8 GtCO2 yr-1) on average over the last decade, about one quarter of world CO2 fossil emissions. Consumption-based emissions are also fallingfell significantly during the final decade for which estimates are available (2011-2020) in 15 of these countries (: Belgium, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hong Kong, Israel, Japan, Luxembourg, Mexico, Netherlands, SloveniaSingapore, Sweden, United Kingdom, and the USA).Uruguay. Figure 1415 shows that the emission declines in the USA and the EU27 are primarily driven by increased decarbonisation (CO2 emissions per unit energy) in the last decade compared to the previous, with smaller contributions in the EU27 from slightly weaker economic growth and slightly larger declines in energy per GDP. These countries have stable or declining energy use and so decarbonisation policies replace existing fossil fuel infrastructure (Le Quéré et al. 2019).
In contrast, fossil CO2 emissions continue to grow in non-OECD countries, although the growth rate has slowed from over 5almost 6% yr-1 during the 2000s to aroundless than 2% yr-1 in the last decade. A Representing 47% of non-OECD emissions in 2021, a large part of this slowdown in non-OECD countries is due to China, which has seen emissions growth decliningdecline from nearly 10% yr-1 in the 2000s to 2% yr-1.5% yr-1 in the last decade. Excluding China, non-OECD emissions grew at 3.3% yr-1 in the 2000s compared to 21.6% yr-1 in the last decade. Figure 1415 shows that, compared to the previous decade, China has had weaker economic growth in the last decade and a largerhigher decarbonisation rate, with more rapid declines in energy per GDP whichthat are now back to levels seen during the 1990s. India and the rest of the world have strong economic growth that is not compensatedoffset by decarbonisation or declines in energy per GDP, implyingdriving up fossil CO2 emissions continue to grow. Despite the high deployment of renewables in some countries (e.g., India), fossil energy sources continue to grow to meet growing energy demand (Le Quéré et al. 2019). 
Globally, fossil CO2 emissions growth is slowing, and this is primarily due to the emergence of climate policy and emission declines in OECD countries (Eskander and Fankhauser 2020).; Le Quere et al 2019) and technological change, which is leading to a shift from coal to gas and growth in renewable energies, and reduced expansion of coal capacity. At the aggregated global level, decarbonisation shows a strong and growing signal in the last decade, with smaller contributions from lower economic growth and declines in energy per GDP. Despite the slowing growth in global fossil CO2 emissions, emissions are still growing, far from the reductions needed to meet the ambitious climate goals of the UNFCCC Paris agreement.
We update the remaining carbon budget assessed by the IPCC AR6 (Canadell et al., 2021), accounting for the 2020 andto 2022 estimated 2021 emissions from fossil fuel combustion (EFOS) and land use changes (ELUC). From January 20222023, the remaining carbon (50% likelihood) for limiting global warming to 1.5°C, 1.7°C and 2°C is estimated to amount to 120, 210105, 200, and 350335 GtC (420, 770, 1270380, 730, 1230 GtCO2). These numbers include an uncertainty based on model spread (as in IPCC AR6), which is reflected through the percent likelihood of exceeding the given temperature threshold. These remaining amounts correspond respectively to about 11, 209, 18 and 3230 years from the beginning of 20222023, at the 20212022 level of total CO2 emissions. Reaching net zero CO2 emissions by 2050 entails cutting total anthropogenic CO2 emissions by about 0.4 GtC (1.4 GtCO2) each year on average, comparable to the decrease observed in 2020 during 2020.the COVID-19 pandemic.

5 [bookmark: _heading=h.4acunpccmv4l]Discussion
Each year when the global carbon budget is published, each flux component is updated for all previous years to consider corrections that are the result of further scrutiny and verification of the underlying data in the primary input data sets. Annual estimates may be updated with improvements in data quality and timeliness (e.g., to eliminate the need for extrapolation of forcing data such as land-use). Of all terms in the global budget, only the fossil CO2 emissions and the growth rate in atmospheric CO2 concentration are based primarily on empirical inputs supporting annual estimates in this carbon budget. The carbon budget imbalance, yet an imperfect measure, provides a strong indication of the limitations in observations in understanding and representing processes in models, and/or in the integration of the carbon budget components. 
The persistent unexplained variability in the carbon budget imbalance limits our ability to verify reported emissions (Peters et al., 2017) and suggests we do not yet have a complete understanding of the underlying carbon cycle dynamics on annual to decadal timescales. Resolving most of this unexplained variability should be possible through different and complementary approaches. First, as intended with our annual updates, the imbalance as an error term is reduced by improvements of individual components of the global carbon budget that follow from improving the underlying data and statistics and by improving the models through the resolution of some of the key uncertainties detailed in Table 910. Second, additional clues to the origin and processes responsible for the variability in the budget imbalance could be obtained through a closer scrutiny of carbon variability in light of other Earth system data (e.g., heat balance, water balance), and the use of a wider range of biogeochemical observations to better understand the land-ocean partitioning of the carbon imbalance (e.g. oxygen, carbon isotopes). Finally, additional information could also be obtained through higher resolution and process knowledge at the regional level, and through the introduction of inferred fluxes such as those based on satellite CO2 retrievals. The limit of the resolution of the carbon budget imbalance is yet unclear, but most certainly not yet reached given the possibilities for improvements that lie ahead.
Estimates of global fossil CO2 emissions from different datasets are in relatively good agreement when the different system boundaries of these datasets are considered (Andrew, 2020a). But while estimates of EFOS are derived from reported activity data requiring much fewer complex transformations than some other components of the budget, uncertainties remain, and one reason for the apparently low variation between datasets is precisely the reliance on the same underlying reported energy data. The budget excludes some sources of fossil CO2 emissions, which available evidence suggests are relatively small (<1%). We have added emissions from lime production in China and the US, but these are still absent in most other non-Annex I countries, and before 1990 in other Annex I countries. Further changes to EFOS this year are documented by Andrew and Peters (2021).
Estimates of ELUC suffer from a range of intertwined issues, including the poor quality of historical land-cover and land-use change maps, the rudimentary representation of management processes in most models, and the confusion in methodologies and boundary conditions used across methods (e.g., Arneth et al., 2017; Pongratz et al., 2014, see also Section 2.7.4 on the loss of sink capacity; Bastos et al., 2021). Uncertainties in current and historical carbon stocks in soils and vegetation also add uncertainty in the ELUC  estimates. Unless a major effort to resolve these issues is made, little progress is expected in the resolution of ELUC. This is particularly concerning given the growing importance of ELUC for climate mitigation strategies, and the large issues in the quantification of the cumulative emissions over the historical period that arise from large uncertainties in ELUC. 
By adding the DGVMs estimates of CO2 fluxes due to environmental change from countries’ managed forest areas (part of SLAND in this budget) to the budget ELUC estimate, we successfully reconciled the large gap between our ELUC estimate and the land use flux from NGHGIs using the approach described in Grassi et al. (2021). This latter estimate has been used in the recent UNFCCC's Synthesis Report on Nationally Determined Contribution (UNFCCC, 2021b) to enable the total national emission estimates to be comparable with those of the IPCC. However, while Grassi et al. (2021) used only one DGVM, here 17 DGVMs are used, thus providing a more robust value to(2021) for future scenario and in Grassi et al. (2022b) using data from the Global Carbon Budget 2021. The updated data presented here can be used as potential adjustment in the policy context, e.g., to help assessing the collective countries’ progress towards the goal of the Paris Agreement and avoiding double-accounting for the sink in managed forests. In the absence of this adjustment, collective progress would hence appear better than it is (Grassi et al. 2021). The need of such adjustment whenever a comparison between LULUCF fluxes reported by countries and the global emission estimates of the IPCC is attempted is recommended also in the recent UNFCCC Synthesis report for the first Global Stocktake (UNFCCC, 2022). However, this adjustment should be seen as a short-term and pragmatic fix based on existing data, rather than a definitive solution to bridge the differences between global models and national inventories. Additional steps are needed to understand and reconcile the remaining differences, some of which are relevant at the country level (Grassi, et al. 2022b, Schwingshackl, et al., subm.). 
The comparison of GOBMs, data products and inversions highlights substantial discrepancy in the Southern Ocean (Fig. 12Figure 13, Hauck et al., 2020). A large part of the uncertainty in the mean fluxes stems from the regional distribution of the river flux adjustment term. The current distribution (Aumont et al., 2001) is based on one model study yielding the largest riverine outgassing flux south of 20°S, whereas a recent study, also based on one model, simulates the largest share of the outgassing to occur in the tropics (Lacroix et al., 2020). The long-standing sparse data coverage of fCO2 observations in the Southern compared to the Northern Hemisphere (e.g., Takahashi et al., 2009) continues to exist (Bakker et al., 2016, 2021, Fig.2022, Figure B1) and to lead to substantially higher uncertainty in the SOCEAN estimate for the Southern Hemisphere (Watson et al., 2020, Gloege et al., 2021). This discrepancy, which also hampers model improvement, points to the need for increased high-quality fCO2 observations especially in the Southern Ocean. At the same time, model uncertainty is illustrated by the large spread of individual GOBM estimates (indicated by shading in Fig. 12) and highlights the need for model improvement. Further uncertainty stems from the regional distribution of the river flux adjustment term being based on one model study yielding the largest riverine outgassing flux south of 20°S (Aumont et al., 2001), with a recent study questioning this distribution (Lacroix et al., 2020).Figure 13) and highlights the need for model improvement. The diverging trends in SOCEAN from different methods is a matter of concern, which is unresolved. The assessment of the net land-atmosphere exchange from DGVMs and atmospheric inversions also shows substantial discrepancy, particularly for the estimate of the total land flux over the northern extra-tropic. This discrepancy highlights the difficulty to quantify complex processes (CO2 fertilisation, nitrogen deposition and fertilisers, climate change and variability, land management, etc.) that collectively determine the net land CO2 flux. Resolving the differences in the Northern Hemisphere land sink will require the consideration and inclusion of larger volumes of observations. 
We provide metrics for the evaluation of the ocean and land models and the atmospheric inversions (Figs. B2 to B4). These metrics expand the use of observations in the global carbon budget, helping 1) to support improvements in the ocean and land carbon models that produce the sink estimates, and 2) to constrain the representation of key underlying processes in the models and to allocate the regional partitioning of the CO2 fluxes. However, GOBMs skills have changed little since the introduction of the ocean model evaluation. AnThe additional simulation this year allows for direct comparison with interior ocean anthropogenic carbon estimates and suggests that the models underestimate anthropogenic carbon uptake and storage. This is an initial step towards the introduction of a broader range of observations that we hope will support continued improvements in the annual estimates of the global carbon budget.
We assessed before that a sustained decrease of –1% in global emissions could be detected at the 66% likelihood level after a decade only (Peters et al., 2017). Similarly, a change in behaviour of the land and/or ocean carbon sink would take as long to detect, and much longer if it emerges more slowly. To continue reducing the carbon imbalance on annual to decadal time scales, regionalising the carbon budget, and integrating multiple variables are powerful ways to shorten the detection limit and ensure the research community can rapidly identify issues of concern in the evolution of the global carbon cycle under the current rapid and unprecedented changing environmental conditions. 

6 Conclusions
The estimation of global CO2 emissions and sinks is a major effort by the carbon cycle research community that requires a careful compilation and synthesis of measurements, statistical estimates, and model results. The delivery of an annual carbon budget serves two purposes. First, there is a large demand for up-to-date information on the state of the anthropogenic perturbation of the climate system and its underpinning causes. A broad stakeholder community relies on the data sets associated with the annual carbon budget including scientists, policy makers, businesses, journalists, and non-governmental organisations engaged in adapting to and mitigating human-driven climate change. Second, over the last decades we have seen unprecedented changes in the human and biophysical environments (e.g., changes in the growth of fossil fuel emissions, impact of COVID-19 pandemic, Earth’s warming, and strength of the carbon sinks), which call for frequent assessments of the state of the planet, a better quantification of the causes of changes in the contemporary global carbon cycle, and an improved capacity to anticipate its evolution in the future. Building this scientific understanding to meet the extraordinary climate mitigation challenge requires frequent, robust, transparent, and traceable data sets and methods that can be scrutinised and replicated. This paper via ‘living data’ helps to keep track of new budget updates.

7 Data availability
The data presented here are made available in the belief that their wide dissemination will lead to greater understanding and new scientific insights of how the carbon cycle works, how humans are altering it, and how we can mitigate the resulting human-driven climate change. Full contact details and information on how to cite the data shown here are given at the top of each page in the accompanying database and summarised in Table 2.
The accompanying database includes two Excel files organised in the following spreadsheets:
File Global_Carbon_Budget_2021v1.02022v0.1.xlsx includes the following: 
1. Summary
2. The global carbon budget (1959-20202021);
3. The historical global carbon budget (1750-20202021);
4. Global CO2 emissions from fossil fuels and cement production by fuel type, and the per-capita emissions (1959-20201850-2021);
5. CO2 emissions from land-use change from the individual methods and models (1959-20202021);
6. Ocean CO2 sink from the individual ocean models and fCO2-based products (1959-20202021);
7. Terrestrial CO2 sink from the individual DGVMs (1959-2020).2021);
8. Cement carbonation CO2 sink (1959-2021).

File National_Carbon_Emissions_2021v1.02022v0.1.xlsx includes the following: 
1. Summary
2. Territorial country CO2 emissions from fossil CO2 emissions (1959-20201850-2021);
3. Consumption country CO2 emissions from fossil CO2 emissions and emissions transfer from the international trade of goods and services (1990-20192020) using CDIAC/UNFCCC data as reference;
4. Emissions transfers (Consumption minus territorial emissions; 1990-20192020);
5. Country definitions;.
1. Details of disaggregated countries; 
2. Details of aggregated countries.

Both spreadsheets are published by the Integrated Carbon Observation System (ICOS) Carbon Portal and are available at https://doi.org/10.18160/gcp-2021https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 20212022b). National emissions data are also available from the Global Carbon Atlas (http://www.globalcarbonatlas.org/, last access: 11 March25 September 2022) and from Our World in Data (https://ourworldindata.org/co2-emissions, last access: 11 March25 September 2022). 
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Table 1. Factors used to convert carbon in various units (by convention, Unit 1 = Unit 2 × conversion).
Unit 1	Unit 2	Conversion	Source
GtC (gigatonnes of carbon)	ppm (parts per million) (a)	2.124 (b)	Ballantyne et al. (2012)
GtC (gigatonnes of carbon)	PgC (petagrams of carbon)	1	SI unit conversion
GtCO2 (gigatonnes of carbon dioxide)	GtC (gigatonnes of carbon)	3.664	44.01/12.011 in mass equivalent
GtC (gigatonnes of carbon)	MtC (megatonnes of carbon)	1000	SI unit conversion
(a) Measurements of atmospheric CO2 concentration have units of dry-air mole fraction. ‘ppm’ is an abbreviation for micromole/mol, dry air.
(b) The use of a factor of 2.124 assumes that all the atmosphere is well mixed within one year. In reality, only the troposphere is well mixed and the growth rate of CO2 concentration in the less well-mixed stratosphere is not measured by sites from the NOAA network. Using a factor of 2.124 makes the approximation that the growth rate of CO2 concentration in the stratosphere equals that of the troposphere on a yearly basis.





Table 2. How to cite the individual components of the global carbon budget presented here.	
Component	Primary reference
Global fossil CO2 emissions (EFOS), total and by fuel type	Updated from Andrew and Peters (2021)
National territorial fossil CO2 emissions (EFOS)	Gilfillan and Marland (), UNFCCC (2022)
National consumption-based fossil CO2 emissions (EFOS) by country (consumption)	Peters et al. (2011b) updated as described in this paper
Net land-use change flux (ELUC)	This paper (see Table 4 for individual model references).
Growth rate in atmospheric CO2 concentration (GATM)	Dlugokencky and Tans (2022)
Ocean and land CO2 sinks (SOCEAN and SLAND)	This paper (see Table 4 for individual model and data products references).
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Table 3. Main methodological changes in the global carbon budget since . Methodological changes introduced in one year are kept for the following years unless noted. Empty cells mean there were no methodological changes introduced that year. Table A7 lists methodological changes from the first global carbon budget publication up to 2017.
Publication year	Fossil fuel emissions	LUC emissions	Reservoirs	Uncertainty & other changes
	Global	Country (territorial)		Atmosphere	Ocean	Land	

2017	Projection includes India-specific data		Average of two bookkeeping models; use of 12 DGVMs		Based on eight models that match the observed sink for the 1990s; no longer normalised	Based on 15 models that meet observation-based criteria (see Sect. 2.5)	Land multi-model average now used in main carbon budget, with the carbon imbalance presented separately; new table of key uncertainties
Le Quéré et al. (2018a) GCB2017							

2018	Revision in cement emissions; Projection includes EU-specific data	Aggregation of overseas territories into governing nations for total of 213 countries a	Average of two bookkeeping models; use of 16 DGVMs	Use of four atmospheric inversions	Based on seven models	Based on 16 models; revised atmospheric forcing from CRUNCEP to CRUJRA	Introduction of metrics for evaluation of individual models using observations
Le Quéré et al. (2018b) GCB2018							
2019	Global emissions calculated as sum of all countries plus bunkers, rather than taken directly from CDIAC.		Average of two bookkeeping models; use of 15 DGVMs	Use of three atmospheric inversions	Based on nine models	Based on 16 models	
Friedlingstein et al. (2019) GCB2019							
2020	Cement carbonation now included in the EFOS estimate, reducing EFOS by about 0.2GtC yr-1 for the last decade	India's emissions from Andrew (2020: India); Corrections to Netherland Antilles and Aruba and Soviet emissions before 1950 as per Andrew (2020: CO2); China's coal emissions in 2019 derived from official statistics, emissions now shown for EU27 instead of EU28.Projection for 2020 based on assessment of four approaches.	Average of three bookkeeping models; use of 17 DGVMs. Estimate of gross land use sources and sinks provided	Use of six atmospheric inversions	Based on nine models. River flux revised and partitioned NH, Tropics, SH	Based on 17 models	
Friedlingstein et al. (2020) GCB2020							
2021	Projections are no longer an assessment of four approaches.	Official data included for a number of additional countries, new estimates for South Korea, added emissions from lime production in China.	ELUC estimate compared to the estimates adopted in national GHG inventories (NGHGI)		Average of means of eight models and means of seven data-products. Current year prediction of SOCEAN using a feed-forward neural network method	Current year prediction of SLAND using a feed-forward neural network method	
Friedlingstein et al. (20212022a) GCB2021 (This study)							
2022			ELUC provided at country level. Decomposition into fluxes from deforestation, organic soils, uptake in forests, and other transitions. Change in the methodology to derive LUC maps for Brazil to capture recent upturn in deforestation	Use of nine atmospheric inversions	Average of means of ten models and means of seven data-products	Based on 16 models. Change in the methodology to derive LUC maps for Brazil to capture recent upturn in deforestation	
This study							





Table 4. References for the process models, fCO2-basedbookkeeping models, ocean data products, and atmospheric inversions. All models and products are updated with new data to the end of year 20202021, and the atmospheric forcing for the DGVMs has been updated as described in Section C.2.2.
Model/data name	Reference	Change from Global Carbon Budget  (Friedlingstein et al., 2022a)
Bookkeeping models for land-use change emissions
BLUE	Hansis et al. (2015)	No change to model, but simulations performed with updated LUH2 forcing. Update in added peat drainage emissions (based on three spatially explicit datasets).
updated H&N2017	Houghton and Nassikas (2017)	
OSCAR	Gasser et al. (2020)	 to  resolution (96 countries Constraining based on  year's budget data for SLAND over 1960-2021. Update in added peat drainage emissions (based on three spatially explicit datasets).
Dynamic global vegetation models
CABLE-POP	Haverd et al. (2018)	changes in parameterisation. Diffuse fraction of incoming radiation read in as forcing.
CLASSIC	Melton et al. (2020) (a)	
CLM5.0	Lawrence et al. (2019)	No change.
DLEM	Tian et al. (2015) (b)	 change.
IBIS	Yuan et al. (2014) (c)	
ISAM	Meiyappan et al. (2015) (d)	

ISBA-CTRIP	Delire et al. (2020) (e)	Updated spinup protocol + model name updated (SURFEXv8 in GCB2017) + inclusion of crop harvesting module

JSBACH	Reick et al. (2021) (f)	
JULES-ES	Wiltshire et al. (2021) (g)	
LPJ-GUESS	Smith et al. (2014) (h)	No code change. Using updated LUH2 and climate forcings.
LPJ	Poulter et al. (2011) (i)	
LPX-Bern	Lienert and Joos (2018)		Following the results of Joos et al. (2018), we use modified parameter values which yield a more reasonable (lower) BNF, termed LPX v1.5. This parameter version has increased N immobilization and a stronger N limitation, than the previous version.
The N2O Emissions were adjusted accordingly. The parameters were obtained by running an ensemble simulation and imposing various observational constraints and subsequently adjusting N immobilization.
For the methodology see Lienert et. al. (2018).
OCN	Zaehle and Friend (2010) (j)	No change (uses r294).
ORCHIDEEv3	Vuichard et al. (2019) (k)	Updated growth respiration scheme (No change (ORCHIDEE - V3; revision 7267)
SDGVM	Walker et al. (2017) (l)	
VISIT	Kato et al. (2013) (m)	
YIBs	Yue and Unger (2015)	
Global ocean biogeochemistry models
NEMO-PlankTOM12	Wright et al. (2021) (n)	
MICOM-HAMOCC (NorESM-OCv1.2)	Schwinger et al. (2016)	No change.
MPIOM-HAMOCC6	Lacroix et al. (2021)	
NEMO3.6-PISCESv2-gas (CNRM)	Berthet et al. (2019) (n)	
FESOM-2.1-REcoM2	Hauck et al. (2020) (o)	
MOM6-COBALT (Princeton)	Liao et al. (2020)	
CESM-ETHZ	Doney et al. (2009)	
NEMO-PISCES (IPSL)	Aumont et al. (2015)	No change.
MRI-ESM2-1	Nakano et al. (2011), Urakawa et al. (2020)	New this year.
CESM2	Long et al. (2021) (p)	New this year.
ocean fCO2-based data products
Landschützer (MPI-SOMFFN)	Landschützer et al. (2016)	update to  measurements and  1982-; The estimate now covers the full ocean domain as well as the Arctic Ocean extension described in Landschützer2020.
Rödenbeck (Jena-MLS)	Rödenbeck et al. (2022)	
CMEMS-LSCE-FFNNv2	Chau et al. (2022)	Update to  measurements and time period 1985-. The CMEMS-LSCE-FFNNv2 product now covers both the open ocean and coastal regions.
	 et al. (2022) (q)	
UOEx-Watson et al	Watson et al. (2020)	
NIES-NN	Zeng et al. (2014)	
JMA-MLR	Iida et al. (2021)		Updated to SOCATv2022
SST fields (MGDSST) updated
OS-ETHZ-GRaCER	Gregor and Gruber (2021)	
Atmospheric inversions
CAMS	Chevallier et al. (2005) (r)	
CarbonTracker Europe (CTE)	van der Laan-Luijkx et al. (2017)	
Jena CarboScope	Rödenbeck et al. (2018) (s)	
UoE in-situ	Feng et al., (2016) (t)	
NISMON-CO2	Niwa et al., (2022) (u)	
CMS-Flux	Liu et al., (2021)	
GONGGA	Jin et al. (2022 in review) (v)	New this year.
THU	Kong et al. (2022)	New this year.
CAMS-Satellite	Chevallier et al. (2005) (r)	New this year.
(a) see also Asaadi et al. (2018).
(b) see also Tian et al. (2011)
(c) the dynamic carbon allocation scheme was presented by Xia et al. (2015)
(d) see also Jain et al. (2013). Soil biogeochemistry is updated based on Shu et al. (2020)
(e) see also Decharme et al. (2019) and Seferian et al. (2019)
(f) see also Mauritsen et al. (2019)
(g) see also Sellar et al. (2019) and Burton et al., (2019). JULES-ES is the Earth System configuration of the Joint UK Land Environment Simulator as used in the UK Earth System Model (UKESM).
(h) to account for the differences between the derivation of shortwave radiation from CRU cloudiness and DSWRF from CRUJRA, the photosynthesis scaling parameter αa was modified (-15%) to yield similar results.
(i) compared to published version, decreased LPJ wood harvest efficiency so that 50 % of biomass was removed off-site compared to 85 % used in the 2012 budget. Residue management of managed grasslands increased so that 100 % of harvested grass enters the litter pool.
(j) see also Zaehle et al. (2011).
(k) see also Zaehle and Friend (2010) and Krinner et al. (2005)
(l) see also Woodward and Lomas (2004)
(m) see also Ito and Inatomi (2012).

