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Abstract 154 

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the 155 
atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global 156 
carbon cycle, support the development of climate policies, and project future climate change. Here we describe 157 
and synthesise data sets and methodology to quantify the five major components of the global carbon budget 158 
and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, 159 
while emissions from land-use change (ELUC), mainly deforestation, are based on land-use and land-use change 160 
data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) 161 
is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global 162 
ocean biogeochemistry models and observation-based data-products. The terrestrial CO2 sink (SLAND) is 163 
estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference 164 
between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial 165 
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biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All 166 
uncertainties are reported as ±1σ.  167 
For the year 2021, EFOS increased by 5.1% relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr-1 (9.9 ± 168 
0.5 GtC yr-1 when the cement carbonation sink is included), ELUC was 1.1 ± 0.7 GtC yr-1, for a total 169 
anthropogenic CO2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr-1 (40.0 ± 2.9 170 
GtCO2). Also, for 2021, GATM was 5.2 ± 0.2 GtC yr-1 (2.5 ± 0.1 ppm yr-1), SOCEAN was 2.9 ± 0.4 GtC yr-1 and 171 
SLAND was 3.5 ± 0.9 GtC yr-1, with a BIM of -0.6 GtC yr-1 (i.e. total estimated sources too low or sinks too high). 172 
The global atmospheric CO2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 173 
2022, suggest an increase in EFOS relative to 2021 of +1.1% (0% to 1.7%) globally, and atmospheric CO2 174 
concentration reaching 417.3 ppm, more than 50% above pre-industrial level (around 278 ppm). Overall, the 175 
mean and trend in the components of the global carbon budget are consistently estimated over the period 1959-176 
2021, but discrepancies of up to 1 GtC yr-1 persist for the representation of annual to semi-decadal variability in 177 
CO2 fluxes. Comparison of estimates from multiple approaches and observations shows: (1) a persistent large 178 
uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods 179 
on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different 180 
methods on the strength of the ocean sink over the last decade. This living data update documents changes in 181 
the methods and data sets used in this new global carbon budget and the progress in understanding of the 182 
global carbon cycle compared with previous publications of this data set. The data presented in this work are 183 
available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b). 184 

  185 
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Executive Summary 186 

Global fossil CO2 emissions (including cement carbonation) further increased in 2022, being now slightly 187 
above their pre-COVID-19 pandemic 2019 level. The 2021 emission increase was 0.46 GtC yr-1 (1.7 GtCO2 188 
yr-1), bringing 2021 emissions to 9.9 ± 0.5 GtC yr-1 (36.1 ± 1.8 GtCO2 yr-1), slightly below the emissions level of 189 
2019 (9.9 ± 0.5 GtC yr-1, 36.2 ± 1.8 GtCO2 yr-1). Preliminary estimates based on data available suggest fossil 190 
CO2 emissions continued to increase in 2022, by 1.1% relative to 2021 (0% to 1.7%), bringing emissions at 10.0 191 
GtC yr-1 (36.5 GtCO2 yr-1), slightly above the 2019 level .  192 

Emissions from coal, oil, and gas in 2022 are expected to be above their 2021 levels (by 0.8%, 2.2% and 1.1% 193 
respectively).  Regionally, emissions in 2022 are expected to have been decreasing by 1.5% in China (3.0 GtC, 194 
11.1 GtCO2), and 1% in the European Union (0.8 GtC, 2.8 GtCO2), but increasing by 1.6% in the United States 195 
(1.4 GtC, 5.1 GtCO2), 5.6% in India (0.8 GtC, 2.9 GtCO2) and 2.5% for the rest of the world (4.2 GtC, 15.5 196 
GtCO2). 197 

Fossil CO2 emissions decreased in 24 countries during the decade 2012-2021.  Altogether, these 24 countries 198 
contribute to about 2.4 GtC yr-1 (8.8 GtCO2) fossil fuel CO2 emissions over the last decade, about one quarter of 199 
world CO2 fossil emissions.  200 

Global CO2 emissions from land-use, land-use change, and forestry (LUC) averaged at 1.2 ± 0.7 GtC yr-1 201 
(4.5 ± 2.6 GtCO2 yr-1) for the 2012-2021 period with a preliminary projection for 2022 of 1.0 ± 0.7 GtC yr-202 
1 (3.6 ± 2.6 GtCO2 yr-1). A small decrease over the past two decades is not robust given the large model 203 
uncertainty. Emissions from deforestation, the main driver of global gross sources, remain high at 1.8 ± 0.4 204 
GtC yr-1 over the 2012-2021 period, highlighting the strong potential of halting deforestation for emissions 205 
reductions. Sequestration of 0.9 ± 0.3 GtC yr-1 through re-/afforestation and forestry offsets one half of the 206 
deforestation emissions. Emissions from other land-use transitions and from peat drainage and peat fire add 207 
further, small contributions. The highest emitters during 2012-2021 in descending order were Brazil, Indonesia, 208 
and the Democratic Republic of the Congo, with these 3 countries contributing more than half of the global total 209 
land-use emissions.  210 

The remaining carbon budget for a 50% likelihood to limit global warming to 1.5°C, 1.7°C and 2°C has 211 
respectively reduced to 105 GtC (380 GtCO2), 200 GtC (730 GtCO2) and 335 GtC (1230 GtCO2) from the 212 
beginning of 2023, equivalent to 9, 18 and 30 years, assuming 2022 emissions levels. Total anthropogenic 213 
emissions were 10.9 GtC yr-1 (40.0 GtCO2 yr-1) in 2021, with a preliminary estimate of 10.9 GtC yr-1 (40.1 214 
GtCO2 yr-1) for 2022. The remaining carbon budget to keep global temperatures below these climate targets has 215 
shrunk by 32 GtC (121 GtCO2) since the IPCC AR6 Working Group 1 assessment, based on data up to 2019. 216 
Reaching zero CO2 emissions by 2050 entails a total anthropogenic CO2 emissions linear decrease by about 0.4 217 
GtC (1.4 GtCO2) each year, comparable to the decrease during 2020, highlighting the scale of the action needed. 218 

The concentration of CO2 in the atmosphere is set to reach 417.3 ppm in 2022, 51% above pre-industrial 219 
levels. The atmospheric CO2 growth was 5.2 ± 0.02 GtC yr-1 during the decade 2012-2021 (48% of total CO2 220 
emissions) with a preliminary 2022 growth rate estimate of around 5.5 GtC yr-1 (2.6 ppm).  221 
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The ocean CO2 sink resumed a more rapid growth in the past two decades after low or no growth during 222 
the 1991-2002 period. However, the growth of the ocean CO2 sink in the past decade has an uncertainty of a 223 
factor of three, with estimates based on data products and estimates based on models showing an ocean sink 224 
trend of +0.7 GtC yr-1 decade-1 and +0.2 GtC yr-1 decade-1 since 2010, respectively. The discrepancy in the trend 225 
originates from all latitudes but is largest in the Southern Ocean. The ocean CO2 sink was 2.9 ± 0.4 GtC yr-1 226 
during the decade 2012-2021 (26% of total CO2 emissions), with a similar preliminary estimate of 2.9 GtC yr-1 227 
for 2022.   228 

The land CO2 sink continued to increase during the 2012-2021 period primarily in response to increased 229 
atmospheric CO2, albeit with large interannual variability.   The land CO2 sink was 3.1 ± 0.6 GtC yr-1 230 
during the 2012-2021 decade (29% of total CO2 emissions), 0.4 GtC yr-1 larger than during the previous decade 231 
(2000-2009), with a preliminary 2022 estimate of around 3.4 GtC yr-1. Year to year variability in the land sink is 232 
about 1 GtC yr-1 and dominates the year-to-year changes in the global atmospheric CO2 concentration, implying 233 
that small annual changes in anthropogenic emissions (such as the fossil fuel emission decrease in 2020) are 234 
hard to detect in the atmospheric CO2 observations. 235 

  236 



7 
 

 237 

1 Introduction 238 

The concentration of carbon dioxide (CO2) in the atmosphere has increased from approximately 278 parts per 239 
million (ppm) in 1750 (Gulev et al., 2021), the beginning of the Industrial Era, to 414.7 ± 0.1 ppm in 2021 240 
(Dlugokencky and Tans, 2022); Figure 1). The atmospheric CO2 increase above pre-industrial levels was, 241 
initially, primarily caused by the release of carbon to the atmosphere from deforestation and other land-use 242 
change activities (Canadell et al., 2021). While emissions from fossil fuels started before the Industrial Era, they 243 
became the dominant source of anthropogenic emissions to the atmosphere from around 1950 and their relative 244 
share has continued to increase until present. Anthropogenic emissions occur on top of an active natural carbon 245 
cycle that circulates carbon between the reservoirs of the atmosphere, ocean, and terrestrial biosphere on time 246 
scales from sub-daily to millennia, while exchanges with geologic reservoirs occur at longer timescales (Archer 247 
et al., 2009). 248 

The global carbon budget (GCB) presented here refers to the mean, variations, and trends in the perturbation of 249 
CO2 in the environment, referenced to the beginning of the Industrial Era (defined here as 1750). This paper 250 
describes the components of the global carbon cycle over the historical period with a stronger focus on the 251 
recent period (since 1958, onset of atmospheric CO2 measurements), the last decade (2012-2021), the last year 252 
(2021) and the current year (2022). Finally, it provides cumulative emissions from fossil fuels and land-use 253 
change since the year 1750 (the pre-industrial period), and since the year 1850 (the reference year for historical 254 
simulations in IPCC AR6) (Eyring et al., 2016).  255 

We quantify the input of CO2 to the atmosphere by emissions from human activities, the growth rate of 256 
atmospheric CO2 concentration, and the resulting changes in the storage of carbon in the land and ocean 257 
reservoirs in response to increasing atmospheric CO2 levels, climate change and variability, and other 258 
anthropogenic and natural changes (Figure 2). An understanding of this perturbation budget over time and the 259 
underlying variability and trends of the natural carbon cycle is necessary to understand the response of natural 260 
sinks to changes in climate, CO2 and land-use change drivers, and to quantify emissions compatible with a given 261 
climate stabilisation target.  262 

The components of the CO2 budget that are reported annually in this paper include separate and independent 263 
estimates for the CO2 emissions from (1) fossil fuel combustion and oxidation from all energy and industrial 264 
processes; also including cement production and carbonation (EFOS; GtC yr-1) and (2) the emissions resulting 265 
from deliberate human activities on land, including those leading to land-use change (ELUC; GtC yr-1); and their 266 
partitioning among (3) the growth rate of atmospheric CO2 concentration (GATM; GtC yr-1), and the uptake of 267 
CO2 (the ‘CO2 sinks’) in (4) the ocean (SOCEAN; GtC yr-1) and (5) on land (SLAND; GtC yr-1). The CO2 sinks as 268 
defined here conceptually include the response of the land (including inland waters and estuaries) and ocean 269 
(including coastal and marginal seas) to elevated CO2 and changes in climate and other environmental 270 
conditions, although in practice not all processes are fully accounted for (see Section 2.7). Global emissions and 271 
their partitioning among the atmosphere, ocean and land are in balance in the real world. Due to the combination 272 
of imperfect spatial and/or temporal data coverage, errors in each estimate, and smaller terms not included in our 273 
budget estimate (discussed in Section 2.7), the independent estimates (1) to (5) above do not necessarily add up 274 
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to zero. We therefore (a) additionally assess a set of global atmospheric inversion system results that by design 275 
close the global carbon balance (see Section 2.6), and (b) estimate a budget imbalance (BIM), which is a measure 276 
of the mismatch between the estimated emissions and the estimated changes in the atmosphere, land and ocean, 277 
as follows: 278 

𝐵!" = 𝐸#$% + 𝐸&'( − (𝐺)*" + 𝑆$(+), + 𝑆&),-)      (1) 279 

GATM is usually reported in ppm yr-1, which we convert to units of carbon mass per year, GtC yr-1, using 1 ppm 280 
= 2.124 GtC (Ballantyne et al., 2012; Table 1). All quantities are presented in units of gigatonnes of carbon 281 
(GtC, 1015 gC), which is the same as petagrams of carbon (PgC; Table 1). Units of gigatonnes of CO2 (or billion 282 
tonnes of CO2) used in policy are equal to 3.664 multiplied by the value in units of GtC. 283 

We also quantify EFOS and ELUC by country, including both territorial and consumption-based accounting for 284 
EFOS (see Section 2), and discuss missing terms from sources other than the combustion of fossil fuels (see 285 
Section 2.7, Appendix D1 and D2).  286 

The global CO2 budget has been assessed by the Intergovernmental Panel on Climate Change (IPCC) in all 287 
assessment reports (Prentice et al., 2001; Schimel et al., 1995; Watson et al., 1990; Denman et al., 2007; Ciais et 288 
al., 2013; Canadell et al., 2021), and by others (e.g. Ballantyne et al., 2012). The Global Carbon Project (GCP, 289 
www.globalcarbonproject.org, last access: 25 September 2022) has coordinated this cooperative community 290 
effort for the annual publication of global carbon budgets for the year 2005 (Raupach et al., 2007; including 291 
fossil emissions only), year 2006 (Canadell et al., 2007), year 2007 (GCP, 2008), year 2008 (Le Quéré et al., 292 
2009), year 2009 (Friedlingstein et al., 2010), year 2010 (Peters et al., 2012b), year 2012 (Le Quéré et al., 2013; 293 
Peters et al., 2013), year 2013 (Le Quéré et al., 2014), year 2014 (Le Quéré et al., 2015a; Friedlingstein et al., 294 
2014), year 2015 (Jackson et al., 2016; Le Quéré et al., 2015b), year 2016 (Le Quéré et al., 2016), year 2017 (Le 295 
Quéré et al., 2018a; Peters et al., 2017), year 2018 (Le Quéré et al., 2018b; Jackson et al., 2018),  year 2019 296 
(Friedlingstein et al., 2019; Jackson et al., 2019; Peters et al., 2020), year 2020 (Friedlingstein et al.,  2020; Le 297 
Quéré et al., 2021) and more recently the year 2021 (Friedlingstein et al., 2022a; Jackson et al., 2022). Each of 298 
these papers updated previous estimates with the latest available information for the entire time series.  299 

We adopt a range of ±1 standard deviation (σ) to report the uncertainties in our estimates, representing a 300 
likelihood of 68% that the true value will be within the provided range if the errors have a Gaussian distribution, 301 
and no bias is assumed. This choice reflects the difficulty of characterising the uncertainty in the CO2 fluxes 302 
between the atmosphere and the ocean and land reservoirs individually, particularly on an annual basis, as well 303 
as the difficulty of updating the CO2 emissions from land-use change. A likelihood of 68% provides an 304 
indication of our current capability to quantify each term and its uncertainty given the available information. 305 
The uncertainties reported here combine statistical analysis of the underlying data, assessments of uncertainties 306 
in the generation of the data sets, and expert judgement of the likelihood of results lying outside this range. The 307 
limitations of current information are discussed in the paper and have been examined in detail elsewhere 308 
(Ballantyne et al., 2015; Zscheischler et al., 2017). We also use a qualitative assessment of confidence level to 309 
characterise the annual estimates from each term based on the type, amount, quality, and consistency of the 310 
evidence as defined by the IPCC (Stocker et al., 2013). 311 
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This paper provides a detailed description of the data sets and methodology used to compute the global carbon 312 
budget estimates for the industrial period, from 1750 to 2022, and in more detail for the period since 1959. This 313 
paper is updated every year using the format of ‘living data’ to keep a record of budget versions and the changes 314 
in new data, revision of data, and changes in methodology that lead to changes in estimates of the carbon 315 
budget. Additional materials associated with the release of each new version will be posted at the Global Carbon 316 
Project (GCP) website (http://www.globalcarbonproject.org/carbonbudget, last access: 25 September 2022), 317 
with fossil fuel emissions also available through the Global Carbon Atlas (http://www.globalcarbonatlas.org, 318 
last access: 25 September 2022). All underlying data used to produce the budget can also be found at  319 
https://globalcarbonbudget.org/ (last access: 25 September 2022). With this approach, we aim to provide the 320 
highest transparency and traceability in the reporting of CO2, the key driver of climate change. 321 

 322 

2 Methods 323 

Multiple organisations and research groups around the world generated the original measurements and data used 324 
to complete the global carbon budget. The effort presented here is thus mainly one of synthesis, where results 325 
from individual groups are collated, analysed, and evaluated for consistency. We facilitate access to original 326 
data with the understanding that primary data sets will be referenced in future work (see Table 2 for how to cite 327 
the data sets). Descriptions of the measurements, models, and methodologies follow below, and detailed 328 
descriptions of each component are provided elsewhere. 329 

This is the 17th version of the global carbon budget and the 11th revised version in the format of a living data 330 
update in Earth System Science Data. It builds on the latest published global carbon budget of Friedlingstein et 331 
al. (2022a). The main changes are: the inclusion of (1) data to year 2021 and a projection for the global carbon 332 
budget for year 2022; (2) the inclusion of country level estimates of ELUC; (3) a process-based decomposition of 333 
ELUC into its main components (deforestation, re/afforestation and wood harvest, emissions from organic soils, 334 
and net flux from other transitions). 335 

The main methodological differences between recent annual carbon budgets (2018-2022) are summarised in 336 
Table 3 and previous changes since 2006 are provided in Table A7. 337 

2.1 Fossil CO2 emissions (EFOS) 338 

2.1.1 Historical period 1850-2021 339 

The estimates of global and national fossil CO2 emissions (EFOS) include the oxidation of fossil fuels through 340 
both combustion (e.g., transport, heating) and chemical oxidation (e.g. carbon anode decomposition in 341 
aluminium refining) activities, and the decomposition of carbonates in industrial processes (e.g. the production 342 
of cement). We also include CO2 uptake from the cement carbonation process. Several emissions sources are not 343 
estimated or not fully covered: coverage of emissions from lime production are not global, and decomposition of 344 
carbonates in glass and ceramic production are included only for the “Annex 1” countries of the United Nations 345 
Framework Convention on Climate Change (UNFCCC) for lack of activity data. These omissions are 346 
considered to be minor. Short-cycle carbon emissions - for example from combustion of biomass - are not 347 
included here but are accounted for in the CO2 emissions from land use (see section 2.2). 348 



10 
 

Our estimates of fossil CO2 emissions are derived using the standard approach of activity data and emission 349 
factors, relying on data collection by many other parties. Our goal is to produce the best estimate of this flux, 350 
and we therefore use a prioritisation framework to combine data from different sources that have used different 351 
methods, while being careful to avoid double counting and undercounting of emissions sources. The CDIAC-FF 352 
emissions dataset, derived largely from UN energy data, forms the foundation, and we extend emissions to year 353 
Y-1 using energy growth rates reported by BP energy company. We then proceed to replace estimates using data 354 
from what we consider to be superior sources, for example Annex 1 countries’ official submissions to the 355 
UNFCCC. All data points are potentially subject to revision, not just the latest year. For full details see Andrew 356 
and Peters (2021). 357 
Other estimates of global fossil CO2 emissions exist, and these are compared by Andrew (2020a). The most 358 
common reason for differences in estimates of global fossil CO2 emissions is a difference in which emissions 359 
sources are included in the datasets. Datasets such as those published by the energy company BP, the US Energy 360 
Information Administration, and the International Energy Agency’s ‘CO2 emissions from fuel combustion’ are 361 
all generally limited to emissions from combustion of fossil fuels. In contrast, datasets such as PRIMAP-hist, 362 
CEDS, EDGAR, and GCP’s dataset aim to include all sources of fossil CO2 emissions. See Andrew (2020a) for 363 
detailed comparisons and discussion. 364 
Cement absorbs CO2 from the atmosphere over its lifetime, a process known as ‘cement carbonation’. We 365 
estimate this CO2 sink, from 1931, onwards as the average of two studies in the literature (Cao et al., 2020; Guo 366 
et al., 2021). Both studies use the same model, developed by Xi et al. (2016), with different parameterisations 367 
and input data, with the estimate of Guo and colleagues being a revision of Xi et al (2016). The trends of the two 368 
studies are very similar. Since carbonation is a function of both current and previous cement production, we 369 
extend these estimates to 2022 by using the growth rate derived from the smoothed cement emissions (10-year 370 
smoothing) fitted to the carbonation data.  In the present budget, we always include the cement carbonation 371 
carbon sink in the fossil CO2 emission component (EFOS). 372 
We use the Kaya Identity for a simple decomposition of CO2 emissions into the key drivers (Raupach et al., 373 
2007). While there are variations (Peters et al., 2017), we focus here on a decomposition of CO2 emissions into 374 
population, GDP per person, energy use per GDP, and CO2 emissions per energy. Multiplying these individual 375 
components together returns the CO2 emissions. Using the decomposition, it is possible to attribute the change 376 
in CO2 emissions to the change in each of the drivers. This method gives a first order understanding of what 377 
causes CO2 emissions to change each year. 378 

2.1.2 2022 projection 379 

We provide a projection of global CO2 emissions in 2022 by combining separate projections for China, USA, 380 
EU, India, and for all other countries combined. The methods are different for each of these. For China we 381 
combine monthly fossil fuel production data from the National Bureau of Statistics, import/export data from the 382 
Customs Administration, and monthly coal consumption estimates from SX Coal (2022), giving us partial data 383 
for the growth rates to date of natural gas, petroleum, and cement, and of the consumption itself for raw coal. 384 
We then use a regression model to project full-year emissions based on historical observations. For the USA our 385 
projection is taken directly from the Energy Information Administration’s (EIA) Short-Term Energy Outlook 386 
(EIA, 2022), combined with the year-to-date growth rate of cement clinker production. For the EU we use 387 



11 
 

monthly energy data from Eurostat to derive estimates of monthly CO2 emissions through July, with coal 388 
emissions extended through August using a statistical relationship with reported electricity generation from coal 389 
and other factors. Given the very high uncertainty in European energy markets in 2022, we forego our usual 390 
history-based projection techniques and use instead the year-to-date growth rate as the full-year growth rate for 391 
both coal and natural gas. EU emissions from oil are derived using the EIA’s projection of oil consumption for 392 
Europe. EU cement emissions are based on available year-to-date data from three of the largest producers, 393 
Germany, Poland, and Spain. India’s projected emissions are derived from estimates through July (August for 394 
oil) using the methods of Andrew (2020b) and extrapolated assuming normal seasonal patterns. Emissions for 395 
the rest of the world are derived using projected growth in economic production from the IMF (2022) combined 396 
with extrapolated changes in emissions intensity of economic production. More details on the EFOS methodology 397 
and its 2022 projection can be found in Appendix C.1. 398 

2.2 CO2 emissions from land-use, land-use change and forestry (ELUC) 399 

2.2.1 Historical period 1850-2021 400 

The net CO2 flux from land-use, land-use change and forestry (ELUC, called land-use change emissions in the 401 
rest of the text) includes CO2 fluxes from deforestation, afforestation, logging and forest degradation (including 402 
harvest activity), shifting cultivation (cycle of cutting forest for agriculture, then abandoning), and regrowth of 403 
forests (following wood harvest or agriculture abandonment). Emissions from peat burning and drainage are 404 
added from external datasets, peat drainage being averaged from three spatially explicit independent datasets 405 
(see Appendix C.2.1).  406 
Three bookkeeping approaches (updated estimates each of BLUE (Hansis et al., 2015), OSCAR (Gasser et al., 407 
2020), and H&N2017 (Houghton and Nassikas, 2017)) were used to quantify gross sources and sinks and the 408 
resulting net ELUC. Uncertainty estimates were derived from the Dynamic Global vegetation Models (DGVMs) 409 
ensemble for the time period prior to 1960, using for the recent decades an uncertainty range of ±0.7 GtC yr-1, 410 
which is a semi-quantitative measure for annual and decadal emissions and reflects our best value judgement 411 
that there is at least 68% chance (±1σ) that the true land-use change emission lies within the given range, for the 412 
range of processes considered here. This uncertainty range had been increased from 0.5 GtC yr-1 after new 413 
bookkeeping models were included that indicated a larger spread than assumed before (Le Quéré et al., 2018). 414 
Projections for 2021 are based on fire activity from tropical deforestation and degradation as well as emissions 415 
from peat fires and drainage.  416 
Our ELUC estimates follow the definition of global carbon cycle models of CO2 fluxes related to land-use and 417 
land management and differ from IPCC definitions adopted in National GHG Inventories (NGHGI) for 418 
reporting under the UNFCCC, which additionally generally include, through adoption of the IPCC so-called 419 
managed land proxy approach, the terrestrial fluxes occurring on land defined by countries as managed. This 420 
partly includes fluxes due to environmental change (e.g. atmospheric CO2 increase), which are part of  SLAND in 421 
our definition. This causes the global emission estimates to be smaller for NGHGI than for the global carbon 422 
budget definition (Grassi et al., 2018). The same is the case for the Food Agriculture Organization (FAO) 423 
estimates of carbon fluxes on forest land, which include both anthropogenic and natural sources on managed 424 
land (Tubiello et al., 2021). We map the two definitions to each other, to provide a comparison of the 425 
anthropogenic carbon budget to the official country reporting to the climate convention. 426 
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2.2.2 2022 Projection 427 

We project the 2022 land-use emissions for BLUE, the updated H&N2017 and OSCAR, starting from their 428 
estimates for 2021 assuming unaltered peat drainage, which has low interannual variability, but adjusting the 429 
highly variable emissions from peat fires, tropical deforestation and degradation as estimated using active fire 430 
data (MCD14ML; Giglio et al., 2016). More details on the ELUC methodology can be found in Appendix C.2 431 

2.3 Growth rate in atmospheric CO2 concentration (GATM) 432 

2.3.1 Historical period 1850-2021 433 

The rate of growth of the atmospheric CO2 concentration is provided for years 1959-2021 by the US National 434 
Oceanic and Atmospheric Administration Global Monitoring Laboratory (NOAA/GML; Dlugokencky and 435 
Tans, 2022), which is updated from Ballantyne et al. (2012) and includes recent revisions to the calibration scale 436 
of atmospheric CO2 measurements (Hall et al., 2021). For the 1959-1979 period, the global growth rate is based 437 
on measurements of atmospheric CO2 concentration averaged from the Mauna Loa and South Pole stations, as 438 
observed by the CO2 Program at Scripps Institution of Oceanography (Keeling et al., 1976). For the 1980-2020 439 
time period, the global growth rate is based on the average of multiple stations selected from the marine 440 
boundary layer sites with well-mixed background air (Ballantyne et al., 2012), after fitting a smooth curve 441 
through the data for each station as a function of time, and averaging by latitude band (Masarie and Tans, 1995). 442 
The annual growth rate is estimated by Dlugokencky and Tans (2022) from atmospheric CO2 concentration by 443 
taking the average of the most recent December-January months corrected for the average seasonal cycle and 444 
subtracting this same average one year earlier. The growth rate in units of ppm yr-1 is converted to units of GtC 445 
yr-1 by multiplying by a factor of 2.124 GtC per ppm, assuming instantaneous mixing of CO2 throughout the 446 
atmosphere (Ballantyne et al., 2012; Table 1). 447 

Since 2020, NOAA/GML provides estimates of atmospheric CO2 concentrations with respect to a new 448 
calibration scale, referred to as WMO-CO2-X2019, in line with the recommendation of the World 449 
Meteorological Organization (WMO) Global Atmosphere Watch (GAW) community (Hall et al., 2021). The 450 
"X" in the scale name indicates that it is a mole fraction scale, how many micro-moles of CO2 in one mole of 451 
(dry) air. The word "concentration" only loosely reflects this. The WMO-CO2-X2019 scale improves upon the 452 
earlier WMO-CO2-X2007 scale by including a broader set of standards, which contain CO2 in a wider range of 453 
concentrations that span the range 250-800 ppm (versus 250–520 ppm for WMO-CO2-X2007). In addition, 454 
NOAA/GML made two minor corrections to the analytical procedure used to quantify CO2 concentrations, 455 
fixing an error in the second virial coefficient of CO2 and accounting for loss of a small amount of CO2 to 456 
materials in the manometer during the measurement process.  The difference in concentrations measured using 457 
WMO-CO2-X2019 versus WMO-CO2-X2007 is ~+0.18 ppm at 400 ppm and the observational record of 458 
atmospheric CO2 concentrations have been revised accordingly. The revisions have been applied retrospectively 459 
in all cases where the calibrations were performed by NOAA/GML, thus affecting measurements made by 460 
members of the WMO-GAW programme and other regionally coordinated programmes (e.g., Integrated Carbon 461 
Observing System, ICOS). Changes to the CO2 concentrations measured across these networks propagate to the 462 
global mean CO2 concentrations. The re-calibrated data were first used to estimate GATM in the 2021 edition of 463 
the global carbon budget (Friedlingstein et al., 2022a). Friedlingstein et al. (2022a) verified that the change of 464 
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scales from WMO-CO2-X2007 to WMO-CO2-X2019 made a negligible difference to the value of GATM (-0.06 465 
GtC yr-1 during 2010-2019 and -0.01 GtC yr-1 during 1959-2019, well within the uncertainty range reported 466 
below). 467 