(n) see also Buitenhuis et al. (2013)

(o(n) see also Séférian et al. (2019)
(p(o) see also Schourup-Kristensen et al (2014)
(p) see also Yeager et al. (2022)
(q) see also Bennington et al. (2022)
(q(r) see also Remaud (2018)
(r(s) see also Rödenbeck et al. (2003)
(s(t) see also Feng et al. (2009) and Palmer et al. (2019)
(t(u) see also Niwa et al. (2020)
(v) see also Tian et al. (2014)



Table 5. Comparison of results from the bookkeeping method and budget residuals with results from the DGVMs and inverse estimates for different periods, the last decade, and the last year available. All values are in GtCyr−1. See Fig. 7 for explanation of the bookkeeping component fluxes. The DGVM uncertainties represent ±1σ of the decadal or annual (for 2020 only2021) estimates from the individual DGVMs: for the inverse modelssystems the range of available results is given. All values are rounded to the nearest 0.1 GtC and therefore columns do not necessarily add to zero.[image: ]
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Table 6. Decadal mean in the five components of the anthropogenic CO2 budget for different periods, and last year available. All values are in GtC yr-1, and uncertainties are reported as ±1σ. Fossil CO2 emissions include cement carbonation. The table also shows the budget imbalance (BIM), which provides a measure of the discrepancies among the nearly independent estimates and has an uncertainty exceeding ± 1 GtC yr-1.. A positive imbalance means the emissions are overestimated and/or the sinks are too small. All values are rounded to the nearest 0.1 GtC and therefore columns do not necessarily add to zero.
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Table 7. Comparison of the projection with realised fossil CO2 emissions (EFOS). The ‘Actual’ values are first the estimate available using actual data, and the ‘Projected’ values refers to estimates made before the end of the year for each publication. Projections based on a different method from that described here during 2008-2014 are available in Le Quéré et al., (2016). All values are adjusted for leap years.
	World	China	USA	EU28 / EU27 (i)	India	Rest of World
	Projected	Actual	Projected	Actual	Projected	Actual	Projected	Actual	Projected	Actual	Projected	Actual
2015 (a)	–0.6%	0.06%	–3.9%	–0.7%	–1.5%	–2.5%	–	–	–	–	1.2%	1.2%
	(–1.6 to 0.5)		(–4.6 to –1.1)		(–5.5 to 0.3)						(–0.2 to 2.6)	
2016 (b)	–0.2%	0.20%	–0.5%	–0.3%	–1.7%	–2.1%	–	–	–	–	1.0%	1.3%
	(–1.0 to +1.8)		(–3.8 to +1.3)		(–4.0 to +0.6)						(–0.4 to +2.5)	
2017 (c)	2.0%	1.6%	3.5%	1.5%	–0.4%	–0.5%	–	–	2.00%	3.9%	1.6%	1.9%
	(+0.8 to +3.0)		(+0.7 to +5.4)		(–2.7 to +1.0)				(+0.2 to +3.8)		(0.0 to +3.2)	
2018 (d)	2.7%	2.1%	4.7%	2.3%	2.5%	2.8%	-0.7%	-2.1%	6.3%	8.0%	1.8%	1.7%
	(+1.8 to +3.7)		(+2.0 to +7.4)		(+0.5 to +4.5)		(-2.6 to +1.3)		(+4.3 to +8.3)		(+0.5 to +3.0)	
2019 (e)	0.5%	0.1%	2.6%	2.2%	-2.4%	-2.6%	-1.7%	-4.3%	1.8%	1.0%	0.5%	0.5%
	(-0.3 to +1.4)		(+0.7 to +4.4)		(-4.7 to -0.1)		(-5.1% to +1.8%)		(-0.7 to +3.7)		(-0.8 to +1.8)	
2020 (f)	-6.7%	-5.4%	-1.7%	1.4%	-12.2%	-10.6%	-11.3% (EU27)	-10.9%	-9.1%	-7.3%	-7.4%	-7.0%
												
2021 (g)	4.8%		4.3%		6.8%		6.3%		11.2%		3.2%	
	(4.2% to 5.4%)		(3.0% to 5.4%)		(6.6% to 7.0%)		(4.3% to 8.3%)		(10.7% to 11.7%)		(2.0% to 4.3%)	
2022 (h)	1.1%		-1.5%		1.6%		-1.0%		5.6%		2.5%	
	(0% to 1.7%)		(-3.0% to 0.1%)		(-0.9% to 4.1%)		(-2.9% to 1.0%)		(3.5% to 7.7%)		(0.1% to 2.3%)	
(a) Jackson et al. (2016) and Le Quéré et al. (2015a). (b) Le Quéré et al. (2016). (c) Le Quéré et al. (2018a). (d) Le Quéré et al. (2018b). (e) Friedlingstein et al., (2019), (f) Friedlingstein et al., (2020), (g) Friedlingstein et al., (2022a), (h) This study (median of four reported estimates, Section 3.4.1.2)
(h(i) EU28 until 2019, EU27 from 2020








Table 8. Cumulative CO2 for different time periods in gigatonnes of carbon (GtC). All uncertainties are reported as ±1σ. Fossil CO2 emissions include cement carbonation. The budget imbalance (BIM) provides a measure of the discrepancies among the nearly independent estimates. All values are rounded to the nearest 5 GtC and therefore columns do not necessarily add to zero. Uncertainties are reported as follows: EFOS is 5% of cumulative emissions; ELUC prior to 1959 is 1𝛔 spread from the DGVMs, ELUC post-1959 is 0.7*number of years (where 0.7 GtC/yr is the uncertainty on the annual ELUC flux estimate); GATM uncertainty is held constant at 5 GtC for all time periods; SOCEAN uncertainty is 20% of the cumulative sink (20% relates to the annual uncertainty of 0.4 GtC/yr, which is ~20% of the current ocean sink); and SLAND is the 1𝛔 spread from the DGVMs estimates.
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     	2002-2011	2012-2021
ELUC from bookkeeping estimates (from Table 5)	1.4	1.2
SLAND on non-intact forest from DGVMs	-1.7	-1.8
ELUC plus SLAND on non-intact forests	-0.3	-0.6
National Greenhouse Gas Inventories	-0.4	-0.5





Table 10. Major known sources of uncertainties in each component of the Global Carbon Budget, defined as input data or processes that have a demonstrated effect of at least ±0.3 GtC yr-1.
Source of uncertainty	Time scale (years)	Location	Status	Evidence
Fossil CO2 emissions (EFOS; Section 2.1)
energy statistics	annual to decadal	global, but mainly China & major developing countries	see Sect. 2.1	(Korsbakken et al., 2016, Guan et al., 2012)
carbon content of coal	annual to decadal	global, but mainly China & major developing countries	see Sect. 2.1	(Liu et al., 2015)
system boundary	annual to decadal	all countries	see Sect. 2.1	(Andrew, 2020)
Net land-use change flux (ELUC; section 2.2)
land-cover and land-use change statistics	continuous	global; in particular tropics	see Sect. 2.4	(Houghton et al., 2012 Gasser et al., 2020, Ganzenmüller et al., 2022, Yu et al. 2022)
sub-grid-scale transitions	annual to decadal	global	see Sect. 2.4, Table A1	(Wilkenskjeld et al., 2014)
vegetation biomass	annual to decadal	global; in particular tropics	see Sect. 2.4	(Houghton et al., 2012, Bastos et al., 2021)
forest degradation (fire, selective logging)	annual to decadal	tropics		(Aragão et al., 2018;, Qin et al., 2020)
wood and crop harvest	annual to decadal	global; SE Asia	see Table A1	(Arneth et al., 2017, Erb et al., 2018)
peat burning (a)	multi-decadal trend	global	see Table A1	(van der Werf et al., 2010, 2017)
loss of additional sink capacity	multi-decadal trend	global	not included; see Appendix D4	(Pongratz et al, 2014, Gasser et al, 2020; Obermeier et al., 2021)
Atmospheric growth rate (GATM; section 2.3) no demonstrated uncertainties larger than ±0.3 GtC yr-1 (b)
Ocean sink (SOCEAN; section 2.4)
sparsity in surface fCO2 observations	mean, decadal variability and trend	global, in particular southern hemisphere	see Sect 3.5.2	(Gloege et al., 2021, Denvil-Sommer et al., 2021, Bushinsky et al., 2019)
riverine carbon outgassing and its anthropogenic perturbation	annual to decadal	global, in particular partitioning between Tropics and South	see Sect. 2.4 (anthropogenic perturbations not included)	(Aumont et al., 2001, Resplandy et al., 2018, Lacroix et al., 2020)
Models underestimate interior ocean anthropogenic carbon storage	annual to decadal	global	see Sect 3.5.5	
near-surface temperature and salinity gradients	mean on all time-scales	global	see Sect. 3.8.2	(Watson et al., 2020, Dong et al., 2022)
Land sink (SLAND; section 2.5)
strength of CO2 fertilisation	multi-decadal trend	global	see Sect. 2.5	(Wenzel et al., 2016; Walker et al., 2021)
response to variability in temperature and rainfall	annual to decadal	global; in particular tropics	see Sect. 2.5	(Cox et al., 2013; Jung et al., 2017; Humphrey et al., 2018; 2021)
nutrient limitation and supply				
carbon allocation and tissue turnover rates	annual to decadal	global		(De Kauwe et al., 2014; O'Sullivan et al., 2022)
tree mortality	annual	global in particular tropics	see Sect. 2.5	(Hubau et al., 2021; Brienen et al., 2020)
response to diffuse radiation	annual	global	see Sect. 2.5	(Mercado et al., 2009; O'Sullivan et al., 2021)
(a) As result of interactions between land-use and climate
(b) The uncertainties in GATM have been estimated as ±0.2 GtC yr-1, although the conversion of the growth rate into a global annual flux assuming instantaneous mixing throughout the atmosphere introduces additional errors that have not yet been quantified.






Figures and Captions
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[bookmark: _heading=h.ki8aos8uvrj4]Figure 1. Surface average atmospheric CO2 concentration (ppm). Since 1980, monthly data are from NOAA/ESRL (Dlugokencky and Tans, 2022) and are based on an average of direct atmospheric CO2 measurements from multiple stations in the marine boundary layer (Masarie and Tans, 1995). The 1958-1979 monthly data are from the Scripps Institution of Oceanography, based on an average of direct atmospheric CO2 measurements from the Mauna Loa and South Pole stations (Keeling et al., 1976). To account for the difference of mean CO2 and seasonality between the NOAA/ESRL and the Scripps station networks used here, the Scripps surface average (from two stations) was de-seasonalised and adjusted to match the NOAA/ESRL surface average (from multiple stations) by adding the mean difference of 0.667 ppm, calculated here from overlapping data during 1980-2012. 
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[bookmark: _heading=h.te54oxz08gnp]Figure 2. Schematic representation of the overall perturbation of the global carbon cycle caused by anthropogenic activities, averaged globally for the decade 2011-20202012-2021. See legends for the corresponding arrows and units. The uncertainty in the atmospheric CO2 growth rate is very small (±0.02 GtC yr-1) and is neglected for the figure. The anthropogenic perturbation occurs on top of an active carbon cycle, with fluxes and stocks represented in the background and taken from Canadell et al. (2021) for all numbers, except for the carbon stocks in coasts which is from a literature review of coastal marine sediments (Price and Warren, 2016). 
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Figure 3. Combined components of the global carbon budget illustrated in Fig.Figure 2 as a function of time, for fossil CO2 emissions (EFOS, including a small sink from cement carbonation; grey) and emissions from land-use change (ELUC; brown), as well as their partitioning among the atmosphere (GATM; cyan), ocean (SOCEAN; blue), and land (SLAND; green). Panel (a) shows annual estimates of each flux and panel (b) the cumulative flux (the sum of all prior annual fluxes) since the year 1850. The partitioning is based on nearly independent estimates from observations (for GATM) and from process model ensembles constrained by data (for SOCEAN and SLAND) and does not exactly add up to the sum of the emissions, resulting in a budget imbalance (BIM) which is represented by the difference between the bottom red line (mirroring total emissions) and the sum of carbon fluxes in the ocean, land, and atmosphere reservoirs. All data are in GtC yr-1 (panel a) and GtC (panel b). The EFOS estimates are primarily from (Gilfillanestimate is based on a mosaic of different datasets, and Marland, 2021), withhas an uncertainty of about ±5% (±1σ). The ELUC estimates areestimate is from three bookkeeping models (Table 4) with uncertaintiesuncertainty of about ±0.7 GtC yr-1. The GATM estimates prior to 1959 are from Joos and Spahni (2008) with uncertainties equivalent to about ±0.1-0.15 GtC yr-1 and from Dlugokencky and Tans (2022) since 1959 with uncertainties of about +-0.07 GtC yr-1 during 1959-1979 and ±0.02 GtC yr-1 since 1980. The SOCEAN estimate is the average from Khatiwala et al. (2013) and DeVries (2014) with uncertainty of about ±30% prior to 1959, and the average of an ensemble of models and an ensemble of fCO2 data products (Table 4) with uncertainties of about ±0.4 GtC yr-1 since 1959. The SLAND estimate is the average of an ensemble of models (Table 4) with uncertainties of about ±1 GtC yr-1. See the text for more details of each component and their uncertainties. 
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Figure 4. Components of the global carbon budget and their uncertainties as a function of time, presented individually for (a) fossil CO2 and cement carbonation emissions (EFOS), (b) growth rate in atmospheric CO2 concentration (GATM), (c) emissions from land-use change (ELUC), (d) the land CO2 sink (SLAND), (e) the ocean CO2 sink (SOCEAN), (f) the budget imbalance that is not accounted for by the other terms. Positive values of SLAND and SOCEAN represent a flux from the atmosphere to land or the ocean. All data are in GtC yr-1 with the uncertainty bounds representing ±1 standard deviation in shaded colour. Data sources are as in Fig.Figure 3. The red dots indicate our projections for the year 20212022 and the red error bars the uncertainty in the projections (see methods). 

[image: ]