The uncertainty around the atmospheric growth rate is due to four main factors. First, the long-term 468 
reproducibility of reference gas standards (around 0.03 ppm for 1σ from the 1980s; Dlugokencky and Tans, 469 
2022). Second, small unexplained systematic analytical errors that may have a duration of several months to two 470 
years come and go. They have been simulated by randomising both the duration and the magnitude (determined 471 
from the existing evidence) in a Monte Carlo procedure. Third, the network composition of the marine boundary 472 
layer with some sites coming or going, gaps in the time series at each site, etc (Dlugokencky and Tans, 2022). 473 
The latter uncertainty was estimated by NOAA/GML with a Monte Carlo method by constructing 100 474 
"alternative" networks (Masarie and Tans, 1995; NOAA/GML, 2019). The second and third uncertainties, 475 
summed in quadrature, add up to 0.085 ppm on average (Dlugokencky and Tans, 2022). Fourth, the uncertainty 476 
associated with using the average CO2 concentration from a surface network to approximate the true 477 
atmospheric average CO2 concentration (mass-weighted, in 3 dimensions) as needed to assess the total 478 
atmospheric CO2 burden. In reality, CO2 variations measured at the stations will not exactly track changes in 479 
total atmospheric burden, with offsets in magnitude and phasing due to vertical and horizontal mixing. This 480 
effect must be very small on decadal and longer time scales, when the atmosphere can be considered well 481 
mixed. The CO2 increase in the stratosphere lags the increase (meaning lower concentrations) that we observe 482 
in the marine boundary layer, while the continental boundary layer (where most of the emissions take place) 483 
leads the marine boundary layer with higher concentrations. These effects nearly cancel each other. In addition 484 
the growth rate is nearly the same everywhere (Ballantyne et al, 2012). We therefore maintain an uncertainty 485 
around the annual growth rate based on the multiple stations data set ranges between 0.11 and 0.72 GtC yr-1, 486 
with a mean of 0.61 GtC yr-1 for 1959-1979 and 0.17 GtC yr-1 for 1980-2020, when a larger set of stations were 487 
available as provided by Dlugokencky and Tans (2022). We estimate the uncertainty of the decadal averaged 488 
growth rate after 1980 at 0.02 GtC yr-1 based on the calibration and the annual growth rate uncertainty but 489 
stretched over a 10-year interval. For years prior to 1980, we estimate the decadal averaged uncertainty to be 490 
0.07 GtC yr-1 based on a factor proportional to the annual uncertainty prior and after 1980 (0.02 * [0.61/0.17] 491 
GtC yr-1). 492 

We assign a high confidence to the annual estimates of GATM because they are based on direct measurements 493 
from multiple and consistent instruments and stations distributed around the world (Ballantyne et al., 2012; Hall 494 
et al., 2021). 495 

To estimate the total carbon accumulated in the atmosphere since 1750 or 1850, we use an atmospheric CO2 496 
concentration of 278.3 ± 3 ppm or 285.1 ± 3 ppm, respectively (Gulev et al., 2021). For the construction of the 497 
cumulative budget shown in Figure 3, we use the fitted estimates of CO2 concentration from Joos and Spahni 498 
(2008) to estimate the annual atmospheric growth rate using the conversion factors shown in Table 1.  The 499 
uncertainty of ±3 ppm (converted to ±1σ) is taken directly from the IPCC’s AR5 assessment (Ciais et al., 2013). 500 
Typical uncertainties in the growth rate in atmospheric CO2 concentration from ice core data are equivalent to 501 
±0.1-0.15 GtC yr-1 as evaluated from the Law Dome data (Etheridge et al., 1996) for individual 20-year intervals 502 
over the period from 1850 to 1960 (Bruno and Joos, 1997). 503 
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2.3.2 2022 projection 504 

We provide an assessment of GATM for 2022 based on the monthly calculated global atmospheric CO2 505 
concentration (GLO) through August (Dlugokencky and Tans, 2022), and bias-adjusted Holt–Winters 506 
exponential smoothing with additive seasonality (Chatfield, 1978) to project to January 2023. Additional 507 
analysis suggests that the first half of the year (the boreal winter-spring-summer transition) shows more 508 
interannual variability than the second half of the year (the boreal summer-autumn-winter transition), so that the 509 
exact projection method applied to the second half of the year has a relatively smaller impact on the projection 510 
of the full year.  Uncertainty is estimated from past variability using the standard deviation of the last 5 years' 511 
monthly growth rates. 512 

2.4 Ocean CO2 sink  513 

2.4.1 Historical period 1850-2021 514 

The reported estimate of the global ocean anthropogenic CO2 sink SOCEAN is derived as the average of two 515 
estimates. The first estimate is derived as the mean over an ensemble of ten global ocean biogeochemistry 516 
models (GOBMs, Table 4 and Table A2). The second estimate is obtained as the mean over an ensemble of 517 
seven observation-based data-products (Table 4 and Table A3). An eighth product (Watson et al., 2020) is 518 
shown, but is not included in the ensemble average as it differs from the other products by adjusting the flux to a 519 
cool, salty ocean surface skin (see Appendix C.3.1 for a discussion of the Watson product).  The GOBMs 520 
simulate both the natural and anthropogenic CO2 cycles in the ocean. They constrain the anthropogenic air-sea 521 
CO2 flux (the dominant component of SOCEAN) by the transport of carbon into the ocean interior, which is also 522 
the controlling factor of present-day ocean carbon uptake in the real world. They cover the full globe and all 523 
seasons and were recently evaluated against surface ocean carbon observations, suggesting they are suitable to 524 
estimate the annual ocean carbon sink (Hauck et al., 2020). The data-products are tightly linked to observations 525 
of fCO2 (fugacity of CO2, which equals pCO2 corrected for the non-ideal behaviour of the gas; Pfeil et al., 526 
2013), which carry imprints of temporal and spatial variability, but are also sensitive to uncertainties in gas-527 
exchange parameterizations and data-sparsity. Their asset is the assessment of interannual and spatial variability 528 
(Hauck et al., 2020).  We further use two diagnostic ocean models to estimate SOCEAN over the industrial era 529 
(1781-1958).  530 

The global fCO2-based flux estimates were adjusted to remove the pre-industrial ocean source of CO2 to the 531 
atmosphere of 0.65 GtC yr-1 from river input to the ocean (Regnier et al., 2022), to satisfy our definition of 532 
SOCEAN (Hauck et al., 2020). The river flux adjustment was distributed over the latitudinal bands using the 533 
regional distribution of Aumont et al. (2001; North: 0.17 GtC yr-1, Tropics: 0.16 GtC yr-1, South: 0.32 GtC yr-1), 534 
acknowledging that the boundaries of Aumont et al (2001; namely 20°S and 20°N) are not consistent with the 535 
boundaries otherwise used in the GCB (30°S and 30°N). A recent study based on one ocean biogeochemical 536 
model (Lacroix et al., 2020) suggests that more of the riverine outgassing is located in the tropics than in the 537 
Southern Ocean; and hence this regional distribution is associated with a major uncertainty. Anthropogenic 538 
perturbations of river carbon and nutrient transport to the ocean are not considered (see section 2.7 and 539 
Appendix D.3). 540 
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We derive SOCEAN from GOBMs by using a simulation (sim A) with historical forcing of climate and 541 
atmospheric CO2, accounting for model biases and drift from a control simulation (sim B) with constant 542 
atmospheric CO2 and normal year climate forcing. A third simulation (sim C) with historical atmospheric CO2 543 
increase and normal year climate forcing is used to attribute the ocean sink to CO2 (sim C minus sim B) and 544 
climate (sim A minus sim C) effects. A fourth simulation (sim D; historical climate forcing and constant 545 
atmospheric CO2) is used to compare the change in anthropogenic carbon inventory in the interior ocean (sim A 546 
minus sim D) to the observational estimate of Gruber et al. (2019) with the same flux components (steady state 547 
and non-steady state anthropogenic carbon flux). Data-products are adjusted to represent the full ice-free ocean 548 
area by a simple scaling approach when coverage is below 99%. GOBMs and data-products fall within the 549 
observational constraints over the 1990s (2.2 ± 0.7 GtC yr-1 , Ciais et al., 2013) after applying adjustments.  550 
SOCEAN is calculated as the average of the GOBM ensemble mean and data-product ensemble mean from 1990 551 
onwards. Prior to 1990, it is calculated as the GOBM ensemble mean plus half of the offset between GOBMs 552 
and data-products ensemble means over 1990-2001. 553 
We assign an uncertainty of ± 0.4 GtC yr-1 to the ocean sink based on a combination of random (ensemble 554 
standard deviation) and systematic uncertainties (GOBMs bias in anthropogenic carbon accumulation, 555 
previously reported uncertainties in fCO2-based data-products; see Appendix C.3.3). We assess a medium 556 
confidence level to the annual ocean CO2 sink and its uncertainty because it is based on multiple lines of 557 
evidence, it is consistent with ocean interior carbon estimates (Gruber et al., 2019, see section 3.5.5) and the 558 
interannual variability in the GOBMs and data-based estimates is largely consistent and can be explained by 559 
climate variability. We refrain from assigning a high confidence because of the systematic deviation between 560 
the GOBM and data-product trends since around 2002. More details on the SOCEAN methodology can be found in 561 
Appendix C.3. 562 

2.4.2 2022 Projection 563 

The ocean CO2 sink forecast for the year 2022 is based on the annual historical and estimated 2022 atmospheric 564 
CO2 concentration (Dlugokencky and Tans 2021), the historical and estimated 2022 annual global fossil fuel 565 
emissions from this year’s carbon budget, and the spring (March, April, May) Oceanic Niño Index (ONI) 566 
(NCEP, 2022). Using a non-linear regression approach, i.e., a feed-forward neural network, atmospheric CO2, 567 
ONI, and the fossil fuel emissions are used as training data to best match the annual ocean CO2 sink (i.e. 568 
combined SOCEAN estimate from GOBMs and data products) from 1959 through 2021 from this year’s carbon 569 
budget. Using this relationship, the 2022 SOCEAN can then be estimated from the projected 2021 input data using 570 
the non-linear relationship established during the network training. To avoid overfitting, the neural network was 571 
trained with a variable number of hidden neurons (varying between 2-5) and 20% of the randomly selected 572 
training data were withheld for independent internal testing. Based on the best output performance (tested using 573 
the 20% withheld input data), the best performing number of neurons was selected. In a second step, we trained 574 
the network 10 times using the best number of neurons identified in step 1 and different sets of randomly 575 
selected training data. The mean of the 10 trainings is considered our best forecast, whereas the standard 576 
deviation of the 10 ensembles provides a first order estimate of the forecast uncertainty. This uncertainty is then 577 
combined with the SOCEAN uncertainty (0.4 GtC yr-1) to estimate the overall uncertainty of the 2022 projection. 578 
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2.5 Land CO2 sink 579 

2.5.1 Historical Period 580 

The terrestrial land sink (SLAND) is thought to be due to the combined effects of fertilisation by rising 581 
atmospheric CO2 and N inputs on plant growth, as well as the effects of climate change such as the lengthening 582 
of the growing season in northern temperate and boreal areas. SLAND does not include land sinks directly 583 
resulting from land-use and land-use change (e.g., regrowth of vegetation) as these are part of the land-use flux 584 
(ELUC), although system boundaries make it difficult to attribute exactly CO2 fluxes on land between SLAND and 585 
ELUC (Erb et al., 2013). 586 
SLAND is estimated from the multi-model mean of 16 DGVMs (Table A1). As described in Appendix C.4, 587 
DGVMs simulations include all climate variability and CO2 effects over land. In addition to the carbon cycle 588 
represented in all DGVMs, 11 models also account for the nitrogen cycle and hence can include the effect of N 589 
inputs on SLAND. The DGVMs estimate of SLAND does not include the export of carbon to aquatic systems or its 590 
historical perturbation, which is discussed in Appendix D3. See Appendix C.4 for DGVMs evaluation and 591 
uncertainty assessment for SLAND, using the International Land Model Benchmarking system (ILAMB; Collier et 592 
al., 2018). More details on the SLAND methodology can be found in Appendix C.4. 593 

2.5.2 2022 Projection 594 

Like for the ocean forecast, the land CO2 sink (SLAND) forecast is based on the annual historical and estimated 595 
2022 atmospheric CO2 concentration (Dlugokencky and Tans 2021), historical and estimated 2022 annual 596 
global fossil fuel emissions from this year’s carbon budget, and the summer (June, July, August) ONI (NCEP, 597 
2022). All training data are again used to best match SLAND from 1959 through 2021 from this year’s carbon 598 
budget using a feed-forward neural network. To avoid overfitting, the neural network was trained with a 599 
variable number of hidden neurons (varying between 2-15), larger than for SOCEAN prediction due to the stronger 600 
land carbon interannual variability. As done for SOCEAN, a pre-training selects the optimal number of hidden 601 
neurons based on 20% withheld input data, and in a second step, an ensemble of 10 forecasts is produced to 602 
provide the mean forecast plus uncertainty. This uncertainty is then combined with the SLAND uncertainty for 603 
2021 (0.9 GtC yr-1) to estimate the overall uncertainty of the 2022 projection. 604 

2.6 The atmospheric perspective 605 

The world-wide network of in-situ atmospheric measurements and satellite derived atmospheric CO2 column 606 
(xCO2) observations put a strong constraint on changes in the atmospheric abundance of CO2. This is true 607 
globally (hence our large confidence in GATM), but also regionally in regions with sufficient observational 608 
density found mostly in the extra-tropics. This allows atmospheric inversion methods to constrain the magnitude 609 
and location of the combined total surface CO2 fluxes from all sources, including fossil and land-use change 610 
emissions and land and ocean CO2 fluxes. The inversions assume EFOS to be well known, and they solve for the 611 
spatial and temporal distribution of land and ocean fluxes from the residual gradients of CO2 between stations 612 
that are not explained by fossil fuel emissions. By design, such systems thus close the carbon balance (BIM = 0) 613 
and thus provide an additional perspective on the independent estimates of the ocean and land fluxes.  614 
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This year’s release includes nine inversion systems that are described in Table A4. Each system is rooted in 615 
Bayesian inversion principles but uses different methodologies. These differences concern the selection of 616 
atmospheric CO2 data or xCO2, and the choice of a-priori fluxes to refine. They also differ in spatial and 617 
temporal resolution, assumed correlation structures, and mathematical approach of the models (see references in 618 
Table A4 for details). Importantly, the systems use a variety of transport models, which was demonstrated to be 619 
a driving factor behind differences in atmospheric inversion-based flux estimates, and specifically their 620 
distribution across latitudinal bands (Gaubert et al., 2019; Schuh et al., 2019). Four inversion systems (CAMS-621 
FT21r2, CMS-flux, GONGGA, THU) used satellite xCO2 retrievals from GOSAT and/or OCO-2, scaled to the 622 
WMO 2019 calibration scale. One inversion this year (CMS-Flux) used these xCO2 datasets in addition to the 623 
in-situ observational CO2 mole fraction records.  624 

The original products delivered by the inverse modellers were modified to facilitate the comparison to the other 625 
elements of the budget, specifically on two accounts: (1) global total fossil fuel emissions including cement 626 
carbonation CO2 uptake, and (2) riverine CO2 transport. Details are given below. We note that with these 627 
adjustments the inverse results no longer represent the net atmosphere-surface exchange over land/ocean areas 628 
as sensed by atmospheric observations. Instead, for land, they become the net uptake of CO2 by vegetation and 629 
soils that is not exported by fluvial systems, similar to the DGVMs estimates. For oceans, they become the net 630 
uptake of anthropogenic CO2, similar to the GOBMs estimates. 631 

The inversion systems prescribe global fossil fuel emissions based on the GCP’s Gridded Fossil Emissions 632 
Dataset versions 2022.1 or 2022.2 (GCP-GridFED; Jones et al., 2022), which are updates to GCP-633 
GridFEDv2021 presented by Jones et al. (2021). GCP-GridFEDv2022 scales gridded estimates of CO2 634 
emissions from EDGARv4.3.2 (Janssens-Maenhout et al., 2019) within national territories to match national 635 
emissions estimates provided by the GCB for the years 1959-2021, which were compiled following the 636 
methodology described in Section 2.1. Small differences between the systems due to for instance regridding to 637 
the transport model resolution, or use of different GridFED versions with different cement carbonation sinks 638 
(which were only present starting with GridFEDv2022.1), are adjusted in the latitudinal partitioning we present, 639 
to ensure agreement with the estimate of EFOS in this budget. We also note that the ocean fluxes used as prior by 640 
6 out of 9 inversions are part of the suite of the ocean process model or fCO2 data products listed in Section 2.4. 641 
Although these fluxes are further adjusted by the atmospheric inversions, it makes the inversion estimates of the 642 
ocean fluxes not completely independent of SOCEAN assessed here. 643 

To facilitate comparisons to the independent SOCEAN and SLAND, we used the same corrections for transport and 644 
outgassing of carbon transported from land to ocean, as done for the observation-based estimates of SOCEAN (see 645 
Appendix C.3).  646 

The atmospheric inversions are evaluated using vertical profiles of atmospheric CO2 concentrations (Figure B4). 647 
More than 30 aircraft programs over the globe, either regular programs or repeated surveys over at least 9 648 
months (except for SH programs), have been used to assess system performance (with space-time observational 649 
coverage sparse in the SH and tropics, and denser in NH mid-latitudes; Table A6). The nine systems are 650 
compared to the independent aircraft CO2 measurements between 2 and 7 km above sea level between 2001 and 651 
2021. Results are shown in Figure B4 and discussed in Appendix C.5.2 652 
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With a relatively small ensemble (N=9) of systems that moreover share some a-priori fluxes used with one 653 
another, or with the process-based models, it is difficult to justify using their mean and standard deviation as a 654 
metric for uncertainty across the ensemble. We therefore report their full range (min-max) without their mean. 655 
More details on the atmospheric inversions methodology can be found in Appendix C.5. 656 

2.7 Processes not included in the global carbon budget 657 

The contribution of anthropogenic CO and CH4 to the global carbon budget is not fully accounted for in Eq. (1) 658 
and is described in Appendix D1. The contributions to CO2 emissions of decomposition of carbonates not 659 
accounted for is described in Appendix D2. The contribution of anthropogenic changes in river fluxes is 660 
conceptually included in Eq. (1) in SOCEAN and in SLAND, but it is not represented in the process models used to 661 
quantify these fluxes. This effect is discussed in Appendix D3. Similarly, the loss of additional sink capacity 662 
from reduced forest cover is missing in the combination of approaches used here to estimate both land fluxes 663 
(ELUC and SLAND) and its potential effect is discussed and quantified in Appendix D4.  664 
 665 

3 Results 666 

For each component of the global carbon budget, we present results for three different time periods: the full 667 
historical period, from 1850 to 2021, the six decades in which we have atmospheric concentration records from 668 
Mauna Loa (1960-2021), a specific focus on last year (2021), and the projection for the current year (2022). 669 
Subsequently, we assess the combined constraints from the budget components (often referred to as a bottom-up 670 
budget) against the top-down constraints from inverse modelling of atmospheric observations. We do this for 671 
the global balance of the last decade, as well as for a regional breakdown of land and ocean sinks by broad 672 
latitude bands. 673 

3.1 Fossil CO2 Emissions 674 

3.1.1 Historical period 1850-2021 675 

Cumulative fossil CO2 emissions for 1850-2021 were 465 ± 25 GtC, including the cement carbonation sink 676 
(Figure 3, Table 8, all cumulative numbers are rounded to the nearest 5GtC).  677 
In this period, 46% of fossil CO2 emissions came from coal, 35% from oil, 15% from natural gas, 3% from 678 
decomposition of carbonates, and 1% from flaring. 679 
In 1850, the UK stood for 62% of global fossil CO2 emissions. In 1891 the combined cumulative emissions of 680 
the current members of the European Union reached and subsequently surpassed the level of the UK. Since 681 
1917 US cumulative emissions have been the largest. Over the entire period 1850-2021, US cumulative 682 
emissions amounted to 115GtC (24% of world total), the EU’s to 80 GtC (17%), and China’s to 70 GtC (14%). 683 
In addition to the estimates of fossil CO2 emissions that we provide here (see Methods), there are three 684 
additional global datasets with long time series that include all sources of fossil CO2 emissions: CDIAC-FF 685 
(Gilfillan and Marland, 2021), CEDS version v_2021_04_21 (Hoesly et al., 2018; O’Rourke et al., 2021) and 686 
PRIMAP-hist version 2.3.1 (Gütschow et al., 2016, 2021), although these datasets are not entirely independent 687 
from each other (Andrew, 2020a). CDIAC-FF has the lowest cumulative emissions over 1750-2018 at 437 GtC, 688 
GCP has 443 GtC, CEDS 445 GtC, PRIMAP-hist TP 453 GtC, and PRIMAP-hist CR 455 GtC. CDIAC-FF 689 
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excludes emissions from lime production, while neither CDIAC-FF nor GCP explicitly include emissions from 690 
international bunker fuels prior to 1950. CEDS has higher emissions from international shipping in recent years, 691 
while PRIMAP-hist has higher fugitive emissions than the other datasets. However, in general these four 692 
datasets are in relative agreement as to total historical global emissions of fossil CO2. 693 

3.1.2 Recent period 1960-2021 694 

Global fossil CO2 emissions, EFOS (including the cement carbonation sink), have increased every decade from an 695 
average of 3.0 ± 0.2 GtC yr-1 for the decade of the 1960s to an average of 9.6 ± 0.5 GtC yr-1 during 2012-2021 696 
(Table 6, Figure 2 and Figure 5). The growth rate in these emissions decreased between the 1960s and the 697 
1990s, from 4.3% yr-1 in the 1960s (1960-1969), 3.2% yr-1 in the 1970s (1970-1979), 1.6% yr-1 in the 1980s 698 
(1980-1989), to 0.9% yr-1 in the 1990s (1990-1999). After this period, the growth rate began increasing again in 699 
the 2000s at an average growth rate of 3.0% yr-1, decreasing to 0.5% yr-1 for the last decade (2012-2021). 700 
China’s emissions increased by +1.5% yr-1 on average over the last 10 years dominating the global trend, and 701 
India’s emissions increased by +3.8% yr-1, while emissions decreased in EU27 by –1.8% yr-1, and in the USA 702 
by –1.1% yr-1. Figure 6 illustrates the spatial distribution of fossil fuel emissions for the 2012-2021 period. 703 

EFOS includes the uptake of CO2 by cement via carbonation which has increased with increasing stocks of 704 
cement products, from an average of 20 MtC yr-1 (0.02 GtC yr-1) in the 1960s to an average of 200 MtC yr-1 (0.2 705 
GtC yr-1) during 2012-2021 (Figure 5).  706 

3.1.3 Final year 2021 707 

Global fossil CO2 emissions were 5.1% higher in 2021 than in 2020, because of the global rebound from the 708 
worst of the COVID-19 pandemic, with an increase of 0.5 GtC to reach 9.9 ± 0.5 GtC ( including the cement 709 
carbonation sink) in 2021 (Figure 5), distributed among coal (41%), oil (32%), natural gas (22%), cement (5%) 710 
and others (1%). Compared to the previous year, 2021 emissions from coal, oil and gas increased by 5.7%, 5.8% 711 
and 4.8% respectively, while emissions from cement increased by 2.1%. All growth rates presented are adjusted 712 
for the leap year, unless stated otherwise.  713 

In 2021, the largest absolute contributions to global fossil CO2 emissions were from China (31%), the USA 714 
(14%), the EU27 (8%), and India (7%). These four regions account for 59% of global CO2 emissions, while the 715 
rest of the world contributed 41%, including international aviation and marine bunker fuels (2.8% of the total). 716 
Growth rates for these countries from 2020 to 2021 were 3.5% (China), 6.2% (USA), 6.8% (EU27), and 11.1% 717 
(India), with +4.5% for the rest of the world. The per-capita fossil CO2 emissions in 2021 were 1.3 tC person-1 718 
yr-1 for the globe, and were 4.0 (USA), 2.2 (China), 1.7 (EU27) and 0.5 (India) tC person-1 yr-1 for the four 719 
highest emitting countries (Figure 5). 720 

The post-COVID-19 rebound in emissions of 5.1% in 2021 is close to the projected increase of 4.8% published 721 
in Friedlingstein et al. (2021) (Table 7). Of the regions, the projection for the ‘rest of world’ region was least 722 
accurate (off by -1.3%), largely because of poorly projected emissions from international transport (bunker 723 
fuels), which were subject to very large changes during this period.  724 
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3.1.4 Year 2022 Projection 725 

Globally, we estimate that global fossil CO2 emissions (including cement carbonation) will grow by 1.1% in 726 
2022 (0.0% to 1.7%) to 10.0 GtC (36.5 GtCO2), exceeding their 2019 emission levels of 9.9 GtC (36.2 GtCO2). 727 
Global increase in 2022 emissions per fuel types are projected to be +0.8% (range 0.0% to 1.7%) for coal, 728 
+2.2% (range -0.7% to 2.9%) for oil, +1.1% (range 0.0% to 2.2%) for natural gas, and -2.8% (range -5.5% to -729 
0.2%) for cement. 730 

For China, projected fossil emissions in 2022 are expected to decline by 1.5% (range -3.0% to +0.1%) compared 731 
with 2021 emissions, bringing 2022 emissions for China around 3.0 GtC yr-1 (11.1 GtCO2 yr-1). Changes in fuel 732 
specific projections for China are -0.5% for coal, -2.3% for oil, -1.1% natural gas, and -9.2% for cement. 733 

For the USA, the Energy Information Administration (EIA) emissions projection for 2022 combined with 734 
cement clinker data from USGS gives an increase of 1.6% (range -0.9% to +4.1%) compared to 2021, bringing 735 
USA 2022 emissions to around 1.4 GtC yr-1 (5.1 GtCO2 yr-1). This is based on separate projections for coal -736 
2.8%, oil +1.9%, natural gas +4.1%, and cement +0.7%. 737 

For the European Union, our projection for 2022 is for a decline of 1.0% (range -2.9% to +1.0%) over 2021, 738 
with 2022 emissions around 0.8 GtC yr-1 (2.8 GtCO2 yr-1). This is based on separate projections for coal of 739 
+7.5%, oil +0.6%, natural gas -11.0%, and cement unchanged. 740 

For India, our projection for 2022 is an increase of 5.6% (range of 3.5% to 7.7%) over 2021, with 2022 741 
emissions around 0.8 GtC yr-1 (2.9 GtCO2 yr-1). This is based on separate projections for coal of +5.0%, oil 742 
+8.0%, natural gas -3.0%, and cement +10.0%. 743 

For the rest of the world, the expected growth rate for 2022 is 2.5% (range 0.1% to 2.3%). The fuel-specific 744 
projected 2022 growth rates for the rest of the world are: +1.4% (range -0.6% to +3.4%) for coal, +3.2% (1.6% 745 
to +4.9%) for oil, +2.6% (1.1% to 4.1%) for natural gas, +2.8% (+0.6% to +5.1%) for cement.  746 

3.2 Emissions from Land Use Changes 747 

3.2.1 Historical period 1850-2021 748 

Cumulative CO2 emissions from land-use changes (ELUC) for 1850-2021 were 205 ± 60 GtC (Table 8; Figure 3; 749 
Figure 14). The cumulative emissions from ELUC show a large spread among individual estimates of 140 GtC 750 
(updated H&N2017), 280 GtC (BLUE), and 190 GtC (OSCAR) for the three bookkeeping models and a similar 751 
wide estimate of 185 ± 60 GtC for the DGVMs (all cumulative numbers are rounded to the nearest 5GtC). These 752 
estimates are broadly consistent with indirect constraints from vegetation biomass observations, giving a 753 
cumulative source of 155 ± 50 GtC over the 1901-2012 period (Li et al., 2017). However, given the large 754 
spread, a best estimate is difficult to ascertain.  755 

3.2.2 Recent period 1960-2021 756 

In contrast to growing fossil emissions, CO2 emissions from land-use, land-use change, and forestry have 757 
remained relatively constant, over the 1960-1999 period, but showing a slight decrease of about 0.1 GtC per 758 
decade since the 1990s, reaching 1.2 ± 0.7 GtC yr-1 for the 2012-2021 period (Table 6), but with large spread 759 
across estimates (Table 5, Figure 7). Different from the bookkeeping average, the DGVMs model average grows 760 
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slightly larger over the 1970-2021 period and shows no sign of decreasing emissions in the recent decades 761 
(Table 5, Figure 7). This is, however, expected as DGVM-based estimates include the loss of additional sink 762 
capacity, which grows with time, while the bookkeeping estimates do not (Appendix D4).  763 

ELUC is a net term of various gross fluxes, which comprise emissions and removals. Gross emissions on average 764 
over the 1850-2021 period are two (BLUE, OSCAR) to three (updated H&N2017) times larger than the net ELUC 765 
emissions. Gross emissions show a moderate increase from an average of 3.2 ± 0.9 GtC yr-1 for the decade of 766 
the 1960s to an average of 3.8 ± 0.7 GtC yr-1 during 2012-2021 (Figure 7), . Increases in gross removals, from 767 
1.8 ± 0.4 GtC yr-1 for the 1960s to 2.6 ± 0.4 GtC yr-1 for 2012-2021, were slightly larger than the increase in 768 
gross emissions. Since the processes behind gross removals, foremost forest regrowth and soil recovery, are all 769 
slow, while gross emissions include a large instantaneous component, short-term changes in land-use dynamics, 770 
such as a temporary decrease in deforestation, influences gross emissions dynamics more than gross removals 771 
dynamics. It is these relative changes to each other that explain the small decrease in net ELUC emissions over 772 
the last two decades and the last few years. Gross fluxes often differ more across the three bookkeeping 773 
estimates than net fluxes, which is expected due to different process representation; in particular, treatment of 774 
shifting cultivation, which increases both gross emissions and removals, differs across models. 775 

There is a smaller decrease in net CO2 emissions from land-use change in the last few years (Figure 7) than in 776 
our last year’s estimate (Friedlingstein et al., 2021), which places our updated estimates between last year’s 777 
estimate and the estimate from the GCB2020 (Friedlingstein et al., 2020). This change is principally attributable 778 
to changes in ELUC estimates from BLUE and OSCAR, which relate to improvements in the underlying land-use 779 
forcing (see Appendix C.2.2 for details). These changes address issues identified with last year’s land-use 780 
forcing (see Friedlingstein et al., 2022) and remove/attenuate several emission peaks in Brazil and the 781 
Democratic Republic of the Congo and lead to higher net emissions in Brazil in the last decades compared to 782 
last year’s global carbon budget (the emissions averaged over the three bookkeeping models for Brazil for the 783 
2011-2020 period were 168 MtC yr-1 in GCB2021 as compared to 289 MtC yr-1 in GCB2022). A remaining 784 
caveat is that global land-use change data for model input does not capture forest degradation, which often 785 
occurs on small scale or without forest cover changes easily detectable from remote sensing and poses a 786 
growing threat to forest area and carbon stocks that may surpass deforestation effects (e.g., Matricardi et al., 787 
2020, Qin et al., 2021). While independent pan-tropical or global estimates of vegetation cover dynamics or 788 
carbon stock changes based on satellite remote sensing have become available in recent years, a direct 789 
comparison to our estimates is not possible, most importantly because satellite-based estimates usually do not 790 
distinguish between anthropogenic drivers and natural forest cover losses (e.g. from drought or natural 791 
wildfires) (Pongratz et al., 2021).  792 

We additionally separate the net ELUC into four component fluxes to gain further insight into the drivers of 793 
emissions: deforestation, re/afforestation and wood harvest (i.e. all fluxes on forest lands), emissions from 794 
organic soils (i.e. peat drainage and peat fires), and fluxes associated with all other transitions (Figure 7; Sec. 795 
C.2.1). On average over the 2012-2021 period and over the three bookkeeping estimates, fluxes from 796 
deforestation amount to 1.8 ± 0.4 GtC yr-1 and from re/afforestation and wood harvest to -0.9 ± 0.3 GtC yr-1 797 
(Table 5). Emissions from organic soils (0.2 ± 0.1 GtC yr-1) and the net flux from other transitions (0.2 ± 0.1 798 
GtC yr-1) are substantially less important globally. Deforestation is thus the main driver of global gross sources. 799 
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The relatively small deforestation flux (1.8 ± 0.4 GtC yr-1) in comparison to the gross emission estimate above 800 
(3.8 ± 0.7 GtC yr-1) is explained by the fact that emissions associated with wood harvesting do not count as 801 
deforestation as they do not change the land cover. This split into component fluxes clarifies the potentials for 802 
emission reduction and carbon dioxide removal: the emissions from deforestation could be halted (largely) 803 
without compromising carbon uptake by forests and would contribute to emissions reduction. By contrast, 804 
reducing wood harvesting would have limited potential to reduce emissions as it would be associated with less 805 
forest regrowth; sinks and sources cannot be decoupled here. Carbon dioxide removal in forests could instead be 806 
increased by re/afforestation.  807 

Overall, highest land-use emissions occur in the tropical regions of all three continents. The top three emitters 808 
(both cumulatively 1959-2021 and on average over 2012-2021) are Brazil (in particular the Amazon Arc of 809 
Deforestation), Indonesia and the Democratic Republic of the Congo, with these 3 countries contributing 0.7 810 
GtC yr-1 or 58% of the global total land-use emissions (average over 2012-2021) (Figure 6b). This is related to 811 
massive expansion of cropland, particularly in the last few decades in Latin America, Southeast Asia, and sub-812 
Saharan Africa Emissions (Hong et al., 2021), to a substantial part for export of agricultural products (Pendrill et 813 
al., 2019). Emission intensity is high in many tropical countries, particularly of Southeast Asia, due to high rates 814 
of land conversion in regions of carbon-dense and often still pristine, undegraded natural forests (Hong et al., 815 
2021). Emissions are further increased by peat fires in equatorial Asia (GFED4s, van der Werf et al., 2017). 816 
Uptake due to land-use change occurs, particularly in Europe, partly related to expanding forest area as a 817 
consequence of the forest transition in the 19th and 20th century and subsequent regrowth of forest (Figure 6b) 818 
(Mather 2001; McGrath et al., 2015). 819 

While the mentioned patterns are supported by independent literature and robust, we acknowledge that model 820 
spread is substantially larger on regional than global level, as has been shown for bookkeeping models (Bastos 821 
et al., 2021) as well as DGVMs (Obermeier et al., 2021). Assessments for individual regions will be performed 822 
as part of REgional Carbon Cycle Assessment and Processes (RECCAP2; Ciais et al., 2020) or already exist for 823 
selected regions (e.g., for Europe by Petrescu et al., 2020, for Brazil by Rosan et al., 2021, for 8 selected 824 
countries/regions in comparison to inventory data by Schwingshackl et al., subm.). 825 

National GHG inventory data (NGHGI) under the LULUCF sector or data submitted by countries to FAOSTAT 826 
differ from the global models’ definition of ELUC we adopt here in that in the NGHGI reporting, the natural 827 
fluxes (SLAND) are counted towards ELUC when they occur on managed land (Grassi et al., 2018). In order to 828 
compare our results to the NGHGI approach, we perform a re-mapping of our ELUC estimates by adding SLAND in 829 
managed forest from the DGVMs simulations (following Grassi et al., 2021) to the bookkeeping ELUC estimate 830 
(see Appendix C.2.3). For the 2012-2021 period, we estimate that 1.8 GtC yr-1 of SLAND occurred in managed 831 
forests and is then reallocated to ELUC here, as done in the NGHGI method. Doing so, our mean estimate of ELUC 832 
is reduced from a source of 1.2 GtC to a sink of 0.6 GtC, very similar to the NGHGI estimate of a 0.5 GtC sink 833 
(Table 9). The re-mapping approach has been shown to be generally applicable also on country-level (Grassi et 834 
al., 2022b; Schwingshackl et al., subm.). Country-level analysis suggests, e.g., that the bookkeeping mean 835 
estimates higher deforestation emissions than the national report in Indonesia, but estimates less CO2 removal 836 
by afforestation than the national report in China. The fraction of the natural CO2 sinks that the NGHGI 837 
estimates include differs substantially across countries, related to varying proportions of managed vs all forest 838 
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areas (Schwingshackl et al., subm.). Comparing ELUC and NGHGI on the basis of the four component fluxes 839 
(Grassi et al., 2022b) we find that NGHGI deforestation emissions are reported to be smaller than the 840 
bookkeeping estimate (1.1 GtC yr-1 averaged over 2012-2021). A reason for this lies in the fact that country 841 
reports do not (fully) capture the carbon flux consequences of shifting cultivation. Conversely, carbon uptake in 842 
forests (re/afforestation and forestry) is substantially larger than the bookkeeping estimate (1.75 GtC yr-1 843 
averaged over 2012-2021), owing to the inclusion of natural CO2 fluxes on managed land in the NGHGI. 844 
Emissions from organic soils and the net flux from other transitions are similar to the estimates based on the 845 
bookkeeping approach and the external peat drainage and burning datasets.  Though estimates between NGHGI, 846 
FAOSTAT, individual process-based models and the mapped budget estimates still differ in value and need 847 
further analysis, the approach taken here provides a possibility to relate the global models’ and NGHGI 848 
approach to each other routinely and thus link the anthropogenic carbon budget estimates of land CO2 fluxes 849 
directly to the Global Stocktake, as part of UNFCCC Paris Agreement. 850 

3.2.3 Final year 2021 851 

The global CO2 emissions from land-use change are estimated as 1.1 ± 0.7 GtC in 2021, similar to the 2020 852 
estimate. However, confidence in the annual change remains low.  853 

Land-use change and related emissions may have been affected by the COVID-19 pandemic (e.g. Poulter et al., 854 
2021). During the period of the pandemic, environmental protection policies and their implementation may have 855 
been weakened in Brazil (Vale et al., 2021). In other countries, too, monitoring capacities and legal enforcement 856 
of measures to reduce tropical deforestation have been reduced due to budget restrictions of environmental 857 
agencies or impairments to ground-based monitoring that prevents land grabs and tenure conflicts (Brancalion et 858 
al., 2020, Amador-Jiménez et al., 2020). Effects of the pandemic on trends in fire activity or forest cover 859 
changes are hard to separate from those of general political developments and environmental changes and the 860 
long-term consequences of disruptions in agricultural and forestry economic activities (e.g., Gruère and Brooks, 861 
2020; Golar et al., 2020; Beckman and Countryman, 2021) remain to be seen. Overall, there is limited evidence 862 
so far that COVID-19 was a key driver of changes in LULUCF emissions at global scale. Impacts vary across 863 
countries and deforestation-curbing and enhancing factors may partly compensate each other (Wunder et al., 864 
2021). 865 

3.2.4 Year 2022 Projection 866 

In Indonesia, peat fire emissions are very low, potentially related to a relatively wet dry season (GFED4.1s, van 867 
der Werf et al., 2017). In South America, the trajectory of tropical deforestation and degradation fires resembles 868 
the long-term average; global emissions from tropical deforestation and degradation fires were estimated to be 869 
116 TgC by August 23 (GFED4.1s, van der Werf et al., 2017). Our preliminary estimate of ELUC for 2022 is 870 
substantially lower than the 2012-2021 average, which saw years of anomalously dry conditions in Indonesia 871 
and high deforestation fires in South America (Friedlingstein et al., 2022). Based on the fire emissions until 872 
August 23, we expect ELUC emissions of around 1.0 GtC in 2022. Note that although our extrapolation is based 873 
on tropical deforestation and degradation fires, degradation attributable to selective logging, edge-effects or 874 
fragmentation will not be captured. Further, deforestation and fires in deforestation zones may become more 875 
disconnected, partly due changes in legislation in some regions. For example, Van Wees et al. (2021) found that 876 
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the contribution from fires to forest loss decreased in the Amazon and in Indonesia over the period of 2003-877 
2018. More recent years, however, saw an uptick in the Amazon again (Tyukavina et al., 2022 with update) and 878 
more work is needed to understand fire-deforestation relations. 879 

The fires in Mediterranean Europe in summer 2022 and in the U.S. in spring 2022, though above average for 880 
those regions, only contribute a small amount to global emissions. However, they were unrelated to land-use 881 
change and are thus not attributed to ELUC, but would be be part of the natural land sink. 882 

Land use dynamics may be influenced by the disruption to the global food market associated with the war in 883 
Ukraine, but scientific evidence so far is very limited. High food prices, which preceded but were exacerbated 884 
by the war (Torero 2022), are generally linked to higher deforestation (Angelsen and Kaimowitz 1999), while 885 
high prices on agricultural inputs such as fertilizers and fuel, which are also under pressure from embargoes, 886 
may impair yields. 887 

3.3 Total anthropogenic emissions  888 

Cumulative anthropogenic CO2 emissions for 1850-2021 totalled 670 ± 65 GtC (2455 ± 240 GtCO2), of which 889 
70% (470 GtC) occurred since 1960 and 33% (220 GtC) since 2000 (Table 6 and 8). Total anthropogenic 890 
emissions more than doubled over the last 60 years, from 4.5 ± 0.7 GtC yr-1 for the decade of the 1960s to an 891 
average of 10.8 ± 0.8 GtC yr-1 during 2012-2021, and reaching 10.9 ± 0.9 GtC (40.0 ± 3.3 GtCO2) in 2021. For 892 
2022, we project global total anthropogenic CO2 emissions from fossil and land use changes to be also around 893 
10.9 GtC (40.1 GtCO2). All values here include the cement carbonation sink (currently about 0.2 GtC yr-1). 894 
During the historical period 1850-2021, 30% of historical emissions were from land use change and 70% from 895 
fossil emissions. However, fossil emissions have grown significantly since 1960 while land use changes have 896 
not, and consequently the contributions of land use change to total anthropogenic emissions were smaller during 897 
recent periods (18% during the period 1960-2021 and 11% during 2012-2021).  898 

3.4 Atmospheric CO2 899 

3.4.1 Historical period 1850-2021 900 

Atmospheric CO2 concentration was approximately 278 parts per million (ppm) in 1750, reaching 300 ppm in 901 
the 1910s, 350 ppm in the late 1980s, and reaching 414.71 ± 0.1 ppm in 2021 (Dlugokencky and Tans, 2022); 902 
Figure 1). The mass of carbon in the atmosphere increased by 48% from 590 GtC in 1750 to 879 GtC in 2021. 903 
Current CO2 concentrations in the atmosphere are unprecedented in the last 2 million years and the current rate 904 
of atmospheric CO2 increase is at least 10 times faster than at any other time during the last 800,000 years 905 
(Canadell et al., 2021). 906 

3.4.2 Recent period 1960-2021 907 

The growth rate in atmospheric CO2 level increased from 1.7 ± 0.07 GtC yr-1 in the 1960s to 5.2 ± 0.02 GtC yr-1 908 
during 2012-2022 with important decadal variations (Table 6, Figure 3 and Figure 4). During the last decade 909 
(2012-2021), the growth rate in atmospheric CO2 concentration continued to increase, albeit with large 910 
interannual variability (Figure 4).  911 
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The airborne fraction (AF), defined as the ratio of atmospheric CO2 growth rate to total anthropogenic 912 
emissions: 913 

𝐴𝐹 =	𝐺)*"	/	(𝐸#$% + 𝐸&'()      (2) 914 

provides a diagnostic of the relative strength of the land and ocean carbon sinks in removing part of the 915 
anthropogenic CO2 perturbation. The evolution of AF over the last 60 years shows no significant trend, 916 
remaining at around 44%, albeit showing a large interannual and decadal variability driven by the year-to-year 917 
variability in GATM (Figure 9). The observed stability of the airborne fraction over the 1960-2020 period 918 
indicates that the ocean and land CO2 sinks have been removing on average about 55% of the anthropogenic 919 
emissions (see sections 3.5 and 3.6). 920 

3.4.3 Final year 2021 921 

The growth rate in atmospheric CO2 concentration was 5.2 ± 0.2 GtC (2.46 ± 0.08 ppm) in 2021 (Figure 4; 922 
Dlugokencky and Tans, 2022), slightly above the 2020 growth rate (5.0 GtC) but similar to the 2011-2020 923 
average (5.2 GtC).  924 

3.4.4 Year 2022 Projection 925 

The 2022 growth in atmospheric CO2 concentration (GATM) is projected to be about 5.5 GtC (2.58 ppm) based 926 
on GLO observations until August 2022, bringing the atmospheric CO2 concentration to an expected level of 927 
417.3 ppm averaged over the year, 51% over the pre-industrial level.  928 

3.5 Ocean Sink 929 

3.5.1 Historical period 1850-2021 930 

Cumulated since 1850, the ocean sink adds up to 175 ± 35 GtC, with more than two thirds of this amount (120 931 
GtC) being taken up by the global ocean since 1960. Over the historical period, the ocean sink increased in pace 932 
with the anthropogenic emissions exponential increase (Figure 3b). Since 1850, the ocean has removed 26% of 933 
total anthropogenic emissions. 934 

3.5.2 Recent period 1960-2021 935 

The ocean CO2 sink increased from 1.1 ± 0.4 GtC yr-1 in the 1960s to 2.9 ± 0.4 GtC yr-1 during 2012-2021 936 
(Table 6), with interannual variations of the order of a few tenths of GtC yr-1 (Figure 10). The ocean-borne 937 
fraction (SOCEAN/(EFOS+ELUC) has been remarkably constant around 25% on average (Figure 9). Variations 938 
around this mean illustrate decadal variability of the ocean carbon sink. So far, there is no indication of a 939 
decrease in the ocean-borne fraction from 1960 to 2021. The increase of the ocean sink is primarily driven by 940 
the increased atmospheric CO2 concentration, with the strongest CO2 induced signal in the North Atlantic and 941 
the Southern Ocean (Figure 11a). The effect of climate change is much weaker, reducing the ocean sink globally 942 
by 0.11 ± 0.09 GtC yr-1 (-4.2%) during 2012-2021 (nine models simulate a weakening of the ocean sink by 943 
climate change, range -3.2 to -8.9%, and only one model simulates a strengthening by 4.8%), and does not show 944 
clear spatial patterns across the GOBMs ensemble (Figure 11b). This is the combined effect of change and 945 
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variability in all atmospheric forcing fields, previously attributed to wind and temperature changes in one model 946 
(LeQuéré et al., 2010). 947 

The global net air-sea CO2 flux is a residual of large natural and anthropogenic CO2 fluxes into and out of the 948 
ocean with distinct regional and seasonal variations (Figure 6 and B1). Natural fluxes dominate on regional 949 
scales, but largely cancel out when integrated globally (Gruber et al., 2009). Mid-latitudes in all basins and the 950 
high-latitude North Atlantic dominate the ocean CO2 uptake where low temperatures and high wind speeds 951 
facilitate CO2 uptake at the surface (Takahashi et al., 2009). In these regions, formation of mode, intermediate 952 
and deep-water masses transport anthropogenic carbon into the ocean interior, thus allowing for continued CO2 953 
uptake at the surface. Outgassing of natural CO2 occurs mostly in the tropics, especially in the equatorial 954 
upwelling region, and to a lesser extent in the North Pacific and polar Southern Ocean, mirroring a well-955 
established understanding of regional patterns of air-sea CO2 exchange (e.g., Takahashi et al., 2009, Gruber et 956 
al., 2009). These patterns are also noticeable in the Surface Ocean CO2 Atlas (SOCAT) dataset, where an ocean 957 
fCO2 value above the atmospheric level indicates outgassing (Figure B1). This map further illustrates the data-958 
sparsity in the Indian Ocean and the southern hemisphere in general. 959 

Interannual variability of the ocean carbon sink is driven by climate variability with a first-order effect from a 960 
stronger ocean sink during large El Niño events (e.g., 1997-1998) (Figure 10; Rödenbeck et al., 2014, Hauck et 961 
al., 2020). The GOBMs show the same patterns of decadal variability as the mean of the fCO2-based data 962 
products, with a stagnation of the ocean sink in the 1990s and a strengthening since the early 2000s (Figure 10, 963 
Le Quéré et al., 2007; Landschützer et al., 2015, 2016; DeVries et al., 2017; Hauck et al., 2020; McKinley et al., 964 
2020). Different explanations have been proposed for this decadal variability, ranging from the ocean’s response 965 
to changes in atmospheric wind and pressure systems (e.g., Le Quéré et al., 2007, Keppler and Landschützer, 966 
2019), including variations in upper ocean overturning circulation (DeVries et al., 2017) to the eruption of 967 
Mount Pinatubo and its effects on sea surface temperature and slowed atmospheric CO2 growth rate in the 1990s 968 
(McKinley et al., 2020). The main origin of the decadal variability is a matter of debate with a number of studies 969 
initially pointing to the Southern Ocean (see review in Canadell et al., 2021), but also contributions from the 970 
North Atlantic and North Pacific (Landschützer et al., 2016, DeVries et al., 2019), or a global signal (McKinley 971 
et al., 2020) were proposed. 972 

Although all individual GOBMs and data-products fall within the observational constraint, the ensemble means 973 
of GOBMs, and data-products adjusted for the riverine flux diverge over time with a mean offset increasing 974 
from 0.28 GtC yr-1 in the 1990s to 0.61 GtC yr-1 in the decade 2012-2021 and reaching 0.79 GtC yr-1 in 2021. 975 
The SOCEAN positive trend over time diverges by a factor two since 2002 (GOBMs: 0.28 ± 0.07 GtC yr-1 per 976 
decade, data-products: 0.61 ± 0.17 GtC yr-1 per decade, SOCEAN: 0.45 GtC yr-1 per decade) and by a factor of 977 
three since 2010 (GOBMs: 0.21 ± 0.14 GtC yr-1 per decade, data-products: 0.66 ± 0.38 GtC yr-1 per decade, 978 
SOCEAN: 0.44 GtC yr-1 per decade). The GOBMs estimate is slightly higher (<0.1 GtC yr-1) than in the previous 979 
global carbon budget (Friedlingstein et al., 2022), because two new models are included (CESM2, MRI) and 980 
four models revised their estimates upwards (CESM-ETHZ, CNRM, FESOM2-REcoM, PlankTOM). The data-981 
product estimate is higher by about 0.1 GtC yr-1 compared to Friedlingstein et al. (2022) as a result of an upward 982 
correction in three products (Jena-MLS, MPI-SOMFFN, OS-ETHZ-Gracer), the submission of LDEO-HPD 983 
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which is above average, the non-availability of the CSIR product, and the small upward correction of the river 984 
flux adjustment. 985 

The discrepancy between the two types of estimates stems mostly from a larger Southern Ocean sink in the data-986 
products prior to 2001, and from a larger SOCEAN trend in the northern and southern extra-tropics since then 987 
(Figure 13). Note that the location of the mean offset (but not its trend) depends strongly on the choice of 988 
regional river flux adjustment and would occur in the tropics rather than in the Southern Ocean when using the 989 
dataset of Lacroix et al. (2020) instead of Aumont et al. (2001). Other possible explanations for the discrepancy 990 
in the Southern Ocean could be missing winter observations and data sparsity in general (Bushinsky et al., 2019, 991 
Gloege et al., 2021), or model biases (as indicated by the large model spread in the South, Figure 13, and the 992 
larger model-data mismatch, Figure B2).  993 
In GCB releases until 2021, the ocean sink 1959-1989 was only estimated by GOBMs due to the absence of 994 
fCO2 observations. Now, the first data-based estimates extending back to 1957/58 are becoming available (Jena-995 
MLS, Rödenbeck et al., 2022, LDEO-HPD, Bennington et al., 2022; Gloege et al. 2022). These are based on a 996 
multi-linear regression of pCO2 with environmental predictors (Rödenbeck et al., 2022, included here) or on 997 
model-data pCO2 misfits and their relation to environmental predictors (Bennington et al., 2022). The Jena-MLS 998 
estimate falls well within the range of GOBM estimates and has a correlation of 0.98 with SOCEAN (1959-2021 as 999 
well as 1959-1989). It agrees well on the mean SOCEAN estimate since 1977 with a slightly higher amplitude of 1000 
variability (Figure 10). Until 1976, Jena-MLS is 0.2-0.3 GtCyr-1 below the central SOCEAN estimate. The 1001 
agreement especially on phasing of variability is impressive, and the discrepancies in the mean flux 1959-1976 1002 
could be explained by an overestimated trend of Jena-MLS (Rödenbeck et al., 2022). Bennington et al. (2022) 1003 
report a larger flux into the pre-1990 ocean than in Jena-MLS.   1004 
The reported SOCEAN estimate from GOBMs and data-products is 2.1 ± 0.4 GtC yr-1 over the period 1994 to 1005 
2007, which is in agreement with the ocean interior estimate of 2.2 ± 0.4 GtC yr−1 which accounts for the 1006 

climate effect on the natural CO2 flux of −0.4 ± 0.24 GtC yr−1 (Gruber et al., 2019) to match the 1007 

definition of SOCEAN used here (Hauck et al., 2020). This comparison depends critically on the estimate of the 1008 
climate effect on the natural CO2 flux, which is smaller from the GOBMs (-0.1 GtC yr−1) than in Gruber et al. 1009 
(2019). Uncertainties of these two estimates would also overlap when using the GOBM estimate of the climate 1010 
effect on the natural CO2 flux. 1011 

During 2010-2016, the ocean CO2 sink appears to have intensified in line with the expected increase from 1012 
atmospheric CO2 (McKinley et al., 2020). This effect is stronger in the fCO2-based data products (Figure 10, 1013 
ocean sink 2016 minus 2010, GOBMs: +0.42 ± 0.09 GtC yr-1, data-products: +0.52 ± 0.22 GtC yr-1). The 1014 
reduction of -0.09 GtC yr-1 (range: -0.39 to +0.01 GtC yr-1) in the ocean CO2 sink in 2017 is consistent with the 1015 
return to normal conditions after the El Niño in 2015/16, which caused an enhanced sink in previous years. 1016 
After 2017, the GOBMs ensemble mean suggests the ocean sink levelling off at about 2.6 GtC yr-1, whereas the 1017 
data-products’ estimate increases by 0.24 ± 0.17 GtC yr-1 over the same period. 1018 

3.5.3 Final year 2021 1019 

The estimated ocean CO2 sink was 2.9 ± 0.4 GtC in 2021. This is a decrease of 0.12 GtC compared to 2020, in 1020 
line with the expected sink weakening from persistent La Niña conditions. GOBM and data-product estimates 1021 
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consistently result in a stagnation of SOCEAN (GOBMs: -0.09 ±0.15 GtC, data-products: -0.15 ±0.24 GtC).  Seven 1022 
models and six data products show a decrease in SOCEAN (GOBMs down to -0.31 GtC, data-products down to -1023 
0.58 GtC), while three models and two data products show an increase in SOCEAN (GOBMs up to 0.15 GtC, data-1024 
products up to 0.12 GtC; Figure 10). The data-products have a larger uncertainty at the tails of the reconstructed 1025 
time series (e.g., Watson et al., 2020). Specifically, the data-products’ estimate of the last year is regularly 1026 
adjusted in the following release owing to the tail effect and an incrementally increasing data availability with 1-1027 
5 years lag (Figure 10 inset).  1028 

3.5.4 Year 2022 Projection 1029 

Using a feed-forward neural network method (see section 2.4) we project an ocean sink of 2.9 GtC for 2022.  1030 
This is similar to the year 2021 as the La Niña conditions persist in 2022.    1031 

3.5.5 Model Evaluation 1032 

The additional simulation D allows to separate the anthropogenic carbon component (steady state and non-1033 
steady state, sim D - sim A) and to compare the model flux and DIC inventory change directly to the interior 1034 
ocean estimate of Gruber et al. (2019) without further assumptions. The GOBMs ensemble average of 1035 
anthropogenic carbon inventory changes 1994-2007 amounts to 2.2 GtC yr-1 and is thus lower than the 2.6 ± 0.3 1036 
GtC yr-1 estimated by Gruber et al (2019). Only four models with the highest sink estimate fall within the range 1037 
reported by Gruber et al. (2019). This suggests that the majority  of the GOBMs underestimate anthropogenic 1038 
carbon uptake by 10-20%. Analysis of Earth System Models indicate that an underestimation by about 10% may 1039 
be due to biases in ocean carbon transport and mixing from the surface mixed layer to the ocean interior (Goris 1040 
et al., 2018, Terhaar et al., 2021, Bourgeois et al., 2022, Terhaar et al., 2022,), biases in the chemical buffer 1041 
capacity (Revelle factor) of the ocean (Vaittinada Ayar et al., 2022; Terhaar et al., 2022) and partly due to a late 1042 
starting date of the simulations (mirrored in atmospheric CO2 chosen for the preindustrial control simulation, 1043 
Table A2, Bronselaer et al., 2017, Terhaar et al., 2022). Interestingly, and in contrast to the uncertainties in the 1044 
surface CO2 flux, we find the largest mismatch in interior ocean carbon accumulation in the tropics (93% of the 1045 
mismatch), with minor contribution from the north (1%) and the south (6%). This highlights the role of interior 1046 
ocean carbon redistribution for those inventories (Khatiwala et al., 2009). 1047 
The evaluation of the ocean estimates (Figure B2) shows an RMSE from annually detrended data of 0.4 to 2.6 1048 
µatm for the seven fCO2-based data products over the globe, relative to the fCO2 observations from the SOCAT 1049 
v2022 dataset for the period 1990-2021. The GOBMs RMSEs are larger and range from 3.0 to 4.8 µatm. The 1050 
RMSEs are generally larger at high latitudes compared to the tropics, for both the data products and the 1051 
GOBMs. The data products have RMSEs of 0.4 to 3.2 µatm in the tropics, 0.8 to 2.8 µatm in the north, and 0.8 1052 
to 3.6 µatm in the south. Note that the data products are based on the SOCAT v2022 database, hence the 1053 
SOCAT is not an independent dataset for the evaluation of the data products. The GOBMs RMSEs are more 1054 
spread across regions, ranging from 2.5 to 3.9 µatm in the tropics, 3.1 to 6.5 µatm in the North, and 5.4 to 7.9 1055 
µatm in the South. The higher RMSEs occur in regions with stronger climate variability, such as the northern 1056 
and southern high latitudes (poleward of the subtropical gyres). The upper range of the model RMSEs have 1057 
decreased somewhat relative to Friedlingstein et al. (2022). 1058 
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3.6 Land Sink 1059 