[image: ]
[bookmark: _heading=h.pg0pf5818rwl]Figure 5. Fossil CO2 emissions for (a) the globe, including an uncertainty of ± 5% (grey shading) and a projection through the year 20212022 (red dot and uncertainty range), (b) territorial (solid lines) and consumption (dashed lines) emissions for the top three country emitters (USA, China, India) and for the European Union (EU27), (c) global emissions by fuel type, including coal, oil, gas, and cement, and cement minus cement carbonation (dashed), and (d) per-capita emissions the world and for the large emitters as in panel (b).  Territorial emissions are primarily from a draft update of Gilfillan and Marland (2021) except for national data for the USA and EU27 Annex I countries for 1990-20182020, which are reported by the countries to the UNFCCC as detailed in the text; consumption, as well as some improvements in individual countries, and extrapolated forward to 2021 using BP Energy Statistics. Consumption-based emissions are updated from Peters et al. (2011b). See Section 2.1 and Appendix C.1 for details of the calculations and data sources. 
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[bookmark: _heading=h.pqjapzawj4tx]Figure 6. The 2011-20202012-2021 decadal mean components of the global carbon budget, presented for (a) fossil CO2 emissions (EFOS), (b) land-use change emissions (ELUC), (c) the ocean CO2 sink (SOCEAN), and (d) the land CO2 sink (SLAND). Positive values for EFOS and ELUC represent a flux to the atmosphere, whereas positive values of SOCEAN and SLAND represent a flux from the atmosphere to the ocean or the land. In all panels, yellow/red (green/blue) colours represent a flux from (into) the land/ocean to (from) the atmosphere. All units are in kgC m-2 yr-1. Note the different scales in each panel. EFOS data shown is from GCP-GridFEDv2021GridFEDv2022.2. ELUC data shown is only from BLUE as the updated H&N2017 and OSCAR do not resolve gridded fluxes. SOCEAN data shown is the average of GOBMs and data-products means, using GOBMs simulation A, no adjustment for bias and drift applied to the gridded fields (see Section 2.4). SLAND data shown is the average of DGVMs for simulation S2 (see Section 2.5).
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[bookmark: _heading=h.rudr0idty5uy][bookmark: _heading=h.v66yvsdnudh8][bookmark: _heading=h.fz516cysel49][bookmark: _heading=h.cei2xorcjnhk][bookmark: _heading=h.sby7wxvazvjd][bookmark: _heading=h.xrdp23jus68x][image: ]Figure 7. Net CO2 exchanges between the atmosphere and the terrestrial biosphere as used in the global carbon budget (black with ±1σ uncertainty in grey shading in all panels).related to land use change. (a) Net CO2 emissions from land-use change (ELUC) with estimates from the three bookkeeping models (yellow lines) and DGVMs models (green) shown individually,the budget estimate (black with DGVMs±1σ uncertainty), which is the average of the three bookkeeping models. Estimates from individual DGVMs (narrow green lines) and the DGVM ensemble means (darkmean (thick green). The dashed line identifies the pre-satellite period before the inclusion of peatland burning.) are also shown. (b) Net CO2 emissions from land-use change from the four countries with largest cumulative emissions since 1959. Values shown are the average of the three bookkeeping models. (c) CO2 gross sinks (positivenegative, from regrowth after agricultural abandonment and wood harvesting) and gross sources (negativepositive, from decaying material left dead on site, products after clearing of natural vegetation for agricultural purposes, wood harvesting, and, for BLUE, degradation from primary to secondary land through usage of natural vegetation as rangeland, and also from emissions from peat drainage and peat burning) from the three bookkeeping models (yellow lines). The sum of the gross sinks and sources is ELUC shown in panel(a). (c) Land CO2 sink (SLAND) with individual DGVMs estimates (green). (d) Total atmosphere-land CO2 fluxes (SLAND – ELUC), with individual DGVMs (green) and their multi-model mean (dark green).  ). Values are shown for the three bookkeeping models (yellow lines) and for their average (black with ±1σ uncertainty). The sum of the gross sinks and sources is ELUC shown in panel (a). (d) Sources and sinks aggregated into four components that contribute to the net fluxes of CO2, including: (i) gross sources from deforestation; (ii) net flux on forest lands (slash and product decay following wood harvest; sinks due to regrowth after wood harvest or after abandonment, including reforestation and in shifting cultivation cycles; afforestation), (iii) emissions from organic soils (peat drainage and pear fire, and (iv) sources and sinks related to other land use transitions. The scale of the fluxes shown is smaller than in panel (c) because the substantial gross sources and sinks from wood harvesting are accounted for as net flux under (ii) . The sum of the component fluxes is ELUC shown in panel (a).
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Figure 8.
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[bookmark: _heading=h.az11blt7ihv7]Figure 8: (a) The land CO2 sink (SLAND) estimated by individual DGVMs estimates (green), as well as the budget estimate (black with ±1σ uncertainty), which is the average of all DGVMs. (b) Total atmosphere-land CO2 fluxes (SLAND – ELUC). The budget estimate of the total land flux (black with ±1σ uncertainty) combines the DGVM estimate of SLAND from panel (a) with the bookkeeping estimate of ELUC from Figure 7(a). Uncertainties are similarly propagated in quadrature from the budget estimates of SLAND from panel (a) and ELUC from Figure 7(a). DGVMs also provide estimates of ELUC (see Figure 7(a)), which can be combined with their own estimates of the land sink. Hence panel (b) also includes an estimate for the total land flux for individual DGVMs (thin green lines) and their multi-model mean (thick green line).  
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[bookmark: _heading=h.lkfbo8qozd35]Figure 9. The partitioning of total anthropogenic CO2 emissions (EFOS + ELUC) across (a) the atmosphere (airborne fraction), (b) land (land-borne fraction), and (c) ocean (ocean-borne fraction). Black lines represent the central estimate, and the coloured shading represents the uncertainty. The grey dashed lines represent the long-term average of the airborne (44%), land-borne (2830%) and ocean-borne (2425%) fractions during 1959-20201960-2021.
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[bookmark: _heading=h.jwgs6y9slht6]Figure 910. Comparison of the anthropogenic atmosphere-ocean CO2 flux showing the budget values of SOCEAN (black; with the uncertainty in grey shading), individual ocean models (tealroyal blue), and the ocean fCO2-based data products (cyan; with Watson et al. (2020) in dashed line as not used for ensemble mean). Only one data product (Jena-MLS) extends back to 1959 (Rödenbeck et al., 2022). The fCO2-based data products were adjusted for the pre-industrial ocean source of CO2 from river input to the ocean, by subtracting a source of 0.616 GtC yr-1 to make them comparable to SOCEAN (see Section 2.4). Bar-plot in the lower right illustrates the number of fCO2 observations in the SOCAT v2021v2022 database (Bakker et al., 20212022). Grey bars indicate the number of data points in SOCAT v2020v2021, and coloured bars the newly added observations in v2021v2022.
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[bookmark: _heading=h.2jfpoc17inuo]Figure 1011. Attribution of the atmosphere-ocean (SOCEAN) and atmosphere-land (SLAND) CO2 fluxes to (a) increasing atmospheric CO2 concentrations and (b) changes in climate, averaged over the previous decade 2011-20202012-2021. All data shown is from the processed-based GOBMs and DGVMs. The sum of ocean CO2 and climate effects will not equal the ocean sink shown in Figure 6 which includes the fCO2-based data products. See Appendix C.3.2 and C.4.1 for attribution methodology. Units are in kgC m-2 yr-1 (note the non-linear colour scale).
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[bookmark: _heading=h.q0l3bddfs44t]Figure 1112. The 2011-20202012-2021 decadal mean net atmosphere-ocean and atmosphere-land fluxes derived from the ocean models and fCO2 products (y-axis, right and left pointing blue triangles respectively), and from the DGVMs (x-axis, green symbols), and the same fluxes estimated from the six inversions (purple symbols on secondary x- and y-axis). The grey central point is the mean (±1σ) of SOCEAN and (SLAND – ELUC) as assessed in this budget. The shaded distributions show the density of the ensemble of individual estimates. The grey diagonal band represents the fossil fuel emissions minus the atmospheric growth rate from this budget (EFOS – GATM). Note that positive values are CO2 sinks. 
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[bookmark: _heading=h.kpz65638h44s]Figure 1213. CO2 fluxes between the atmosphere and the Earth’s surface separated between land and oceans, globally and in three latitude bands.  The ocean flux is SOCEAN and the land flux is the net atmosphere-land fluxes from the DGVMs. The latitude bands are (top row) global, (2nd row) north (>30°N), (3rd row) tropics (30°S-30°N), and (bottom row) south (<30°S), and over ocean (left column), land (middle column), and total (right column). Estimates are shown for: process-based models (DGVMs for land, GOBMs for oceans); inversion modelssystems (land and ocean); and fCO2-based data products (ocean only). Positive values indicate a flux from the atmosphere to the land or the ocean. Mean estimates from the combination of the process models for the land and oceans are shown (black line) with ±1 standard deviation (1σ) of the model ensemble (grey shading). For the total uncertainty in the process-based estimate of the total sink, uncertainties are summed in quadrature. Mean estimates from the atmospheric inversions are shown (purple lines) with their full spread (purple shading). Mean estimates from the fCO2-based data products are shown for the ocean domain (light blue lines) with their ±1σ spread (light blue shading). The global SOCEAN (upper left) and the sum of SOCEAN in all three regions represents the anthropogenic atmosphere-to-ocean flux based on the assumption that the preindustrial ocean sink was 0 GtC yr-1 when riverine fluxes are not considered. This assumption does not hold at the regional level, where preindustrial fluxes can be significantly different from zero. Hence, the regional panels for SOCEAN represent a combination of natural and anthropogenic fluxes. Bias-correction and area-weighting were only applied to global SOCEAN; hence the sum of the regions is slightly different from the global estimate (<0.0605 GtC yr-1).
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[bookmark: _heading=h.4axl4zump5y]Figure 1314. Cumulative changes over the 1850-20202021 period (left) and average fluxes over the 2011-20202012-2021 period (right) for the anthropogenic perturbation of the global carbon cycle. See the caption of Figure 3 for key information and the methods in text for full details.
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[bookmark: _heading=h.xpmgwp36k6yf]Figure 1415. Kaya decomposition of the main drivers of fossil CO2 emissions, considering population, GDP per person, Energy per GDP, and CO2 emissions per energy, for China (top left), USA (top right), EU27 (middle left), India (middle right), Rest of the World (bottom left), and World (bottom right). Black dots are the annual fossil CO2 emissions growth rate, coloured bars are the contributions from the different drivers. A general trend is that population and GDP growth put upward pressure on emissions, while energy per GDP and more recently CO2 emissions per energy put downward pressure on emissions. TheBoth the COVID-19 induced changes during 2020 and the recovery in 2021 led to a stark contrast to previous years, with different drivers in each region.



[bookmark: _heading=h.whiv9a3qlk5p]Appendix A. Supplementary Tables

Table A1. Comparison of the processes included in the bookkeeping method and DGVMs in their estimates of ELUC and SLAND. See Table 4 for model references. All models include deforestation and forest regrowth after abandonment of agriculture (or from afforestation activities on agricultural land). Processes relevant for ELUC are only described for the DGVMs used with land-cover change in this study.
	Bookkeeping Models	DGVMs
	H&N	BLUE	OSCAR	CABLE-POP	CLASSIC	CLM5.0	DLEM	IBIS	ISAM	ISBA-CTRIP(h)	JSBACH	JULES-ES	LPJ-GUESS	LPJ	LPX-Bern	OCNv2	ORCHIDEEv3	SDGVM	VISIT	YIBs
Processes relevant for ELUC																			
Wood harvest and forest degradation (a)	yes	yes	yes	yes	no	yes	yes	yes	yes	no	yes	no	yes	yes	no (d)	yes	yes	no	yes	no
Shifting cultivation / Subgrid scale transitions	noyes (b)	yes	yes	yes	no	yes	no	yes	no	no	yes	no	yes	yes	no (d)	no	no	no	yes	no
Cropland harvest (removed, R, or added to litter, L)	yes (R) (j)	yes (R) (j)	yes (R)	yes (R)	yes (L)	yes (R)	yes	yes (R)	yes	yes (R+L)	yes (R+L)	yes (R)	yes (R)	yes (L)	yes (R)	yes (R+L)	yes (R)	yes (R)	yse (R)	yes (L)
Peat fires	yes	yes	yes	no	no	yes	no	no	no	no	no	no	no	no	no	no	no	no	no	no
fire as a management tool	yes (j)	yes (z)	yes (j)	yes (h)	no	no	no	no	no	no	no	no	no	no	no	no	no	no	no	no
N fertilisation	yes (j)	yes (z)	yes (j)	yes (h)	no	no	yes	yes	no	yes	no	yes(i)	yes	no	yes	yes	yes	no	no	no
tillage	yes (j)	yes (z)	yes (j)	yes (h)	no	yes (g)	no	no	no	no	no	no	yes	no	no	no	no	yes (g)	no	no	no
irrigation	yes (j)	yes (z)	yes (j)	yes (h)	no	no	yes	yes	no	yes	no	no	yes	no	no	no	no	no	no	no
wetland drainage	yes (j)	yes (z)	yes (j)	yes (h)	no	no	no	no	no	yes	no	no	no	no	no	no	no	no	no	no
erosion	yes (j)	yes (z)	yes (j)	yes (h)	no	no	no	yes	no	no	no	no	no	no	no	no	no	no	yes	no
peat drainage	yes	yes	yes	no	no	no	no	no	no	no	no	no	no	no	no	no	no	no	no	no
Grazing and mowing Harvest (removed, r, or added to litter, l)	yes (r) (j)	yes (r) (j)	yes (r)	yes (r)	no	no	no	no	yes (r, l)	no	yes (l)	no	yes (r)	yes (l)	no	yes (r+l)	no	no	no	no
Processes also relevant for SLAND (in addition to CO2 fertilisation and climate)
Fire simulation and/or suppression	N.A.	N.A.	N.A.	no	yes	yes	no	yes	no	yes	yes	yes	yes	yes	no	no	yes	yes	no	no
Carbon-nitrogen interactions, including N deposition	N.A.	N.A.	N.A.	yes	no (f)	yes	yes	no	yes	yes	yes	yes	no	yes	yes	yes	yes	yes (c)	no	no (f)
Separate treatment of direct and diffuse solar radiation	N.A.	N.A	N.A	yes	no	yes	no	no	no	no	yes	no	no	no	no	no	no	no	yes
(a) Refers to the routine harvest of established managed forests rather than pools of harvested products.
(b) No back- and forth-transitions between vegetation types at the country-level, but if forest loss based on FRA exceeded agricultural expansion based on FAO, then this amount of area was cleared for cropland and the same amount of area of old croplands abandoned.
(c) Limited. Nitrogen uptake is simulated as a function of soil C, and Vcmax is an empirical function of canopy N. Does not consider N deposition.
(d) Available but not active.
(e) Simple parameterization of nitrogen limitation based on Yin (2002; assessed on FACE experiments)
(f) Although C-N cycle interactions are not represented, the model includes a parameterization of down-regulation of photosynthesis as CO2 increases to emulate nutrient constraints (Arora et al., 2009)
(g) Tillage is represented over croplands by increased soil carbon decomposition rate and reduced humification of litter to soil carbon.
(h) as far as the DGVMs that OSCAR is calibrated to include it
(i) perfect fertilisation assumed, i.e. crops are not nitrogen limited and the implied fertiliser diagnosed
(j) Process captured implicitly by use of observed carbon densities.






Table A2. Comparison of the processes and model set up for the Global Ocean Biogeochemistry Models for their estimates of SOCEAN. See Table 4 for model references.		
	NEMO-PlankTOM12	NEMO-PISCES (IPSL)	MICOM-HAMOCC (NorESM1-OCv1.2)	MPIOM-HAMOCC6	FESOM-2.1-REcoM2	NEMO3.6-PISCESv2-gas (CNRM)	MOM6-COBALT (Princeton)	CESM-ETHZ	MRI-ESM2-1	CESM2
Model specifics
Physical ocean model	NEMOv3.6-ORCA2	NEMOv3.6-eORCA1L75	MICOM (NorESM1-OCv1.2)	MPIOM	FESOM-2.1	NEMOv3.6-GELATOv6-eORCA1L75	MOM6-SIS2	CESMv1.3 (ocean model based on POP2)	MRI.COMv4	CESM2-POP2
Biogeochemistry model	PlankTOM12	PISCESv2	HAMOCC (NorESM1-OCv1.2)	HAMOCC6	REcoM-2-M	PISCESv2-gas	COBALTv2	BEC (modified & extended)	NPZD	MARBL
Horizontal resolution	2° lon, 0.3 to 1.5° lat	1° lon, 0.3 to 1° lat	1° lon, 0.17 to 0.25 lat	1.5°	unstructured mesh, 20-120 km resolution (CORE mesh)	1° lon, 0.3 to 1° lat	0.5° lon, 0.25 to 0.5° lat	1.125° lon, 0.53° to 0.27° lat	1° lon, 0.3 to 0.5° lat	1.125° lon, 0.53° to 0.27° lat
Vertical resolution	31 levels	75 levels, 1m at the surface	51 isopycnic layers + 2 layers representing a bulk mixed layer	40 levels	46 levels, 10 m spacing in the top 100 m	75 levels, 1m at surface	75 levels hybrid coordinates, 2m at surface	60 levels	60 levels with 1-level bottom boundary layer	60 levels
Total ocean area on native grid (km2)	3.6080E+08	3.6270E+08	3.6006E+08	3.6598E+08	3.6435E+08	3.6270E+14	3.6111E+08	3.5926E+08	3.6141E+08	3.61E+08
Gas-exchange parameterization	Wanninkhof et al. 1992	Orr et al., 2017	Orr et al., 2017, but with a=0.337	Orr et al., 2017	Orr et al., 2017	Orr et al., 2017	Orr et al., 2017	Wanninkhof (1992, coefficient a scaled down to 0.31)	Orr et al., 2017	Orr et al., 2017
CO2 chemistry routines	Following Broecker et al. (1982)	mocsy	Following Dickson et al. 2007	Ilyina et al. (2013) adapted to comply with OMIP protocol (Orr et al., 2017)	mocsy	mocsy	mocsy	OCMIP2 (Orr et al.)	mocsy	OCMIP2 (Orr et al. 2017)
River input (PgC/yr) (organic/inorganic DIC)	0.723 / -	0.61 / -	0	0.77 / -	0 / 0	~0.611 / -	~0.07 / ~0.15	0.33 / -	0 / 0	0.173/0.263
Net flux to sediment (PgC/yr) (organic/other)	0.723 / -	0.59 / -	around 0.54 / -	- / 0.44	0 / 0	~0.656 / -	~0.11 / ~0.07 (CaCO3)	0.21 / -	0 / 0	0.345/0.110 (CaCO3)
SPIN-UP procedure
Initialisation of carbon chemistry		GLODAPv2 (preindustrial DIC)	GLODAP v1GLODAPv1 (preindustrial DIC)	initialization from previous simulation	GLODAPv2 preindustrial DIC)	GLODAPv2	GLODAPv2 for (Alkalinity and, DIC.). DIC is corrected to 1959 level for (simulation A and C) and corrected to pre-industrial level for (simulation B and D) using Khatiwala et al. ( 2009, 2013)	GLODAPv2 preindustrial DIC)	GLODAPv2 (preindustrial DIC)	GLODAPv2 (preindustrial DIC)
Preindustrial spin-up prior to 1850? If yes, how long?	spin-up 1750-1947	spin-up starting in 1836 with 3 loops of JRA55	1000 year spin up	yes, ~2000 years	50189 years	long spin-up (> 1000 years)	Other biogeochemicalbgc tracers are initialized from a GFDL-ESM2M spin-up (> 1000 years)	spinup 1655-1849	1661 years with xCO2 = 284.32	spinup 1653-1850, xCO2=278
atmospheric forcing for pre-industrial spin-up	looping NCEP year 1990	JRA55	CORE-I (normal year) forcing	spinup with omip climatology to reach steady state with the rivers	JRA55‐do v.1.5.0 repeated year 1961	JRA55-do	GFDL-ESM2M internal forcing	

atmospheric forcing for historical spin-up 1850-1958 for simulation A	1750-1947: looping NCEP year 1990; 1948-2020: NCEP	1836-1958 : looping full JRA55 reanalysis	CORE-I (normal year) forcing; from 1948 onwards NCEP-R1 with CORE-II corrections	NCEP 6 hourly cyclic forcing (10 years starting from 1948) with co2 at 278 ppm and rivers	JRA55-do-v1.5.0 repeated year 1961	JRA55-do cycling year 1958	JRA55-do-v1.5 repeat year 1959 (71 years)	JRA55 version 1.3, repeat cycle between 1958-2018.
atmospheric CO2 for historical spin-up 1850-1958 for simulation A	provided by the GCP; converted to pCO2 temperature formulation (Sarmiento et al., 1992), monthly resolution	xCO2 as provided by the GCB, global mean, annual resolution, converted to pCO2 with sea-level pressure and water vapour pressure	xCO2 as provided by the GCB, converted to pCO2 with sea level pressure and water vapor correction	provided by the GCB	xCO2 as provided by the GCB, converted to pCO2 with sea-level pressure and water vapour pressure, global mean, monthly resolution	xCO2 as provided by the GCB, converted to pCO2 with constant sea-level pressure and water vapour pressure, global mean, yearly resolution	xCO2 at year 1959 level (315 ppm), converted to pCO2 with sea-level pressure and water vapour pressure, global mean, yearly resolution	xCO2 as provided by the GCB (new version 2021), converted to pCO2 with atmospheric pressure, and locally determined water vapour pressure from SST and SSS (100% saturation)

 forcing for  spin-up 1850-1958 for simulation B, (iii) simulation B	looping NCEP 1990 (i, ii, iii)	1836-1958 : looping full JRA55 reanalysis	CORE-I (normal year) forcing (i, ii, iii)	NCEP 1957 (ii,iii)	JRA55do.5.0  year 1961 (i, ii, iii)	JRA55-do cycling year 1958 (ii,iii)	JRA55-do-v1.5 repeat year 1959 (ii,iii)	normal year forcing created from  version 1.3 (ii,iii)	JRA55-do v1.5.0 repeat year 1990/91 (i, ii, iii)	(i) repeating JRA 1958-2018 for spinup for A & D, repeating JRA 1990/1991 repeat year forcing for spinup for B & C, (ii) & (iii) JRA 1990/1991 repeat year forcing
 CO2 for control spin-up 1850-1958 for simulation B, and for simulation B	constant 278ppm; converted to pCO2 temperature formulation (Sarmiento et al., 1992)	xCO2 of 286.46ppm, converted to pCO2 with constant sea-level pressure and water vapour pressure	xCO2 of , converted to pCO2 with level pressure and water vapour pressure	, no conversion to pCO2	xCO2 of 278ppm, converted to pCO2 with sea-level pressure and water vapour pressure	xCO2 of 286.46ppm, converted to pCO2 with constant sea-level pressure and water vapour pressure	xCO2 of 278ppm, converted to pCO2 with sea-level pressure and water vapour pressure	xCO2 as provided by the GCB for 1850= 287.4ppm, converted to pCO2 with atmospheric pressure, and locally determined water vapour pressure from SST and SSS (100% saturation)	xCO2 of 284.32ppm (CMIP6 piControl), converted to pCO2 with water vapour and sea-level pressure (JRA55-do repeat year 1990/91)	xCO2=278

simulation A

Atmospheric forcing for simulation A (i) and for simulation A (ii)		JRA55-v1.4 then 1.5 for 2020-21 (ii)	CORE-I (normal year) forcing; from 1948 onwards NCEP-R1 with CORE-II corrections	till1948: continue from A_spinup withNCEP 6 hourly cyclic NCEP forcing (10 years starting from 1948+10) and increasing CO2 => GCBA-1777-, i), 1948
-1948-2020 : with-2021: transient NCEP forcing and transient monthly CO2	JRA55-do-v1.5.0 repeated year 1961 (i), transient JRA55-do-v1.5.0 (ii)	JRA55-do cycling year 1958 (i), JRA55-do-v1.5.0 (ii)	JRA55-do-v1.5.0 1959-2019v1.5.0.1b 2020), v1.5.0.1 (2021; ii)		1653-1957: repeated cycle JRA55-do v1.5.0 1958-2018 (i), v1.5.0 (1958-2018), v1.5.0.1 (2019-2021; ii)	(i) repeating JRA 1958-2018, (ii) JRA 1958-2021
 CO2 for simulation A (i) and simulation A (ii)	provided by the ; converted to pCO2 temperature formulation (Sarmiento et al., 1992), monthly resolution (i, ii)	xCO2 as provided by the GCB, global mean, annual resolution, converted to pCO2 with sea-level pressure and water vapour pressure (i, ii)	xCO2 as provided by the GCB, converted to pCO2 with sea level pressure and water vapor correction (i, ii)		xCO2 as provided by the GCB, converted to pCO2 with sea-level pressure and water vapour pressure, global mean, monthly resolution (i, ii)	xCO2 as provided by the GCB, converted to pCO2 with constant sea-level pressure and water vapour pressure, global mean, yearly resolution (i, ii)	xCO2 at year 1959 level (315 ppm, i) and as provided by the GCB, (ii), both converted to pCO2 with sea-level pressure and water vapour pressure, global mean, yearly resolution	xCO2 as provided by the GCB converted to pCO2 with locally determined water vapour pressure (i, ii)	xCO2 as provided for CMIP6 historical simulations, annual resolution (i), and as provided by GCB (ii), both converted to pCO2 with water vapour and sea-level pressure	annual global xCO2 provided by GCB, converted to equilibrium CO2* using atmospheric pressure and Weiss and Price (1980)



Atmospheric forcing for simulation B	NCEP 1990	N/A	CORE-I (normal year) forcing	1948-2020: continue with B_spinup with fixed NCEP forcing 1957, co2=278 and rivers	JRA55-do-v1.5.0 repeat year 1961	JRA55-do cycling year 1958	JRA55-do-v1.5.0 repeat year 1959	normal year forcing created from JRA-55 version 1.3, NYF = climatology with anomalies from the year 2001
atmospheric CO2 for simulation B	constant 278ppm; converted to pCO2 temperature formulation (Sarmiento et al., 1992), monthly resolution	N/A	xCO2 of 278 ppm, converted to pCO2 with sea level pressure and water vapor correction		xCO2 of 278ppm, converted to pCO2with sea-level pressure and water vapour pressure	xCO2 of 286.46ppm, converted to pCO2 with constant sea-level pressure and water vapour pressure	xCO2 of 278ppm, converted to pCO2 with sea-level pressure and water vapour pressure	xCO2 as provided by the GCB for 1850, converted to pCO2 with atmospheric pressure, and locally determined water vapour pressure from SST and SSS (100% saturation)
model specifics
Physical ocean model	NEMOv3.6-ORCA2	NEMOv3.6-eORCA1L75	MICOM (NorESM1-OCv1.2)	MPIOM	FESOM-2.1	NEMOv3.6-GELATOv6-eORCA1L75	MOM6-SIS2	CESMv1.3 (ocean model based on POP2)
Biogeochemistry model	PlankTOM12	PISCESv2	HAMOCC (NorESM1-OCv1.2)	HAMOCC6	REcoM-2-M	PISCESv2-gas	COBALTv2	BEC (modified & extended)
Horizontal resolution	2o lon, 0.3 to 1.5o lat	1° lon, 0.3 to 1° lat	1° lon, 0.17 to 0.25 lat (nominally 1°)	1.5◦	unstructured multi-resolution mesh. CORE-mesh, with 20-120 km resolution. Highest resolution north of 50N, intermediate in the equatorial belt and Southern Ocean, lowest in the subtropical gyres	1° lon, 0.3 to 1° lat	0.5° lon, 0.25 to 0.5° lat	Lon: 1.125°, Lat varying from 0.53° in the extratropics to 0.27° near the equator
Vertical resolution	31 levels	75 levels, 1m at the surface	51 isopycnic layers + 2 layers representing a bulk mixed layer	40 levels, layer thickness increase with depth	46 levels, 10 m spacing in the top 100 m	75 levels, 1m at surface	75 levels hybrid coordinates, 2 m at surface	60 levels (z-coordinates)
Total ocean area on native grid (km2)	3.6080E+08	3.6270E+08	3.6006E+08	3.6598E+08	3.6475E+08	3.6270E+14	3.6110E+08	3.5926E+08
Ocean area on native grid (km2) - NORTH	6.2646E+07		6.2049E+07	6.4440E+07		6.3971E+13		
Ocean area on native grid (km2) - TROPICS	1.1051E+08		1.9037E+08	1.9248E+08		1.9025E+14		
Ocean area on native grid (km2) - SOUTH	1.8766E+08		1.0765E+08	1.0986E+08		1.0848E+14		
gas-exchange parameterization	Quadratic exchange formulation (function of T + 0.3*U^2)* (Sc/660)^-0.5) ; Wanninkhof (1992, Equation 8); Sweeney et al. (2007)	see Orr et al. (2017): kw parameterized from Wanninkhof (1992), with kw = a* (Sc/660)^-0.5) *u2*(1-f_ice) with a from Wanninkhof (2014)	see Orr et al. (2017): kw parameterized from Wanninkhof (1992), with kw = a* (Sc/660)^-0.5) *u2*(1-f_ice) with a=0.337 following the OCMIP2 protocols	Gas transfer velocity formulation and parameter setup of Wanninkhof (2014), including updated Schmidt number parameterizations for CO2 to comply with OMIP protocol (Orr et al., 2017)	see Orr et al. (2017): kw parameterized from Wanninkhof (1992), with kw = a* (Sc/660)^-0.5) *u2*(1-f_ice) with a from Wanninkhof (2014)	see Orr et al. (2017): kw parameterized from Wanninkhof (1992), with kw = a* (Sc/660)^-0.5) *u2*(1-f_ice) with a from Wanninkhof (2014)	see Orr et al. (2017): kw parameterized from Wanninkhof (1992), with kw = a* (Sc/660)^-0.5) *u2*(1-f_ice) with a from Wanninkhof (2014)	Gas exchange is parameterized using the Wanninkhof (1992) quadratic windspeed dependency formulation, but with the coefficient scaled down to reflect the recent 14C inventories. Concretely, we used a coefficent a of 0:31 cm hr-1 s2 m-2 to read kw = 0:31 ws^2  (1-fice)  (Sc=660)^{-1/2}
time-step	96 mins	45 min	3200 sec	60 mins	45 min	15min	30 min	3757 sec
output frequency	Monthly	monthly	monthly/daily	monthly	monthly	monthly	monthly	monthly
CO2 chemistry routines	Following Broecker et al. (1982)	mocsy	Following Dickson et al. (2007)	as in Ilyina et al. (2013) adapted to comply with OMIP protocol (Orr et al., 2017).	mocsy	mocsy	mocsy	OCMIP2 (Orr et al., 2017)
river carbon input (PgC/yr)	60.24 Tmol/yr; 0.723 PgC/yr	0.61 PgC y-1	0	0.77 PgC/yr	0	~0.611 PgC y-1	~0.15 PgC y-1	0.33 Pg C yr-1
burial/net flux into the sediment (PgC/yr)	0.723 PgC/yr	0.59 GtC y-1	around 0.54	around 0.44 PgC/yr	0	~0.656 GtC y-1	~0.18 PgC y-1	0.21 Pg C yr-1







Table A3: Description of ocean data-products used for assessment of SOCEAN. See Table 4 for references.
	Jena-MLS	MPI-SOMFFN	CMEMS-LSCE-FFNN					
Method	Spatio-temporal interpolation (update of Rödenbeck et al., 2013, version oc_v2021). Specifically, the sea-air CO2 fluxes and the pCO2 field are numerically linked to each other and to the spatiov2022). Spatio-temporal field of ocean-internal carbon sources/sinks through process parametrizations, and the ocean-internal sources/sink field is thenis fit to the SOCATv2021SOCATv2022 pCO2 data (Bakker et al., 2021). The fit includes. Includes a multi-linear regression against environmental drivers to bridge data gaps, and interannually explicit corrections to represent the data signals more completely.		An ensemble of neural network models trained on 100 subsampled datasets from the Surface Ocean CO2 Atlas v2021 (SOCATv2021, Bakker et al. 2021) . Like the original data, subsamples are distributed after interpolation on 1x1 grid cells along ship tracks. Sea surface salinity, temperature, sea surface height, mixed layer depth, atmospheric CO2 mole fraction, chlorophyll-a, pCO2 climatology, latitudeSOCAT and longitude are used asenvironmental predictors. The models are used to reconstruct sea surface pCO2 fugacity of CO2 and convert to air-sea CO2 fluxes (see the proposed ensemble-based approach and analysis in Chau et al. 2020, 2021).				Fields of total alkalinity (TA) were estimated by using a multiple linear regressions (MLR) method based on GLODAPv2.2021 and satellite observation data.
SOCATv2022 fCO2 data were converted to dissolved inorganic carbon (DIC) with the TA. Fields of DIC were estimated by using a MLR method based on the DIC and satellite observation data	Fields of total alkalinity (TA) were estimated by using a multiple linear regressions (MLR) method based on GLODAPv2.2021 and satellite observation data.
TA = f(SSDH, SSS)
SOCATv2021 fCO2 data were converted to total dissolved inorganic carbon (DIC) concentrations in combination with the TA, and then fields of DIC were estimated by using a MLR method based on the DIC and satellite observation data.
DIC = f(SSDH, SST, SSS, log(Chl), log(MLD), time)		
Gas-exchange parameterization	Quadratic exchange formulation (k*U^2* (Sc/660)^-0.5) (Wanninkhof, 1992) with the transfer. Transfer coefficient k scaled to match a global mean transfer rate of 16.5 cm/hr by (Naegler (, 2009)	Quadratic exchange formulation (k*U^2* (Sc/660)^-0.5) (Wanninkhof, 1992) with the transfer. Transfer coefficient k scaled to match a global mean transfer rate of 16.5 cm/hr (calculated myself over the full period 1982-2020)	Wanninkhof 2014 coefficient k scaled to match a global mean transfer rate of 16.5 cm/hr (Naegler, 2009)		Nightingale et al. (2000) formulation :
K=((Sc/600)^-0.5)*(0.333*U +0.222*U^2)			Wanninkhof scaled to a global mean 16.5 cm/hr (Naegler 2009; Fay & Gregor et al. 2021)	Quadratic formulation of bulk air-sea CO2 flux:
kw = a * U10^2 * (Sc/660)^0.5
We use individually Wanninkhof 1992, averaged and scaled kw's for JRA55, ERA5, and NCEP-R1, which are all scaled globallythree reanalysis wind data, to a global mean 16.5 cm/hr (after Naegler, 2009). See; Fay and& Gregor et al. (2021)
Wind product	JMA55-do reanalysis	ERA 5	ERA5				JRA55, ERA5, NCEP1	JRA55, ERA5, CCMP2
Spatial resolution	2.5 degrees longitude *x 2 degrees latitude	1x1 degree	1x1 degree		1 x 11x1 degree	1x1 degree	1x1 degree	1x1 degree
Temporal resolution	daily	monthly	monthly	monthly	monthly	monthly	monthly	monthly
Atmospheric CO2	Spatially and temporally varying field based on atmospheric CO2 data from 169 stations (Jena CarboScope atmospheric inversion sEXTALL_v2021)	atmospheric pCO2_wet calculated from the NOAA ESRL marine boundary layer xCO2 and NCEP sea level pressure with the moisture correction by Dickson et al 2007.	Spatially and monthly varying fields of atmospheric pCO2 computed from CO2 mole fraction ( Chevallier, 2013; CO2 atmospheric inversion from the Copernicus Atmosphere Monitoring Service ), and atmospheric dry-air pressure which is derived from monthly surface pressure (ERA5) and water vapour pressure fitted by Weiss and Price (1980)	 marine boundary layer  and  sea level pressure from  et al, 1998. 2021 XCO2 marine boundary values were not available at submission so we used preliminary values, estimated from 2020 values and increase at Mauna Loa.		Atmospheric xCO2 fields of JMA-GSAM inversion model (Maki et al. 2010; Nakamura et al. 2015) were used. They were converted to pCO2 by using JRA55 sea level pressure. 
NOAA Greenhouse Gas Marine Boundary Layer Reference. https://gml.noaa.gov/ccgg/mbl/mbl.html2021 xCO2 fields were not available at this stage, and we used global xCO2 increments from 2020 to 2021.	
NOAA's marine boundary layer product for xCO2 is linearly interpolated onto a 1x1 degree grid and resampled from weekly to monthly. xCO2 is multiplied by ERA5 mean sea level pressure, where the latter corrected for water vapour pressure using Dickson et al. (2007). This results in monthly 1x1 degree pCO2atm.Atmospheric xCO2 fields of JMA-GSAM inversion model (Maki et al. 2010; Nakamura et al. 2015) were used. They were converted to pCO2 by using JRA55 sea level pressure. xCO2 fields in 2020 were not available at this stage, and we use observation data of obspack_co2_1_NRT_v6.1.1_2021-05-17 (Di Sarra et al. 2021) to estimate the increase from 2019 to 2020.	NOAA's marine boundary layer product for xCO2 is linearly interpolated onto a 1x1 degree grid and resampled from weekly to monthly. xCO2 is multiplied by ERA5 mean sea level pressure, where the latter corrected for water vapour pressure using Dickson et al. (2007). This results in monthly 1x1 degree pCO2atm.
Total ocean area on native grid (km2)	3.63E+08	3.63E+08	3.46E50E+08	3.48E52E+08	3.51E49E+08	3.28E10E+08
(3.23E2.98E+08 to 3.35E16E+08, depending on ice cover)	3.05E55E+08
(2.98E+08 to 3.15E+08, depending on ice cover)	3.55E61E+08
method to extend product to full global ocean coverage		Arctic and marginal seas added following Landschützer et al. (2020).  coastal cut.						


											
Ocean area on native grid (km2) - TROPICS			1.8875E+08	1.8933E+08	1.9230E+08		1.74E+08	1.8779E+08
Ocean area on native grid (km2) - SOUTH			1.0241E+08	1.0767E+08	1.0868E+08		9.20E+07
(8.47E+07 to 1.02E+08, depending on ice cover)	1.0705E+08










Table A4. Comparison of the inversion set up and input fields for the atmospheric inversions. Atmospheric inversions see the full CO2 fluxes, including the anthropogenic and pre-industrial fluxes. Hence they need to be adjusted for the pre-industrial flux of CO2 from the land to the ocean that is part of the natural carbon cycle before they can be compared with SOCEAN and SLAND from process models. See Table 4 for references.
	Copernicus Atmosphere Monitoring Service (CAMS)	CarbonTrackerCarbon-Tracker Europe (CTE)	Jena CarboScope	UoE	NISMON-CO2	CMS-Flux	GONGGA	THU	Copernicus Atmosphere Monitoring Service (CAMS) Satellite	UoE	CMS-Flux	NISMON-CO2
Version number						v2021v2022.1	v2022	v2022	v2022	FT21r2
Observations									
Atmospheric observations	Hourly resolution (well-mixed conditions) obspack GLOBALVIEWplus  and NRT_v7.2(b), WDCGG, RAMCES and ICOS ATC	Hourly resolution (well-mixed conditions) obspack GLOBALVIEWplus v7.0 (a) and NRT_v7.2(b)	Flasks and hourly from various institutions (outliers removed by 2-sigma2σ criterion)	Hourly resolution (well-mixed conditions) obspack GLOBALVIEWplus  and NRT_v7.2(b)	Hourly resolution (well-mixed conditions) obspack GLOBALVIEWplus  and NRT_v7.2(b)	ACOS-GOSAT  OCO-2  to flask observations from  and NRT _v 7.2(b)		OCO-2 v10r data that scaled to WMO 2019 standard	bias-corrected ACOS GOSAT v9 over land until August 2024 + bias-corrected ACOS OCO-2 v10 over land, both rescaled to X2019
Period covered	1979-2021	2001-2021	1957-2021	19792001-2021		2010-2021		2015-2021	2010-2021
Prior fluxes									
Biosphere and fires	SIBCASA biosphere (b) with 2019-2020 climatological, GFAS fires	No prior	ORCHIDEE (climatological),, GFEDv4.1s	SiB4 and GFAS	Zero	CASA v1.0, climatology after 2016 &and GFED4.0	VISIT and GFEDv4.1s	yearly repeating CARDAMOM biosphere+fires	VISIT &CASA and GFEDv4.1s	SiB4.2 and GFEDv4.1s	ORCHIDEE, GFEDv4.1s
Ocean				Takahashi climatology	MOM6	JMA global ocean mapping (Iida et al., 2015)	MOM6	Takahashi climatology	Takahashi climatology	CMEMS-LSCE-FFNN 2021
Fossil fuels	GridFED 2021.2(c) with an extrapolation to 2021 based on Carbonmonitor and NO2		GCP-GridFEDv2021GridFED v2022.2 (Jones et al., 2021b) (c)		GCP-GridFEDv2021GridFED v2022.2 (Jones et al., 2021b) (c)	GCP-GridFEDv2021GridFED2022.2 (Jones et al., 2021b) (c)	GridFED 2021.3 (c) with an extrapolation to 2021 based on Carbon-monitor	GridFED v2022.1 (c)	
Transport and optimization									
Transport model	LMDZ v6	TM5	TM3		NICAM-TM	GEOS-CHEM	GEOS-Chem v12.9.3	GEOS-CHEM	
Weather forcing	ECMWF	NCEP	ECMWF		MERRA-2	JRA55	MERRA	MERRA2	GEOS-FP	ECMWF
Horizontal Resolution	Global 3.75°x1.875°	Global 3°°, Europe 1°°, North America 1°x1°	Global 3.83°x5°	Global 4°x5°	
Isocahedral grid: ∼225km	Global 4°x5°	Global: 4° x  2°x2.5°	Global 4°x5°	
Optimization	Variational	Ensemble Kalman filter	Conjugate gradient (re-ortho-normalization) (d)	Variational	Ensemble Kalman filter	Variational	Variational	Nonlinear least squares four-dimensional variation (NLS-4DVar)	Ensemble Kalman filter	Variational


(c) GCP-.2 (Jones et al.,  through the year  of the GCP-GridFED dataset presented by Jones et al. (2021).
(d) ocean prior not optimised













Table A5 Attribution of fCO2 measurements for the year 20202021 included in SOCATv2021SOCATv2022 (Bakker et al., 2016, 20212022) to inform ocean fCO2-based data products.
Platform	Name	Regions	No. of measurements	Principal Investigators	No. of datasets	Platform Type
1 degree	North Atlantic, coastal				Ship
	Tropical Pacific				
Atlantic Explorer	North Atlantic, tropical Atlantic, coastal		Bates, N. R.		Ship
Atlantic Sail	North Atlantic, coastal		Steinhoff, T.; Körtzinger, A.		Ship

Aurora Australis	Southern Ocean	14,316	Tilbrook, B.	1	Ship
Bjarni Saemundsson	Coastal	3,269	Benoit-Cattin A.; Ólafsdóttir, S. R.	1	Ship

BlueFin	North Pacific, Tropical Pacific, Coastal		Alin, S. R.; Feely, R. A.		Ship
Cap San Lorenzo	 Atlantic, tropical Atlantic, coastal		Lefèvre, N.		Ship
CCE2_121W_34N	Coastal	1,333	Sutton, A.; Send, U.; Ohman, M.	1	Mooring
Celtic Explorer	North Atlantic, coastal		Cronin, M.		Ship

Colibri	North Atlantic, Tropical Atlantic, Coastal	13,402	Lefèvre, N.	2	Ship
Equinox	North Atlantic, Coastal	25,052	Wanninkhof, R.; Pierrot, D.	11	Ship

F. G. Walton Smith	Coastal		Rodriguez, C.; Millero, F. J.; Pierrot, D.; Wanninkhof, R.		Ship
Finnmaid	Coastal		Rehder, G.; Bittig, H. C.; Glockzin, M.		Ship
					Ship
G.O. Sars	Arctic,  Atlantic, coastal		Skjelvan, I.		Ship
GAKOA_149W_60N	Coastal		Monacci, N.; Cross, J.; Musielewicz, S.; Sutton, A.		Mooring
Gordon Gunter	North Atlantic, coastal	36,058	Wanninkhof, R.; Pierrot, D.	6	Ship
Gulf Challenger	Coastal		Salisbury, J.; Vandemark, D.; Hunt, C. W.		Ship
Healy	Arctic, north Atlantic, coastal		Sweeney, C.; Newberger, T.; Sutherland, S. C.; Munro, D. R.		Ship
Henry B. Bigelow	North Atlantic, coastal		Wanninkhof, R.; Pierrot, D.		Ship
Heron Island	Coastal		Tilbrook B.; Neill, C.; van Oojen, E.; Passmore, A.; Black, J.	1	Mooring
	Southern Ocean, coastal, tropical Pacific, Indian Ocean				Ship

James Cook	North Atlantic, Tropical Atlantic, Coastal	46,710	Theetaert, H.	1	Ship

KC_BUOY	Coastal		Evans, W.; Pocock, K.	1	Mooring
Keifu Maru II	North Pacific, tropical Pacific, coastal	10,053	Kadono, K.	8	Ship
Laurence M. Gould	Southern Ocean		Sweeney, C.; Newberger, T.; Sutherland, S. C.; Munro, D. R.		Ship

Maria. S. Merian	Tropical Atlantic, Coastal	35,806	Ritschel, M.	1	Ship

Marion Dufresne	Southern Ocean, coastal		Lo Monaco, C.; Metzl, N.	1	Ship
Nathaniel B. Palmer	Southern Ocean, Tropical Pacific		Sweeney, C.; Newberger, T.; Sutherland, S. C.; Munro, D. R.		Ship
New Century 2	North Pacific,  Pacific,  Atlantic, coastal		Nakaoka, S.-I.; Takao, S.		Ship
	North Atlantic, tropical Atlantic, south Atlantic, coastal				Ship

Oscar Dyson	Arctic, North Pacific, Coastal	28,196	Alin, S. R.; Feely, R. A.	6	Ship

Quadra Island Field Station	Coastal		Evans, W.; Pocock, K.	1	Mooring
Ronald H. Brown	North Atlantic, coastal		Wanninkhof, R.; Pierrot, D.		Ship
	North Pacific, tropical Pacific, coastal				
Sea Explorer	Southern Ocean, Tropicalnorth Atlantic, Northcoastal, tropical Atlantic, Coastal		LandschützerLandshützer, P.; Tanhua, T.		Ship
Sikuliaq	Arctic,  Pacific, coastal		Sweeney, C.; Newberger, T.; Sutherland, S. C.; Munro, D. R.		Ship
Simon Stevin	Coastal		Gkritzalis, T.; Theetaert, H.; Cattrijsse, A.; T´Jampens, M.		Ship
Sitka Tribe of Alaska Environmental Research Laboratory	Coastal	19,086	Whitehead, C.; Evans, W.; Lanphier, K.; Peterson, W.; Kennedy, E.; Hales, B.	1	Mooring
SOFS_142E_46S	Southern Ocean	894	Sutton, A.; Trull, T.; Shadwick, E.	1	Mooring
Soyo Maru			Ono, T.		Ship
Station M	North Atlantic	447	Skjelvan, I.	1	Mooring
					Ship
TAO110WTAO125W_0N	Tropical Pacific		Sutton, A. J.		Mooring
Tavastland	Coastal		Willstrand Wranne, A.,.; Steinhoff, T.		Ship
Thomas G. Thompson			Alin, S. R.;. ; Feely, R. A.		Ship

Trans Carrier	Coastal	24,135	Omar, A. M.	13	Ship

Trans Future 5	Southern Ocean, north Pacific, tropical Pacific, coastal		Nakaoka, S.-I.; Takao, S.		Ship
Tukuma Arctica	North Atlantic, coastal	70,033	Becker, M.; Olsen, A.	23	Ship
Wakataka Maru	North Pacific, coastal		Tadokoro, K.		Ship
