3.6.1 Historical period 1850-2021 1060 

Cumulated since 1850, the terrestrial CO2 sink amounts to 210 ± 45 GtC, 31% of total anthropogenic emissions. 1061 
Over the historical period, the sink increased in pace with the anthropogenic emissions exponential increase 1062 
(Figure 3b). 1063 

3.6.2 Recent period 1960-2021 1064 

The terrestrial CO2 sink increased from 1.2 ± 0.4 GtC yr-1 in the 1960s to 3.1 ± 0.6 GtC yr-1 during 2012-2021, 1065 
with important interannual variations of up to 2 GtC yr-1 generally showing a decreased land sink during El 1066 
Niño events (Figure 8), responsible for the corresponding enhanced growth rate in atmospheric CO2 1067 
concentration. The larger land CO2 sink during 2012-2021 compared to the 1960s is reproduced by all the 1068 
DGVMs in response to the increase in both atmospheric CO2 and nitrogen deposition, and the changes in 1069 
climate, and is consistent with constraints from the other budget terms (Table 5).  1070 

Over the period 1960 to present the increase in the global terrestrial CO2 sink is largely attributed to the CO2 1071 
fertilisation effect (Prentice et al., 2001, Piao et al., 2009), directly stimulating plant photosynthesis and 1072 
increased plant water use in water limited systems, with a small negative contribution of climate change (Figure 1073 
11). There is a range of evidence to support a positive terrestrial carbon sink in response to increasing 1074 
atmospheric CO2, albeit with uncertain magnitude (Walker et al., 2021). As expected from theory, the greatest 1075 
CO2 effect is simulated in the tropical forest regions, associated with warm temperatures and long growing 1076 
seasons (Hickler et al., 2008) (Figure 11a). However, evidence from tropical intact forest plots indicate an 1077 
overall decline in the land sink across Amazonia (1985-2011), attributed to enhanced mortality offsetting 1078 
productivity gains (Brienen et al., 2005, Hubau et al., 2020). During 2012-2021 the land sink is positive in all 1079 
regions (Figure 6) with the exception of eastern Brazil, Southwest USA, Southeast Europe and Central Asia, 1080 
North and South Africa, and eastern Australia, where the negative effects of climate variability and change (i.e. 1081 
reduced rainfall) counterbalance CO2 effects. This is clearly visible on Figure 11 where the effects of CO2 1082 
(Figure 11a) and climate (Figure 11b) as simulated by the DGVMs are isolated. The negative effect of climate is 1083 
the strongest in most of South America, Central America, Southwest US, Central Europe, western Sahel, 1084 
southern Africa, Southeast Asia and southern China, and eastern Australia (Figure 11b).  Globally, climate 1085 
change reduces the land sink by 0.63 ± 0.52 GtC yr-1 or 17% (2012-2021).  1086 

Since 2020 the globe has experienced La Niña conditions which would be expected to lead to an increased land 1087 
carbon sink. A clear peak in the global land sink is not evident in SLAND, and we find that a La Niña- driven 1088 
increase in tropical land sink is offset by a reduced high latitude extra-tropical land sink, which may be linked to 1089 
the land response to recent climate extremes. In the past years several regions experienced record-setting fire 1090 
events. While global burned area has declined over the past decades mostly due to declining fire activity in 1091 
savannas (Andela et al., 2017), forest fire emissions are rising and have the potential to counter the negative fire 1092 
trend in savannas (Zheng et al., 2021). Noteworthy events include the 2019-2020 Black Summer event in 1093 
Australia (emissions of roughly 0.2 GtC; van der Velde et al., 2021) and Siberia in 2021 where emissions 1094 
approached 0.4 GtC or three times the 1997-2020 average according to GFED4s. While other regions, including 1095 



30 
 

Western US and Mediterranean Europe, also experienced intense fire seasons in 2021 their emissions are 1096 
substantially lower. 1097 

Despite these regional negative effects of climate change on SLAND, the efficiency of land to remove 1098 
anthropogenic CO2 emissions has remained broadly constant over the last six decades, with a land-borne 1099 
fraction (SLAND/(EFOS+ELUC)) of ~30% (Figure 9). 1100 

3.6.3 Final year 2021 1101 

The terrestrial CO2 sink from the DGVMs ensemble was 3.5 ± 0.9 GtC in 2021, slightly above the decadal 1102 
average of 3.1 ± 0.6GtC yr-1 (Figure 4, Table 6). We note that the DGVMs estimate for 2021 is larger, but 1103 
within the uncertainty, than the 2.8 ± 0.9 GtC yr-1 estimate from the residual sink from the global budget 1104 
(EFOS+ELUC-GATM-SOCEAN) (Table 5).  1105 

3.6.4 Year 2022 Projection 1106 

Using a feed-forward neural network method we project a land sink of 3.4 GtC for 2022, very similar to the 1107 
2021 estimate. As for the ocean sink, we attribute this to the persistence of La Niña conditions in 2022.  1108 

3.6.5 Model Evaluation 1109 

The evaluation of the DGVMs (Figure B3) shows generally high skill scores across models for runoff, and to a 1110 
lesser extent for vegetation biomass, GPP, and ecosystem respiration (Figure B3, left panel). Skill score was 1111 
lowest for leaf area index and net ecosystem exchange, with a widest disparity among models for soil carbon. 1112 
These conclusions are supported by a more comprehensive analysis of DGVM performance in comparison with 1113 
benchmark data (Seiler et al., 2022). Furthermore, results show how DGVM differences are often of similar 1114 
magnitude compared with the range across observational datasets. 1115 

3.7 Partitioning the carbon sinks 1116 

3.7.1 Global sinks and spread of estimates 1117 

In the period 2012-2021, the bottom-up view of total global carbon sinks provided by the GCB, SOCEAN for the 1118 
ocean and SLAND– ELUC for the land (to be comparable to inversions), agrees closely with the top-down global 1119 
carbon sinks delivered by the atmospheric inversions. Figure 12 shows both total sink estimates of the last 1120 
decade split by ocean and land (including ELUC), which match the difference between GATM and EFOS to within 1121 
0.01-0.12 GtC yr-1 for inverse systems, and to 0.34 GtC yr-1 for the GCB mean. The latter represents the BIM 1122 
discussed in Section 3.8, which by design is minimal for the inverse systems.  1123 
The distributions based on the individual models and data products reveal substantial spread but converge near 1124 
the decadal means quoted in Tables 5 and 6. Sink estimates for SOCEAN and from inverse systems are mostly 1125 
non-Gaussian, while the ensemble of DGVMs appears more normally distributed justifying the use of a multi-1126 
model mean and standard deviation for their errors in the budget. Noteworthy is that the tails of the distributions 1127 
provided by the land and ocean bottom-up estimates would not agree with the global constraint provided by the 1128 
fossil fuel emissions and the observed atmospheric CO2 growth rate (EFOS – GATM). This illustrates the power of 1129 
the atmospheric joint constraint from GATM and the global CO2 observation network it derives from.  1130 
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3.7.2 Total atmosphere-to-land fluxes 1131 

The total atmosphere-to-land fluxes (SLAND – ELUC), calculated here as the difference between SLAND from the 1132 
DGVMs and ELUC from the bookkeeping models, amounts to a 1.9 ± 0.9 GtC yr-1 sink during 2012-2021 (Table 1133 
5). Estimates of total atmosphere-to-land fluxes (SLAND – ELUC) from the DGVMs alone (1.5 ± 0.5 GtC yr-1) are 1134 
consistent with this estimate and also with the global carbon budget constraint (EFOS – GATM – SOCEAN, 1.5 ± 0.6 1135 
GtC yr-1 Table 5). For the last decade (2012-2021), the inversions estimate the net atmosphere-to-land uptake to 1136 
lie within a range of 1.1 to 1.7 GtC yr-1, consistent with the GCB and DGVMs estimates of SLAND – ELUC (Figure 1137 
13 top row).  1138 
3.7.3 Total atmosphere-to-ocean fluxes 1139 
For the 2012-2021 period, the GOBMs (2.6 ± 0.5 GtC yr-1) produce a lower estimate for the ocean sink than the 1140 
fCO2-based data products (3.2 ± 0.6 GtC yr-1), which shows up in Figure 12 as a separate peak in the 1141 
distribution from the GOBMs (triangle symbols pointing right) and from the fCO2-based products (triangle 1142 
symbols pointing left). Atmospheric inversions (2.7 to 3.3 GtC yr-1) also suggest higher ocean uptake in the 1143 
recent decade (Figure 13 top row). In interpreting these differences, we caution that the riverine transport of 1144 
carbon taken up on land and outgassing from the ocean is a substantial (0.65 GtC yr-1) and uncertain term that 1145 
separates the various methods. A recent estimate of decadal ocean uptake from observed O2/N2 ratios (Tohjima 1146 
et al., 2019) also points towards a larger ocean sink, albeit with large uncertainty (2012-2016: 3.1 ± 1.5 GtC yr-1147 
1).  1148 

3.7.4 Regional breakdown and interannual variability 1149 

Figure 13 also shows the latitudinal partitioning of the total atmosphere-to-surface fluxes excluding fossil CO2 1150 
emissions (SOCEAN + SLAND – ELUC) according to the multi-model average estimates from GOBMs and ocean 1151 
fCO2-based products (SOCEAN) and DGVMs (SLAND – ELUC), and from atmospheric inversions (SOCEAN and SLAND 1152 
– ELUC).  1153 

3.7.4.1 North 1154 
Despite being one of the most densely observed and studied regions of our globe, annual mean carbon sink 1155 
estimates in the northern extra-tropics (north of 30°N) continue to differ. The atmospheric inversions suggest an 1156 
atmosphere-to-surface sink (SOCEAN+ SLAND – ELUC) for 2012-2021 of 2.0 to 3.2 GtC yr-1, which is higher than 1157 
the process models’ estimate of 2.2 ± 0.4 GtC yr-1 (Figure 13). The GOBMs (1.2 ± 0.2 GtC yr-1), fCO2-based 1158 
data products (1.4 ± 0.1 GtC yr-1), and inversion systems (0.9 to 1.4 GtC yr-1) produce consistent estimates of 1159 
the ocean sink. Thus, the difference mainly arises from the total land flux (SLAND – ELUC) estimate, which is 1.0 1160 
± 0.4 GtC yr-1 in the DGVMs compared to 0.6 to 2.0 GtC yr-1 in the atmospheric inversions (Figure 13, second 1161 
row). 1162 

Discrepancies in the northern land fluxes conforms with persistent issues surrounding the quantification of the 1163 
drivers of the global net land CO2 flux (Arneth et al., 2017; Huntzinger et al., 2017; O’Sullivan et al., 2022) and 1164 
the distribution of atmosphere-to-land fluxes between the tropics and high northern latitudes (Baccini et al., 1165 
2017; Schimel et al., 2015; Stephens et al., 2007; Ciais et al. 2019; Gaubert et al., 2019).  1166 
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In the northern extratropics, the process models, inversions, and fCO2-based data products consistently suggest 1167 
that most of the variability stems from the land (Figure 13). Inversions generally estimate similar interannual 1168 
variations (IAV) over land to DGVMs (0.30 – 0.37 vs 0.17 – 0.69 GtC yr−1, averaged over 1990-2021), and 1169 

they have higher IAV in ocean fluxes (0.05 – 0.09 GtC yr−1) relative to GOBMs (0.02 – 0.06 GtC yr−1, Figure 1170 

B2), and fCO2-based data products (0.03 – 0.09 GtC yr−1).  1171 

3.7.4.2 Tropics 1172 
In the tropics (30°S-30°N), both the atmospheric inversions and process models estimate a total carbon balance 1173 
(SOCEAN+SLAND-ELUC) that is close to neutral over the past decade. The GOBMs (0.06 ± 0.34 GtC yr-1), fCO2-1174 
based data products (0.00 ± 0.06 GtC yr-1), and inversion systems (-0.2 to 0.5 GtC yr-1) all indicate an 1175 
approximately neutral tropical ocean flux (see Figure B1 for spatial patterns). DGVMs indicate a net land sink 1176 
(SLAND-ELUC) of 0.5 ± 0.3 GtC yr-1, whereas the inversion systems indicate a net land flux between -0.9 and 0.7 1177 
GtC yr-1, though with high uncertainty (Figure 13, third row).   1178 

The tropical lands are the origin of most of the atmospheric CO2 interannual variability (Ahlström 1179 

et al., 2015), consistently among the process models and inversions (Figure 13). 1180 

The interannual variability in the tropics is similar among the ocean data 1181 

products (0.07 – 0.16 GtC yr−1) and the GOBMs (0.07 – 0.16 GtC yr−1, Figure B2), which is 1182 
the highest ocean sink variability of all regions. The DGVMs and inversions indicate that atmosphere-to-land 1183 
CO2 fluxes are more variable than atmosphere-to-ocean CO2 fluxes in the tropics, with interannual variability of 1184 
0.5 to 1.1 and 0.8 to 1.0 GtC yr−1 for DGVMs and inversions, respectively.  1185 

3.7.4.3 South 1186 
In the southern extra-tropics (south of 30°S), the atmospheric inversions suggest a total atmosphere-to-surface 1187 
sink (SOCEAN+SLAND-ELUC) for 2012-2021 of 1.6 to 1.9 GtC yr-1, slightly higher than the process models’ 1188 
estimate of 1.4 ± 0.3 GtC yr-1 (Figure 13). An approximately neutral total land flux (SLAND-ELUC) for the 1189 
southern extra-tropics is estimated by both the DGVMs (0.02 ± 0.06 GtC yr-1) and the inversion systems (sink of 1190 
-0.2 to 0.2 GtC yr-1). This means nearly all carbon uptake is due to oceanic sinks south of 30°S.  The Southern 1191 
Ocean flux in the fCO2-based data products (1.8 ± 0.1 GtC yr-1) and inversion estimates (1.6 to 1.9 GtCyr-1) is 1192 
higher than in the GOBMs (1.4 ± 0.3 GtC yr-1) (Figure 13, bottom row). This discrepancy in the mean flux is 1193 
likely explained by the uncertainty in the regional distribution of the river flux adjustment (Aumont et al., 2001, 1194 
Lacroix et al., 2020) applied to fCO2-based data products and inverse systems to isolate the anthropogenic 1195 
SOCEAN flux. Other possibly contributing factors are that the data-products potentially underestimate the winter 1196 
CO2 outgassing south of the Polar Front (Bushinsky et al., 2019) and potential model biases. CO2 fluxes from 1197 
this region are more sparsely sampled by all methods, especially in wintertime (Figure B1). Dominant biases in 1198 
Earth System Models are related to mode water formation, stratification, and the chemical buffer capacity 1199 
(Terhaar et al., 2021, Bourgeois et al., 2022, Terhaar et al., 2022). 1200 

The interannual variability in the southern extra-tropics is low because of the dominance of ocean areas with 1201 
low variability compared to land areas. The split between land (SLAND-ELUC) and ocean (SOCEAN) shows a 1202 
substantial contribution to variability in the south coming from the land, with no consistency between the 1203 
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DGVMs and the inversions or among inversions. This is expected due to the difficulty of separating exactly the 1204 
land and oceanic fluxes when viewed from atmospheric observations alone. The SOCEAN interannual variability 1205 
was found to be higher in the fCO2-based data products (0.09 to 0.19 GtC yr−1) compared to GOBMs (0.03 to 1206 
0.06 GtC yr−1) in 1990-2021 (Figure B2). Model subsampling experiments recently illustrated that observation-1207 
based products may overestimate decadal variability in the Southern Ocean carbon sink by 30% due to data 1208 
sparsity, based on one data product with the highest decadal variability (Gloege et al., 2021). 1209 

3.7.4.4 Tropical vs northern land uptake 1210 

A continuing conundrum is the partitioning of the global atmosphere-land flux between the northern hemisphere 1211 
land and the tropical land (Stephens et al., 2017; Pan et al., 2011; Gaubert et al., 2019). It is of importance 1212 
because each region has its own history of land-use change, climate drivers, and impact of increasing 1213 
atmospheric CO2 and nitrogen deposition. Quantifying the magnitude of each sink is a prerequisite to 1214 
understanding how each individual driver impacts the tropical and mid/high-latitude carbon balance. 1215 

We define the North-South (N-S) difference as net atmosphere-land flux north of 30°N minus the net 1216 
atmosphere-land flux south of 30°N. For the inversions, the N-S difference ranges from 0.1 GtC yr-1 to 2.9 GtC 1217 
yr-1 across this year’s inversion ensemble with a preference across models for either a smaller Northern land 1218 
sink with a near neutral tropical land flux (medium N-S difference), or a large Northern land sink and a tropical 1219 
land source (large N-S difference).  1220 

In the ensemble of DGVMs the N-S difference is 0.6 ± 0.5 GtC yr-1, a much narrower range than the one from 1221 
inversions. Only two DGVMs have a N-S difference larger than 1.0 GtC yr-1. The larger agreement across 1222 
DGVMs than across inversions is to be expected as there is no correlation between Northern and Tropical land 1223 
sinks in the DGVMs as opposed to the inversions where the sum of the two regions being well-constrained leads 1224 
to an anti-correlation between these two regions. The much smaller spread in the N-S difference between the 1225 
DGVMs could help to scrutinise the inverse systems further. For example, a large northern land sink and a 1226 
tropical land source in an inversion would suggest a large sensitivity to CO2 fertilisation (the dominant factor 1227 
driving the land sinks) for Northern ecosystems, which would be not mirrored by tropical ecosystems. Such a 1228 
combination could be hard to reconcile with the process understanding gained from the DGVMs ensembles and 1229 
independent measurements (e.g. Free Air CO2 Enrichment experiments). Such investigations will be further 1230 
pursued in the upcoming assessment from REgional Carbon Cycle Assessment and Processes (RECCAP2; Ciais 1231 
et al., 2020). 1232 

3.8 Closing the Global Carbon Cycle 1233 

3.8.1 Partitioning of Cumulative Emissions and Sink Fluxes 1234 

The global carbon budget over the historical period (1850-2021) is shown in Figure 3.  1235 

Emissions during the period 1850-2021 amounted to 670 ± 65 GtC and were partitioned among the atmosphere 1236 
(275 ± 5 GtC; 41%), ocean (175 ± 35 GtC; 26%), and the land (210 ± 45 GtC; 31%). The cumulative land sink 1237 
is almost equal to the cumulative land-use emissions (200 ± 60 GtC), making the global land nearly neutral over 1238 
the whole 1850-2021 period.  1239 
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The use of nearly independent estimates for the individual terms of the global carbon budget shows a cumulative 1240 
budget imbalance of 15 GtC (2% of total emissions) during 1850-2021 (Figure 3, Table 8), which, if correct, 1241 
suggests that emissions could be slightly too high by the same proportion (2%) or that the combined land and 1242 
ocean sinks are slightly underestimated (by about 3%), although these are well within the uncertainty range of 1243 
each component of the budget. Nevertheless, part of the imbalance could originate from the estimation of 1244 
significant increase in EFOS and ELUC between the mid 1920s and the mid 1960s which is unmatched by a similar 1245 
growth in atmospheric CO2 concentration as recorded in ice cores (Figure 3). However, the known loss of 1246 
additional sink capacity of 30-40 GtC (over the 1850-2020 period) due to reduced forest cover has not been 1247 
accounted for in our method and would exacerbate the budget imbalance (see Appendix D.4) .  1248 

For the more recent 1960-2021 period where direct atmospheric CO2 measurements are available, total 1249 
emissions (EFOS + ELUC) amounted to 470 ± 50 GtC, of which 385 ± 20 GtC (82%) were caused by fossil CO2 1250 
emissions, and 85 ± 45 GtC (18%) by land-use change (Table 8). The total emissions were partitioned among 1251 
the atmosphere (210 ± 5 GtC; 45%), ocean (120 ± 25 GtC; 26%), and the land (145 ± 30 GtC; 30%), with a near 1252 
zero (-5 GtC) unattributed budget imbalance. All components except land-use change emissions have 1253 
significantly grown since 1960, with important interannual variability in the growth rate in atmospheric CO2 1254 
concentration and in the land CO2 sink (Figure 4), and some decadal variability in all terms (Table 6). 1255 
Differences with previous budget releases are documented in Figure B5.  1256 

The global carbon budget averaged over the last decade (2012-2021) is shown in Figure 2, Figure 14 (right 1257 
panel) and Table 6. For this period, 89% of the total emissions (EFOS + ELUC) were from fossil CO2 emissions 1258 
(EFOS), and 11% from land-use change (ELUC). The total emissions were partitioned among the atmosphere 1259 
(48%), ocean (26%) and land (29%), with a near-zero unattributed budget imbalance (~3%). For single years, 1260 
the budget imbalance can be larger (Figure 4). For 2021, the combination of our estimated sources (10.9 ± 0.9 1261 
GtC yr−1) and sinks (11.6 ± 1.0 GtC yr−1) leads to a BIM of -0.6 GtC, suggesting a slight underestimation of the 1262 
anthropogenic sources, and/or an overestimation of the combined land and ocean sinks 1263 

3.8.2 Carbon Budget Imbalance trend and variability 1264 

The carbon budget imbalance (BIM; Eq. 1, Figure 4) quantifies the mismatch between the estimated total 1265 
emissions and the estimated changes in the atmosphere, land, and ocean reservoirs. The mean budget imbalance 1266 
from 1960 to 2021 is very small (4.6 GtC over the period, i.e. average of 0.07 GtC yr-1) and shows no trend over 1267 
the full time series (Figure 4). The process models (GOBMs and DGVMs) and data-products have been selected 1268 
to match observational constraints in the 1990s, but no further constraints have been applied to their 1269 
representation of trend and variability. Therefore, the near-zero mean and trend in the budget imbalance is seen 1270 
as evidence of a coherent community understanding of the emissions and their partitioning on those time scales 1271 
(Figure 4). However, the budget imbalance shows substantial variability of the order of ±1 GtC yr-1, particularly 1272 
over semi-decadal time scales, although most of the variability is within the uncertainty of the estimates. The 1273 
positive carbon imbalance during the 1960s, and early 1990s, indicates that either the emissions were 1274 
overestimated, or the sinks were underestimated during these periods. The reverse is true for the 1970s, and to a 1275 
lower extent for the 1980s and 2012-2021 period (Figure 4, Table 6).   1276 
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We cannot attribute the cause of the variability in the budget imbalance with our analysis, we only note that the 1277 
budget imbalance is unlikely to be explained by errors or biases in the emissions alone because of its large semi-1278 
decadal variability component, a variability that is untypical of emissions and has not changed in the past 60 1279 
years despite a near tripling in emissions (Figure 4). Errors in SLAND and SOCEAN are more likely to be the main 1280 
cause for the budget imbalance, especially on interannual to semi-decadal timescales. For example, 1281 
underestimation of the SLAND by DGVMs has been reported following the eruption of Mount Pinatubo in 1991 1282 
possibly due to missing responses to changes in diffuse radiation (Mercado et al., 2009). Although since 1283 
GCB2021 we accounted for aerosol effects on solar radiation quantity and quality (diffuse vs direct), most 1284 
DGVMs only used the former as input (i.e., total solar radiation) (Table A1). Thus, the ensemble mean may not 1285 
capture the full effects of volcanic eruptions, i.e. associated with high light scattering sulphate aerosols, on the 1286 
land carbon sink (O’Sullivan et al., 2021). DGVMs are suspected to overestimate the land sink in response to 1287 
the wet decade of the 1970s (Sitch et al., 2008). Quasi-decadal variability in the ocean sink has also been 1288 
reported, with all methods agreeing on a smaller than expected ocean CO2 sink in the 1990s and a larger than 1289 
expected sink in the 2000s (Figure 10; Landschützer et al., 2016, DeVries et al., 2019, Hauck et al., 2020, 1290 
McKinley et al., 2020). Errors in sink estimates could also be driven by errors in the climatic forcing data, 1291 
particularly precipitation for SLAND and wind for SOCEAN.  Also, the BIM shows substantial departure from zero on 1292 
yearly time scales (Figure 4e), highlighting unresolved variability of the carbon cycle, likely in the land sink 1293 
(SLAND), given its large year to year variability (Figure 4d and 8).  1294 

Both the budget imbalance (BIM, Table 6) and the residual land sink from the global budget (EFOS+ELUC-GATM-1295 
SOCEAN, Table 5) include an error term due to the inconsistencies that arises from using ELUC from bookkeeping 1296 
models, and SLAND from DGVMs, most notably the loss of additional sink capacity (see section 2.7 and 1297 
Appendix D.4). Other differences include a better accounting of land use changes practices and processes in 1298 
bookkeeping models than in DGVMs, or the bookkeeping models error of having present-day observed carbon 1299 
densities fixed in the past. That the budget imbalance shows no clear trend towards larger values over time is an 1300 
indication that these inconsistencies probably play a minor role compared to other errors in SLAND or SOCEAN. 1301 
Although the budget imbalance is near zero for the recent decades, it could be due to compensation of errors. 1302 
We cannot exclude an overestimation of CO2 emissions, particularly from land-use change, given their large 1303 
uncertainty, as has been suggested elsewhere (Piao et al., 2018), combined with an underestimate of the sinks. A 1304 
larger DGVM (SLAND-ELUC) over the extra-tropics would reconcile model results with inversion estimates for 1305 
fluxes in the total land during the past decade (Figure 13; Table 5). Likewise, a larger SOCEAN is also possible 1306 
given the higher estimates from the data-products (see section 3.1.2, Figure 10 and Figure 13), the 1307 
underestimation of interior ocean anthropogenic carbon accumulation in the GOBMs (section 3.5.5), and the 1308 
recently suggested upward adjustments of the ocean carbon sink in Earth System Models (Terhaar et al., 2022), 1309 
and in data-products, here related to a potential temperature bias and skin effects (Watson et al., 2020, Dong et 1310 
al., 2022, Figure 10). If SOCEAN were to be based on data-products alone, with all data-products including this 1311 
adjustment, this would result in a 2012-2021  SOCEAN of 3.8 GtC yr-1 (Dong et al., 2022) or >4 GtC yr-1 (Watson 1312 
et al., 2020), i.e., outside of the range supported by the atmospheric inversions and with an implied negative BIM 1313 
of more than -1 GtC yr-1 indicating that a closure of the budget could only be achieved with either anthropogenic 1314 
emissions being significantly larger and/or the net land sink being substantially smaller than estimated here. 1315 
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More integrated use of observations in the Global Carbon Budget, either on their own or for further constraining 1316 
model results, should help resolve some of the budget imbalance (Peters et al., 2017).  1317 

 1318 

4 Tracking progress towards mitigation targets  1319 

The average growth in global fossil CO2 emissions peaked at +3% per year during the 2000s, driven by the rapid 1320 
growth in emissions in China. In the last decade, however, the global growth rate has slowly declined, reaching 1321 
a low +0.5% per year over 2012-2021 (including the 2020 global decline and the 2021 emissions rebound). 1322 
While this slowdown in global fossil CO2 emissions growth is welcome, it is far from the emission decrease 1323 
needed to be consistent with the temperature goals of the Paris Agreement.  1324 

Since the 1990s, the average growth rate of fossil CO2 emissions has continuously declined across the group of 1325 
developed countries of the Organisation for Economic Co-operation and Development (OECD), with emissions 1326 
peaking in around 2005 and now declining at around 1% yr-1 (Le Quéré et al., 2021). In the decade 2012-2021, 1327 
territorial fossil CO2 emissions decreased significantly (at the 95% confidence level) in 24 countries whose 1328 
economies grew significantly (also at the 95% confidence level): Belgium, Croatia, Czech Republic, Denmark, 1329 
Estonia, Finland, France, Germany, Hong Kong, Israel, Italy, Japan, Luxembourg, Malta, Mexico, Netherlands, 1330 
Norway, Singapore, Slovenia, Sweden, Switzerland, United Kingdom, USA, and Uruguay (updated from Le 1331 
Quéré et al., 2019). Altogether, these 24 countries emitted 2.4 GtC yr-1 (8.8 GtCO2 yr-1) on average over the last 1332 
decade, about one quarter of world CO2 fossil emissions. Consumption-based emissions also fell significantly 1333 
during the final decade for which estimates are available (2011-2020) in 15 of these countries: Belgium, 1334 
Denmark, Estonia, Finland, France, Germany, Hong Kong, Israel, Japan, Luxembourg, Mexico, Netherlands, 1335 
Singapore, Sweden, United Kingdom, and Uruguay. Figure 15 shows that the emission declines in the USA and 1336 
the EU27 are primarily driven by increased decarbonisation (CO2 emissions per unit energy) in the last decade 1337 
compared to the previous, with smaller contributions in the EU27 from slightly weaker economic growth and 1338 
slightly larger declines in energy per GDP. These countries have stable or declining energy use and so 1339 
decarbonisation policies replace existing fossil fuel infrastructure (Le Quéré et al. 2019). 1340 