	Table A6. Aircraft measurement programs archived by Cooperative Global Atmospheric Data Integration Project (CGADIP; CoxSchuldt et al., 2021. 2022a and 2022b) that contribute to the evaluation of the atmospheric inversions (Figure B4).
	Site code	Measurement program name in Obspack	Specific doi	Data providers	used in 2021
	AAO	Airborne Aerosol Observatory, Bondville, Illinois		Sweeney, C.; Dlugokencky, E.J.	yes
	ABOVE	Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE)	 HYPERLINK "https://doi.org/10.3334/ORNLDAAC/1404" \h https://doi.org/10.3334/ORNLDAAC/1404	Sweeney, C., J.B. Miller, A. Karion, S.J. Dinardo,
and C.E. Miller. 2016. CARVE: L2 Atmospheric Gas Concentrations, Airborne Flasks, Alaska, 2012-2
015. ORNL DAAC, Oak Ridge, Tennessee, USA.
	ACG	Alaska Coast Guard		Sweeney, C.; McKain, K.; Karion, A.; Dlugokencky, E.J.	yes
	ACT	Atmospheric Carbon and Transport - America		Sweeney, C.; Dlugokencky, E.J.; Baier, B; Montzka, S.; Davis, K.	yes
	AIRCORENOAA	NOAA AirCore		Colm Sweeney (NOAA) AND Bianca Baier (NOAA)
	ALF	Alta Floresta		Gatti, L.V.; Gloor, E.; Miller, J.B.;	yes
	AOA	Aircraft Observation of Atmospheric trace gases by JMA		ghg_obs@met.kishou.go.jp	yes
	BGI	Bradgate, Iowa		Sweeney, C.; Dlugokencky, E.J.	yes
	BNE	Beaver Crossing, Nebraska		Sweeney, C.; Dlugokencky, E.J.	yes
	BRZ	Berezorechka, Russia		Sasakama, N.; Machida, T.	yes
	CAR	Briggsdale, Colorado		Sweeney, C.; Dlugokencky, E.J.	yes
	CMA	Cape May, New Jersey		Sweeney, C.; Dlugokencky, E.J.	yes
	CON	CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner)	http://dx.doi.org/10.17595/20180208.001	Machida, T.; Matsueda, H.; Sawa, Y. Niwa, Y.	yes
	CRV	Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE)		Sweeney, C.; Karion, A.; Miller, J.B.; Miller, C.E.; Dlugokencky, E.J.	yes
	DND	Dahlen, North Dakota		Sweeney, C.; Dlugokencky, E.J.	yes
	ECO	East Coast Outflow		Sweeney, C.; McKain, K.
	ESP	Estevan Point, British Columbia		Sweeney, C.; Dlugokencky, E.J.	yes
	ETL	East Trout Lake, Saskatchewan		Sweeney, C.; Dlugokencky, E.J.	yes
	FWI	Fairchild, Wisconsin		Sweeney, C.; Dlugokencky, E.J.	yes
	GSFC	NASA Goddard Space Flight Center Aircraft Campaign		Kawa, S.R.; Abshire, J.B.; Riris, H.	yes
	HAA	Molokai Island, Hawaii		Sweeney, C.; Dlugokencky, E.J.	yes
	HFM	Harvard University Aircraft Campaign		Wofsy, S.C.	yes
	HIL	Homer, Illinois		Sweeney, C.; Dlugokencky, E.J.	yes
	HIP	HIPPO (HIAPER Pole-to-Pole Observations)	https://doi.org/10.3334/CDIAC/HIPPO_010	Wofsy, S.C.; Stephens, B.B.; Elkins, J.W.; Hintsa, E.J.; Moore, F.	yes
	IAGOS-CARIBIC	In-service Aircraft for a Global Observing System		Obersteiner, F.; Boenisch., H; Gehrlein, T.; Zahn, A.; Schuck, T.	yes
	INX	INFLUX (Indianapolis Flux Experiment)		Sweeney, C.; Dlugokencky, E.J.; Shepson, P.B.; Turnbull, J.	yes
	LEF	Park Falls, Wisconsin		Sweeney, C.; Dlugokencky, E.J.	yes
	NHA	Offshore Portsmouth, New Hampshire (Isles of Shoals)		Sweeney, C.; Dlugokencky, E.J.	yes
	OIL	Oglesby, Illinois		Sweeney, C.; Dlugokencky, E.J.	yes
	ORC	ORCAS (O2/N2 Ratio and CO2 Airborne Southern Ocean Study)	https://doi.org/10.5065/D6SB445X	Stephens, B.B, Sweeney, C., McKain, K., Kort, E.
	PFA	Poker Flat, Alaska		Sweeney, C.; Dlugokencky, E.J.	yes
	RBA-B	Rio Branco		Gatti, L.V.; Gloor, E.; Miller, J.B.	yes
	RTA	Rarotonga		Sweeney, C.; Dlugokencky, E.J.	yes
	SCA	Charleston, South Carolina		Sweeney, C.; Dlugokencky, E.J.	yes
	SGP	Southern Great Plains, Oklahoma		Sweeney, C.; Dlugokencky, E.J.; Biraud, S.	yes
	TAB	Tabatinga		Gatti, L.V.; Gloor, E.; Miller, J.B.	yes
	TGC	Offshore Corpus Christi, Texas		Sweeney, C.; Dlugokencky, E.J.	yes
	THD	Trinidad Head, California		Sweeney, C.; Dlugokencky, E.J.	yes
	WBI	West Branch, Iowa		Sweeney, C.; Dlugokencky, E.J.	yes




















Table A7. Main methodological changes in the global carbon budget since first publication. Methodological changes introduced in one year are kept for the following years unless noted. Empty cells mean there were no methodological changes introduced that year.
Publication year	Fossil fuel emissions	LUC emissions	Reservoirs	Uncertainty & other changes
	Global	Country (territorial)	Country (consumption)		Atmosphere	Ocean	Land	
2006 (a)		Split in regions						
2007 (b)				ELUC based on FAO-FRA 2005; constant ELUC for 2006	1959-1979 data from Mauna Loa; data after 1980 from global average	Based on one ocean model tuned to reproduced observed 1990s sink		±1σ provided for all components
2008 (c)				Constant ELUC for 2007				
2009 (d)		Split between Annex B and non-Annex B	Results from an independent study discussed	Fire-based emission anomalies used for 2006-2008		Based on four ocean models normalised to observations with constant delta	First use of five DGVMs to compare with budget residual	
2010 (e)	Projection for current year based on GDP	Emissions for top emitters		ELUC updated with FAO-FRA 2010				
2011 (f)			Split between Annex B and non-Annex B					
2012 (g)		129 countries from 1959	129 countries and regions from 1990-2010 based on GTAP8.0	ELUC for 1997-2011 includes interannual anomalies from fire-based emissions	All years from global average	Based on 5 ocean models normalised to observations with ratio	Ten DGVMs available for SLAND; First use of four models to compare with ELUC	
2013 (h)		250 countriesb	134 countries and regions 1990-2011 based on GTAP8.1, with detailed estimates for years 1997, 2001, 2004, and 2007	ELUC for 2012 estimated from 2001-2010 average		Based on six models compared with two data-products to year 2011	Coordinated DGVM experiments for SLAND and ELUC	Confidence levels; cumulative emissions; budget from 1750
2014 (i)	Three years of BP data	Three years of BP data	Extended to 2012 with updated GDP data	ELUC for 1997-2013 includes interannual anomalies from fire-based emissions		Based on seven models	Based on ten models	Inclusion of breakdown of the sinks in three latitude bands and comparison with three atmospheric inversions
2015 (j)	Projection for current year based Jan-Aug data	National emissions from UNFCCC extended to 2014 also provided	Detailed estimates introduced for 2011 based on GTAP9			Based on eight models	Based on ten models with assessment of minimum realism	The decadal uncertainty for the DGVM ensemble mean now uses ±1σ of the decadal spread across models
2016 (k)	Two years of BP data	Added three small countries; China’s emissions from 1990 from BP data (this release only)		Preliminary ELUC using FRA-2015 shown for comparison; use of five DGVMs		Based on seven models	Based on fourteen models	Discussion of projection for full budget for current year
2017 (l)	Projection includes India-specific data			Average of two bookkeeping models; use of 12 DGVMs		Based on eight models that match the observed sink for the 1990s; no longer normalised	Based on 15 models that meet observation-based criteria (see Sect. 2.5)	Land multi-model average now used in main carbon budget, with the carbon imbalance presented separately; new table of key uncertainties
a Raupach et al. (2007)
b Canadell et al. (2007)
c GCP (2008)
d Le Quéré et al. (2009)
e Friedlingstein et al. (2010)
f Peters et al. (2012b)
g Le Quéré et al. (2013), Peters et al. (2013)
h Le Quéré et al. (2014)
i Le Quéré et al. (2015a)
j Le Quéré et al. (2015b)
k Le Quéré et al. (2016)
l Le Quéré et al. (2018a)









Table A8: Mapping of global carbon cycle models' land flux definitions to the definition of the LULUCF net flux used in national reporting to UNFCCC. Non-intact lands are used here as proxy for "managed lands" in the country reporting, national Greenhouse Gas Inventories (NGHGI) are gap-filled (see Sec. C.2.3 for details). Where available, we provide independent estimates of certain fluxes for comparison.
				
ELUC from bookkeeping estimates (from Tab. 5)			1.36	1.24
SLAND	Total (from Tab. 5)	from DGVMs	-2.85	-3.10
	onin non-forest lands	from DGVMs	-0.74	
	onin non-intact forest	from DGVMs	-1.67	-1.80
	 intact forests	from DGVMs	-0.44	-0.47
		from ORCHIDEE-MICT	-1.34	-1.38

				

ELUC plus SLAND on non-intact lands plus ELUC		from bookkeeping ELUC and DGVMs	-0.31	-0.56
		from ORCHIDEE-MICT		0.60
National greenhouse gas inventoriesGreenhouse Gas Inventories (LULUCF)			-0.37	-0.54
FAOSTAT (LULUCF)			0.39	0.	24
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Figure B1. Ensemble mean air-sea CO2 flux from a) global ocean biogeochemistry models and b) fCO2 based data products, averaged over 2011-20202012-2021 period (kgC m-2 yr-1). Positive numbers indicate a flux into the ocean. c) gridded SOCAT v2021v2022 fCO2 measurements, averaged over the 2011-20202012-2021 period (µatm). In (a) model simulation A is shown. The data-products represent the contemporary flux, i.e. including outgassing of riverine carbon, which is estimated to amount to 0.61565 GtC yr-1 globally.
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Figure B2. Evaluation of the GOBMs and data products using the root mean squared error (RMSE) for the period 1990 to 20202021, between the individual surface ocean fCO2 mapping schemes and the SOCAT v2021v2022 database. The y-axis shows the amplitude of the interannual variability of the air-sea CO2 flux (A-IAV, taken as the standard deviation of athe detrended annual time series calculated as a 12-months running mean over the monthly flux time series, Rödenbeck et al., 2015).. Results are presented for the globe, north (>30°N), tropics (30°S-30°N), and south (<30°S) for the GOBMs (see legend, circles) and for the fCO2-based data products (star symbols). The fCO2-based data products use the SOCAT database and therefore are not independent from the data (see section 2.4.1). 
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Figure B3. Evaluation of the DGVMs using the International Land Model Benchmarking system (ILAMB; Collier et al., 2018) (left) absolute skill scores and (right) skill scores relative to other models. The benchmarking is done with observations for vegetation biomass (Saatchi et al., 2011; and GlobalCarbon unpublished data; Avitabile et al., 2016), GPP (Jung et al., 2010; Lasslop et al., 2010), leaf area index (De Kauwe et al., 2011; Myneni et al., 1997), net ecosystem exchange (Jung et al., 2010;Lasslop et al., 2010), ecosystem respiration (Jung et al., 2010; Lasslop et al., 2010), soil carbon (Hugelius et al., 2013;Todd-Brown et al., 2013), evapotranspiration (De Kauwe et al., 2011), and runoff (Dai and Trenberth, 2002). For each model-observation comparison a series of error metrics are calculated, scores are then calculated as an exponential function of each error metric, finally for each variable the multiple scores from different metrics and observational data sets are combined to give the overall variable scores shown in the left panel. Overall variable scores increase from 0 to 1 with improvements in model performance. The set of error metrics vary with data set and can include metrics based on the period mean, bias, root mean squared error, spatial distribution, interannual variability and seasonal cycle. The relative skill score shown in the right panel is a Z-score, which indicates in units of standard deviation the model scores relative to the multi-model mean score for a given variable. Grey boxes represent missing model data.
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Figure B4. Evaluation of the atmospheric inversion products. The mean of the model minus observations is shown for four latitude bands in threefour periods: (leftfirst panel) 2001-2021, (second panel) 2001-2010, (centrethird panel) 2011-2020, (right) 2001-2020.2021, (fourth panel) 2015-2021. The six models9 systems are compared to independent CO2 measurements made onboard aircraft over many places of the world between 2 and 7 km above sea level. Aircraft measurements archived in the Cooperative Global Atmospheric Data Integration Project (CGADIP; CoxSchuldt et al.,. 2021, Schuldt et al. 2022) from sites, campaigns or programs that have not been assimilated and cover at least 9 months (except for SH programs) between 2001 and 2020 and that have not been assimilated2021, have been used to compute the biases of the differences in four 45° latitude bins. Land and ocean data are used without distinction, and observation density varies strongly with latitude and time as seen on the lower panels.
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Figure B5. Comparison of the estimates of each component of the global carbon budget in this study (black line) with the estimates released annually by the GCP since 2006. Grey shading shows the uncertainty bounds representing ±1 standard deviation of the current global carbon budget, based on the uncertainty assessments described in Appendix C. CO2 emissions from (a) fossil CO2 emissions (EFOS), and (b) land-use change (ELUC), as well as their partitioning among (c) the atmosphere (GATM), (d) the land (SLAND), and (e) the ocean (SOCEAN). See legend for the corresponding years, and Tables 3 and A7 for references. The budget year corresponds to the year when the budget was first released. All values are in GtC yr-1. 
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Figure B6. ChangesDifferences in the HYDE/LUH2 land-use forcing from last year’sused for the global carbon budgetbudgets GCB2020 (Friedlingstein et al., 2020, in blue) to this year (orange2021), and for GCB2021/GCB2022 (Friedlingstein et al., 2022a, Friedlingstein et al., 2022b). Shown are year-to-year changes in cropland area (middle panel) and pasture area (bottom panel). To illustrate the relevance of the update in the land-use forcing to the recent trends in ELUC, the top panel shows the land-use emission estimate from the bookkeeping model BLUE (original model output, i.e. excluding peat fire and drainage emissions).
10 [bookmark: _heading=h.v2b3le90fjo0]

[bookmark: _heading=h.cjcn0axw70ri]Appendix C. Extended Methodology
[bookmark: _heading=h.8qqmfky7a53t][bookmark: _heading=h.ij26o2dhvz9z]Appendix C.1 Methodology Fossil Fuel CO2 emissions (EFOS)
C.1.1 Cement carbonation
From the moment it is created, cement begins to absorb CO2 from the atmosphere, a process known as ‘cement carbonation’. We estimate this CO2 sink, as the average of two studies in the literature (Cao et al., 2020; Guo et al., 2021). Both studies use the same model, developed by Xi et al. (2016), with different parameterisations and input data, with the estimate of Guo and colleagues being a revision of Xi et al (2016). The trends of the two studies are very similar. Modelling cement carbonation requires estimation of a large number of parameters, including the different types of cement material in different countries, the lifetime of the structures before demolition, of cement waste after demolition, and the volumetric properties of structures, among others (Xi et al., 2016). Lifetime is an important parameter because demolition results in the exposure of new surfaces to the carbonation process. The main reasons for differences between the two studies appear to be the assumed lifetimes of cement structures and the geographic resolution, but the uncertainty bounds of the two studies overlap. In the present budget, we include the cement carbonation carbon sink in the fossil CO2 emission component (EFOS).
[bookmark: _heading=h.rust0t3tpjbx]C.1.2 Emissions embodied in goods and services
CDIAC, UNFCCC, and BP national emission statistics ‘include greenhouse gas emissions and removals taking place within national territory and offshore areas over which the country has jurisdiction’ (Rypdal et al., 2006), and are called territorial emission inventories. Consumption-based emission inventories allocate emissions to products that are consumed within a country, and are conceptually calculated as the territorial emissions minus the ‘embodied’ territorial emissions to produce exported products plus the emissions in other countries to produce imported products (Consumption = Territorial – Exports + Imports). Consumption-based emission attribution results (e.g. Davis and Caldeira, 2010) provide additional information to territorial-based emissions that can be used to understand emission drivers (Hertwich and Peters, 2009) and quantify emission transfers by the trade of products between countries (Peters et al., 2011b). The consumption-based emissions have the same global total, but reflect the trade-driven movement of emissions across the Earth's surface in response to human activities. We estimate consumption-based emissions from 1990-20182020 by enumerating the global supply chain using a global model of the economic relationships between economic sectors within and between every country (Andrew and Peters, 2013; Peters et al., 2011a). Our analysis is based on the economic and trade data from the Global Trade and Analysis Project (GTAP; Narayanan et al., 2015), and we make detailed estimates for the years 1997 (GTAP version 5), 2001 (GTAP6), and 2004, 2007, 2011, and 2011 (GTAP9.22014 (GTAP10.0a), covering 57 sectors and 141 countries and regions. The detailed results are then extended into an annual time series from 1990 to the latest year of the Gross Domestic Product (GDP) data (20182020 in this budget), using GDP data by expenditure in current exchange rate of US dollars (USD; from the UN National Accounts main Aggregrates database; UN, 2021) and time series of trade data from GTAP (based on the methodology in Peters et al., 2011a). We estimate the sector-level CO2 emissions using the GTAP data and methodology, includeadd the flaring and cement emissions from CDIACour fossil CO2 dataset, and then scale the national totals (excluding bunker fuels) to match the emission estimates from the carbon budget. We do not provide a separate uncertainty estimate for the consumption-based emissions, but based on model comparisons and sensitivity analysis, they are unlikely to be significantly different than for the territorial emission estimates (Peters et al., 2012a).
[bookmark: _heading=h.ofkof6aowsln]C.1.3 Uncertainty assessment for EFOS
We estimate the uncertainty of the global fossil CO2 emissions at ±5% (scaled down from the published ±10 % at ±2σ to the use of ±1σ bounds reported here; Andres et al., 2012). This is consistent with a more detailed analysis of uncertainty of ±8.4% at ±2σ (Andres et al., 2014) and at the high-end of the range of ±5-10% at ±2σ reported by (Ballantyne et al., 2015). This includes an assessment of uncertainties in the amounts of fuel consumed, the carbon and heat contents of fuels, and the combustion efficiency. While we consider a fixed uncertainty of ±5% for all years, the uncertainty as a percentage of emissions is growing with time because of the larger share of global emissions from emerging economies and developing countries (Marland et al., 2009). Generally, emissions from mature economies with good statistical processes have an uncertainty of only a few per cent (Marland, 2008), while emissions from strongly developing economies such as China have uncertainties of around ±10% (for ±1σ; Gregg et al., 2008; Andres et al., 2014). Uncertainties of emissions are likely to be mainly systematic errors related to underlying biases of energy statistics and to the accounting method used by each country. 
[bookmark: _heading=h.tbj3i4th6gkj]C.1.4 Growth rate in emissions
We report the annual growth rate in emissions for adjacent years (in percent per year) by calculating the difference between the two years and then normalising to the emissions in the first year: (EFOS(t0+1)-EFOS(t0))/EFOS(t0)×100%. We apply a leap-year adjustment where relevant to ensure valid interpretations of annual growth rates. This affects the growth rate by about 0.3% yr-1 (1/366) and causes calculated growth rates to go up approximately 0.3% if the first year is a leap year and down 0.3% if the second year is a leap year.
The relative growth rate of EFOS over time periods of greater than one year can be rewritten using its logarithm equivalent as follows:
									(2)
Here we calculate relative growth rates in emissions for multi-year periods (e.g. a decade) by fitting a linear trend to ln(EFOS) in Eq. (2), reported in percent per year.
[bookmark: _heading=h.i3ordmamw23v]C.1.5 Emissions projection for EFOS2022
To gain insight on emission trends for 20212022, we provide an assessment of global fossil CO2 emissions, EFOS, by combining individual assessments of emissions for China, USA, the EU, and India (the four countries/regions with the largest emissions), and the rest of the world. We provide full year estimates for two datasets: IEA (2021b) and our own analysis. This approach differs from last year where we used four independent estimates including our own, because of the unique circumstances related to the COVID-19 pandemic. This year’s analysis is more in line with earlier budgets. 
Previous editions of the Global Carbon Budget (GCB) have estimated year to date (YTD) emissions, and performed projections, using sub-annual energy consumption data from a variety of sources depending on the country or region. The YTD estimates have then been projected to the full year using specific methods forare specific to each country or region. The methods , as described in detail below.
China: We use the growth in total a regression between monthly data for each fossil CO2 emissions in 2021 reported by fuel and cement, and annual data for consumption of fossil fuels / production of cement to project full-year growth in fossil fuel consumption and cement production. The monthly data for each product consists of the following:
· Coal: Proprietary estimate for monthly consumption of main coal types, from SX Coal
· Oil: Production data from the National Bureau of Statistics (NBS) in their 2022 Statistical Communique (NBS, 2022). This report includes growth rates of energy consumption for coal,), plus net imports from the China Customs Administration (i.e., gross supply of oil, and naturalnot including inventory changes)
· Natural gas: Same as well as thefor oil
· Cement: Production data from NBS
For oil, we use data for production and net imports of refined oil products rather than crude oil. This choice is made because refined products are one step closer to actual consumption, and because crude oil can be subject to large market-driven and strategic inventory changes that are not captured by available monthly data.
For each fuel and cement, we make a Bayesian linear regression between year-on-year cumulative growth in supply (production for cement) and full-year growth in cement production, which are used to determineconsumption (production for cement) from annual consumption data. In the regression model, the growth rate in annual consumption (production for cement) is modelled as a regression parameter multiplied by the cumulative year-on-year growth rate from the changesmonthly data through July of each year for past years (through 2021). We use broad Gaussian distributions centered around 1 as priors for the ratios between annual and through-July growth rates. We then use the posteriors for the growth rates together with cumulative monthly supply/production data through July of 2022 to produce a posterior predictive distribution for the full-year growth rate for fossil fuel consumption / cement production in emissions from these four categories.2022.
If the growth in supply/production through July were an unbiased estimate of the full-year growth in consumption/production, the posterior distribution for the ratio between the monthly and annual growth rates would be centered around 1. However, in practice the ratios are different from 1 (in most cases below 1). This is a result of various biasing factors such as uneven evolution in the first and second half of each year, inventory changes that are somewhat anti-correlated with production and net imports, differences in statistical coverage, and other factors that are not captured in the monthly data.
For fossil fuels, the mean of the posterior distribution is used as the central estimate for the growth rate in 2022, while the edges of a 68% credible interval (analogous to a 1-sigma confidence interval) are used for the upper and lower bounds.
For cement, the evolution from January to July has been highly atypical owing to the ongoing turmoil in the construction sector, and the results of the regression analysis are heavily biased by equally atypical but different dynamics in 2021. For this reason, we use an average of the results of the regression analysis and the plain growth in cement production through July 2022, since this results in a growth rate that seems more plausible and in line with where the cumulative cement production appears to be headed at the time of writing.