In contrast, fossil CO2 emissions continue to grow in non-OECD countries, although the growth rate has slowed 1341 
from almost 6% yr-1 during the 2000s to less than 2% yr-1 in the last decade. Representing 47% of non-OECD 1342 
emissions in 2021, a large part of this slowdown is due to China, which has seen emissions growth decline from 1343 
nearly 10% yr-1 in the 2000s to 1.5% yr-1 in the last decade. Excluding China, non-OECD emissions grew at 1344 
3.3% yr-1 in the 2000s compared to 1.6% yr-1 in the last decade. Figure 15 shows that, compared to the previous 1345 
decade, China has had weaker economic growth in the last decade and a higher decarbonisation rate, with more 1346 
rapid declines in energy per GDP that are now back to levels seen during the 1990s. India and the rest of the 1347 
world have strong economic growth that is not offset by decarbonisation or declines in energy per GDP, driving 1348 
up fossil CO2 emissions. Despite the high deployment of renewables in some countries (e.g., India), fossil 1349 
energy sources continue to grow to meet growing energy demand (Le Quéré et al. 2019).  1350 

Globally, fossil CO2 emissions growth is slowing, and this is due to the emergence of climate policy (Eskander 1351 
and Fankhauser 2020; Le Quere et al 2019) and technological change, which is leading to a shift from coal to 1352 
gas and growth in renewable energies, and reduced expansion of coal capacity. At the aggregated global level, 1353 
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decarbonisation shows a strong and growing signal in the last decade, with smaller contributions from lower 1354 
economic growth and declines in energy per GDP. Despite the slowing growth in global fossil CO2 emissions, 1355 
emissions are still growing, far from the reductions needed to meet the ambitious climate goals of the UNFCCC 1356 
Paris agreement. 1357 

We update the remaining carbon budget assessed by the IPCC AR6 (Canadell et al., 2021), accounting for the 1358 
2020 to 2022 estimated emissions from fossil fuel combustion (EFOS) and land use changes (ELUC). From 1359 
January 2023, the remaining carbon (50% likelihood) for limiting global warming to 1.5°C, 1.7°C and 2°C is 1360 
estimated to amount to 105, 200, and 335 GtC (380, 730, 1230 GtCO2). These numbers include an uncertainty 1361 
based on model spread (as in IPCC AR6), which is reflected through the percent likelihood of exceeding the 1362 
given temperature threshold. These remaining amounts correspond respectively to about 9, 18 and 30 years from 1363 
the beginning of 2023, at the 2022 level of total CO2 emissions. Reaching net zero CO2 emissions by 2050 1364 
entails cutting total anthropogenic CO2 emissions by about 0.4 GtC (1.4 GtCO2) each year on average, 1365 
comparable to the decrease observed in 2020 during the COVID-19 pandemic. 1366 

 1367 

5 Discussion 1368 

Each year when the global carbon budget is published, each flux component is updated for all previous years to 1369 
consider corrections that are the result of further scrutiny and verification of the underlying data in the primary 1370 
input data sets. Annual estimates may be updated with improvements in data quality and timeliness (e.g., to 1371 
eliminate the need for extrapolation of forcing data such as land-use). Of all terms in the global budget, only the 1372 
fossil CO2 emissions and the growth rate in atmospheric CO2 concentration are based primarily on empirical 1373 
inputs supporting annual estimates in this carbon budget. The carbon budget imbalance, yet an imperfect 1374 
measure, provides a strong indication of the limitations in observations in understanding and representing 1375 
processes in models, and/or in the integration of the carbon budget components.  1376 

The persistent unexplained variability in the carbon budget imbalance limits our ability to verify reported 1377 
emissions (Peters et al., 2017) and suggests we do not yet have a complete understanding of the underlying 1378 
carbon cycle dynamics on annual to decadal timescales. Resolving most of this unexplained variability should 1379 
be possible through different and complementary approaches. First, as intended with our annual updates, the 1380 
imbalance as an error term is reduced by improvements of individual components of the global carbon budget 1381 
that follow from improving the underlying data and statistics and by improving the models through the 1382 
resolution of some of the key uncertainties detailed in Table 10. Second, additional clues to the origin and 1383 
processes responsible for the variability in the budget imbalance could be obtained through a closer scrutiny of 1384 
carbon variability in light of other Earth system data (e.g., heat balance, water balance), and the use of a wider 1385 
range of biogeochemical observations to better understand the land-ocean partitioning of the carbon imbalance 1386 
(e.g. oxygen, carbon isotopes). Finally, additional information could also be obtained through higher resolution 1387 
and process knowledge at the regional level, and through the introduction of inferred fluxes such as those based 1388 
on satellite CO2 retrievals. The limit of the resolution of the carbon budget imbalance is yet unclear, but most 1389 
certainly not yet reached given the possibilities for improvements that lie ahead. 1390 
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Estimates of global fossil CO2 emissions from different datasets are in relatively good agreement when the 1391 
different system boundaries of these datasets are considered (Andrew, 2020a). But while estimates of EFOS are 1392 
derived from reported activity data requiring much fewer complex transformations than some other components 1393 
of the budget, uncertainties remain, and one reason for the apparently low variation between datasets is 1394 
precisely the reliance on the same underlying reported energy data. The budget excludes some sources of fossil 1395 
CO2 emissions, which available evidence suggests are relatively small (<1%). We have added emissions from 1396 
lime production in China and the US, but these are still absent in most other non-Annex I countries, and before 1397 
1990 in other Annex I countries. 1398 

Estimates of ELUC suffer from a range of intertwined issues, including the poor quality of historical land-cover 1399 
and land-use change maps, the rudimentary representation of management processes in most models, and the 1400 
confusion in methodologies and boundary conditions used across methods (e.g., Arneth et al., 2017; Pongratz et 1401 
al., 2014, see also Appendix D.4 on the loss of sink capacity; Bastos et al., 2021). Uncertainties in current and 1402 
historical carbon stocks in soils and vegetation also add uncertainty in the ELUC estimates. Unless a major effort 1403 
to resolve these issues is made, little progress is expected in the resolution of ELUC. This is particularly 1404 
concerning given the growing importance of ELUC for climate mitigation strategies, and the large issues in the 1405 
quantification of the cumulative emissions over the historical period that arise from large uncertainties in ELUC.  1406 

By adding the DGVMs estimates of CO2 fluxes due to environmental change from countries’ managed forest 1407 
areas (part of SLAND in this budget) to the budget ELUC estimate, we successfully reconciled the large gap 1408 
between our ELUC estimate and the land use flux from NGHGIs using the approach described in Grassi et al. 1409 
(2021) for future scenario and in Grassi et al. (2022b) using data from the Global Carbon Budget 2021. The 1410 
updated data presented here can be used as potential adjustment in the policy context, e.g., to help assessing the 1411 
collective countries’ progress towards the goal of the Paris Agreement and avoiding double-accounting for the 1412 
sink in managed forests. In the absence of this adjustment, collective progress would hence appear better than it 1413 
is (Grassi et al. 2021). The need of such adjustment whenever a comparison between LULUCF fluxes reported 1414 
by countries and the global emission estimates of the IPCC is attempted is recommended also in the recent 1415 
UNFCCC Synthesis report for the first Global Stocktake (UNFCCC, 2022). However, this adjustment should be 1416 
seen as a short-term and pragmatic fix based on existing data, rather than a definitive solution to bridge the 1417 
differences between global models and national inventories. Additional steps are needed to understand and 1418 
reconcile the remaining differences, some of which are relevant at the country level (Grassi, et al. 2022b, 1419 
Schwingshackl, et al., subm.).  1420 

The comparison of GOBMs, data products and inversions highlights substantial discrepancy in the Southern 1421 
Ocean (Figure 13, Hauck et al., 2020). A large part of the uncertainty in the mean fluxes stems from the regional 1422 
distribution of the river flux adjustment term. The current distribution (Aumont et al., 2001) is based on one 1423 
model study yielding the largest riverine outgassing flux south of 20°S, whereas a recent study, also based on 1424 
one model, simulates the largest share of the outgassing to occur in the tropics (Lacroix et al., 2020). The long-1425 
standing sparse data coverage of fCO2 observations in the Southern compared to the Northern Hemisphere (e.g., 1426 
Takahashi et al., 2009) continues to exist (Bakker et al., 2016, 2022, Figure B1) and to lead to substantially 1427 
higher uncertainty in the SOCEAN estimate for the Southern Hemisphere (Watson et al., 2020, Gloege et al., 1428 
2021). This discrepancy, which also hampers model improvement, points to the need for increased high-quality 1429 
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fCO2 observations especially in the Southern Ocean. At the same time, model uncertainty is illustrated by the 1430 
large spread of individual GOBM estimates (indicated by shading in Figure 13) and highlights the need for 1431 
model improvement. The diverging trends in SOCEAN from different methods is a matter of concern, which is 1432 
unresolved. The assessment of the net land-atmosphere exchange from DGVMs and atmospheric inversions also 1433 
shows substantial discrepancy, particularly for the estimate of the total land flux over the northern extra-tropic. 1434 
This discrepancy highlights the difficulty to quantify complex processes (CO2 fertilisation, nitrogen deposition 1435 
and fertilisers, climate change and variability, land management, etc.) that collectively determine the net land 1436 
CO2 flux. Resolving the differences in the Northern Hemisphere land sink will require the consideration and 1437 
inclusion of larger volumes of observations.  1438 

We provide metrics for the evaluation of the ocean and land models and the atmospheric inversions (Figs. B2 to 1439 
B4). These metrics expand the use of observations in the global carbon budget, helping 1) to support 1440 
improvements in the ocean and land carbon models that produce the sink estimates, and 2) to constrain the 1441 
representation of key underlying processes in the models and to allocate the regional partitioning of the CO2 1442 
fluxes. However, GOBMs skills have changed little since the introduction of the ocean model evaluation. The 1443 
additional simulation allows for direct comparison with interior ocean anthropogenic carbon estimates and 1444 
suggests that the models underestimate anthropogenic carbon uptake and storage. This is an initial step towards 1445 
the introduction of a broader range of observations that we hope will support continued improvements in the 1446 
annual estimates of the global carbon budget. 1447 

We assessed before that a sustained decrease of –1% in global emissions could be detected at the 66% 1448 
likelihood level after a decade only (Peters et al., 2017). Similarly, a change in behaviour of the land and/or 1449 
ocean carbon sink would take as long to detect, and much longer if it emerges more slowly. To continue 1450 
reducing the carbon imbalance on annual to decadal time scales, regionalising the carbon budget, and integrating 1451 
multiple variables are powerful ways to shorten the detection limit and ensure the research community can 1452 
rapidly identify issues of concern in the evolution of the global carbon cycle under the current rapid and 1453 
unprecedented changing environmental conditions.  1454 

 1455 

6 Conclusions 1456 

The estimation of global CO2 emissions and sinks is a major effort by the carbon cycle research community that 1457 
requires a careful compilation and synthesis of measurements, statistical estimates, and model results. The 1458 
delivery of an annual carbon budget serves two purposes. First, there is a large demand for up-to-date 1459 
information on the state of the anthropogenic perturbation of the climate system and its underpinning causes. A 1460 
broad stakeholder community relies on the data sets associated with the annual carbon budget including 1461 
scientists, policy makers, businesses, journalists, and non-governmental organisations engaged in adapting to 1462 
and mitigating human-driven climate change. Second, over the last decades we have seen unprecedented 1463 
changes in the human and biophysical environments (e.g., changes in the growth of fossil fuel emissions, impact 1464 
of COVID-19 pandemic, Earth’s warming, and strength of the carbon sinks), which call for frequent 1465 
assessments of the state of the planet, a better quantification of the causes of changes in the contemporary global 1466 
carbon cycle, and an improved capacity to anticipate its evolution in the future. Building this scientific 1467 
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understanding to meet the extraordinary climate mitigation challenge requires frequent, robust, transparent, and 1468 
traceable data sets and methods that can be scrutinised and replicated. This paper via ‘living data’ helps to keep 1469 
track of new budget updates. 1470 

 1471 

7 Data availability 1472 

The data presented here are made available in the belief that their wide dissemination will lead to greater 1473 
understanding and new scientific insights of how the carbon cycle works, how humans are altering it, and how 1474 
we can mitigate the resulting human-driven climate change. Full contact details and information on how to cite 1475 
the data shown here are given at the top of each page in the accompanying database and summarised in Table 2. 1476 

The accompanying database includes three Excel files organised in the following spreadsheets: 1477 

File Global_Carbon_Budget_2022v0.1.xlsx includes the following:  1478 

1. Summary 1479 

2. The global carbon budget (1959-2021); 1480 

3. The historical global carbon budget (1750-2021); 1481 

4. Global CO2 emissions from fossil fuels and cement production by fuel type, and the per-capita emissions 1482 
(1850-2021); 1483 

5. CO2 emissions from land-use change from the individual bookkeeping models (1959-2021); 1484 

6. Ocean CO2 sink from the individual ocean models and fCO2-based products (1959-2021); 1485 

7. Terrestrial CO2 sink from the individual DGVMs (1959-2021); 1486 

8. Cement carbonation CO2 sink (1959-2021). 1487 

File National_Fossil_Carbon_Emissions_2022v0.1.xlsx includes the following:  1488 

1. Summary 1489 

2. Territorial country CO2 emissions from fossil fuels and cement production (1850-2021); 1490 

3. Consumption country CO2 emissions from fossil fuels and cement production and emissions transfer from 1491 
the international trade of goods and services (1990-2020) using CDIAC/UNFCCC data as reference; 1492 

4. Emissions transfers (Consumption minus territorial emissions; 1990-2020); 1493 

5. Country definitions. 1494 

File National_LandUseChange_Carbon_Emissions_2022v0.1xlsx includes the following: 1495 

1. Summary 1496 

2. Territorial country CO2 emissions from Land Use Change (1850-2021) from three bookkeeping models; 1497 
 1498 
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All three spreadsheets are published by the Integrated Carbon Observation System (ICOS) Carbon Portal and 1499 
are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b). National emissions data are 1500 
also available from the Global Carbon Atlas (http://www.globalcarbonatlas.org/, last access: 25 September 1501 
2022) and from Our World in Data (https://ourworldindata.org/co2-emissions, last access: 25 September 2022).  1502 
 1503 
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Tables 3009 

 3010 
Table 1. Factors used to convert carbon in various units (by convention, Unit 1 = Unit 2 × conversion). 

Unit 1 Unit 2 Conversion Source 
GtC (gigatonnes of 
carbon) ppm (parts per million) (a) 2.124 (b) Ballantyne et al. (2012) 

GtC (gigatonnes of 
carbon) PgC (petagrams of carbon) 1 SI unit conversion 

GtCO2 (gigatonnes of 
carbon dioxide) 

GtC (gigatonnes of 
carbon) 3.664 44.01/12.011 in mass 

equivalent 
GtC (gigatonnes of 
carbon) 

MtC (megatonnes of 
carbon) 1000 SI unit conversion 

(a) Measurements of atmospheric CO2 concentration have units of dry-air mole fraction. ‘ppm’ is an 
abbreviation for micromole/mol, dry air. 

(b) The use of a factor of 2.124 assumes that all the atmosphere is well mixed within one year. In reality, only 
the troposphere is well mixed and the growth rate of CO2 concentration in the less well-mixed stratosphere is 

not measured by sites from the NOAA network. Using a factor of 2.124 makes the approximation that the 
growth rate of CO2 concentration in the stratosphere equals that of the troposphere on a yearly basis. 

 3011 
  3012 
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Table 2. How to cite the individual 
components of the global carbon budget 
presented here.  
Component Primary reference 
Global fossil CO2 emissions (EFOS), total and by fuel 
type Updated from Andrew and Peters (2021) 

National territorial fossil CO2 emissions (EFOS) Gilfillan and Marland (2022), UNFCCC (2022) 
National consumption-based fossil CO2 emissions 
(EFOS) by country (consumption) 

Peters et al. (2011b) updated as described in this 
paper 

Net land-use change flux (ELUC) This paper (see Table 4 for individual model 
references). 

Growth rate in atmospheric CO2 concentration 
(GATM) Dlugokencky and Tans (2022) 

Ocean and land CO2 sinks (SOCEAN and SLAND) This paper (see Table 4 for individual model and data 
products references). 

3014 
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 3015 
Table 3. Main methodological changes in the global carbon budget since 2018. Methodological changes introduced in one year 
are kept for the following years unless noted. Empty cells mean there were no methodological changes introduced that year. 
Table A7 lists methodological changes from the first global carbon budget publication up to 2017. 

Publication 
year 

Fossil fuel emissions LUC emissions Reservoirs Uncertainty & 
other changes 

Global Country 
(territorial)  Atmosphere Ocean Land  

2018 Revision in 
cement 

emissions; 
Projection 

includes EU-
specific data 

Aggregation of 
overseas 

territories into 
governing 
nations for 
total of 213 
countries a 

Average of two 
bookkeeping 

models; use of 
16 DGVMs 

Use of four 
atmospheric 

inversions 

Based on 
seven models 

Based on 16 
models; 
revised 

atmospheric 
forcing from 
CRUNCEP to 

CRUJRA 

Introduction of 
metrics for 

evaluation of 
individual 

models using 
observations 

Le Quéré et al. 
(2018b) 
GCB2018 

2019 
Global 

emissions 
calculated as 

sum of all 
countries plus 

bunkers, 
rather than 

taken directly 
from CDIAC. 

 
Average of two 

bookkeeping 
models; use of 

15 DGVMs 

Use of three 
atmospheric 

inversions 

Based on nine 
models 

Based on 16 
models  Friedlingstein 

et al. (2019) 
GCB2019 

2020 

Cement 
carbonation 

now included 
in the EFOS 
estimate, 

reducing EFOS 
by about 

0.2GtC yr-1 for 
the last decade 

India's 
emissions from 
Andrew (2020: 

India); 
Corrections to 

Netherland 
Antilles and 
Aruba and 

Soviet 
emissions 

before 1950 as 
per Andrew 
(2020: CO2); 
China's coal 
emissions in 
2019 derived 
from official 

statistics, 
emissions now 

shown for 
EU27 instead 

of 
EU28.Projectio

n for 2020 
based on 

assessment of 
four 

approaches. 

Average of 
three 

bookkeeping 
models; use of 

17 DGVMs. 
Estimate of 

gross land use 
sources and 

sinks provided 

Use of six 
atmospheric 

inversions 

Based on nine 
models. River 
flux revised 

and 
partitioned 

NH, Tropics, SH 

Based on 17 
models  Friedlingstein 

et al. (2020) 
GCB2020 
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2021 

Projections are 
no longer an 

assessment of 
four 

approaches. 

Official data 
included for a 

number of 
additional 

countries, new 
estimates for 
South Korea, 

added 
emissions from 

lime 
production in 

China. 

ELUC estimate 
compared to 
the estimates 

adopted in 
national GHG 
inventories 

(NGHGI) 

 

Average of 
means of eight 

models and 
means of 

seven data-
products. 

Current year 
prediction of 

SOCEAN using 
a feed-forward 
neural network 

method 

Current year 
prediction of 

SLAND using a 
feed-forward 

neural network 
method 

 

Friedlingstein 
et al. (2022a) 
GCB2021 

2022 

  

ELUC provided at 
country level. 
Decomposition 
into fluxes from 
deforestation, 
organic soils, 
re/afforestation 
and wood 
harvest, and 
other transitions. 
Change in the 
methodology to 
derive LUC maps 
for Brazil to 
capture recent 
upturn in 
deforestation. 
Inclusion of two 
new datasets for 
peat drainage. 

Use of nine 
atmospheric 

inversions 

Average of 
means of ten 
models and 

means of 
seven data-

products 

Based on 16 
models. 

Change in the 
methodology 
to derive LUC 

maps for Brazil 
to capture 

recent upturn 
in 

deforestation 

 
This study 

 3016 
  3017 
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Table 4. References for the process models, bookkeeping models, ocean data products, and atmospheric 
inversions. All models and products are updated with new data to the end of year 2021, and the atmospheric 
forcing for the DGVMs has been updated as described in Appendix C.2.2. 

Model/data 
name Reference Change from Global Carbon Budget 2021 (Friedlingstein et al., 

2022a) 

Bookkeeping models for land-use change emissions 

BLUE Hansis et al. (2015) 
No change to model, but simulations performed with updated 
LUH2 forcing. Update in added peat drainage emissions (based 
on three spatially explicit datasets). 

updated 
H&N2017 Houghton and Nassikas (2017) 

Minor bug fix in the fuel harvest estimates, that was causing an 
overestimation of fuel sink. Update in added peat drainage 
emissions (based on three spatially explicit datasets). 

OSCAR Gasser et al. (2020) 

No change to model, but land use forcing changed to LUH2-
GCB2022 and FRA2020 (as used by H&N and extrapolated to 
2021), both prescribed at higher spatial resolution (210 instead 
of 96 regions/countries). Constraining based on last year's 
budget data for SLAND over 1960-2021. Update in added peat 
drainage emissions (based on three spatially explicit datasets). 

Dynamic global vegetation models 

CABLE-POP Haverd et al. (2018) changes in parameterisation. Diffuse fraction of incoming 
radiation read in as forcing. 

CLASSIC Melton et al. (2020) (a) Minor bug fixes. 

CLM5.0 Lawrence et al. (2019) No change. 

DLEM Tian et al. (2015) (b) No change. 

IBIS Yuan et al. (2014) (c) No change. 

ISAM Meiyappan et al. (2015) (d) No change. 

JSBACH Reick et al. (2021) (e) No change. 

JULES-ES Wiltshire et al. (2021) (f) Minor bug fixes. (Using JULES v6.3, suite u-co002) 

LPJ-GUESS Smith et al. (2014) (g) No change. 

LPJ Poulter et al. (2011) (h) No change. 

LPX-Bern Lienert and Joos (2018) 

Following the results of Joos et al. (2018), we use modified 
parameter values which yield a more reasonable (lower) BNF, 
termed LPX v1.5. This parameter version has increased N 
immobilization and a stronger N limitation, than the previous 
version. 
The N2O Emissions were adjusted accordingly. The parameters 
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were obtained by running an ensemble simulation and 
imposing various observational constraints and subsequently 
adjusting N immobilization. 
For the methodology see Lienert et. al. (2018). 

OCN Zaehle and Friend (2010) (i) No change (uses r294). 

ORCHIDEEv3 Vuichard et al. (2019) (j) No change (ORCHIDEE - V3; revision 7267) 

SDGVM Walker et al. (2017) (k) No change. 

VISIT Kato et al. (2013) (l) No change. 

YIBs Yue and Unger (2015) No change. 

Global ocean biogeochemistry models 

NEMO-
PlankTOM12 

Wright et al. (2021) 
Minor bug fixes 

MICOM-HAMOCC 
(NorESM-OCv1.2) Schwinger et al. (2016) No change. 

MPIOM-
HAMOCC6 

Lacroix et al. (2021) 
No change. 

NEMO3.6-
PISCESv2-gas 
(CNRM) 

Berthet et al. (2019) (m) No change. 

FESOM-2.1-
REcoM2 Hauck et al. (2020) (n) 

Extended spin-up, minor bug fixes 
MOM6-COBALT 
(Princeton) Liao et al. (2020) No change 

CESM-ETHZ Doney et al. (2009) 
Changed salinity restoring in the surface ocean from 700 days 
to 300 days, except for the Southern Ocean south of 45S, 
where the restoring timescale was set to 60 days. 

NEMO-PISCES 
(IPSL) Aumont et al. (2015) 

No change. 

MRI-ESM2-1 Nakano et al. (2011), Urakawa et 
al. (2020) New this year. 

CESM2 Long et al. (2021) (o) New this year. 

ocean data products 

MPI-SOMFFN Landschützer et al. (2016) 

update to SOCATv2022 measurements and timeperiod 1982-
2021; The estimate now covers the full ocean domain as well as 
the Arctic Ocean extension described in: Landschützer, P., 
Laruelle, G. G., Roobaert, A., and Regnier, P.: A uniform pCO2 
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climatology combining open and coastal oceans, Earth Syst. Sci. 
Data, 12, 2537–2553, https://doi.org/10.5194/essd-12-2537-
2020, 2020. 

Jena-MLS 
Rödenbeck et al. (2022) 

update to SOCATv2022 measurements, time period extended 
to 1957-2021 

CMEMS-LSCE-
FFNNv2 Chau et al. (2022) 

Update to SOCATv2022 measurements and time period 1985-
2021. The CMEMS-LSCE-FFNNv2 product now covers both the 
open ocean and coastal regions. 

LDEO-HPD Gloege et al. (2022) (p) New this year 

UOEx-Watson 
Watson et al. (2020) Updated to SOCAT v2022 and OISSTv2.1, as recalculated by 

Holding et al. 
NIES-NN Zeng et al. (2014) Updated to SOCAT v2022. Small changes in method (gas-

exchange coefficient a= 0.271; trend calculation 1990-2020, 
predictors include lon and lat) 

JMA-MLR Iida et al. (2021) Updated to SOCATv2022 
SST fields (MGDSST) updated 

OS-ETHZ-GRaCER Gregor and Gruber (2021) No change 

Atmospheric inversions 

CAMS Chevallier et al. (2005) (q) Updated to WMOX2019 scale. Extension to year 2021, revision 
of the station list, update of the prior fluxes 

CarbonTracker 
Europe (CTE) van der Laan-Luijkx et al. (2017) Updated to WMOX2019 scale. Biosphere prior fluxes from the 

SiB4 model instead of SiBCASA model. Extension to 2021. 

Jena CarboScope Rödenbeck et al. (2018) (r) Updated to WMOX2019 scale. Extension to 2021. 

UoE in-situ Feng et al., (2016) (s) Updated to WMOX2019 scale. Updated station list, and refined 
land-ocean map. Extension to 2021. 

NISMON-CO2 Niwa et al., (2022) (t) Updated to WMOX2019 scale. Positive definite flux parameters 
and updated station list. Extension to 2021. 

CMS-Flux Liu et al., (2021) Updated to WMOX2019 scale. Extension to 2021. 

GONGGA Jin et al. (2022 in review) (u) New this year. 

THU Kong et al. (2022) New this year. 

CAMS-Satellite Chevallier et al. (2005) (r) New this year. 

(a) see also Asaadi et al. (2018). 

(b) see also Tian et al. (2011) 

(c) the dynamic carbon allocation scheme was presented by Xia et al. (2015) 

(d) see also Jain et al. (2013). Soil biogeochemistry is updated based on Shu et al. (2020) 
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(e) see also Mauritsen et al. (2019) 

(f) see also Sellar et al. (2019) and Burton et al., (2019). JULES-ES is the Earth System configuration of the Joint UK 
Land Environment Simulator as used in the UK Earth System Model (UKESM). 
(g) to account for the differences between the derivation of shortwave radiation from CRU cloudiness and DSWRF 
from CRUJRA, the photosynthesis scaling parameter αa was modified (-15%) to yield similar results. 
(h) compared to published version, decreased LPJ wood harvest efficiency so that 50 % of biomass was removed off-
site compared to 85 % used in the 2012 budget. Residue management of managed grasslands increased so that 100 
% of harvested grass enters the litter pool. 

(i) see also Zaehle et al. (2011). 

(j) see also Zaehle and Friend (2010) and Krinner et al. (2005) 

(k) see also Woodward and Lomas (2004) 

(l) see also Ito and Inatomi (2012). 