USA: We use emissions estimated by the U.S. Energy Information Administration (EIA) in their Short-Term Energy Outlook (STEO) for emissions from fossil fuels to get both YTD and a full year projection (EIA, 2022). The STEO also includes a near-term forecast based on an energy forecasting model which is updated monthly (last update with preliminary data through September 2021August 2022), and takes into account expected temperatures, household expenditures by fuel type, energy markets, policies, and other effects. We combine this with our estimate of emissions from cement production using the monthly U.S. cement clinker production data from USGS for January-June 20212022, assuming changes in cement production over the first part of the year apply throughout the year.
India:  We use monthly emissions estimates for India updated from Andrew (2020b) through August 2021July 2022. These estimates are derived from many official monthly energy and other activity data sources to produce direct estimates of national CO2 emissions, without the use of proxies. Emissions from coal are then extended to SeptemberAugust using a regression relationship based on power generated from coal, coal dispatches by Coal India Ltd., the composite PMI, time, and days per month. For the last 3-45 months of the year, each series is extrapolated assuming typical trends.
EU: We use a refinement to the methods presented by Andrew (2021), deriving emissions from monthly energy data reported by Eurostat. Some data gaps are filled using data from the Joint Organisations Data Initiative (JODI, 2022). Sub-annual cement production data are limited, but data for Germany and Poland, the two largest producers, suggest a small decline. For fossil fuels this provides estimates through July. We extend coal emissions through SeptemberAugust using a regression model built from generation of power from hard coal, power from brown coal, total power generation, and the number of working days in Germany and Poland, the two biggest coal consumers in the EU. These are then extended through the end of the year assuming typical trends. We extend oil emissions by building a regression model between our monthly CO2 estimates and oil consumption reported by the EIA for Europe in its Short-Term Energy Outlook (OctoberSeptember edition), and then using this model with EIA’s monthly forecasts. For natural gas, the strong seasonal signal allows the use of the bias-adjusted Holt-Winters exponential smoothing method (Chatfield, 1978).
Rest of the world: We use the close relationship between the growth in GDP and the growth in emissions (Raupach et al., 2007) to project emissions for the current year. This is based on a simplified Kaya Identity, whereby EFOS (GtC yr-1) is decomposed by the product of GDP (USD yr-1) and the fossil fuel carbon intensity of the economy (IFOS; GtC USD-1) as follows:
									(3)
Taking a time derivative of Equation (3) and rearranging gives:
							(4)
where the left-hand term is the relative growth rate of EFOS, and the right-hand terms are the relative growth rates of GDP and IFOS, respectively, which can simply be added linearly to give the overall growth rate. 
The IFOS is based on GDP in constant PPP (Purchasing Power Parity) from the International Energy Agency (IEA) up to 2017 (IEA/OECD, 2019) and extended using the International Monetary Fund (IMF) growth rates through 20202021 (IMF, 2022). Interannual variability in IFOS is the largest source of uncertainty in the GDP-based emissions projections. We thus use the standard deviation of the annual IFOS for the period 2009-20192012-2021 as a measure of uncertainty, reflecting a ±1σ as in the rest of the carbon budget. For rest-of-world oil emissions growth, we use the global oil demand forecast published by the EIA less our projections for the other four regions, and estimate uncertainty as the maximum absolute difference over the period available for such forecasts using the specific monthly edition (e.g. August) compared to the first estimate based on more solid data in the following year (April).
World: The global total is the sum of each of the countries and regions.
Appendix 
[bookmark: _heading=h.8zrgit3tdafp]C.2 Methodology CO2 emissions from land-use, land-use change and forestry (ELUC)
[bookmark: _heading=h.4k668n3]The net CO2 flux from land-use, land-use change and forestry (ELUC, called land-use change emissions in the rest of the text) includes CO2 fluxes from deforestation, afforestation, logging and forest degradation (including harvest activity), shifting cultivation (cycle of cutting forest for agriculture, then abandoning), and regrowth of forests following wood harvest or abandonment of agriculture. Emissions from peat burning and drainage are added from external datasets (see section C.2.1 below). Only some land-management activities are included in our land-use change emissions estimates (Table A1). Some of these activities lead to emissions of CO2 to the atmosphere, while others lead to CO2 sinks. ELUC is the net sum of emissions and removals due to all anthropogenic activities considered. Our annual estimate for 1960-20202021 is provided as the average of results from three bookkeeping approaches (Section C.2.1 below): an estimate using the Bookkeeping of Land Use Emissions model (Hansis et al., 2015; hereafter BLUE) and one using the compact Earth system model OSCAR (Gasser et al., 2020), both BLUE and OSCAR being updated here to new land-use forcing covering the time period until 20202021, and an updated version of the estimate published by Houghton and Nassikas (2017) (hereafter updated H&N2017). All three data sets are then extrapolated to provide a projection for 20212022 (Section C.2.5 below). In addition, we use results from Dynamic Global Vegetation Models (DGVMs; see Section 2.5 and Table 4) to help quantify the uncertainty in ELUC (Section C.2.4), and thus better characterise our understanding. Note that in this budget, we use the scientific ELUC  definition, which counts fluxes due to environmental changes on managed land towards SLAND, as opposed to the national greenhouse gas inventories under the UNFCCC, which include them in ELUC and thus often report smaller land-use emissions (Grassi et al., 2018; Petrescu et al., 2020). However, we provide a methodology of mapping of the two approaches to each other further below (Section C.2.3).
[bookmark: _heading=h.ofnkh7ifg8sv]C.2.1 Bookkeeping models
Land-use change CO2 emissions and uptake fluxes are calculated by three bookkeeping models. These are based on the original bookkeeping approach of Houghton (2003) that keeps track of the carbon stored in vegetation and soils before and after a land-use change (transitions between various natural vegetation types, croplands, and pastures). Literature-based response curves describe decay of vegetation and soil carbon, including transfer to product pools of different lifetimes, as well as carbon uptake due to regrowth. In addition, the bookkeeping models represent long-term degradation of primary forest as lowered standing vegetation and soil carbon stocks in secondary forests, and include forest management practices such as wood harvests. 
BLUE and the updated H&N2017 exclude land ecosystems’ transient response to changes in climate, atmospheric CO2 and other environmental factors, and base the carbon densities on contemporary data from literature and inventory data. Since carbon densities thus remain fixed over time, the additional sink capacity that ecosystems provide in response to CO2-fertilisation and some other environmental changes is not captured by these models (Pongratz et al., 2014). On the contrary, OSCAR includes this transient response, and it follows a theoretical framework (Gasser and Ciais, 2013) that allows separating bookkeeping land-use emissions and the loss of additional sink capacity. Only the former is included here, while the latter is discussed in Appendix D4. The bookkeeping models differ in (1) computational units (spatially explicit treatment of land-use change for BLUE, regional-/ mostly country-level for the updated H&N2017 and OSCAR), (2) processes represented (see Table A1), and (3) carbon densities assigned to vegetation and soil of each vegetation type (literature-based for the updated H&N2017 and BLUE, calibrated to DGVMs for OSCAR). A notable difference between models exists with respect to the treatment of shifting cultivation. The update of H&N2017, introduced for the GCB2021 (Friedlingstein et al., 2022) changed the approach over the earlier H&N2017 version: H&N2017 had assumed the "excess loss" of tropical forests (i.e., when FRA indicated a forest loss larger than the increase in agricultural areas from FAO) resulted from converting forests to croplands at the same time older croplands were abandoned. Those abandoned croplands began to recover to forests after 15 years. The updated H&N2017 now assumes that forest loss in excess of increases in cropland and pastures represented an increase in shifting cultivation. When the excess loss of forests was negative, it was assumed that shifting cultivation was returned to forest. Historical areas in shifting cultivation were extrapolated taking into account country-based estimates of areas in fallow in 1980 (FAO/UNEP, 1981) and expert opinion (from Heinimann et al., 2017). In contrast, the BLUE and OSCAR models include sub-grid-scale transitions between all vegetation types. Furthermore, the updated H&N2017 assume conversion of natural grasslands to pasture, while BLUE and OSCAR allocate pasture proportionally on all natural vegetation that exists in a grid-cell. This is one reason for generally higher emissions in BLUE and OSCAR. Bookkeeping models do not directly capture carbon emissions from peat fires, which can create large emissions and interannual variability due to synergies of land-use and climate variability in Southeast Asia, particularly during El-Niño events, nor emissions from the organic layers of drained peat soils. To correct for this, the updated H&N2017 includes carbon emissions from burning and draining of peatlands in Indonesia, Malaysia, and Papua New Guinea (we add peat fire emissions based on the Global Fire Emission Database (GFED4s; van der Werf et al., 2017) for fire and Hooijer et al. for drainage. Further, estimates of carbon losses from peatlands in extra-tropical regions are added from Qiu et al. (2021).to the bookkeeping models’ output. As these satellite-derived estimates start in 1997 only, we follow the approach by Houghton and Nassikas (2017) for earlier years, which ramps up from zero emissions in 1980 to 0.04 Pg C yr 1 in 1996, reflecting the onset of major clearing of peatlands in equatorial Southeast Asia in the 1980s. Similarly, we add estimates of  peat drainage emissions. In recent years, more peat drainage estimates that provide spatially explicit data have become available, and we thus extended the number of peat drainage datasets considered: We add GFED4s peat fire emissions to BLUE and OSCAR output as well as the globalemploy FAO peat drainage emissions 1990-2018–2019 from croplands and grasslands (Conchedda and Tubiello, 2020), peat drainage emissions 1700–2010 from simulations with the DGVM ORCHIDEE-PEAT (Qiu et al., 2021), and peat drainage emissions 1701–2021 from simulations with the DGVM LPX-Bern (Lienert and Joos, 2018; Müller and Joos, 2021) applying the updated LUH2 forcing as also used by BLUE, OSCAR and the DGVMs. We extrapolate the FAO data to 1850-2021 by keeping the post-20182019 emissions constant. We  at 2019 levels, by linearly increaseincreasing tropical drainage emissions between 1980 and 1990 starting from 0 GtC yr-1 in 1980, consistent with H&N2017’s assumption, and keep (Houghton and Nassikas, 2017), and by keeping pre-1990 emissions from the often old drained areas of the extra-tropics constant pre-1990. This adds 9.0 GtC for FAO compared to 5.6 GtC for Hooijer et al. (2010). Peat fires add another 2.0 GtC over the same periodat 1990 emission levels. ORCHIDEE-PEAT data are extrapolated to 2011-2021 by replicating the average emissions in 2000-2010 (pers. comm. C. Qiu). Further, ORCHIDEE-PEAT only provides peat drainage emissions north of 30°N, and thus we fill the regions south of 30°N by the average peat drainage emissions from FAO and LPX-Bern. The average of the carbon emission estimates by the three different peat drainage dataset is added to the bookkeeping models to obtain net ELUC and gross sources.  
The three bookkeeping estimates used in this study differ with respect to the land-use change data used to drive the models. The updated H&N2017 base their estimates directly on the Forest Resource Assessment of the FAO which provides statistics on forest-area change and management at intervals of five years currently updated until 2020 (FAO, 2020). The data is based on country reporting to FAO and may include remote-sensing information in more recent assessments. Changes in land-use other than forests are based on annual, national changes in cropland and pasture areas reported by FAO (FAOSTAT, 2021). On the other hand, BLUE uses the harmonised land-use change data LUH2-GCB2021GCB2022 covering the entire 850-20202021 period (an update to the previously released LUH2 v2h dataset; Hurtt et al., 2017; Hurtt et al., 2020), which was also used as input to the DGVMs (Section C.2.2). It describes land-use change, also based on the FAO data as described in Section C.2.2 as well as the HYDE3.3 dataset (Klein Goldewijk et al., 2017a, 2017b), but provided at a quarter-degree spatial resolution, considering sub-grid-scale transitions between primary forest, secondary forest, primary non-forest, secondary non-forest, cropland, pasture, rangeland, and urban land (Hurtt et al., 2020; Chini et al., 2021). LUH2-GCB2021GCB2022 provides a distinction between rangelands and pasture, based on inputs from HYDE. To constrain the models’ interpretation on whether rangeland implies the original natural vegetation to be transformed to grassland or not (e.g., browsing on shrubland), a forest mask was provided with LUH2-GCB2021; forest is assumed to be transformed to grasslands, while other natural vegetation remains (in case of secondary vegetation) or is degraded from primary to secondary vegetation (Ma et al., 2020). This is implemented in BLUE. OSCAR was run with both LUH2-GCB2021GCB2022 and FAO/FRA (as used by Houghton and Nassikas, 2017with the updated H&N2017), where emissions from the drivers of the latter were extended beyondlinearly extrapolated to 2021 using their 2015 with constant 2011–2015 average values.–2020 trends. The best-guess OSCAR estimate used in our study is a combination of results for LUH2-GCB2021GCB2022 and FAO/FRA land-use data and a large number of perturbed parameter simulations weighted against an observationala constraint. All three bookkeeping estimates were extended from 2020 to provide a projection for  (the cumulative SLAND over 1960-2020 of last year’s GCB) . As the record of the updated H&N2017 ends in 2020, we extend it to 2021 by adding the annual change indifference of the emissions from tropical deforestation and degradation and, peat burning and drainage, and peat fire between 2020 and 2021 to the respective model’s estimate for 2020 (van der Werf et al., 2017, Conchedda & Tubiello, 2020). i.e. considering the yearly anomalies of the emissions from tropical deforestation and degradation, peat drainage, and peat fire). The same method is applied to all three bookkeeping estimates to provide a projection for 2022.
For ELUC from 1850 onwards we average the estimates from BLUE, the updated H&N2017 and OSCAR. For the cumulative numbers starting 1750 an average of four earlier publications is added (30 ± 20 PgC 1750-1850, rounded to nearest 5; Le Quéré et al., 2016).
We provide estimates of the gross land use change fluxes from which the reported net land-use change flux, ELUC, is derived as a sum. Gross fluxes are derived internally by the three bookkeeping models: Gross emissions stem from decaying material left dead on site and from products after clearing of natural vegetation for agricultural purposes, or wood harvesting, emissions from peat drainage and peat burning, and, for BLUE, additionally from degradation from primary to secondary land through usage of natural vegetation as rangeland. Gross removals stem from regrowth after agricultural abandonment and wood harvesting. Gross fluxes for the updated H&N2017 2016-for 2020 and for the 20212022 projection of all three models were based on a regression of gross sources (including peat calculated by the change in emissions) from tropical deforestation and degradation and peat burning and drainage as described for the net ELUC above: As tropical deforestation and degradation and peat burning and drainage all only lead to netgross emissions for recent yearsto the atmosphere, only gross (and net) emissions are adjusted this way, while gross sinks are assumed to remain constant over the previous year. . 
Due to an artefact in the HYDE3.3 dataset expressed as an abrupt shift in the pattern of pastures/rangelands in 1960, the year 1960 exhibits much larger gross transitions between natural vegetation and pastures/rangelands than prior and subsequent years. Although these gross transitions cancel in terms of net area changes  causing large abrupt transitions, an unrealistic peak in emissions occurs around 1960 in BLUE and OSCAR. To correct for this, we replace the estimates for 1959-1961 by the average of 1958 and 1962 in each BLUE and OSCAR. Abrupt transitions will immediately influence gross emissions, which have a larger instantaneous component. Processes with longer timescales, such as slow legacy emissions and regrowth, are inseparable from the carbon dynamics due to subsequent land-use change events. We therefore do not adjust gross removals, but only gross emissions to match the corrected net flux. Since DGVMs estimates are only used for an uncertainty range of ELUC, which is independent of land-use changes, no correction is applied to the DGVMs data.
This year, we provide an additional split of the net ELUC into component fluxes to better identify reasons for divergence between bookkeeping estimates and to give more insight into the drivers of sources and sinks. This split distinguishes between fluxes from deforestation (including due to shifting cultivation), fluxes from organic soils (i.e., peat drainage and fires), fluxes on forests (slash and product decay following wood harvesting; regrowth associated with wood harvesting or after abandonment, including reforestation and in shifting cultivation cycles; afforestation) and fluxes associated with all other transitions. 
[bookmark: _heading=h.736q53x6q1w]C.2.2 Dynamic Global Vegetation Models (DGVMs)
Land-use change CO2 emissions have also been estimated using an ensemble of 1716 DGVMs simulations. The DGVMs account for deforestation and regrowth, the most important components of ELUC, but they do not represent all processes resulting directly from human activities on land (Table A1). All DGVMs represent processes of vegetation growth and mortality, as well as decomposition of dead organic matter associated with natural cycles, and include the vegetation and soil carbon response to increasing atmospheric CO2 concentration and to climate variability and change. Most models explicitly simulate the coupling of carbon and nitrogen cycles and account for atmospheric N deposition and N fertilisers (Table A1). The DGVMs are independent from the other budget terms except for their use of atmospheric CO2 concentration to calculate the fertilisation effect of CO2 on plant photosynthesis. 
All DGVMs use the LUH2-GCB2022 dataset as input, which includes the HYDE cropland/grazing land dataset (Klein Goldewijk et al., 2017a, 2017b), and additional information on land-cover transitions and wood harvest. DGVMs use annual, half-degree (regridded from 5 minute resolution),  fractional data on cropland and pasture from HYDE3.3. 
DGVMs that do not simulate subgrid scale transitions (i.e., net land-use emissions; see Table A1) used the HYDE land-use change data set (Klein Goldewijk et al., 2017a, 2017b), which provides annual (1700-2019), half-degree, fractional data on cropland and pasture. Theinformation on agricultural area change. For all countries, with the exception of Brazil and the Democratic Republic of the Congo (DRC), these data are based on the available annual FAO statistics of change in agricultural land area available until 2015. from 1961 up to and including 2017. The new HYDE3.3 cropland/grazing land dataset FAO retrospectively revised their reporting for DRC, which now inwas newly available until 2020. In addition to FAO country-level statistics the HYDE3.3 cropland/grazing land dataset is constrained spatially based on multi-year satellite land cover maps from ESA CCI LC. Data from HYDE3.3 is based on a FAO which includes yearly data from 1961 up to and including the year 2017.  (see below). . After the year 2017 HYDE, LUH2 extrapolates, on a gridcell-basis, the cropland, pasture, and urban data linearly based on the trend over the previous 5 years, to generate data until the year 2020. HYDE also2021. This extrapolation methodology is not appropriate for countries which have experienced recent rapid changes in the rate of land-use change, e.g. Brazil which has experienced a recent upturn in deforestation. Hence, for Brazil we replace FAO state-level data for cropland and grazing land in HYDE by those from in-country land cover dataset MapBiomas (collection 6) for 1985-2020 (Souza et al. 2020). ESA-CCI is used to spatially disaggregate as described below. Similarly, an estimate for the year 2021 is based on the MapBiomas trend 2015-2020. The pre-1985 period is scaled with the per capita numbers from 1985 from MapBiomas, so this transition is smooth. 
HYDE uses satellite imagery from ESA-CCI from 1992 – 2018 for more detailed yearly allocation of cropland and grazing land, with the ESA area data scaled to match the FAO annual totals at country-level. The 2018 map is also used for the 2019-2020 period. The original 300 metre spatial resolution data from ESA was aggregated to a 5 arc minute resolution according to the classification scheme as described in Klein Goldewijk et al (2017a). 
DGVMs that simulate subgrid scale transitions (i.e., gross land-use emissions; see Table A1) also useuse more detailed land use transition and wood harvest information from the LUH2-GCB2021GCB2022 data set,. LUH2-GCB2022 is an update of the more comprehensive harmonised land-use data set (Hurtt et al., 2020), that further includes fractional data on primary and secondary forest vegetation, as well as all underlying transitions between land-use states (850-2020; Hurtt et al., 2011, 2017, 2020; Chini et al., 2021; Table A1). This new data set is of quarter degree fractional areas of land-use states and all transitions between those states, including a new wood harvest reconstruction, new representation of shifting cultivation, crop rotations, management information including irrigation and fertiliser application. The land-use states include five different crop types in addition to thesplitting grazing land into managed pasture- and rangeland split discussed before. Wood harvest patterns are constrained with Landsat-based tree cover loss data (Hansen et al. 2013). Updates of LUH2-GCB2021GCB2022 over last year’s version (LUH2-GCB2020GCB2021) are using the most recent HYDE/FAO release (covering the time period up to 2021 included).2017, revision to Brazil and DRC as described above). We also use the most recentsame FAO wood harvest data as last year for all dataset years from 1961 to 2019. After the year 2019 we extrapolated the wood harvest data until, and extrapolate to the year 20202022. The HYDE3.3 population data is also used to extend the wood harvest time series back in time. Other wood harvest inputs (for years prior to 1961) remain the same in LUH2. With the switch from HYDE3.2 to HYDE3.3 changesThese updates in the land-use forcing comparedare shown in comparison to the more pronounced version used inchange from  the GCB2020 (Friedlingstein et al., 2020) are pronounced. They are thus compared in Fig. 6Bto GCB2021, which was discussed in Friedlingstein et al. (2022a) in Figure B6 and their relevance for land-use emissions discussed in Section 3.42.2. DGVMs implement land-use change differently (e.g., an increased cropland fraction in a grid cell can either be at the expense of grassland or shrubs, or forest, the latter resulting in deforestation; land cover fractions of the non-agricultural land differ between models). Similarly, model-specific assumptions are applied to convert deforested biomass or deforested area, and other forest product pools into carbon, and different choices are made regarding the allocation of rangelands as natural vegetation or pastures.
The difference between two DGVMs simulations (See Section C4.1 below), one forced with historical changes in land-use and a second with time-invariant pre-industrial land cover and pre-industrial wood harvest rates, allows quantification of the dynamic evolution of vegetation biomass and soil carbon pools in response to land-use change in each model (ELUC). Using the difference between these two DGVMs simulations to diagnose ELUC means the DGVMs account for the loss of additional sink capacity (around 0.4 ± 0.3 GtC yr-1; see Section 2.7.4, Appendix D4), while the bookkeeping models do not.
As a criterion for inclusion in this carbon budget, we only retain models that simulate a positive ELUC during the 1990s, as assessed in the IPCC AR4 (Denman et al., 2007) and AR5 (Ciais et al., 2013).  All DGVMs met this criterion, although one model was not included in the ELUC estimate from DGVMs as it exhibited a spurious response to the transient land cover change forcing after its initial spin-up. 
[bookmark: _heading=h.ymevokqnt5dz]C.2.3 Mapping of national GHG inventory data to ELUC
An approach was implemented to reconcile the large gap between ELUC from bookkeeping models and land use, land-use change and forestry (LULUCF) from national GHG Inventories (NGHGI) (see Tab. A8). This gap is due to different approaches to calculating “anthropogenic” CO2 fluxes related to land-use change and land management (Grassi et al. 2018). In particular, the land sinks due to environmental change on managed lands are treated as non-anthropogenic in the global carbon budget, while they are generally considered as anthropogenic in NGHGIs (“indirect anthropogenic fluxes”; Eggleston et al., 2006). Building on previous studies (Grassi et al. 2021), the approach implemented here adds the DGVMs estimates of CO2 fluxes due to environmental change from countries’ managed forest area (part of the SLAND) to the original ELUC flux. This sum is expected to be conceptually more comparable to LULUCF than simply ELUC.
ELUC data are taken from bookkeeping models, in line with the global carbon budget approach. To determine SLAND on managed forest, the following steps were taken: Spatially gridded data of “natural” forest NBP (SLAND i.e., due to environmental change and excluding land use change fluxes) were obtained with S2 runs from DGVMs up to 20192021 from the TRENDY v9v11 dataset. Results were first masked with the Hansena forest map that is based on Hansen (Hansen et al. 2013),) tree cover data. To do this conversion (“tree” cover to “forest” cover), we exclude gridcells with aless than 20% tree cover and following the FAO definition of forest (isolated pixels with maximum connectivity less than 0.5 ha are excluded), andfollowing the FAO definition of forest. Forest NBP are then further masked with the “intact” forest map for the year 2013, i.e. forest areas characterised by no remotely detected signs of human activity (Potapov et al. 2017). This way, we obtained the SLAND in “intact” and “non-intact” forest area, which previous studies (Grassi et al. 2021) indicated to be a good proxy, respectively, for “unmanaged” and “managed” forest area in the NGHGI. Note that only 4 models (CABLE-POP, CLASSIC, YIBs and ORCHIDEE-CNP) had forest NBP at grid cell level. Two models (OCN and ISBA-CTRIP) provided forest NEP and simulated disturbances at pixel level that were used as basis, in addition to forest cover fraction, to estimate forest NBP. For the other DGVMs, when a grid cell had forest, all the NBP was allocated to forest. JSBACH and YIBs) had forest NBP at grid cell level. For the other DGVMs, when a grid cell had forest, all the NBP was allocated to forest. However, since S2 simulations use pre-industrial forest cover masks that are at least 20% larger than today’s forest (Hurtt et al. 2020), we corrected this NBP by a ratio between observed (based on Hansen) and prescribed (from DGVMs) forest cover. This ratio is calculated for each individual DGVM that provides information on prescribed forest cover (LPX-Bern, OCN, JULES, VISIT, VISIT-NIES, SDGVM). For the others (IBIS, CLM5.0, ORCHIDEE, ISAM, DLEM, LPJ-GUESS) a common ratio (median ratio of all the 10 models that provide information on prescribed forest cover) is used. The details of the method used are explained here: https://github.com/RamAlkama/LandCarbonBudget_IntactAndNonIntactForest
 LULUCF data from NGHGIs are from Grassi et al. (2021) until 2017, updated until 2019 for UNFCCC(2022a). While Annex I countries. For non report a complete time series 1990-2020, for Non-Annex I countries, gap-filling was applied through linear interpolation between two points and/or through extrapolation backward (till 1990) and forward (till 2020) using the years 2018 and 2019 weresingle closest available data. For all countries, the year 2021 is assumed to be equal to the average 2013-2017.2020.. This data includes all CO2 fluxes from land considered managed, which in principle encompasses all land uses (forest land, cropland, grassland, wetlands, settlements, and other land), changes among them, emissions from organic soils and from fires. In practice, although almost all Annex I countries report all land uses, many non-Annex I countries report only on deforestation and forest land, and only few countries report on other land uses. In most cases, NGHGI include most of the natural response to recent environmental change, because they use direct observations (e.g., national forest inventories) that do not allow separating direct and indirect anthropogenic effects (Eggleston et al., 2006).
To provide additional, largely independent assessments of fluxes on unmanaged vs managed lands, we include a DGVM that allows diagnosing fluxes from unmanaged vs managed lands by tracking vegetation cohorts of different ages separately. This model, ORCHIDEE-MICT (Yue et al., 2018), was run using the same LUH2 forcing as the DGVMs used in this budget (Section 2.5) and the bookkeeping models BLUE and OSCAR (Section 2.2). Old-aged forest was classified as primary forest after a certain threshold of carbon density was reached again, and the model-internal distinction between primary and secondary forest used as proxies for unmanaged vs managed forests; agricultural lands are added to the latter to arrive at total managed land.
Tab. A8 shows the resulting mapping of global carbon cycle models' land flux definitions to that of the NGHGI (discussed in Section 3.2.2). ORCHIDEE-MICT estimates for SLAND on intact forests are expected to be higher than based on DGVMs in combination with the NGHGI managed/unmanaged forest data because the unmanaged forest area, with about 27 mio km2, is estimated to be substantially larger by ORCHIDEE-MICT than, with less than 10 mio km2, by the NGHGI, while managed forest area is estimated to be smaller (22 compared to 32 mio km2). Related to this, ELUC plus SLAND on non-intact lands plus ELUC is a larger source estimated by ORCHIDEE-MICT compared to NGHGI. We also show as comparison FAOSTAT emissions totals (FAO, 2021), which include emissions from net forest conversion and fluxes on forest land (Tubiello et al., 2021) as well as CO2 emissions from peat drainage and peat fires. The 2021 data was estimated by including actual 2021 estimates for peatlands drainage and fire and a carry forward from 2020 to 2021 for the forest land stock change. The FAO data shows a global source of 0.24 GtC yr-1 averaged over 2012-2021, in contrast to the sink of -0.54 GtC yr-1 of the gap-filled NGHGI data. Most of this difference is attributable to different scopes: a focus on carbon fluxes for the NGHGI and a focus on area and biomass for FAO. In particular, the NGHGI data includes a larger forest sink for non-Annex 1 countries resulting from a more complete coverage of non-biomass carbon pools and non-forest land uses. NGHGI and FAO data also differ in terms of underlying data on forest land (Grassi et al., 2022a).
[bookmark: _heading=h.u6i76kriivtn]C.2.4 Uncertainty assessment for ELUC
Differences between the bookkeeping models and DGVMs models originate from three main sources: the different methodologies, which among others lead to inclusion of the loss of additional sink capacity in DGVMs (see Appendix D1.4), the underlying land-use/land cover data set, and the different processes represented (Table A1). We examine the results from the DGVMs models and of the bookkeeping method and use the resulting variations as a way to characterise the uncertainty in ELUC.
Despite these differences, the ELUC estimate from the DGVMs multi-model mean is consistent with the average of the emissions from the bookkeeping models (Table 5). However there are large differences among individual DGVMs (standard deviation at around 0.5 GtC yr-1; Table 5), between the bookkeeping estimates (average difference 1850-2020 BLUE-updated H&N2017 of 0.8 GtC yr-1, BLUE-OSCAR of 0.4 GtC yr-1, OSCAR-updated H&N2017 of 0.3 GtC yr-1), and between the updated estimate of H&N2017 and its previous model version (Houghton et al., 2012). A factorial analysis of differences between BLUE and H&N2017 attributed them particularly to differences in carbon densities between natural and managed vegetation or primary and secondary vegetation (Bastos et al., 2021). Earlier studies additionally showed the relevance of the different land-use forcing as applied (in updated versions) also in the current study (Gasser et al., 2020). Ganzenmüller et al. (2022) recently showed that ELUC estimates with BLUE are substantially smaller when the model is driven by a new high-resolution land-use dataset (HILDA+). They identified shifting cultivation and the way it is implemented in LUH2 as a main reason for this divergence. They further showed that a higher spatial resolution reduces the estimates of both sources and sinks because successive transitions are not adequately represented at coarser resolution, which has the effect that—despite capturing the same extent of transition areas—overall less area remains pristine at the coarser compared to the higher resolution.
The uncertainty in ELUC of ±0.7 GtC yr-1 reflects our best value judgement that there is at least 68% chance (±1σ) that the true land-use change emission lies within the given range, for the range of processes considered here. Prior to the year 1959, the uncertainty in ELUC was taken from the standard deviation of the DGVMs. We assign low confidence to the annual estimates of ELUC because of the inconsistencies among estimates and of the difficulties to quantify some of the processes in DGVMs. 
[bookmark: _heading=h.km9vv9q4ijoy]C.2.5 Emissions projections for ELUC
We project the 20212022 land-use emissions for BLUE, the updated H&N2017 and OSCAR, starting from their estimates for 20202021 assuming unaltered peat drainage, which has low interannual variability, and the highly variable emissions from peat fires, tropical deforestation and degradation as estimated using active fire data (MCD14ML; Giglio et al., 2016). Those latter scale almost linearly with GFED over large areas (van der Werf et al., 2017), and thus allows for tracking fire emissions in deforestation and tropical peat zones in near-real time. 
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[bookmark: _heading=h.akjj5z15e5u]C.3 Methodology Ocean CO2 sink (SOCEAN)
[bookmark: _heading=h.1g19tf78imtm]C.3.1 Observation-based estimates
We primarily use the observational constraints assessed by IPCC of a mean ocean CO2 sink of 2.2 ± 0.7 GtC yr-1 for the 1990s (90% confidence interval; Ciais et al., 2013) to verify that the GOBMs provide a realistic assessment of SOCEAN.  This is based on indirect observations with seven different methodologies and their uncertainties, and further using thethree of these methods that are deemed most reliable for the assessment of this quantity (Denman et al., 2007; Ciais et al., 2013). The observation-based estimates use the ocean/land CO2 sink partitioning from observed atmospheric CO2 and O2/N2 concentration trends (Manning and Keeling, 2006; Keeling and Manning, 2014), an oceanic inversion method constrained by ocean biogeochemistry data (Mikaloff Fletcher et al., 2006), and a method based on penetration time scale for chlorofluorocarbons (McNeil et al., 2003). The IPCC estimate of 2.2 GtC yr-1 for the 1990s is consistent with a range of methods (Wanninkhof et al., 2013). We refrain from using the IPCC estimates for the 2000s (2.3 ± 0.7 GtC yr-1), and the period 2002-2011 (2.4  ± 0.7 GtC yr-1, Ciais et al., 2013) as these are based on trends derived mainly from models and one data-product (Ciais et al., 2013). Additional constraints summarised in AR6 (Canadell et al., 2021) are the interior ocean anthropogenic carbon change (Gruber et al., 2019) and ocean sink estimate from atmospheric CO2 and O2/N2 (Tohjima et al., 2019) which are used for model evaluation and discussion, respectively.
We also use eight estimates of the ocean CO2 sink and its variability based on surface ocean fCO2 maps obtained by the interpolation of surface ocean fCO2 measurements from 1990 onwards due to severe restriction in data availability prior to 1990 (Figure 910).  These estimates differ in many respects: they use different maps of surface fCO2, different atmospheric CO2 concentrations, wind products and different gas-exchange formulations as specified in Table A3. We refer to them as fCO2-based flux estimates. The measurements underlying the surface fCO2 maps are from the Surface Ocean CO2 Atlas version 2021 (SOCATv20212022 (SOCATv2022; Bakker et al., 20212022), which is an update of version 3 (Bakker et al., 2016) and contains quality-controlled data through 20202021 (see data attribution Table A5). Each of the estimates uses a different method to then map the SOCAT v2021v2022 data to the global ocean. The methods include a data-driven diagnostic method combined with a multi linear regression approach to extend back to 1957 (Rödenbeck et al., 20132022; referred to here as Jena-MLS), three neural network models (Landschützer et al., 2014; referred to as MPI-SOMFFN; Chau et al., 20212022; Copernicus Marine Environment Monitoring Service, referred to here as CMEMS-LSCE-FFNN; and Zeng et al., 2014; referred to as NIES-FNN), twoNN), one cluster regression approaches (Gregor et al., 2019; referred to here as CSIR-ML6; and Gregor and Gruber, 2021, referred to as OS-ETHZ-GRaCER), and a multi-linear regression method (Iida et al., 2021; referred to as JMA-MLR).), and one method that relates the fCO2 misfit between GOBMs and SOCAT to environmental predictors using the extreme gradient boosting method (Gloege et al., 2022). The ensemble mean of the fCO2-based flux estimates is calculated from these seven mapping methods. Further, we show the flux estimate of Watson et al. (2020) who also use the MPI-SOMFFN method to map the adjusted fCO2 data to the globe, but resulting in a substantially larger ocean sink estimate, owing to a number of adjustments they applied to the surface ocean fCO2 data and the gas-exchange parameterization.. Concretely, these authors adjusted the SOCAT fCO2 downward to account for differences in temperature between the depth of the ship intake and the relevant depth right near the surface, and included a further adjustment to account for the cool surface skin temperature effect. The Watson et al. flux estimate hence differs from the others by their choice of adjusting the flux to a cool, salty ocean surface skin. Watson et al. (2020) showed that this temperature adjustment leads to an upward correction of the ocean carbon sink, up to 0.9 GtC yr-1, that, if correct, should be applied to all fCO2-based flux estimates. So far, this adjustment is based on a single line of evidence and hence associated with low confidence until further evidence is available. A reduction of this adjustment to 0.6 GtC yr-1 was proposed by Dong et al. (2022). The impact of the cool skin effect on air-sea CO2 flux is based on established understanding of temperature gradients (as discussed by Goddijn-Murphy et al 2015), and laboratory observations (Jähne and Haussecker, 1998; Jähne, 2019), but in situ field observational evidence is lacking (Dong et al., 2022). The Watson et al flux estimate presented here is therefore not included in the ensemble mean of the fCO2-based flux estimates. This choice will be re-evaluated in upcoming budgets based on further lines of evidence. 
Typically, data products do not cover the entire ocean due to missing coastal oceans and sea ice cover. The CO2 flux from each fCO2-based product is either already at or above 98% areal99% coverage of the ice-free ocean surface area in two products (Jena-MLS, OS-ETHZ-GRaCER), and filled by the data-provider in three products (using Fay et al., 2021a, method for JMA-MLR and LDEO-HPD; and Landschützer et al., 2020, methodology for MPI-SOMFFN scaled by the 
In previous versions of ratio of the total ocean area covered by the respective product to the total ocean area GCB, the missing areas were accounted for by scaling the globally integrated fluxes by the fraction of the global ocean coverage (361.9e6 km2) from based on ETOPO1 (, Amante and Eakins, 2009; Eakins and Sharman, 2010). In products where the covered area varies with time (e.g., CMEMS-LSCE-FFNN) we use the maximum area coverage. The lowest coverage is 93% (NIES-NN), resulting in ) with the area covered by the CO2 flux predictions. This approach may lead to unnecessary scaling when the majority of the missing data are in the ice-covered region (as is often the case), where flux is already assumed to be zero. To avoid this unnecessary scaling, we now scale fluxes regionally (North, Tropics, South) to match the ice-free area (using NOAA’s OISSTv2, Reynolds et al., 2002):
 