(m) see also Séférian et al. (2019) 

(n) see also Schourup-Kristensen et al (2014) 

(o) see also Yeager et al. (2022) 

(p) see also Bennington et al. (2022) 

(q) see also Remaud (2018) 

(r) see also Rödenbeck et al. (2003) 

(r) see also Feng et al. (2009) and Palmer et al. (2019) 

(t) see also Niwa et al. (2020) 

(u) see also Tian et al. (2014) 
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 3020 
Table 5. Comparison of results from the bookkeeping method and budget residuals with results from the 3021 
DGVMs and inverse estimates for different periods, the last decade, and the last year available. All values 3022 
are in GtCyr−1. See Fig. 7 for explanation of the bookkeeping component fluxes. The DGVM uncertainties 3023 
represent ±1σ of the decadal or annual (for 2021) estimates from the individual DGVMs: for the inverse 3024 
systems the range of available results is given. All values are rounded to the nearest 0.1 GtC and therefore 3025 
columns do not necessarily add to zero. 3026 
 3027 
 3028 

Mean	(GtC/yr)	3029 

	 	 1960s	 1970s	 1980s	 1990s	 2000s	 2012-
2021	 2021	

Land-use change 
emissions (ELUC)	

Bookkeeping (BK) Net 
flux (1a)	

1.5±0.
7	

1.2±0.
7	

1.3±0.
7	

1.5±0.
7	

1.4±0.
7	

1.2±0.
7	

1.1±0.
7	

     BK - deforestation	 1.6±0.
4	

1.5±0.
4	

1.6±0.
4	

1.8±0.
3	

1.9±0.
4	

1.8±0.
4	

1.8±0.
4	

     BK - organic soils	 0.1±0.
1	

0.1±0.
1	

0.2±0.
1	

0.2±0.
1	

0.2±0.
1	

0.2±0.
1	

0.2±0.
1	

     BK - re/afforestation 
and wood harvest	

-
0.6±0.
1	

-
0.6±0.
1	

-
0.6±0.
2	

-
0.7±0.
1	

-
0.8±0.
2	

-
0.9±0.
3	

-
1.0±0.
3	

     BK - other 
transitions	

0.4±0.
1	

0.2±0.
1	

0.2±0.
1	

0.1±0.
1	

0.1±0.
1	

0.2±0.
1	

0.1±0.
2	

DGVMs-net flux (1b)	 1.4±0.
5	

1.3±0.
5	

1.5±0.
5	

1.5±0.
6	

1.6±0.
6	

1.6±0.
5	

1.6±0.
5	

Terrestrial sink 
(SLAND)	

Residual sink from 
global budget 
(EFOS+ELUC(1a)-
GATM-SOCEAN) (2a)	

1.7±0.
8	

1.8±0.
8	

1.6±0.
9	

2.6±0.
9	

2.8±0.
9	

2.8±0.
9	 2.8±1	

DGVMs (2b)	 1.2±0.
4	

2.2±0.
5	

1.9±0.
7	

2.5±0.
4	

2.7±0.
5	

3.1±0.
6	

3.5±0.
9	

Total land fluxes 
(SLAND-ELUC)	

GCB2022 Budget (2b-
1a)	

-
0.2±0.
8	

1±0.9	 0.5±1	 1±0.8	 1.4±0.
9	

1.9±0.
9	

2.4±1.
1	

Budget constraint (2a-
1a)	

0.2±0.
4	

0.6±0.
5	

0.3±0.
5	

1.1±0.
5	

1.5±0.
6	

1.5±0.
6	

1.7±0.
7	

DGVMs-net (2b-1b)	
-
0.1±0.
4	

0.9±0.
5	

0.4±0.
5	

0.9±0.
4	

1.2±0.
3	

1.5±0.
5	

1.9±0.
7	

Inversions*	 --- 	 --- 	 0.3-
0.6 (2)	

0.7-
1.1 (3)	

1.2-
1.6 (3)	

1.1-
1.7 (7)	

1.5-
2.1 (9)	

*Estimates are adjusted for the pre-industrial influence of river fluxes, for the cement carbonation sink, and 
adjusted to common EFOS (Sect. 2.6). The ranges given include varying numbers (in parentheses) of inversions 
in each decade (Table A4)	

	3030 
 3031 
 3032 
 3033 
 3034 
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 3035 
 3036 
 3037 
 3038 
 3039 
 3040 
 3041 
 3042 
Table 6. Decadal mean in the five components of the anthropogenic CO2 budget for different periods, and 3043 
last year available. All values are in GtC yr-1, and uncertainties are reported as ±1σ. Fossil CO2 emissions 3044 
include cement carbonation. The table also shows the budget imbalance (BIM), which provides a measure of 3045 
the discrepancies among the nearly independent estimates. A positive imbalance means the emissions are 3046 
overestimated and/or the sinks are too small. All values are rounded to the nearest 0.1 GtC and therefore 3047 
columns do not necessarily add to zero. 3048 

Mean	(GtC/yr)	3049 

	 	 1960s	 1970s	 1980s	 1990s	 2000s	 2012-
2021	 2021	

2022 
(Projec
tion)	

Total 
emissio
ns 
(EFOS 
+ 
ELUC)	

Fossil 
CO2 
emissio
ns 
(EFOS)
*	

3±0.2	 4.7±0.
2	

5.5±0.
3	

6.3±0.
3	

7.7±0.
4	

9.6±0.
5	

9.9±0.
5	 10±0.5	

Land-
use 
change 
emissio
ns 
(ELUC)	

1.5±0.
7	

1.2±0.
7	

1.3±0.
7	

1.5±0.
7	

1.4±0.
7	

1.2±0.
7	

1.1±0.
7	 1±0.7	

Total 
emissio
ns	

4.5±0.
7	

5.9±0.
7	

6.8±0.
8	

7.8±0.
8	

9.1±0.
8	

10.8±0
.8	

10.9±0
.9	

10.9±0
.9	

Partitio
ning	

Growth 
rate in 
atmos 
CO2 
(GATM)	

1.7±0.
07	

2.8±0.
07	

3.4±0.
02	

3.1±0.
02	 4±0.02	 5.2±0.

02	
5.2±0.
2	

5.5±0.
4	

Ocean 
sink 
(SOCE
AN)	

1.1±0.
4	

1.4±0.
4	

1.8±0.
4	

2.1±0.
4	

2.3±0.
4	

2.9±0.
4	

2.9±0.
4	

2.9±0.
4	

Terrest
rial 
sink 
(SLAN
D)	

1.2±0.
4	

2.2±0.
5	

1.9±0.
7	

2.5±0.
4	

2.7±0.
5	

3.1±0.
6	

3.5±0.
9	

3.4±0.
9	
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	 	 1960s	 1970s	 1980s	 1990s	 2000s	 2012-
2021	 2021	

2022 
(Projec
tion)	

Budget 
Imbala
nce	

BIM=E
FOS+E
LUC-
(GATM
+SOCE
AN+SL
AND)	

0.4	 -0.4	 -0.3	 0.1	 0.1	 -0.3	 -0.6	 -0.9	

*Fossil emissions excluding the cement carbonation sink amount to 3.1±0.2 GtC/yr, 4.7±0.2 
GtC/yr, 5.5±0.3 GtC/yr, 6.4±0.3 GtC/yr, 7.9±0.4 GtC/yr, and 9.8±0.5 GtC/yr for the decades 
1960s to 2010s respectively and to 10.1±0.5 GtC/yr for 2021, and 10.2±0.5 GtC/yr for 2022.	

3050 
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 3051 
Table 7. Comparison of the projection with realised fossil CO2 emissions (EFOS). The ‘Actual’ values are first the 
estimate available using actual data, and the ‘Projected’ values refers to estimates made before the end of the year 
for each publication. Projections based on a different method from that described here during 2008-2014 are 
available in Le Quéré et al., (2016). All values are adjusted for leap years. 
 World China USA EU28 / EU27 (i) India Rest of World 

 Project
ed Actual Proje

cted 
Actual Proje

cted 
Actual Proje

cted 
Actual Proje

cted 
Actual Proje

cted 
Actual 

2015 
(a) 

–0.6% 
0.06% 

–3.9% 
–0.7% 

–1.5% 
–2.5% – – – – 

1.2% 
1.2% (–1.6 to 

0.5) 
(–4.6 to 

–1.1) 
(–5.5 to 

0.3) 
(–0.2 to 

2.6) 

2016 
(b) 

–0.2% 
0.20% 

–0.5% 
–0.3% 

–1.7% 
–2.1% – – – – 

1.0% 
1.3% (–1.0 to 

+1.8) 
(–3.8 to 

+1.3) 
(–4.0 to 

+0.6) 
(–0.4 to 

+2.5) 

2017 (c) 
2.0% 

1.6% 
3.5% 

1.5% 
–0.4% 

–0.5% – – 
2.00% 

3.9% 
1.6% 

1.9% (+0.8 to 
+3.0) 

(+0.7 to 
+5.4) 

(–2.7 to 
+1.0) 

(+0.2 to 
+3.8) 

(0.0 to 
+3.2) 

2018 
(d) 

2.7% 
2.1% 

4.7% 
2.3% 

2.5% 
2.8% 

-0.7% 
-2.1% 

6.3% 
8.0% 

1.8% 
1.7% (+1.8 to 

+3.7) 
(+2.0 to 

+7.4) 
(+0.5 to 

+4.5) 
(-2.6 to 
+1.3) 

(+4.3 to 
+8.3) 

(+0.5 to 
+3.0) 

2019 
(e) 

0.5% 

0.1% 

2.6% 

2.2% 

-2.4% 

-2.6% 

-1.7% 

-4.3% 

1.8% 

1.0% 

0.5% 

0.5% (-0.3 to 
+1.4) 

(+0.7 to 
+4.4) 

(-4.7 to 
-0.1) 

(-5.1% 
to 

+1.8%) 

(-0.7 to 
+3.7) 

(-0.8 to 
+1.8) 

2020 (f) 
-6.7% 

-5.4% 
-1.7% 

1.4% 
-12.2% 

-10.6% 

-11.3% 
(EU27) -10.9% 

-9.1% 
-7.3% 

-7.4% 
-7.0% 

      

2021 
(g) 

4.8% 

5.1% 

4.3% 

3.5% 

6.8% 

6.2% 

6.3% 

6.8% 

11.2% 

11.1% 

3.2% 

4.5% (4.2% 
to 

5.4%) 

(3.0% 
to 

5.4%) 

(6.6% 
to 

7.0%) 

(4.3% 
to 

8.3%) 

(10.7% 
to 

11.7%) 

(2.0% 
to 

4.3%) 

2022 
(h) 

1.1% 

 

-1.5% 

 

1.6% 

 

-1.0% 

 

5.6% 

 

2.5% 

 (0% to 
1.7%) 

(-3.0% 
to 

0.1%) 

(-0.9% 
to 

4.1%) 

(-2.9% 
to 

1.0%) 

(3.5% 
to 

7.7%) 

(0.1% 
to 

2.3%) 
(a) Jackson et al. (2016) and Le Quéré et al. (2015a). (b) Le Quéré et al. (2016). (c) Le Quéré et al. (2018a). (d) Le 
Quéré et al. (2018b). (e) Friedlingstein et al., (2019), (f) Friedlingstein et al., (2020), (g) Friedlingstein et al., (2022a), 
(h) This study 
(i) EU28 until 2019, EU27 from 2020 
 3052 
 3053 

3054 
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Table 8. Cumulative CO2 for different time periods in gigatonnes of carbon (GtC). Fossil CO2 emissions include 3055 
cement carbonation. The budget imbalance (BIM) provides a measure of the discrepancies among the nearly 3056 
independent estimates. All values are rounded to the nearest 5 GtC and therefore columns do not necessarily add 3057 
to zero. Uncertainties are reported as follows: EFOS is 5% of cumulative emissions; ELUC prior to 1959 is 1𝛔 spread 3058 
from the DGVMs, ELUC post-1959 is 0.7*number of years (where 0.7 GtC/yr is the uncertainty on the annual ELUC 3059 
flux estimate); GATM uncertainty is held constant at 5 GtC for all time periods; SOCEAN uncertainty is 20% of the 3060 
cumulative sink (20% relates to the annual uncertainty of 0.4 GtC/yr, which is ~20% of the current ocean sink); and 3061 
SLAND is the 1𝛔 spread from the DGVMs estimates. 3062 
 3063 

	 	 1750-2021	 1850-2014	 1850-2021	 1960-2021	 1850-2022	

Emissions	

Fossil CO2 
emissions 
(EFOS)	

470±25	 400±20	 465±25	 385±20	 475±25	

Land-use 
change 
emissions 
(ELUC)	

235±70	 195±60	 205±60	 85±45	 205±60	

Total 
emissions	 700±75	 595±60	 670±65	 470±50	 680±65	

Partitioning	

Growth rate 
in atmos 
CO2 (GATM)	

295±5	 235±5	 275±5	 210±5	 280±5	

Ocean sink 
(SOCEAN)	 185±35	 155±30	 175±35	 120±25	 180±35	

Terrestrial 
sink 
(SLAND)	

230±50	 185±40	 210±45	 145±30	 210±45	

Budget 
imbalance	

BIM=EFOS+
ELUC-
(GATM+SOC
EAN+SLAND
)	

-5	 15	 15	 -5	 10	

	3064 
 3065 
 3066 
  3067 
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 3068 
 3069 
Table 9: Mapping of global carbon cycle models' land flux definitions to the 
definition of the LULUCF net flux used in national Greenhouse Gas Inventories 
reported to UNFCCC. See Sec. C.2.3 and Tab. A8 for detail on methodology and 
comparison to other datasets. 

      2002-2011 2012-2021 

ELUC from bookkeeping estimates 
(from Table 5) 1.4 1.2 
SLAND on non-intact forest from 
DGVMs -1.7 -1.8 
ELUC plus SLAND on non-intact 
forests -0.3 -0.6 
National Greenhouse Gas Inventories 

-0.4 -0.5 
 3070 
  3071 
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 3072 
Table 10. Major known sources of uncertainties in each component of the Global Carbon Budget, defined as input 
data or processes that have a demonstrated effect of at least ±0.3 GtC yr-1. 
Source of 
uncertainty Time scale (years) Location Status Evidence 

Fossil CO2 emissions (EFOS; Section 2.1) 

energy statistics annual to decadal 

global, but mainly 
China & major 

developing 
countries 

see Sect. 2.1 (Korsbakken et al., 2016, Guan et al., 
2012) 

carbon content of 
coal annual to decadal 

global, but mainly 
China & major 

developing 
countries 

see Sect. 2.1 (Liu et al., 2015) 

system boundary annual to decadal all countries see Sect. 2.1 (Andrew, 2020) 
Net land-use change flux (ELUC; section 2.2) 
land-cover and 
land-use change 
statistics 

continuous global; in 
particular tropics see Sect. 2.4 

(Houghton et al., 2012, Gasser et al., 
2020, Ganzenmüller et al., 2022, Yu et 

al. 2022) 
sub-grid-scale 
transitions annual to decadal global see Sect. 2.4, 

Table A1 (Wilkenskjeld et al., 2014) 

vegetation 
biomass annual to decadal global; in 

particular tropics see Sect. 2.4 (Houghton et al., 2012, Bastos et al., 
2021) 

forest 
degradation (fire, 
selective logging) 

annual to decadal tropics see Sec. 3.2.2, 
Table A1 (Aragão et al., 2018, Qin et al., 2020) 

wood and crop 
harvest annual to decadal global; SE Asia see Table A1 (Arneth et al., 2017, Erb et al., 2018) 

peat burning (a) multi-decadal 
trend global see Table A1 (van der Werf et al., 2010, 2017) 

loss of additional 
sink capacity 

multi-decadal 
trend global not included; see 

Appendix D4 
(Pongratz et al, 2014, Gasser et al, 

2020; Obermeier et al., 2021) 
Atmospheric growth rate (GATM; section 2.3) no demonstrated uncertainties larger than ±0.3 GtC yr-1 (b) 
Ocean sink (SOCEAN; section 2.4) 

sparsity in surface 
fCO2 observations 

mean, decadal 
variability and 

trend 

global, in 
particular 
southern 

hemisphere 

see Sect 3.5.2 (Gloege et al., 2021, Denvil-Sommer et 
al., 2021, Bushinsky et al., 2019) 

riverine carbon 
outgassing and its 
anthropogenic 
perturbation 

annual to decadal 

global, in 
particular 

partitioning 
between Tropics 

and South 

see Sect. 2.4 
(anthropogenic 

perturbations not 
included) 

(Aumont et al., 2001, Resplandy et al., 
2018, Lacroix et al., 2020) 

Models 
underestimate 
interior ocean 

annual to decadal global see Sect 3.5.5 (Friedlingstein et al., 2021, this study, 
see also Terhaar et al., 2022) 
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anthropogenic 
carbon storage 

near-surface 
temperature and 
salinity gradients 

mean on all time-
scales global see Sect. 3.8.2 (Watson et al., 2020, Dong et al., 2022) 

Land sink (SLAND; section 2.5) 
strength of CO2 
fertilisation 

multi-decadal 
trend global see Sect. 2.5 (Wenzel et al., 2016; Walker et al., 

2021) 
response to 
variability in 
temperature and 
rainfall 

annual to decadal global; in 
particular tropics see Sect. 2.5 (Cox et al., 2013; Jung et al., 2017; 

Humphrey et al., 2018; 2021) 

nutrient limitation 
and supply annual to decadal global  (Zaehle et al., 2014) 

carbon allocation 
and tissue 
turnover rates 

annual to decadal global  (De Kauwe et al., 2014; O'Sullivan et 
al., 2022) 

tree mortality annual global in 
particular tropics see Sect. 2.5 (Hubau et al., 2021; Brienen et al., 

2020) 
response to 
diffuse radiation annual global see Sect. 2.5 (Mercado et al., 2009; O'Sullivan et al., 

2021) 

(a) As result of interactions between land-use and climate 

(b) The uncertainties in GATM have been estimated as ±0.2 GtC yr-1, although the conversion of the growth rate into 
a global annual flux assuming instantaneous mixing throughout the atmosphere introduces additional errors that 
have not yet been quantified. 
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Figures and Captions 3073 

 3074 
Figure 1. Surface average atmospheric CO2 concentration (ppm). Since 1980, monthly data are from NOAA/GML 3075 
(Dlugokencky and Tans, 2022) and are based on an average of direct atmospheric CO2 measurements from 3076 
multiple stations in the marine boundary layer (Masarie and Tans, 1995). The 1958-1979 monthly data are from 3077 
the Scripps Institution of Oceanography, based on an average of direct atmospheric CO2 measurements from the 3078 
Mauna Loa and South Pole stations (Keeling et al., 1976). To account for the difference of mean CO2 and 3079 
seasonality between the NOAA/GML and the Scripps station networks used here, the Scripps surface average 3080 
(from two stations) was de-seasonalised and adjusted to match the NOAA/GML surface average (from multiple 3081 
stations) by adding the mean difference of 0.667 ppm, calculated here from overlapping data during 1980-2012.  3082 

 3083 

  3084 



102 
 

 

Figure 2. Schematic representation of the overall perturbation of the global carbon cycle caused by 

anthropogenic activities, averaged globally for the decade 2012-2021. See legends for the corresponding arrows 

and units. The uncertainty in the atmospheric CO2 growth rate is very small (±0.02 GtC yr-1) and is neglected 

for the figure. The anthropogenic perturbation occurs on top of an active carbon cycle, with fluxes and stocks 

represented in the background and taken from Canadell et al. (2021) for all numbers, except for the carbon 

stocks in coasts which is from a literature review of coastal marine sediments (Price and Warren, 2016).  

 3085 
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 3086 

Figure 3. Combined components of the global carbon budget illustrated in Figure 2 as a function of time, for fossil 3087 
CO2 emissions (EFOS, including a small sink from cement carbonation; grey) and emissions from land-use change 3088 
(ELUC; brown), as well as their partitioning among the atmosphere (GATM; cyan), ocean (SOCEAN; blue), and land 3089 
(SLAND; green). Panel (a) shows annual estimates of each flux and panel (b) the cumulative flux (the sum of all 3090 
prior annual fluxes) since the year 1850. The partitioning is based on nearly independent estimates from 3091 
observations (for GATM) and from process model ensembles constrained by data (for SOCEAN and SLAND) and does 3092 
not exactly add up to the sum of the emissions, resulting in a budget imbalance (BIM) which is represented by the 3093 
difference between the bottom red line (mirroring total emissions) and the sum of carbon fluxes in the ocean, land, 3094 
and atmosphere reservoirs. All data are in GtC yr-1 (panel a) and GtC (panel b). The EFOS estimate is based on a 3095 
mosaic of different datasets, and has an uncertainty of ±5% (±1σ). The ELUC estimate is from three bookkeeping 3096 
models (Table 4) with uncertainty of ±0.7 GtC yr-1. The GATM estimates prior to 1959 are from Joos and Spahni 3097 
(2008) with uncertainties equivalent to about ±0.1-0.15 GtC yr-1 and from Dlugokencky and Tans (2022) since 1959 3098 
with uncertainties of about +-0.07 GtC yr-1 during 1959-1979 and ±0.02 GtC yr-1 since 1980. The SOCEAN estimate is 3099 
the average from Khatiwala et al. (2013) and DeVries (2014) with uncertainty of about ±30% prior to 1959, and 3100 
the average of an ensemble of models and an ensemble of fCO2 data products (Table 4) with uncertainties of about 3101 
±0.4 GtC yr-1 since 1959. The SLAND estimate is the average of an ensemble of models (Table 4) with uncertainties 3102 
of about ±1 GtC yr-1. See the text for more details of each component and their uncertainties.  3103 

 3104 
 3105 
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3106 
Figure 4. Components of the global carbon budget and their uncertainties as a function of time, presented 3107 
individually for (a) fossil CO2 and cement carbonation emissions (EFOS), (b) growth rate in atmospheric CO2 3108 
concentration (GATM), (c) emissions from land-use change (ELUC), (d) the land CO2 sink (SLAND), (e) the ocean CO2 3109 
sink (SOCEAN), (f) the budget imbalance that is not accounted for by the other terms. Positive values of SLAND and 3110 
SOCEAN represent a flux from the atmosphere to land or the ocean. All data are in GtC yr-1 with the uncertainty 3111 
bounds representing ±1 standard deviation in shaded colour. Data sources are as in Figure 3. The red dots indicate 3112 
our projections for the year 2022 and the red error bars the uncertainty in the projections (see methods).  3113 
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 3114 

Figure 5. Fossil CO2 emissions for (a) the globe, including an uncertainty of ± 5% (grey shading) and a projection 3115 
through the year 2022 (red dot and uncertainty range), (b) territorial (solid lines) and consumption (dashed lines) 3116 
emissions for the top three country emitters (USA, China, India) and for the European Union (EU27), (c) global 3117 
emissions by fuel type, including coal, oil, gas, and cement, and cement minus cement carbonation (dashed), and 3118 
(d) per-capita emissions the world and for the large emitters as in panel (b).  Territorial emissions are primarily 3119 
from a draft update of Gilfillan and Marland (2021) except for national data for Annex I countries for 1990-2020, 3120 
which are reported to the UNFCCC as detailed in the text, as well as some improvements in individual countries, 3121 
and extrapolated forward to 2021 using BP Energy Statistics. Consumption-based emissions are updated from 3122 
Peters et al. (2011b). See Section 2.1 and Appendix C.1 for details of the calculations and data sources.  3123 

 3124 
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 3125 

Figure 6. The 2012-2021 decadal mean components of the global carbon budget, presented for (a) fossil CO2 3126 
emissions (EFOS), (b) land-use change emissions (ELUC), (c) the ocean CO2 sink (SOCEAN), and (d) the land CO2 sink 3127 
(SLAND). Positive values for EFOS and ELUC represent a flux to the atmosphere, whereas positive values of SOCEAN and 3128 
SLAND represent a flux from the atmosphere to the ocean or the land. In all panels, yellow/red (green/blue) colours 3129 
represent a flux from (into) the land/ocean to (from) the atmosphere. All units are in kgC m-2 yr-1. Note the different 3130 
scales in each panel. EFOS data shown is from GCP-GridFEDv2022.2. ELUC data shown is only from BLUE as the 3131 
updated H&N2017 and OSCAR do not resolve gridded fluxes. SOCEAN data shown is the average of GOBMs and 3132 
data-products means, using GOBMs simulation A, no adjustment for bias and drift applied to the gridded fields 3133 
(see Section 2.4). SLAND data shown is the average of DGVMs for simulation S2 (see Section 2.5). 3134 

 3135 
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3136 
Figure 7. Net CO2 exchanges between the atmosphere and the terrestrial biosphere related to land use change. (a) 3137 
Net CO2 emissions from land-use change (ELUC) with estimates from the three bookkeeping models (yellow lines) 3138 
and the budget estimate (black with ±1σ uncertainty), which is the average of the three bookkeeping models. 3139 
Estimates from individual DGVMs (narrow green lines) and the DGVM ensemble mean (thick green line) are also 3140 
shown. (b) Net CO2 emissions from land-use change from the four countries with largest cumulative emissions since 3141 
1959. Values shown are the average of the three bookkeeping models, with shaded regions as ±1σ uncertainty. (c) 3142 
CO2 gross sinks (negative, from regrowth after agricultural abandonment and wood harvesting) and gross sources 3143 
(positive, from decaying material left dead on site, products after clearing of natural vegetation for agricultural 3144 
purposes, wood harvesting, and, for BLUE, degradation from primary to secondary land through usage of natural 3145 
vegetation as rangeland, and also from emissions from peat drainage and peat burning). Values are shown for the 3146 
three bookkeeping models (yellow lines) and for their average (black with ±1σ uncertainty). The sum of the gross 3147 
sinks and sources is ELUC shown in panel (a). (d) Sources and sinks aggregated into four components that contribute 3148 
to the net fluxes of CO2, including: (i) gross sources from deforestation; (ii) re/afforestation and wood harvest (i.e., 3149 
the net flux on forest lands comprising slash and product decay following wood harvest; sinks due to regrowth after 3150 
wood harvest or after abandonment, including reforestation and abandonment as parts of shifting cultivation 3151 
cycles; afforestation), (iii) emissions from organic soils (peat drainage and pear fire, and (iv) sources and sinks 3152 
related to other land use transitions. The scale of the fluxes shown is smaller than in panel (c) because the 3153 
substantial gross sources and sinks from wood harvesting are accounted for as net flux under (ii) . The sum of the 3154 
component fluxes is ELUC shown in panel (a). 3155 

3156 
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 3157 

Figure 8: (a) The land CO2 sink (SLAND) estimated by individual DGVMs estimates (green), as well as the 3158 
budget estimate (black with ±1σ uncertainty), which is the average of all DGVMs. (b) Total atmosphere-land 3159 
CO2 fluxes (SLAND – ELUC). The budget estimate of the total land flux (black with ±1σ uncertainty) combines the 3160 
DGVM estimate of SLAND from panel (a) with the bookkeeping estimate of ELUC from Figure 7(a). Uncertainties 3161 
are similarly propagated in quadrature from the budget estimates of SLAND from panel (a) and ELUC from 3162 
Figure 7(a). DGVMs also provide estimates of ELUC (see Figure 7(a)), which can be combined with their own 3163 
estimates of the land sink. Hence panel (b) also includes an estimate for the total land flux for individual 3164 
DGVMs (thin green lines) and their multi-model mean (thick green line).   3165 

 3166 
 3167 
 3168 
 3169 
 3170 
 3171 
 3172 
 3173 
 3174 
 3175 
 3176 
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 3177 

Figure 9. The partitioning of total anthropogenic CO2 emissions (EFOS + ELUC) across (a) the atmosphere (airborne 3178 
fraction), (b) land (land-borne fraction), and (c) ocean (ocean-borne fraction). Black lines represent the central 3179 
estimate, and the coloured shading represents the uncertainty. The grey dashed lines represent the long-term 3180 
average of the airborne (44%), land-borne (30%) and ocean-borne (25%) fractions during 1960-2021. 3181 

 3182 
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 3183 

Figure 10. Comparison of the anthropogenic atmosphere-ocean CO2 flux showing the budget values of SOCEAN 3184 
(black; with the uncertainty in grey shading), individual ocean models (royal blue), and the ocean fCO2-based data 3185 
products (cyan; with Watson et al. (2020) in dashed line as not used for ensemble mean). Only one data product 3186 
(Jena-MLS) extends back to 1959 (Rödenbeck et al., 2022). The fCO2-based data products were adjusted for the 3187 
pre-industrial ocean source of CO2 from river input to the ocean, by subtracting a source of 0.65      GtC yr-1 to 3188 
make them comparable to SOCEAN (see Section 2.4). Bar-plot in the lower right illustrates the number of fCO2 3189 
observations in the SOCAT v2022 database (Bakker et al., 2022). Grey bars indicate the number of data points in 3190 
SOCAT v2021, and coloured bars the newly added observations in v2022. 3191 

 3192 

 3193 

 3194 

 3195 
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 3196 

Figure 11. Attribution of the atmosphere-ocean (SOCEAN) and atmosphere-land (SLAND) CO2 fluxes to (a) increasing 3197 
atmospheric CO2 concentrations and (b) changes in climate, averaged over the previous decade 2012-2021. All data 3198 
shown is from the processed-based GOBMs and DGVMs. The sum of ocean CO2 and climate effects will not equal 3199 
the ocean sink shown in Figure 6 which includes the fCO2-based data products. See Appendix C.3.2 and C.4.1 for 3200 
attribution methodology. Units are in kgC m-2 yr-1 (note the non-linear colour scale). 3201 
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3204 
Figure 12. The 2012-2021 decadal mean net atmosphere-ocean and atmosphere-land fluxes derived from the ocean 3205 
models and fCO2 products (y-axis, right and left pointing blue triangles respectively), and from the DGVMs (x-axis, 3206 
green symbols), and the same fluxes estimated from the inversions (purple symbols on secondary x- and y-axis). The 3207 
grey central point is the mean (±1σ) of SOCEAN and (SLAND – ELUC) as assessed in this budget. The shaded 3208 
distributions show the density of the ensemble of individual estimates. The grey diagonal band represents the fossil 3209 
fuel emissions minus the atmospheric growth rate from this budget (EFOS – GATM). Note that positive values are CO2 3210 
sinks.  3211 
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Figure 13. CO2 fluxes between the atmosphere and the Earth’s surface separated between land and oceans, globally 3216 
and in three latitude bands.  The ocean flux is SOCEAN and the land flux is the net atmosphere-land fluxes from the 3217 
DGVMs. The latitude bands are (top row) global, (2nd row) north (>30°N), (3rd row) tropics (30°S-30°N), and 3218 
(bottom row) south (<30°S), and over ocean (left column), land (middle column), and total (right column). Estimates 3219 
are shown for: process-based models (DGVMs for land, GOBMs for oceans); inversion systems (land and ocean); 3220 
and fCO2-based data products (ocean only). Positive values indicate a flux from the atmosphere to the land or the 3221 
ocean. Mean estimates from the combination of the process models for the land and oceans are shown (black line) 3222 
with ±1 standard deviation (1σ) of the model ensemble (grey shading). For the total uncertainty in the process-3223 
based estimate of the total sink, uncertainties are summed in quadrature. Mean estimates from the atmospheric 3224 
inversions are shown (purple lines) with their full spread (purple shading). Mean estimates from the fCO2-based 3225 
data products are shown for the ocean domain (light blue lines) with their ±1σ spread (light blue shading). The 3226 
global SOCEAN (upper left) and the sum of SOCEAN in all three regions represents the anthropogenic atmosphere-to-3227 
ocean flux based on the assumption that the preindustrial ocean sink was 0 GtC yr-1 when riverine fluxes are not 3228 
considered. This assumption does not hold at the regional level, where preindustrial fluxes can be significantly 3229 
different from zero. Hence, the regional panels for SOCEAN represent a combination of natural and anthropogenic 3230 
fluxes. Bias-correction and area-weighting were only applied to global SOCEAN; hence the sum of the regions is 3231 
slightly different from the global estimate (<0.05 GtC yr-1). 3232 
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 3234 

 3235 

Figure 14. Cumulative changes over the 1850-2021 period (left) and average fluxes over the 2012-2021 period (right) 3236 
for the anthropogenic perturbation of the global carbon cycle. See the caption of Figure 3 for key information and 3237 
the methods in text for full details. 3238 
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 3240 

 3241 
 3242 

Figure 15. Kaya decomposition of the main drivers of fossil CO2 emissions, considering population, GDP per 3243 
person, Energy per GDP, and CO2 emissions per energy, for China (top left), USA (top right), EU27 (middle left), 3244 
India (middle right), Rest of the World (bottom left), and World (bottom right). Black dots are the annual fossil 3245 
CO2 emissions growth rate, coloured bars are the contributions from the different drivers. A general trend is that 3246 
population and GDP growth put upward pressure on emissions, while energy per GDP and more recently CO2 3247 
emissions per energy put downward pressure on emissions. Both the COVID-19 induced changes during 2020 and 3248 
the recovery in 2021 led to a stark contrast to previous years, with different drivers in each region. 3249 
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Appendix A. Supplementary Tables 3252 

 3253 
Table A1. Comparison of the processes included in the bookkeeping method and DGVMs in their estimates of ELUC and SLAND. See Table 4 for 
model references. All models include deforestation and forest regrowth after abandonment of agriculture (or from afforestation activities on 
agricultural land). Processes relevant for ELUC are only described for the DGVMs used with land-cover change in this study. Here we use the term 
“DGVM” in the broadest sense in terms of global vegetation models which are able to dynamically adjust to imposed LULCC. 

 

Bookkeeping 
Models DGVMs 

H&N BLUE OSCA
R 

CAB
LE-

POP 
CLA
SSIC 

CL
M5.

0 
DLE
M IBIS ISA

M 
JSB
ACH 

JUL
ES-
ES 

LPJ-
GUE
SS 

LPJ 
LPX-
Ber
n 

OC
Nv2 

ORC
HID
EEv

3 

SDG
VM 

VISI
T YIBs 

Processes relevant for ELUC                    

Wood harvest and forest 
degradation (a) yes yes yes yes no yes yes yes yes yes no yes yes no 

(d) yes yes no yes no 

Shifting cultivation / Subgrid scale 
transitions 

yes 
(b) yes yes yes no yes no yes no yes no yes yes no 

(d) no no no yes no 

Cropland harvest (removed, R, or 
added to litter, L) 

yes 
(R) (j) 

yes (R) 
(j) yes (R) yes 

(R) 
yes 
(L) 

yes 
(R) yes yes 

(R) yes 
yes 
(R+L

) 
yes 
(R) 

yes 
(R) 

yes 
(L) 

yes 
(R) 

yes 
(R+L

) 
yes 
(R) 

yes 
(R) 

yse 
(R) 

yes 
(L) 

Peat fires yes yes yes no no yes no no no no no no no no no no no no no 

fire as a management tool yes (j) yes (j) yes (h) no no no no no no no no no no no no no no no no 

N fertilisation yes (j) yes (j) yes (h) no no yes yes no yes no yes(i
) yes no yes yes yes no no no 

tillage yes (j) yes (j) yes (h) no yes 
(g) no no no no no no yes no no no yes 

(g) no no no 

irrigation yes (j) yes (j) yes (h) no no yes yes no yes no no yes no no no no no no no 

wetland drainage yes (j) yes (j) yes (h) no no no no no yes no no no no no no no no no no 

erosion yes (j) yes (j) yes (h) no no no yes no no no no no no no no no no yes no 

peat drainage yes yes yes no no no no no no no no no no no no no no no no 

Grazing and mowing Harvest 
(removed, r, or added to litter, l) 

yes (r) 
(j) 

yes (r) 
(j) yes (r) yes 

(r) no no no no yes 
(r, l) 

yes 
(l) no yes 

(r) 
yes 
(l) no yes 

(r+l) no no no no 

Processes also relevant for SLAND (in addition to CO2 fertilisation and climate) 

Fire simulation and/or suppression N.A. N.A. N.A. no yes yes no yes no yes yes yes yes yes no no yes yes no 

Carbon-nitrogen interactions, 
including N deposition N.A. N.A. N.A. yes no 

(f) yes yes no yes yes yes yes no yes yes yes yes 
(c) no no 

(f) 
Separate treatment of direct and 
diffuse solar radiation N.A. N.A N.A yes no yes no no no no yes no no no no no no no yes 
(a) Refers to the routine harvest of established managed forests rather than pools of harvested products. 
(b) No back- and forth-transitions between vegetation types at the country-level, but if forest loss based on FRA exceeded agricultural expansion based on FAO, then 
this amount of area was cleared for cropland and the same amount of area of old croplands abandoned. 
(c) Limited. Nitrogen uptake is simulated as a function of soil C, and Vcmax is an empirical function of canopy N. Does not consider N deposition. 
(d) Available but not active. 
(e) Simple parameterization of nitrogen limitation based on Yin (2002; assessed on FACE experiments) 
(f) Although C-N cycle interactions are not represented, the model includes a parameterization of down-regulation of photosynthesis as CO2 increases to emulate 
nutrient constraints (Arora et al., 2009) 
(g) Tillage is represented over croplands by increased soil carbon decomposition rate and reduced humification of litter to soil carbon. 
(h) as far as the DGVMs that OSCAR is calibrated to include it 
(i) perfect fertilisation assumed, i.e. crops are not nitrogen limited and the implied fertiliser diagnosed 
(j) Process captured implicitly by use of observed carbon densities. 
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Table A2. Comparison of the processes and model set up for the Global Ocean Biogeochemistry Models 
for their estimates of SOCEAN. See Table 4 for model references.   

 

NEMO-
PlankTOM

12 

NEMO-
PISCES 
(IPSL) 

MICOM-
HAMOCC 
(NorESM1
-OCv1.2) 

MPIOM-
HAMOCC

6 

FESOM-
2.1-

REcoM2 

NEMO3.6-
PISCESv2

-gas 
(CNRM) 

MOM6-
COBALT 

(Princeton
) 

CESM-
ETHZ 

MRI-
ESM2-1 CESM2 

Model specifics 

Physical ocean 
model 

NEMOv3.6
-ORCA2 

NEMOv3.6
-
eORCA1L
75 

MICOM 
(NorESM1
-OCv1.2) MPIOM 

FESOM-
2.1 

NEMOv3.6
-

GELATOv
6-

eORCA1L
75 

MOM6-
SIS2 

CESMv1.3 
(ocean 
model 
based on 
POP2) 

MRI.CO
Mv4 

CESM2
-POP2 

Biogeochemist
ry model 

PlankTOM
12 PISCESv2 

HAMOCC 
(NorESM1
-OCv1.2) 

HAMOCC
6 

REcoM-2-
M 

PISCESv2
-gas 

COBALTv
2 

BEC 
(modified 
& 
extended) NPZD MARBL 

Horizontal 
resolution 

2° lon, 0.3 
to 1.5° lat 

1° lon, 0.3 
to 1° lat 

1° lon, 
0.17 to 
0.25 lat 1.5° 

unstructur
ed mesh, 

20-120 km 
resolution 

(CORE 
mesh) 

1° lon, 0.3 
to 1° lat 

0.5° lon, 
0.25 to 
0.5° lat 

1.125° lon, 
0.53° to 
0.27° lat 

1° lon, 
0.3 to 

0.5° lat 

1.125° 
lon, 
0.53° to 
0.27° 
lat 

Vertical 
resolution 

31 levels 

75 levels, 
1m at the 
surface 

51 
isopycnic 
layers + 2 

layers 
representi
ng a bulk 

mixed 
layer 40 levels 

46 levels, 
10 m 

spacing in 
the top 
100 m 

75 levels, 
1m at 

surface 

75 levels 
hybrid 
coordinate
s, 2m at 
surface 60 levels 

60 levels 
with 1-
level 

bottom 
boundar
y layer 

60 
levels 

Total ocean 
area on native 
grid (km2) 

3.6080E+0
8 

3.6270E+0
8 

3.6006E+0
8 

3.6598E+0
8 

3.6435E+0
8 

3.6270E+1
4 

3.6111E+0
8 

3.5926E+0
8 

3.6141E
+08 

3.61E+
08 

Gas-exchange 
parameterizati
on 

Wanninkh
of et al. 
1992 

Orr et al., 
2017 

Orr et al., 
2017, but 
with 
a=0.337 

Orr et al., 
2017 

Orr et al., 
2017 

Orr et al., 
2017 

Orr et al., 
2017 

Wanninkh
of (1992, 
coefficient 
a scaled 
down to 
0.31) 

Orr et 
al., 2017 

Orr et 
al., 
2017 

CO2 chemistry 
routines 

Following 
Broecker 
et al. 
(1982) 

mocsy 

Following 
Dickson et 
al. 2007 

Ilyina et al. 
(2013) 
adapted to 
comply 
with OMIP 
protocol 
(Orr et al., 
2017) mocsy mocsy mocsy 

OCMIP2 
(Orr et al.) mocsy 

OCMIP
2 (Orr 
et al. 
2017) 

River input 
(PgC/yr) 
(organic/inorga
nic DIC) 

0.723 / - 0.61 / - 0 0.77 / - 0 / 0 ~0.611 / - ~0.07 / 
~0.15 

0.33 / - 0 / 0 

0.173/0
.263 

Net flux to 
sediment 
(PgC/yr) 
(organic/other) 

0.723 / - 0.59 / - around 
0.54 / - 

- / 0.44 0 / 0 ~0.656 / - ~0.11 / 
~0.07 
(CaCO3) 

0.21 / - 0 / 0 0.345/0
.110 
(CaCO
3) 

SPIN-UP procedure 

Initialisation of 
carbon 
chemistry 

GLODAPv
1 

(preindustr
ial DIC) 

GLODAPv
2 
(preindustr
ial DIC) 

GLODAPv
1 

(preindustr
ial DIC) 

initializatio
n from 
previous 
simulation 

GLODAPv
2 

(preindustr
ial DIC) 

GLODAPv
2 

GLODAPv
2 

(Alkalinity, 
DIC). DIC 

GLODAPv
2 

(preindustr
ial DIC) 

GLODA
Pv2 

(preindu
strial 

GLOD
APv2 

(preind
ustrial 
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corrected 
to 1959 

level 
(simulation 
A and C) 

and to pre-
industrial 

level 
(simulation 
B and D) 

using 
Khatiwala 
et al 2009 

DIC) DIC) 

Preindustrial 
spin-up prior to 
1850 

spin-up 
1750-1947 

spin-up 
starting in 
1836 with 
3 loops of 

JRA55 
1000 year 

spin up 
~2000 
years 189 years 

long spin-
up (> 1000 
years) 

Other bgc 
tracers 
initialized 
from a 
GFDL-
ESM2M 
spin-up (> 
1000 
years) 

spinup 
1655-1849 

1661 
years 
with 

xCO2 = 
284.32 

spinup 
1653-
1850, 
xCO2=
278 

Atmospheric forcing fields and CO2 

Atmospheric 
forcing for (i) 
pre-industrial 
spin-up, (ii) 
spin-up 1850-
1958 for 
simulation B, 
(iii) simulation 
B 

looping 
NCEP 

year 1990 
(i, ii, iii) 

looping full 
JRA55 

reanalysis 

CORE-I 
(normal 

year) 
forcing (i, 

ii, iii) 

OMIP 
climatolog
y (i), NCEP 
year 1957 
(ii,iii) 

JRA55-do 
v.1.5.0 

repeated 
year 1961 

(i, ii, iii) 

JRA55-do-
v1.5.0 full 
reanaylsis 
(i) cycling 
year 1958 

(ii,iii) 

GFDL-
ESM2M 
internal 

forcing (i), 
JRA55-do-

v1.5.0 
repeat 

year 1959 
(ii,iii) 

COREv2 
until 1835 , 
from 1835-
1850: JRA 
(i), normal 
year 
forcing 
created 
from 
JRA55-do 
version 1.3 
(ii,iii) 

JRA55-
do v1.5.0 

repeat 
year 

1990/91 
(i, ii, iii) 

(i) 
repeati
ng JRA 
1958-
2018 
for 
spinup 
for A & 
D, 
repeati
ng JRA 
1990/1
991 
repeat 
year 
forcing 
for 
spinup 
for B & 
C, (ii) & 
(iii) JRA 
1990/1
991 
repeat 
year 
forcing 

Atmospheric 
CO2 for control 
spin-up 1850-
1958 for 
simulation B, 
and for 
simulation B 

constant 
278ppm; 
converted 
to pCO2 

temperatur
e 

formulation 
(Sarmiento 

et al., 
1992) 

xCO2 of 
286.46pp

m, 
converted 
to pCO2 

with 
constant 
sea-level 
pressure 
and water 

vapour 
pressure 

xCO2 of 
278ppm, 
converted 
to pCO2 
with sea-

level 
pressure 
and water 

vapour 
pressure 

xCO2 of 
278ppm, 
no 
conversion 
to pCO2 

xCO2 of 
278ppm, 
converted 
to pCO2 
with sea-

level 
pressure 
and water 

vapour 
pressure 

xCO2 of 
286.46pp

m, 
converted 
to pCO2 

with 
constant 
sea-level 
pressure 
and water 

vapour 
pressure 

xCO2 of 
278ppm, 
converted 
to pCO2 
with sea-

level 
pressure 
and water 

vapour 
pressure 

xCO2 = 
287.4ppm, 
converted 
to pCO2 

with 
atmospheri
c pressure, 
and water 

vapour 
pressure 

xCO2 of 
284.32p

pm 
(CMIP6 

piControl
), 

converte
d to 

pCO2 
with 

water 
vapour 

and sea-
level 

pressure 
(JRA55-

xCO2=
278 
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do 
repeat 
year 

1990/91) 
Atmospheric 
forcing for 
historical spin-
up 1850-1958 
for simulation 
A (i) and for 
simulation A (ii) 1750-

1947: 
looping 
NCEP 

year 1990; 
1948-
2021: 
NCEP 

1836-1958 
: looping 

full JRA55 
reanalysis 
(i), JRA55-

do-v1.4 
then 1.5 
for 2020-

21 (ii) 

CORE-I 
(normal 

year) 
forcing; 

from 1948 
onwards 

NCEP-R1 
with 

CORE-II 
corrections 

NCEP 6 
hourly 
cyclic 
forcing (10 
years 
starting 
from 1948, 
i), 1948-
2021: 
transient 
NCEP 
forcing 

JRA55-do-
v1.5.0 

repeated 
year 1961 

(i), 
transient 

JRA55-do-
v1.5.0 (ii) 

JRA55-do 
cycling 

year 1958 
(i), JRA55-
do-v1.5.0 

(ii) 

JRA55-do-
v1.5 

repeat 
year 1959 
(i), v1.5.0 

(1959-
2019, 

v1.5.0.1b 
(2020), 
v1.5.0.1 
(2021; ii) 

JRA55 
version 

1.3, repeat 
cycle 

between 
1958-2018 

(i), v1.3 
(1959-
2018), 

v.1.5.0.1 
(2020-
2021) 

1653-
1957: 

repeated 
cycle 

JRA55-
do v1.5.0 

1958-
2018 (i), 
v1.5.0 
(1958-
2018), 

v1.5.0.1 
(2019-

2021; ii) 

(i) 
repeati
ng JRA 
1958-
2018, 
(ii) JRA 
1958-
2021 

Atmospheric 
CO2 for 
historical spin-
up 1850-1958 
for simulation 
A (i) and 
simulation A (ii) 

xCO2 
provided 

by the 
GCB; 

converted 
to pCO2 

temperatur
e 

formulation 
(Sarmiento 

et al., 
1992), 

monthly 
resolution 

(i, ii) 

xCO2 as 
provided 

by the 
GCB, 
global 
mean, 
annual 

resolution, 
converted 
to pCO2 
with sea-

level 
pressure 
and water 

vapour 
pressure 

(i, ii) 

xCO2 as 
provided 

by the 
GCB, 

converted 
to pCO2 
with sea 

level 
pressure 

(taken 
from the 

atmopheric 
forcing) 

and water 
vapor 

correction 
(i, ii) 

transient 
monthly 
xCO2 
provided 
by GCB, 
no 
conversion 
(i, ii) 

xCO2 as 
provided 

by the 
GCB, 

converted 
to pCO2 
with sea-

level 
pressure 
and water 

vapour 
pressure, 

global 
mean, 

monthly 
resolution 

(i, ii) 

xCO2 as 
provided 

by the 
GCB, 

converted 
to pCO2 

with 
constant 
sea-level 
pressure 
and water 

vapour 
pressure, 

global 
mean, 
yearly 

resolution 
(i, ii) 

xCO2 at 
year 1959 
level (315 

ppm, i) 
and as 

provided 
by GCB 
(ii), both 

converted 
to pCO2 
with sea-

level 
pressure 
and water 

vapour 
pressure, 

global 
mean, 
yearly 

resolution 

xCO2 as 
provided 

by the 
GCB, 

converted 
to pCO2 

with locally 
determine

d atm. 
pressure, 
and water 

vapour 
pressure 

(i, ii) 

xCO2 as 
provided 

for 
CMIP6 

historical 
simulatio

ns, 
annual 

resolutio
n (i), and 

as 
provided 
by GCB 
(ii), both 
converte

d to 
pCO2 
with 

water 
vapour 

and sea-
level 

pressure 

annual 
global 
xCO2 
provide
d by 
GCB, 
convert
ed to 
equilibri
um 
CO2* 
using 
atmosp
heric 
pressur
e and 
Weiss 
and 
Price 
(1980) 
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Table A3: Description of ocean data-products used for assessment of SOCEAN. See Table 4 for references. 

 Jena-MLS MPI-SOMFFN CMEMS-LSCE-
FFNN 

Watson et al NIES-NN JMA-MLR OS-ETHZ-GRaCER LDEO HPD 

Method Spatio-temporal 
interpolation 
(version 
oc_v2022). 
Spatio-temporal 
field of ocean-
internal carbon 
sources/sinks is 
fit to the 
SOCATv2022 
pCO2 data. 
Includes a 
multi-linear 
regression 
against 
environmental 
drivers to 
bridge data 
gaps, 

A feed-forward 
neural network 
(FFN) determines 
non-linear 
relationship 
between SOCAT 
pCO2 
measurements 
and 
environmental 
predictor data 
for 16 
biogeochemical 
provinces 
(defined through 
a self-organizing 
map, SOM) and 
is used to fill the 
existing data 
gaps. 

An ensemble of 
neural network 
models trained 
on 100 
subsampled 
datasets from 
SOCAT and 
environmental 
predictors. The 
models are used 
to reconstruct 
sea surface 
fugacity of CO2 
and convert to 
air-sea CO2 
fluxes 

Modified MPI-
SOMFFN with 
SOCATv2022 
pCO2 database. 
Corrected to the 
subskin 
temperature of 
the ocean as 
measured by 
satellite 
(Goddijn-Murphy 
et al, 2015). Flux 
calculation 
corrected for the 
cool and salty 
surface skin. 
Monthly 
climatology for 
skin temperature 
correction 
derived from ESA 
CCI product for 
the period 2003 
to 2011 
(Merchant et al, 
2019). 

A feed forward 
neural network 
model trained on 
SOCAT 2021 
fCO2 and 
environmental 
predictor data. 
The fCO2 was 
normalized to 
the reference 
year 2000 by a 
global fCO2 
trend: We fitted 
the dependence 
of fCO2 on year 
by linear 
regression. We 
subtracted the 
trend from fCO2 
and used the 
neural network 
to model the 
nonlinear 
dependence of 
the residual on 
predictors. The 
trend was added 
to model 
predictions to 
reconstruct 
fCO2. 

Fields of total 
alkalinity (TA) 
were estimated 
by using a 
multiple linear 
regressions 
(MLR) method 
based on 
GLODAPv2.2021 
and satellite 
observation 
data. 
SOCATv2022 
fCO2 data were 
converted to 
dissolved 
inorganic carbon 
(DIC) with the 
TA. Fields of DIC 
were estimated 
by using a MLR 
method based 
on the DIC and 
satellite 
observation data 

Geospatial 
Random Cluster 
Ensemble 
Regression is a 
two-step cluster-
regression 
approach, where 
multiple 
clustering 
instances with 
slight variations 
are run to create 
an ensemble of 
estimates. We 
use K-means 
clustering and a 
combination of 
Gradient boosted 
trees and Feed-
forward neural-
networks to 
estimate SOCAT 
v2022 fCO2. 

Based on fCO2-
misfit between 
observed fCO2 
and eight of the 
ocean 
biogeochemical 
models used in 
this 
assessment. 
The eXtreme 
Gradient 
Boosting 
method links 
this misfit to 
environmental 
observations to 
reconstruct the 
model misfit 
across all space 
and time., 
which is then 
added back to 
model-based 
fCO2 estimate. 
The final 
reconstrucion 
of surface fCO2 
is the average 
across the eight 
reconstructions. 

Gas-exchange 
parameterizatio
n 

Wanninkhof 
1992. Transfer 
coefficient k 
scaled to match 
a global mean 
transfer rate of 
16.5 cm/hr by 
(Naegler, 2009) 

Wanninkhof 
1992. Transfer 
coefficient k 
scaled to match 
a global mean 
transfer rate of 
16.5 cm/hr 

Wanninkhof 
2014. Transfer 
coefficient k 
scaled to match a 
global mean 
transfer rate of 
16.5 cm/hr 
(Naegler, 2009) 

Nightingale et al 
2000 

Wanninkhof, 
2014. Transfer 
coefficient k 
scaled to match a 
global mean 
transfer rate of 
16.5 cm/hr 
(Naegler, 2009) 

Wanninkhof., 
2014. Transfer 
coefficient k 
scaled to match a 
global mean 
transfer rate of 
16.5 cm/hr 
(Naegler, 2009) 

Wanninkhof 
1992, averaged 
and scaled for 
three reanalysis 
wind data, to a 
global mean 16.5 
cm/hr (after 
Naegler 2009; 
Fay & Gregor et 
al. 2021) 

Wanninkhof 
1992, averaged 
and scaled for 
three reanalysis 
wind data, to a 
global mean 
16.5 cm/hr 
(after Naegler 
2009; Fay & 
Gregor et al. 
2021) 

Wind product JMA55-do 
reanalysis 

ERA 5 ERA5 Mean and mean 
square winds 
monthly 1x1° 
from CCMP, 
0.25x0.25° x 6-
hourly, 

ERA5 JRA55 JRA55, ERA5, 
NCEP1 

JRA55, ERA5, 
CCMP2 

Spatial 
resolution 

2.5 degrees 
longitude x 2 
degrees latitude 

1x1 degree 1x1 degree 1x1 degree 1x1 degree 1x1 degree 1x1 degree 1x1 degree 

Temporal 
resolution 

daily monthly monthly monthly monthly monthly monthly monthly 
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Atmospheric 
CO2 

Spatially and 
temporally 
varying field 
based on 
atmospheric CO2 
data from 169 
stations (Jena 
CarboScope 
atmospheric 
inversion 
sEXTALL_v2021) 

Spatially varying 
1x1 degree 
atmospheric 
pCO2_wet 
calculated from 
the NOAA GMD 
marine boundary 
layer xCO2 and 
NCEP sea level 
pressure with 
the moisture 
correction by 
Dickson et al 
2007. 

Spatially and 
monthly varying 
fields of 
atmospheric 
pCO2 computed 
from CO2 mole 
fraction (CO2 
atmospheric 
inversion from 
the Copernicus 
Atmosphere 
Monitoring 
Service), and 
atmospheric dry-
air pressure 
which is derived 
from monthly 
surface pressure 
(ERA5) and water 
vapour pressure 
fitted by Weiss 
and Price 1980 

Atmospheric 
pCO2 (wet) 
calculated from 
NOAA marine 
boundary layer 
XCO2 and NCEP 
sea level 
pressure, with 
pH2O calculated 
from Cooper et 
al, 1998. 2021 
XCO2 marine 
boundary values 
were not 
available at 
submission so we 
used preliminary 
values, 
estimated from 
2020 values and 
increase at 
Mauna Loa. 

NOAA 
Greenhouse Gas 
Marine Boundary 
Layer Reference. 
https://gml.noaa
.gov/ccgg/mbl/m
bl.html 

Atmospheric 
xCO2 fields of 
JMA-GSAM 
inversion model 
(Maki et al. 2010; 
Nakamura et al. 
2015) were used. 
They were 
converted to 
pCO2 by using 
JRA55 sea level 
pressure. 2021 
xCO2 fields were 
not available at 
this stage, and 
we used global 
xCO2 increments 
from 2020 to 
2021. 

NOAA's marine 
boundary layer 
product for xCO2 
is linearly 
interpolated 
onto a 1x1 
degree grid and 
resampled from 
weekly to 
monthly. xCO2 is 
multiplied by 
ERA5 mean sea 
level pressure, 
where the latter 
corrected for 
water vapour 
pressure using 
Dickson et al. 
(2007). This 
results in 
monthly 1x1 
degree 
pCO2atm. 

NOAA's marine 
boundary layer 
product for 
xCO2 is linearly 
interpolated 
onto a 1x1 
degree grid and 
resampled from 
weekly to 
monthly. xCO2 
is multiplied by 
ERA5 mean sea 
level pressure, 
where the latter 
corrected for 
water vapour 
pressure using 
Dickson et al. 
(2007). This 
results in 
monthly 1x1 
degree 
pCO2atm. 

Total ocean area 
on native grid 
(km2) 

3.63E+08 3.63E+08 3.50E+08 3.52E+08 

3.49E+08 

3.10E+08 
(2.98E+08 to 
3.16E+08, 
depending on ice 
cover) 

3.55E+08 3.61E+08 

method to 
extend product 
to full global 
ocean coverage 

 Arctic and 
marginal seas 
added following 
Landschützer et 
al. (2020). No 
coastal cut. 

   Fay & Gregor et 
al. 2021 

Method has near 
full coverage 

Fay & Gregor et 
al. 2021. Gaps 
were filled with 
monthly 
climatology. 
Interannual 
variability was 
added to the 
climatology 
based on the 
temporal 
evolution of 5 
products for 
years 1985 
through 2020 
and then only 
using this 
product for year 
2021. 
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Table A4. Comparison of the inversion set up and input fields for the atmospheric inversions. Atmospheric inversions 
see the full CO2 fluxes, including the anthropogenic and pre-industrial fluxes. Hence they need to be adjusted for the 
pre-industrial flux of CO2 from the land to the ocean that is part of the natural carbon cycle before they can be 
compared with SOCEAN and SLAND from process models. See Table 4 for references. 