In the equation, A represents area, (1 – ice) represents the ice free ocean, A_{FCO2}^{region} represents the coverage of the data product for a maximum adjustment factor of 1.08 (Table A3, Hauck et al., 2020).region, and FCO_2^{region} is the integrated flux for a region.
 We further use results from two diagnostic ocean models, Khatiwala et al. (2013) and DeVries (2014), to estimate the anthropogenic carbon accumulated in the ocean prior to 1959. The two approaches assume constant ocean circulation and biological fluxes, with SOCEAN estimated as a response in the change in atmospheric CO2 concentration calibrated to observations. The uncertainty in cumulative uptake of ±20 GtC (converted to ±1σ) is taken directly from the IPCC’s review of the literature (Rhein et al., 2013), or about ±30% for the annual values (Khatiwala et al., 2009).
[bookmark: _heading=h.vvv21hzfmyk6]C.3.2 Global Ocean Biogeochemistry Models (GOBMs)
The ocean CO2 sink for 1959-201920121 is estimated using eightten GOBMs (Table A2). The GOBMs represent the physical, chemical, and biological processes that influence the surface ocean concentration of CO2 and thus the air-sea CO2 flux. The GOBMs are forced by meteorological reanalysis and atmospheric CO2 concentration data available for the entire time period. They mostly differ in the source of the atmospheric forcing data (meteorological reanalysis), spin up strategies, and in their horizontal and vertical resolutions (Table A2). All GOBMs except onetwo (CESM-ETHZ, CESM2) do not include the effects of anthropogenic changes in nutrient supply (Duce et al., 2008). They also do not include the perturbation associated with changes in riverine organic carbon (see Section 2.7.3). 
ThreeFour sets of simulations were performed with each of the GOBMs. Simulation A applied historical changes in climate and atmospheric CO2 concentration. Simulation B is a control simulation with constant atmospheric forcing (normal year or repeated year forcing) and constant pre-industrial atmospheric CO2 concentration. Simulation C is forced with historical changes in atmospheric CO2 concentration, but repeated year or normal year atmospheric climate forcing. Simulation D is forced by historical changes in climate and constant pre-industrial atmospheric CO2 concentration. To derive SOCEAN from the model simulations, we subtracted the slope of a linear fit to the annual time series of the control simulation B from the annual time series of simulation A. Assuming that drift and bias are the same in simulations A and B, we thereby correct for any model drift. Further, this difference also removes the natural steady state flux (assumed to be 0 GtC yr-1 globally without rivers) which is often a major source of biases. Simulation B ofThis approach works for all model set-ups, including IPSL had to be treated differently as it , where simulation B was forced with constant atmospheric CO2 but observed historical changes in climate. For IPSL, we fitted a linear trend to the simulation B and subtracted this linear trend from  (equivalent to simulation A.D). This approach assures that the interannual variability is not removed from IPSL simulation A.
The absolute correction for bias and drift per model in the 1990s varied between <0.01 GtC yr-1 and 0.2641 GtC yr-1, with sixseven models having positive biases, two having negative biases and one model having essentially no bias (NorESM). The remaining model (MPI) model uses riverine input and therefore simulates outgassing in simulation B, i.e., a seemingly negative bias. .By subtracting simulation B, also the ocean carbon sink of the MPI model follows the definition of SOCEAN. This correction reduces the model mean ocean carbon sink by 0.0304 GtC yr-1 in the 1990s. The ocean models cover 99% to 101% of the total ocean area, so that area-scaling is not necessary.
[bookmark: _heading=h.dd3l3is035nt]C.3.3 GOBM evaluation and uncertainty assessment for SOCEAN
The ocean CO2 sink for all GOBMs and the ensemble mean falls within 90% confidence of the observed range, or 1.5 to 2.9 GtC yr-1 for the 1990s (Ciais et al., 2013) before and after applying adjustments. An exception is the MPI model, which simulates a low ocean carbon sink of 1.38 GtC yr-1 for the 1990s in simulation A owing to the inclusion of riverine carbon flux. After adjusting to the GCB’s definition of SOCEAN by subtracting simulation B, the MPI model falls into the observed range with an estimated sink of 1.69 GtC yr-1. 
The GOBMs and data products have been further evaluated using the fugacity of sea surface CO2 (fCO2) from the SOCAT v2021v2022 database (Bakker et al., 2016, 20212022). We focused this evaluation on the root mean squared error (RMSE) between observed and modelled fCO2 and on a measure of the amplitude of the interannual variability of the flux (modified after Rödenbeck et al., 2015).  The RMSE is calculated from detrended, annually and regionally averaged time series calculated from GOBMs and data-product fCO2 subsampled to open ocean (water depth > 400 m) SOCAT sampling points to measure the misfit between large-scale signals (Hauck et al., 2020)). To this end, we apply the following steps: (i) subsample data points for where there are observations (GOBMs/data-products as well as SOCAT), (ii) average spatially, (iii) calculate annual mean, (iv) detrend both time-series (GOBMs/data-products as well as SOCAT), (v) calculate RMSE.  This year, we do not apply an open ocean mask of 400 m, but instead a mask based on the minimum area coverage of the data-products. This ensures a fair comparison over equal areas. The amplitude of the SOCEAN interannual variability (A-IAV) is calculated as the temporal standard deviation of the detrended annual CO2 flux time series after area-scaling (Rödenbeck et al., 2015, Hauck et al., 2020). These metrics are chosen because RMSE is the most direct measure of data-model mismatch and the A-IAV is a direct measure of the variability of SOCEAN on interannual timescales. We apply these metrics globally and by latitude bands. Results are shown in Fig.Figure B2 and discussed in Section 3.5.5. 
We quantify the 1-σ uncertainty around the mean ocean sink of anthropogenic CO2 by assessing random and systematic uncertainties for the GOBMs and data-products. The random uncertainties are taken from the ensemble standard deviation (0.3 GtC yr-1 for GOBMs, 0.3  GtC yr-1 for data-products). We derive the GOBMs systematic uncertainty by the deviation of the DIC inventory change 1994-2007 from the Gruber et al (2019) estimate (0.54 GtC yr-1) and suggest these are related to physical transport (mixing, advection) into the ocean interior. For the data-products, we consider systematic uncertainties stemming from uncertainty in fCO2 observations (0.2  GtC yr-1 , Takahashi et al., 2009; Wanninkhof et al., 2013), gas-transfer velocity (0.2  GtC yr-1 , Ho et al., 2011; Wanninkhof et al., 2013; Roobaert et al., 2018), wind product (0.1 GtC yr-1 , , Fay et al., 2021a), river flux adjustment (0.2 3 GtC yr-1 , Jacobson, Regnier et al., 2007; Resplandy et al., 20182022, formally 2-σ uncertainty), and fCO2 mapping (0.2  GtC yr-1 , Landschützer et al., 2014). Combining these uncertainties as their squared sums, we assign an uncertainty of ± 0.65 GtC yr-1 to the GOBMs ensemble mean and an uncertainty of  ± 0.56 GtC yr-1 to the data-product ensemble mean. These uncertainties are propagated as σ(SOCEAN) = (1/22 * 0.6252 + 1/22 * 0.5262)1/2 GtC yr-1 and result in an ± 0.4 GtC yr-1 uncertainty around the best estimate of SOCEAN. 
We examine the consistency between the variability of the model-based and the fCO2-based data products to assess confidence in SOCEAN. The interannual variability of the ocean fluxes (quantified as A-IAV, the standard deviation after detrending, Figure B2) of the seven fCO2-based data products plus the Watson et al. (2020) product for 1990-20202021, ranges from 0.1612 to 0.2632 GtC yr-1 with the lower estimates by the threetwo ensemble methods (CSIR-ML6, CMEMS-LSCE-FFNN, OS-ETHZ-GRaCER). The inter-annual variability in the GOBMs ranges between 0.1009 and 0.1920 GtC yr-1, hence there is overlap with the lower A-IAV estimates of threetwo data-products.
Individual estimates (both GOBMs and data products) generally produce a higher ocean CO2 sink during strong El Niño events. There is emerging agreement between GOBMs and data-products on the patterns of decadal variability of SOCEAN with a global stagnation in the 1990s and an extra-tropical strengthening in the 2000s (McKinley et al., 2020, Hauck et al., 2020). The central estimates of the annual flux from the GOBMs and the fCO2-based data products have a correlation r of 0.94 (1990-20202021). The agreement between the models and the data products reflects some consistency in their representation of underlying variability since there is little overlap in their methodology or use of observations. 
Appendix 
[bookmark: _heading=h.5umcxbza0dgr]C.4 Methodology Land CO2 sink (SLAND)
[bookmark: _heading=h.bygf4wivcatr]C.4.1 DGVM simulations
The DGVMs model runs were forced by either the merged monthly Climate Research Unit (CRU) and 6 hourly Japanese 55-year Reanalysis (JRA-55) data set or by the monthly CRU data set, both providing observation-based temperature, precipitation, and incoming surface radiation on a 0.5°x0.5° grid and updated to 20202021 (Harris et al., 2014, 2020). The combination of CRU monthly data with 6 hourly forcing from JRA-55 (Kobayashi et al., 2015) is performed with methodology used in previous years (Viovy, 2016) adapted to the specifics of the JRA-55 data. 
New to this budget is the revision ofIntroduced in GCB2021 (Friedlingstein et al., 2022a), incoming short-wave radiation fields to take into account aerosol impacts and the division of total radiation into direct and diffuse components as summarised below.
The diffuse fraction dataset offers 6-hourly distributions of the diffuse fraction of surface shortwave fluxes over the period 1901-20202021. Radiative transfer calculations are based on monthly-averaged distributions of tropospheric and stratospheric aerosol optical depth, and 6-hourly distributions of cloud fraction. Methods follow those described in the Methods section of Mercado et al. (2009), but with updated input datasets.
The time series of speciated tropospheric aerosol optical depth is taken from the historical and RCP8.5 simulations by the HadGEM2-ES climate model (Bellouin et al., 2011). To correct for biases in HadGEM2-ES, tropospheric aerosol optical depths are scaled over the whole period to match the global and monthly averages obtained over the period 2003-2020 by the CAMS Reanalysis of atmospheric composition (Inness et al., 2019), which assimilates satellite retrievals of aerosol optical depth.
The time series of stratospheric aerosol optical depth is taken from the by Sato et al. (1993) climatology, which has been updated to 2012. Years 2013-2020 are assumed to be background years so replicate the background year 2010. That assumption is supported by the Global Space-based Stratospheric Aerosol Climatology time series (1979-2016; Thomason et al., 2018). The time series of cloud fraction is obtained by scaling the 6-hourly distributions simulated in the Japanese Reanalysis (Kobayashi et al., 2015) to match the monthly-averaged cloud cover in the CRU TS v4.0306 dataset (Harris et al., 20212020). Surface radiative fluxes account for aerosol-radiation interactions from both tropospheric and stratospheric aerosols, and for aerosol-cloud interactions from tropospheric aerosols, except mineral dust. Tropospheric aerosols are also assumed to exert interactions with clouds. 
The radiative effects of those aerosol-cloud interactions are assumed to scale with the radiative effects of aerosol-radiation interactions of tropospheric aerosols, using regional scaling factors derived from HadGEM2-ES. Diffuse fraction is assumed to be 1 in cloudy sky. Atmospheric constituents other than aerosols and clouds are set to a constant standard mid-latitude summer atmosphere, but their variations do not affect the diffuse fraction of surface shortwave fluxes.
In summary, the DGVMs forcing data include time dependent gridded climate forcing, global atmospheric CO2 (Dlugokencky and Tans, 2022), gridded land cover changes (see Appendix C.2.2), and gridded nitrogen deposition and fertilisers (see Table A1 for specific models details). 
Four simulations were performed with each of the DGVMs. Simulation 0 (S0) is a control simulation which uses fixed pre-industrial (year 1700) atmospheric CO2 concentrations, cycles early 20th century (1901-1920) climate and applies a time-invariant pre-industrial land cover distribution and pre-industrial wood harvest rates. Simulation 1 (S1) differs from S0 by applying historical changes in atmospheric CO2 concentration and N inputs. Simulation 2 (S2) applies historical changes in atmospheric CO2 concentration, N inputs, and climate, while applying time-invariant pre-industrial land cover distribution and pre-industrial wood harvest rates. Simulation 3 (S3) applies historical changes in atmospheric CO2 concentration, N inputs, climate, and land cover distribution and wood harvest rates. 
S2 is used to estimate the land sink component of the global carbon budget (SLAND). S3 is used to estimate the total land flux but is not used in the global carbon budget. We further separate SLAND into contributions from CO2 (=S1-S0) and climate (=S2-S1-+S0).  
[bookmark: _heading=h.1s8u1agk2n2k]C.4.2 DGVM evaluation and uncertainty assessment for SLAND
We apply three criteria for minimum DGVMs realism by including only those DGVMs with (1) steady state after spin up, (2) global net land flux (SLAND – ELUC) that is an atmosphere-to-land carbon flux over the 1990s ranging between -0.3 and 2.3 GtC yr-1, within 90% confidence of constraints by global atmospheric and oceanic observations (Keeling and Manning, 2014; Wanninkhof et al., 2013), and (3) global ELUC that is a carbon source to the atmosphere over the 1990s, as already mentioned in section C.2.2. All 17 DGVMs meet these three criteria. 
In addition, the DGVMs results are also evaluated using the International Land Model Benchmarking system (ILAMB; Collier et al., 2018). This evaluation is provided here to document, encourage and support model improvements through time. ILAMB variables cover key processes that are relevant for the quantification of SLAND and resulting aggregated outcomes. The selected variables are vegetation biomass, gross primary productivity, leaf area index, net ecosystem exchange, ecosystem respiration, evapotranspiration, soil carbon, and runoff (see Fig.Figure B3 for the results and for the list of observed databases). Results are shown in Fig.Figure B3 and discussed in Section 3.6.5.
For the uncertainty for SLAND, we use the standard deviation of the annual CO2 sink across the DGVMs, averaging to about ± 0.6 GtC yr-1 for the period 1959 to 20192021. We attach a medium confidence level to the annual land CO2 sink and its uncertainty because the estimates from the residual budget and averaged DGVMs match well within their respective uncertainties (Table 5).
[bookmark: _heading=h.uga8gq2grl1]Appendix 
[bookmark: _heading=h.58b8z5e2jleu]C.5 Methodology Atmospheric Inversions
[bookmark: _heading=h.qo34txu9irzp]SixC.5.1 Inversion System Simulations
Nine atmospheric inversions (details of each in Table A4) were used to infer the spatio-temporal distribution of the CO2 flux exchanged between the atmosphere and the land or oceans. These inversions are based on Bayesian inversion principles with prior information on fluxes and their uncertainties. They use very similar sets of surface measurements of CO2 time series (or subsets thereof) from various flask and in situ networks. One inversion system also used satellite xCO2 retrievals from GOSAT and OCO-2. 
Each inversion system uses different methodologies and input data but is rooted in Bayesian inversion principles. These differences mainly concern the selection of atmospheric CO2 data and prior fluxes, as well as the spatial resolution, assumed correlation structures, and mathematical approach of the models. Each system uses a different transport model, which was demonstrated to be a driving factor behind differences in atmospheric inversion-based flux estimates, and specifically their distribution across latitudinal bands (Gaubert et al., 2019; Schuh et al., 2019).
The inversion systems all prescribe samesimilar global fossil fuel emissions for EFOS; specifically, the GCP’s Gridded Fossil Emissions Dataset version 20212022 (GCP-GridFEDv2021GridFEDv2022.2; Jones et al., 2021b2022), which is an update through 20202021 of the first version of GCP-GridFED presented by Jones et al. (2021a).(2021), or another recent version of GCP-GridFEDv2021.2 scalesGridFED (Table A4). All GCP-GridFED versions scale gridded estimates of CO2 emissions from EDGARv4.3.2 (Janssens-Maenhout et al., 2019) within national territories to match national emissions estimates provided by the GCP for the years 1959-20202021, which wereare compiled following the methodology described in Appendix C.1 based on all information available on 31st July 2021 (R. Andrew, pers. comm.). Typically, the. GCP-GridFEDGridFEDv2022.2 adopts the seasonal variation inseasonality of emissions (the monthly distribution of annual emissions) from the Carbon Monitor (Liu et al., 2020a,b; Dou et al., 2022) for Brazil, China, all EU27 countries, the United Kingdom, the USA and shipping and aviation bunker emissions. The seasonality present in Carbon Monitor is used directly for years 2019-2021, while for years 1959-2018 the average seasonality of 2019 and 2021 are applied (avoiding the year 2020 during which emissions were most impacted by the COVID-19 pandemic). For all other countries, seasonality of emissions is taken from EDGAR and applies(Janssens-Maenhout et al., 2019; Jones et al., 2022), with small correctionsannual correction to the seasonality present in year 2010 based on heating or cooling degree days to account for the effects of inter-annual climate variability on the seasonality emissions (Jones et al., 2021a). However, strategies taken to deal with the COVID-19 pandemic during 2020 mean that the seasonality of emissions diverged substantially in 2020 from a typical year. To account for this change, GCP-GridFEDv2021.2 adopts the national seasonality in emissions from Carbon Monitor (Liu et al., 2020a,b) during the years 2019-2020 (Jones et al. 2021b).of emissions (Jones et al., 2021). Earlier versions of GridFED used Carbon Monitor-based seasonality only during the years 2019 onwards. In addition, we note that GCP-GridFEDv2022.1 and v2022.2 include emissions from cement production and the cement carbonation CO2 sink (Appendix C.1.1), whereas earlier versions of GCP-GridFED did not include the cement carbonation CO2 sink. 
 The consistent use of recent versions of GCP-GridFEDv2021.2GridFED for EFOS ensures a close alignment with the estimate of EFOS used in this budget assessment, enhancing the comparability of the inversion-based estimate with the flux estimates deriving from DGVMs, GOBMs and fCO2-based methods. To account for small differences in regridding, and the use of a slightly earlier file version (GCP-GridFEDv2021.1) for 2000-2018 in CarbonTracker Europe, small fossil fuel corrections were applied to all inverse models to make the estimated uptake of atmospheric CO2 fully consistent. Finally, we note that GCP-GridFEDv2021.2 includes emissions from cement production, but it does not include the cement carbonation CO2 sink (Xi et al., 2016; Cao et al., 2020; Guo et al. 2021) that is applied to the GCB estimate of EFOS in Table 6. To ensure that the estimated uptake of atmospheric CO2 by the land and oceans was fully consistent with the sum of the fossil emissions flux from GCP-GridFEDv2022.2 and the atmospheric growth rate of CO2, small corrections to the fossil fuel emissions flux were applied to inversions systems using other versions of GCP-GridFED.
The land and ocean CO2 fluxes from atmospheric inversions contain anthropogenic perturbation and natural pre-industrial CO2 fluxes. On annual time scales, natural pre-industrial fluxes are primarily land CO2 sinks and ocean CO2 sources corresponding to carbon taken up on land, transported by rivers from land to ocean, and outgassed by the ocean. These pre-industrial land CO2 sinks are thus compensated over the globe by ocean CO2 sources corresponding to the outgassing of riverine carbon inputs to the ocean, using the exact same numbers and distribution as described for the oceans in Section 2.4. To facilitate the comparison, we adjusted the inverse estimates of the land and ocean fluxes per latitude band with these numbers to produce historical perturbation CO2 fluxes from inversions. Finally, for the presentation of the comparison in Figure 11 we modified the FF-corrected and riverine-adjusted land sinks from the inversions further, by removing a 0.2 GtCyr-1 CO2 sink that is ascribed to cement carbonation in the GCB, rather than to terrestrial ecosystems. The latter is not applied in the inversion products released through GCB or the original data portals of these products.
[bookmark: _heading=h.ipo4tye8wae6]C.5.2 Inversion System Evaluation
All participating atmospheric inversions are checked for consistency with the annual global growth rate, as both are derived from the global surface network of atmospheric CO2 observations. In this exercise, we use the conversion factor of 2.086 GtC/ppm to convert the inverted carbon fluxes to mole fractions, as suggested by Prather (2012). This number is specifically suited for the comparison to surface observations that do not respond uniformly, nor immediately, to each year’s summed sources and sinks. This factor is therefore slightly smaller than the GCB conversion factor in Table 1 (2.142 GtC/ppm, Ballantyne et al., 2012). Overall, the inversions agree with the growth rate with biases between 0.03-0.08 ppm (0.06-0.17 GtCyr-1) on the decadal average.
The atmospheric inversions are also evaluated using vertical profiles of atmospheric CO2 concentrations (Fig.Figure B4). More than 30 aircraft programs over the globe, either regular programs or repeated surveys over at least 9 months, have been used in order to draw a robust picture of the modelsystem performance (with space-time data coverage irregular and denser in the 0-45°N latitude band; Table A6). The six modelsnine systems are compared to the independent aircraft CO2 measurements between 2 and 7 km above sea level between 2001 and 20202021. Results are shown in Fig.Figure B4, where the inversions generally match the atmospheric mole fractions to within 0.67 ppm at all latitudes, except for CT Europe in 2010-20202011-2021 over the more sparsely sampled southern hemisphere.

[bookmark: _heading=h.9oaubu1uhum6]Appendix D: Processes not included in the global carbon budget 
[bookmark: _heading=h.p82zbuo2p08c]Appendix D.1 Contribution of anthropogenic CO and CH4 to the global carbon budget
Equation (1) includes only partly the net input of CO2 to the atmosphere from the chemical oxidation of reactive carbon-containing gases from sources other than the combustion of fossil fuels, such as: (1) cement process emissions, since these do not come from combustion of fossil fuels, (2) the oxidation of fossil fuels, (3) the assumption of immediate oxidation of vented methane in oil production. However, it omits any other anthropogenic carbon-containing gases that are eventually oxidised in the atmosphere, such as anthropogenic emissions of CO and CH4. An attempt is made in this section to estimate their magnitude and identify the sources of uncertainty. Anthropogenic CO emissions are from incomplete fossil fuel and biofuel burning and deforestation fires. The main anthropogenic emissions of fossil CH4 that matter for the global (anthropogenic) carbon budget are the fugitive emissions of coal, oil and gas sectors (see below). These emissions of CO and CH4 contribute a net addition of fossil carbon to the atmosphere.
In our estimate of EFOS we assumed (Section 2.1.1) that all the fuel burned is emitted as CO2, thus CO anthropogenic emissions associated with incomplete fossil fuel combustion and its atmospheric oxidation into CO2 within a few months are already counted implicitly in EFOS and should not be counted twice (same for ELUC and anthropogenic CO emissions by deforestation fires). Anthropogenic emissions of fossil CH4 are however not included in EFOS, because these fugitive emissions are not included in the fuel inventories. Yet they contribute to the annual CO2 growth rate after CH4 gets oxidized into CO2. Emissions of fossil CH4 represent 30% of total anthropogenic CH4 emissions (Saunois et al. 2020; their top-down estimate is used because it is consistent with the observed CH4 growth rate), that is 0.083 GtC yr-1 for the decade 2008-2017. Assuming steady state, an amount equal to this fossil CH4 emission is all converted to CO2 by OH oxidation, and thus explain 0.083 GtC yr-1 of the global CO2 growth rate with an uncertainty range of 0.061 to 0.098 GtC yr-1  taken from the min-max of top-down estimates in Saunois et al. (2020). If this min-max range is assumed to be 2 σ because Saunois et al. (2020) did not account for the internal uncertainty of their min and max top-down estimates, it translates into a 1-σ uncertainty of 0.019 GtC yr-1.
Other anthropogenic changes in the sources of CO and CH4 from wildfires, vegetation biomass, wetlands, ruminants, or permafrost changes are similarly assumed to have a small effect on the CO2 growth rate. The CH4 and CO emissions and sinks are published and analysed separately in the Global Methane Budget and Global Carbon Monoxide Budget publications, which follow a similar approach to that presented here (Saunois et al., 2020; Zheng et al., 2019). 
[bookmark: _heading=h.88fm85t96f33]Appendix D.2 Contribution of other carbonates to CO2 emissions
Although we do account for cement carbonation (a carbon sink), the contribution of emissions of fossil carbonates (carbon sources) other than cement production is not systematically included in estimates of EFOS, except at the national level where they are accounted for in the UNFCCC national inventories.for Annex I countries and lime production in China (Andrew and Peters, 2021). The missing processes include CO2 emissions associated with the calcination of lime and limestone outside of cement production. Carbonates are also used in various industries, including in iron and steel manufacture and in agriculture. They are found naturally in some coals. CO2 emissions from fossil carbonates other than cement not included in our dataset are estimated to amount to about 10.3% of EFOS (estimated based on Crippa et al., 2019), though some of these carbonate emissions are included in our estimates (e.g., via UNFCCC inventories). 
[bookmark: _heading=h.hsq44o8abi1c]Appendix D.3 Anthropogenic carbon fluxes in the land-to-ocean aquatic continuum
The approach used to determine the global carbon budget refers to the mean, variations, and trends in the perturbation of CO2 in the atmosphere, referenced to the pre-industrial era. Carbon is continuously displaced from the land to the ocean through the land-ocean aquatic continuum (LOAC) comprising freshwaters, estuaries, and coastal areas (Bauer et al., 2013; Regnier et al., 2013). A substantial fraction of this lateral carbon flux is entirely ‘natural’ and is thus a steady state component of the pre-industrial carbon cycle. We account for this pre-industrial flux where appropriate in our study (see Appendix C.3). However, changes in environmental conditions and land-use change have caused an increase in the lateral transport of carbon into the LOAC – a perturbation that is relevant for the global carbon budget presented here. 
The results of the analysis of Regnier et al. (2013) can be summarised in two points of relevance for the anthropogenic CO2 budget. First, the anthropogenic perturbation of the LOAC has increased the organic carbon export from terrestrial ecosystems to the hydrosphere by as much as 1.0 ± 0.5 GtC yr-1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Second, this exported anthropogenic carbon is partly respired through the LOAC, partly sequestered in sediments along the LOAC and to a lesser extent, transferred to the open ocean where it may accumulate or be outgassed. The increase in storage of land-derived organic carbon in the LOAC carbon reservoirs (burial) and in the open ocean combined is estimated by Regnier et al. (2013) at 0.65 ± 0.35GtC yr-1. The inclusion of LOAC related anthropogenic CO2 fluxes should affect estimates of SLAND and SOCEAN in Eq. (1) but does not affect the other terms. Representation of the anthropogenic perturbation of LOAC CO2 fluxes is however not included in the GOBMs and DGVMs used in our global carbon budget analysis presented here.
[bookmark: _heading=h.dtezqgbks3n7]Appendix D.4 Loss of additional land sink capacity
Historical land-cover change was dominated by transitions from vegetation types that can provide a large carbon sink per area unit (typically, forests) to others less efficient in removing CO2 from the atmosphere (typically, croplands). The resultant decrease in land sink, called the ‘loss of additional sink capacity’, can be calculated as the difference between the actual land sink under changing land-cover and the counterfactual land sink under pre-industrial land-cover. This term is not accounted for in our global carbon budget estimate. Here, we provide a quantitative estimate of this term to be used in the discussion. Seven of the DGVMs used in Friedlingstein et al. (2019) performed additional simulations with and without land-use change under cycled pre-industrial environmental conditions. The resulting loss of additional sink capacity amounts to 0.9 ± 0.3 GtC yr-1 on average over 2009-2018 and 42 ± 16 GtC accumulated between 1850 and 2018 (Obermeier et al., 2021). OSCAR, emulating the behaviour of 11 DGVMs finds values of the loss of additional sink capacity of 0.7 ± 0.6 GtC yr-1 and 31 ± 23 GtC for the same time period (Gasser et al., 2020). Since the DGVM-based ELUC estimates are only used to quantify the uncertainty around the bookkeeping models' ELUC, we do not add the loss of additional sink capacity to the bookkeeping estimate.
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