 

Copernicus 
Atmosphere 
Monitoring 

Service 
(CAMS) 

Carbon-
Tracker 

Europe (CTE) 
Jena 

CarboScope 
UoE NISMON-

CO2 
CMS-Flux GONGGA THU Copernicus 

Atmospher
e 

Monitoring 
Service 
(CAMS) 
Satellite 

Version number v21r1 v2022 v2022 UoE 
v6.1b v2022.1 v2022 v2022 v2022 FT21r2 

Observations          
Atmospheric 
observations 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVI
EWplus 
v7.0 (a) 
and 
NRT_v7.2(
b), 
WDCGG, 
RAMCES 
and ICOS 
ATC 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v7.0 
(a) and 
NRT_v7.2(b) 

Flasks and 
hourly from 
various 
institutions 
(outliers 
removed by 
2σ criterion) 

Hourly 
resolution 
(well-
mixed 
conditions
) obspack 
GLOBAL
VIEWplus 
v7.0(a) 
and 
NRT_v7.2
(b) 

Hourly 
resolution 
(well-
mixed 
conditions) 
obspack 
GLOBALVI
EWplus 
v7.0(a) 
and 
NRT_v7.2(
b) 

ACOS- 
GOSAT 
v9r, OCO-
2 v10 
scaled to 
WMO 
2019 
standard 
and 
remote 
flask 
observatio
ns from 
ObsPack, 
GLOBALVI
EW puls, 
v7.0(a) 
and NRT 
_v 7.2(b) 

OCO-2 
v10r data 
that scaled 
to WMO 
2019 
standard 

OCO-2 
v10r data 
that scaled 
to WMO 
2019 
standard 

bias-
corrected 
ACOS 
GOSAT v9 
over land 
until 
August 
2024 + 
bias-
corrected 
ACOS 
OCO-2 
v10 over 
land, both 
rescaled to 
X2019 

Period covered 1979-2021 2001-2021 1957-2021 2001-
2021 

1990-2021 2010-2021 2015-2021 2015-2021 2010-2021 

Prior fluxes          
Biosphere and fires ORCHIDEE

, 
GFEDv4.1s 

SiB4 and 
GFAS 

Zero CASA 
v1.0, 
climatolog
y after 
2016 and 
GFED4.0 

VISIT and 
GFEDv4.1
s 

CARDAM
OM 

CASA and 
GFEDv4.1
s 

SiB4.2 and 
GFEDv4.1
s 

ORCHIDE
E, 
GFEDv4.1
s 

Ocean CMEMS-
LSCE-
FFNN 2021 

CarboScope 
v2021 

CarboScop
e v2022 

Takahash
i 
climatolog
y 

JMA global 
ocean 
mapping 
(Iida et al., 
2015) 

MOM6 Takahashi 
climatolog
y 

Takahashi 
climatolog
y 

CMEMS-
LSCE-
FFNN 
2021 

Fossil fuels GridFED 
2021.2(c) 
with an 
extrapolatio
n to 2021 
based on 
Carbonmon
itor and 
NO2 

GridFED 
2021.3 + 
GridFED 
2022.2 for 
2021 (c) 

GridFED 
v2022.2 (c) 

GridFED 
2022.1 (c) 

GridFED 
v2022.2 
(c) 

GridFED2
022.2 (c) 

GridFED 
2021.3 (c) 
with an 
extrapolati
on to 2021 
based on 
Carbon-
monitor 

GridFED 
v2022.1 
(c) 

GridFED 
2021.2 (c) 
with an 
extrapolati
on to 2021 
based on 
Carbonmo
nitor and 
NO2 

Transport and 
optimization          
Transport model LMDZ v6 TM5 TM3 GEOS-

CHEM 
NICAM-
TM 

GEOS-
CHEM 

GEOS-
Chem 
v12.9.3 

GEOS-
CHEM 

LMDZ v6 
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Weather forcing ECMWF ECMWF NCEP MERRA JRA55 MERRA MERRA2 GEOS-FP ECMWF 

Horizontal 
Resolution 

Global 
3.75°x1.87
5° 

Global 3°x2°, 
Europe 
1°x1°, North 
America 
1°x1° 

Global 
3.83°x5° 

Global 
4°x5° !"#$%&'()%

*+,)-(.+

/00123 

Global 
4°x5° 

Global 
2°x2.5° 

Global 
4°x5° 

Global 
3.75°x1.87
5° 

Optimization Variational Ensemble 
Kalman filter 

Conjugate 
gradient 
(re-ortho-
normalizati
on) (d) 

Ensemble 
Kalman 
filter 

Variational Variational Nonlinear 
least 
squares 
four-
dimension
al variation 
(NLS-
4DVar) 

Ensemble 
Kalman 
filter 

Variational 

(a) https://doi.org/10.25925/20210801. Schuldt et al. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957-2020; 
obspack_co2_1_GLOBALVIEWplus_v7.0_2021-08-18; NOAA Earth System Research Laboratory, Global Monitoring Laboratory. 
http://doi.org/10.25925/20210801. 
(b) http://doi.org/10.25925/20220624. Schuldt et al. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 2021-2022; 
obspack_co2_1_NRT_v7.2_2022-06-28; NOAA Earth System Research Laboratory, Global Monitoring Laboratory. 
http://doi.org/10.25925/20220624. 
(c) GCP-GridFED v2021.2, v2021.3, v2022.1 and v2022.2 (Jones et al., 2022) are updates through the year 2021 of the GCP-GridFED dataset 
presented by Jones et al. (2021). 
(d) ocean prior not optimised 
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Table A5 Attribution of fCO2 measurements for the year 2021 included in SOCATv2022 (Bakker et al., 2016, 2022) 
to inform ocean fCO2-based data products. 

Platform 
Name Regions 

No. of 
measurement

s Principal Investigators 
No. of 

datasets Platform Type 
1 degree North Atlantic, coastal 71,863 Tanhua, T. 1 Ship 
Alawai_158W_21
N Tropical Pacific 387 Sutton, A.; De Carlo, E. H.; Sabine, C. 1 Mooring 

Atlantic Explorer 
North Atlantic, tropical Atlantic, 
coastal 34,399 Bates, N. R. 16 Ship 

Atlantic Sail North Atlantic, coastal 27,496 Steinhoff, T.; Körtzinger, A. 7 Ship 
BlueFin Tropical Pacific 60,606 Alin, S. R.; Feely, R. A. 11 Ship 

Cap San Lorenzo 
North Atlantic, tropical Atlantic, 
coastal 44,281 Lefèvre, N. 7 Ship 

CCE2_121W_34N Coastal 1,333 Sutton, A.; Send, U.; Ohman, M. 1 Mooring 
Celtic Explorer North Atlantic, coastal 61,118 Cronin, M. 10 Ship 

F.G. Walton Smith Coastal 38,375 
Rodriguez, C.; Millero, F. J.; Pierrot, D.; 
Wanninkhof, R. 14 Ship 

Finnmaid Coastal 223,438 Rehder, G.; Bittig, H. C.; Glockzin, M. 1 Ship 
FRA56 Coastal 5,652 Tanhua, T. 1 Ship 
G.O. Sars Arctic, north Atlantic, coastal 82,607 Skjelvan, I. 9 Ship 
GAKOA_149W_60
N Coastal 402 

Monacci, N.; Cross, J.; Musielewicz, S.; 
Sutton, A. 1 Mooring 

Gordon Gunter North Atlantic, coastal 36,058 Wanninkhof, R.; Pierrot, D. 6 Ship 

Gulf Challenger Coastal 6,375 
Salisbury, J.; Vandemark, D.; Hunt, C. 
W. 6 Ship 

Healy Arctic, north Atlantic, coastal 28,998 
Sweeney, C.; Newberger, T.; 
Sutherland, S. C.; Munro, D. R. 5 Ship 

Henry B. Bigelow North Atlantic, coastal 67,399 Wanninkhof, R.; Pierrot, D. 8 Ship 

Heron Island Coastal 989 
Tilbrook, B.; Neill, C.; van Oojen, E.; 
Passmore, A.; Black, J. 1 Mooring 

Investigator 
Southern Ocean, coastal, tropical 
Pacific, Indian Ocean 120,782 Tilbrook, B.; Akl, J.; Neill, C. 6 Ship 

KC_BUOY Coastal 2,860 Evans, W.; Pocock, K. 1 Mooring 
Keifu Maru II North Pacific, tropical Pacific, coastal 10,053 Kadono, K. 8 Ship 

Laurence M. Gould Southern Ocean 2,604 
Sweeney, C.; Newberger, T.; 
Sutherland, S. C.; Munro, D. R. 1 Ship 

Marion Dufresne 
Indian Ocean, Southern Ocean, 
coastal 9,911 Lo Monaco, C.; Metzl, N. 1 Ship 

Nathaniel B. 
Palmer Southern Ocean 2,376 

Sweeney, C.; Newberger, T.; 
Sutherland, S. C.; Munro, D. R. 1 Ship 

New Century 2 
North Pacific, tropical Pacific, north 
Atlantic, coastal 198,293 Nakaoka, S.-I.; Takao, S. 10 Ship 

Newrest - Art and 
Fenetres 

North Atlantic, tropical Atlantic, 
south Atlantic, coastal 17,699 Tanhua, T. 2 Ship 

Quadra Island 
Field Station Coastal 81,201 Evans, W.; Pocock, K. 1 Mooring 
Ronald H. Brown North Atlantic, coastal 31,661 Wanninkhof, R.; Pierrot, D. 3 Ship 
Ryofu Maru III North Pacific, tropical Pacific, coastal 10,464 Kadono, K. 8 Ship 

Sea Explorer 
Southern Ocean, north Atlantic, 
coastal, tropical Atlantic 37,027 Landshützer, P.; Tanhua, T. 2 Ship 
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Sikuliaq Arctic, north Pacific, coastal 60,549 
Sweeney, C.; Newberger, T.; 
Sutherland, S. C.; Munro, D. R. 13 Ship 

Simon Stevin Coastal 57,055 
Gkritzalis, T.; Theetaert, H.; Cattrijsse, 
A.; T´Jampens, M. 11 Ship 

Sitka Tribe of 
Alaska 
Environmental 
Research 
Laboratory Coastal 19,086 

Whitehead, C.; Evans, W.; Lanphier, K.; 
Peterson, W.; Kennedy, E.; Hales, B. 1 Mooring 

SOFS_142E_46S Southern Ocean 894 Sutton, A.; Trull, T.; Shadwick, E. 1 Mooring 
Soyo Maru Tropical Pacific, coastal 33,234 Ono, T. 3 Ship 
Station M North Atlantic 447 Skjelvan, I. 1 Mooring 
Statsraad 
Lehmkuhl 

North Atlantic, tropical Atlantic, 
coastal 47,881 Becker, M.; Olsen, A. 3 Ship 

TAO125W_0N Tropical Pacific 241 Sutton, A. 1 Mooring 
Tavastland Coastal 48,421 Willstrand Wranne, A.; Steinhoff, T. 17 Ship 
Thomas G. 
Thompson 

North Atlantic, tropical Atlantic, 
north Pacific, tropical Pacific, coastal 47,073 Alin, S. R. ; Feely, R. A. 5 Ship 

Trans Future 5 
Southern Ocean, north Pacific, 
tropical Pacific, coastal 257,424 Nakaoka, S.-I.; Takao, S. 22 Ship 

Tukuma Arctica North Atlantic, coastal 70,033 Becker, M.; Olsen, A. 23 Ship 
Wakataka Maru North Pacific, coastal 13,392 Tadokoro, K. 2 Ship 
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Table A6. Aircraft measurement programs archived by Cooperative Global Atmospheric Data Integration 
Project (CGADIP; Schuldt et al. 2022a and 2022b) that contribute to the evaluation of the atmospheric 
inversions (Figure B4). 
Site 
code 

Measurement program name in 
Obspack Specific doi Data providers 

AAO 
Airborne Aerosol Observatory, 
Bondville, Illinois  Sweeney, C.; Dlugokencky, E.J. 

ABOVE 

Carbon in Arctic Reservoirs 
Vulnerability Experiment (CARVE) 

https://doi.org/10.3334/O
RNLDAAC/1404 

Sweeney, C., J.B. Miller, A. Karion, 
S.J. Dinardo, 
and C.E. Miller. 2016. CARVE: L2 
Atmospheric Gas Concentrations, 
Airborne Flasks, Alaska, 2012-2 
015. ORNL DAAC, Oak Ridge, 
Tennessee, USA. 

ACG Alaska Coast Guard  
Sweeney, C.; McKain, K.; Karion, A.; 
Dlugokencky, E.J. 

ACT 
Atmospheric Carbon and Transport 
- America  

Sweeney, C.; Dlugokencky, E.J.; 
Baier, B; Montzka, S.; Davis, K. 

AIRCO
RENOA
A 

NOAA AirCore  
Colm Sweeney (NOAA) AND Bianca 
Baier (NOAA) 

ALF Alta Floresta  Gatti, L.V.; Gloor, E.; Miller, J.B.; 

AOA 
Aircraft Observation of 
Atmospheric trace gases by JMA  ghg_obs@met.kishou.go.jp 

BGI Bradgate, Iowa  Sweeney, C.; Dlugokencky, E.J. 

BNE Beaver Crossing, Nebraska  Sweeney, C.; Dlugokencky, E.J. 

BRZ Berezorechka, Russia  Sasakama, N.; Machida, T. 

CAR Briggsdale, Colorado  Sweeney, C.; Dlugokencky, E.J. 

CMA Cape May, New Jersey  Sweeney, C.; Dlugokencky, E.J. 

CON 

CONTRAIL (Comprehensive 
Observation Network for TRace 
gases by AIrLiner) 

http://dx.doi.org/10.1759
5/20180208.001 

Machida, T.; Matsueda, H.; Sawa, Y. 
Niwa, Y. 

CRV 
Carbon in Arctic Reservoirs 
Vulnerability Experiment (CARVE)  

Sweeney, C.; Karion, A.; Miller, J.B.; 
Miller, C.E.; Dlugokencky, E.J. 

DND Dahlen, North Dakota  Sweeney, C.; Dlugokencky, E.J. 

ECO East Coast Outflow  Sweeney, C.; McKain, K. 

ESP Estevan Point, British Columbia  Sweeney, C.; Dlugokencky, E.J. 

ETL East Trout Lake, Saskatchewan  Sweeney, C.; Dlugokencky, E.J. 

FWI Fairchild, Wisconsin  Sweeney, C.; Dlugokencky, E.J. 

GSFC 
NASA Goddard Space Flight 
Center Aircraft Campaign  Kawa, S.R.; Abshire, J.B.; Riris, H. 

HAA Molokai Island, Hawaii  Sweeney, C.; Dlugokencky, E.J. 

HFM 
Harvard University Aircraft 
Campaign  Wofsy, S.C. 

HIL Homer, Illinois  Sweeney, C.; Dlugokencky, E.J. 

HIP 
HIPPO (HIAPER Pole-to-Pole 
Observations) 

https://doi.org/10.3334/C
DIAC/HIPPO_010 

Wofsy, S.C.; Stephens, B.B.; Elkins, 
J.W.; Hintsa, E.J.; Moore, F. 

IAGOS-
CARIBI

In-service Aircraft for a Global 
Observing System  

Obersteiner, F.; Boenisch., H; 
Gehrlein, T.; Zahn, A.; Schuck, T. 
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C 

INX 
INFLUX (Indianapolis Flux 
Experiment)  

Sweeney, C.; Dlugokencky, E.J.; 
Shepson, P.B.; Turnbull, J. 

LEF Park Falls, Wisconsin  Sweeney, C.; Dlugokencky, E.J. 

NHA 
Offshore Portsmouth, New 
Hampshire (Isles of Shoals)  Sweeney, C.; Dlugokencky, E.J. 

OIL Oglesby, Illinois  Sweeney, C.; Dlugokencky, E.J. 

ORC 
ORCAS (O2/N2 Ratio and CO2 
Airborne Southern Ocean Study) 

https://doi.org/10.5065/D6S
B445X 

Stephens, B.B, Sweeney, C., McKain, K., 
Kort, E. 

PFA Poker Flat, Alaska  Sweeney, C.; Dlugokencky, E.J. 

RBA-B Rio Branco  Gatti, L.V.; Gloor, E.; Miller, J.B. 

RTA Rarotonga  Sweeney, C.; Dlugokencky, E.J. 

SCA Charleston, South Carolina  Sweeney, C.; Dlugokencky, E.J. 

SGP Southern Great Plains, Oklahoma  
Sweeney, C.; Dlugokencky, E.J.; 
Biraud, S. 

TAB Tabatinga  Gatti, L.V.; Gloor, E.; Miller, J.B. 

TGC Offshore Corpus Christi, Texas  Sweeney, C.; Dlugokencky, E.J. 

THD Trinidad Head, California  Sweeney, C.; Dlugokencky, E.J. 

WBI West Branch, Iowa  Sweeney, C.; Dlugokencky, E.J. 
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Table A7. Main methodological changes in the global carbon budget since first publication. Methodological changes introduced in one year are 
kept for the following years unless noted. Empty cells mean there were no methodological changes introduced that year. 

Publication 
year 

Fossil fuel emissions LUC emissions Reservoirs 
Uncertainty & 
other changes Global 

Country 
(territorial) 

Country 
(consumption)  Atmosphere Ocean Land 

2006 (a)  Split in 
regions 

      

2007 (b)    ELUC based 
on FAO-FRA 
2005; 
constant 
ELUC for 
2006 

1959-1979 
data from 
Mauna Loa; 
data after 
1980 from 
global 
average 

Based on one 
ocean model 
tuned to 
reproduced 
observed 
1990s sink 

 ±1σ provided 
for all 
components 

2008 (c)    Constant 
ELUC for 
2007 

    

2009 (d)  Split between 
Annex B and 
non-Annex B 

Results from 
an 
independent 
study 
discussed 

Fire-based 
emission 
anomalies 
used for 
2006-2008 

 Based on 
four ocean 
models 
normalised to 
observations 
with constant 
delta 

First use of 
five DGVMs 
to compare 
with budget 
residual 

 

2010 (e) Projection for 
current year 
based on 
GDP 

Emissions for 
top emitters 

 ELUC 
updated with 
FAO-FRA 
2010 

    

2011 (f)   Split between 
Annex B and 
non-Annex B 

     

2012 (g)  129 countries 
from 1959 

129 countries 
and regions 
from 1990-
2010 based 
on GTAP8.0 

ELUC for 
1997-2011 
includes 
interannual 
anomalies 
from fire-
based 
emissions 

All years from 
global 
average 

Based on 5 
ocean 
models 
normalised to 
observations 
with ratio 

Ten DGVMs 
available for 
SLAND; First 
use of four 
models to 
compare with 
ELUC 

 

2013 (h)  250 
countriesb 

134 countries 
and regions 
1990-2011 
based on 
GTAP8.1, 
with detailed 
estimates for 
years 1997, 
2001, 2004, 
and 2007 

ELUC for 
2012 
estimated 
from 2001-
2010 average 

 Based on six 
models 
compared 
with two data-
products to 
year 2011 

Coordinated 
DGVM 
experiments 
for SLAND 
and ELUC 

Confidence 
levels; 
cumulative 
emissions; 
budget from 
1750 
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2014 (i) Three years 
of BP data 

Three years 
of BP data 

Extended to 
2012 with 
updated GDP 
data 

ELUC for 
1997-2013 
includes 
interannual 
anomalies 
from fire-
based 
emissions 

 Based on 
seven models 

Based on ten 
models 

Inclusion of 
breakdown of 
the sinks in 
three latitude 
bands and 
comparison 
with three 
atmospheric 
inversions 

2015 (j) Projection for 
current year 
based Jan-
Aug data 

National 
emissions 
from 
UNFCCC 
extended to 
2014 also 
provided 

Detailed 
estimates 
introduced for 
2011 based 
on GTAP9 

  Based on 
eight models 

Based on ten 
models with 
assessment 
of minimum 
realism 

The decadal 
uncertainty 
for the DGVM 
ensemble 
mean now 
uses ±1σ of 
the decadal 
spread 
across 
models 

2016 (k) Two years of 
BP data 

Added three 
small 
countries; 
China’s 
emissions 
from 1990 
from BP data 
(this release 
only) 

 Preliminary 
ELUC using 
FRA-2015 
shown for 
comparison; 
use of five 
DGVMs 

 Based on 
seven models 

Based on 
fourteen 
models 

Discussion of 
projection for 
full budget for 
current year 

2017 (l) 

Projection 
includes India-
specific data 

  

Average of 
two 

bookkeeping 
models; use of 

12 DGVMs 

 

Based on eight 
models that 
match the 

observed sink 
for the 1990s; 

no longer 
normalised 

Based on 15 
models that 

meet 
observation-
based criteria 
(see Sect. 2.5) 

Land multi-
model average 

now used in 
main carbon 
budget, with 
the carbon 
imbalance 
presented 
separately; 

new table of 
key 

uncertainties 
a Raupach et al. (2007) 

b Canadell et al. (2007) 

c GCP (2008) 

d Le Quéré et al. (2009) 

e Friedlingstein et al. (2010) 

f Peters et al. (2012b) 

g Le Quéré et al. (2013), Peters et al. (2013) 

h Le Quéré et al. (2014) 

i Le Quéré et al. (2015a) 

j Le Quéré et al. (2015b) 

k Le Quéré et al. (2016) 

l Le Quéré et al. (2018a) 
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Table A8: Mapping of global carbon cycle models' land flux definitions to the definition of the LULUCF net 
flux used in national reporting to UNFCCC. Non-intact lands are used here as proxy for "managed lands" in 
the country reporting, national Greenhouse Gas Inventories (NGHGI) are gap-filled (see Sec. C.2.3 for 
details). Where available, we provide independent estimates of certain fluxes for comparison. Units are 
GtC yr-1. 
   2002-2011 2012-2021 
ELUC from 
bookkeeping 
estimates 
(from Tab. 5)   1.36 1.24 

SLAND 

Total (from Tab. 5) from DGVMs -2.85 -3.10 
in non-forest lands from DGVMs -0.74 -0.83 
in non-intact forest from DGVMs -1.67 -1.81 
in intact forests from DGVMs -0.44 -0.47 

in intact land 
from ORCHIDEE-
MICT -1.34 -1.38 

ELUC plus 
SLAND on non-
intact lands 

considering non-intact 
forests only 

from bookkeeping 
ELUC and DGVMs -0.31 -0.56 

considering all non-
intact land 

from ORCHIDEE-
MICT 0.90 0.60 

National 
Greenhouse 
Gas Inventories 
(LULUCF)   -0.37 -0.54 
FAOSTAT 
(LULUCF)   0.39 0.24 
 3292 
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 3294 
Table A9. Funding supporting the production of the various components of the global carbon budget in 
addition to the authors’ supporting institutions (see also acknowledgements). 
Funder and grant number (where relevant) Author Initials 
Australia, Integrated Marine Observing System (IMOS) BT 
Australian National Environment Science Program (NESP) JGC 
Belgium, FWO (Flanders Research Foundation, contract GN 
I001821N) TGk 
BNP Paribas Foundation through Climate & Biodiversity initiative, 
philanthropic grant for developments of the Global Carbon Atlas PC 
Canada, Tula Foundation WE, KP 
China, National Natural Science Foundation (grant no. 41975155) XY 
China, National Natural Science Foundation (grant no. 42141020) WY 
China, National Natural Science Foundation of China (grant no. 
41921005) BZ 
China, Scientific Research Start-up Funds (grant no. QD2021024C) 
from Tsinghua Shenzhen International Graduate School BZ 
China, Second Tibetan Plateau Scientific Expedition and Research 
Program (SQ2022QZKK0101) XT 
China, Young Elite Scientists Sponsorship Program by CAST (grant no. 
YESS20200135) BZ 
EC Copernicus Atmosphere Monitoring Service implemented by 
ECMWF FC 
EC Copernicus Marine Environment Monitoring Service implemented 
by Mercator Ocean MG 

EC H2020 (4C; grant no 821003) 
PF, MOS, RMA, SS, GPP, PC, JIK, TI, LB, 
AJ, PL, LGr, NG, NMa, SZ 

EC H2020 (CoCO2: grant no. 958927) RMA, GPP, JIK 
EC H2020 (COMFORT: grant no. 820989) LGr, MG, NG 
EC H2020 (CONSTRAIN: grant no 820829) RS, TGa 
EC H2020 (ESM2025 – Earth System Models for the Future; grant 
agreement No 101003536). RS, TGa, TI, LB, BD 
EC H2020 (JERICO-S3: grant no. 871153) HCB 
EC H2020 (VERIFY: grant no. 776810) MWJ, RMA, GPP, PC, JIK, MJM 
Efg International TT, MG 
European Space Agency Climate Change Initiative ESA-CCI RECCAP2 
project 655 (ESRIN/4000123002/18/I-NB) SS, PC 
European Space Agency OceanSODA project (grant no. 
4000137603/22/I-DT) LGr, NG 
France, French Oceanographic Fleet (FOF) NMe 
France, ICOS (Integrated Carbon Observation System) France NL 
France, Institut National des Sciences de l’Univers (INSU) NMe 
France, Institut polaire français Paul-Emile Victor(IPEV) NMe 
France, Institut de recherche français sur les ressources marines 
(IFREMER) NMe 
France, Institut de Recherche pour le Développement (IRD) NL 
France, Observatoire des sciences de l'univers Ecce-Terra (OSU at NMe 
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Sorbonne Université) 
Germany, Deutsche Forschungsgemeinschaft (DFG) under Germany's 
Excellence Strategy – EXC 2037 ‘Climate, Climatic Change, and 
Society’ – Project Number: 390683824 TI 
Germany, Federal Ministry for Education and Research (BMBF) HCB 
Germany, Federal Ministry for Education and Research (BMBF) under 
project “CDRSynTra” (01LS2101A) JP 
Germany, German Federal Ministry of Education and Research under 
project "DArgo2025" (03F0857C) TS 
Germany, Helmholtz Association ATMO programme AA 
Germany, Helmholtz Young Investigator Group Marine Carbon and 
Ecosystem Feedbacks in the Earth System (MarESys), grant number 
VH-NG-1301 JH, OG 

Germany, ICOS (Integrated Carbon Observation System) Germany HCB 
Hapag-Lloyd TT, MG 
Ireland, Marine Institute MC 
Japan, Environment Research and Technology Development Fund of 
the Ministry of the Environment (JPMEERF21S20810) YN 
Japan, Global Environmental Research Coordination System, Ministry 
of the Environment (grant number E1751) SN, ST, TO 
Japan, Environment Research and Technology Development Fund of 
the Ministry of the Environment (JPMEERF21S20800) HT 

Japan, Japan Meteorological Agency KK 
Kuehne + Nagel International AG TT, MG 
Mediterranean Shipping Company (MSc) TT, MG 
Monaco, Fondation Prince Albert II de Monaco TT, MG 
Monaco, Yacht Club de Monaco TT, MG 
Netherlands, ICOS (Integrated Carbon Observation System) WP 
Norway, Research Council of Norway (N-ICOS-2, grant no. 296012) AO, MB, IS 
Norway, Norwegian Research Council (grant no. 270061) JS 
Sweden, ICOS (Integrated Carbon Observation System) AW 
Sweden, Swedish Meteorological and Hydrological Institute AW 
Sweden, The Swedish Research Council AW 
Swiss National Science Foundation (grant no. 200020-200511) QS 
Tibet, Second Tibetan Plateau Scientific Expedition and Research 
Program (SQ2022QZKK0101) TX 
UK Royal Society (grant no. RP\R1\191063) CLQ 
UK, Natural Environment Research Council (SONATA: grant no. 
NE/P021417/1) RW 
UK, Natural Environmental Research Council (NE/R016518/1) PIP 
UK, Natural Environment Research Council (NE/V01417X/1) MWJ 
UK, Royal Society: The European Space Agency OCEANFLUX projects JDS 
UK Royal Society (grant no. RP\R1\191063) CLQ 

USA, BIA Tribal Resilience CW 
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USA, Cooperative Institute for Modeling the Earth System between 
the National Oceanic and Atmospheric Administration Geophysical 
Fluid Dynamics Laboratory and Princeton University and the High 
Meadows Environmental Institute LR 
USA, Cooperative Institute for Climate, Ocean, & Ecosystem Studies 
(CIOCES) under NOAA Cooperative Agreement NA20OAR4320271 KO 
USA, Department of Energy, Biological and Evironmental Research APW 
USA, Department of Energy, SciDac (DESC0012972) GCH, LPC 
USA, Energy Exascale Earth System Model (E3SM) project, 
Department of Energy, Office of Science, Office of Biological and 
Environmental Research GCH, LPC 
USA, EPA Indian General Assistance Program CW 
USA, NASA Carbon Monitoring System probram and OCO Science 
team program (80NM0018F0583) . JL 
USA, NASA Interdisciplinary Research in Earth Science (IDS) 
(80NSSC17K0348) GCH, LPC, BP 
USA, National Center for Atmospheric Research (NSF Cooperative 
Agreement No. 1852977) DK 
USA, National Oceanic and Atmospheric Administration, Ocean 
Acidification Program DP, RW, SRA, RAF, AJS, NMM 
USA, National Oceanic and Atmospheric Administration, Global 
Ocean Monitoring and Observing Program 

DRM, CSw, NRB, CRodr, DP, RW, SRA, 
RAF, AJS 

USA, National Science Foundation (grant number 1903722) HT 
USA, State of Alaska NMM 

Computing resources 
ADA HPC cluster at the University of East Anglia MWJ 
CAMS inversion was granted access to the HPC resources of TGCC 
under the allocation A0110102201 FC 
Cheyenne supercomputer (doi:10.5065/D6RX99HX), were provided 
by the Computational and Information Systems Laboratory (CISL) at 
NCAR DK 
HPC cluster Aether at the University of Bremen, financed by DFG 
within the scope of the Excellence Initiative ITL 
MRI (FUJITSU Server PRIMERGY CX2550M5) YN 

NIES (SX-Aurora) YN 

NIES supercomputer system EK 
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Appendix B. Supplementary Figures 3296 

 3297 

Figure B1. Ensemble mean air-sea CO2 flux from a) global ocean biogeochemistry models and b) fCO2 based data products, 3298 
averaged over 2012-2021 period (kgC m-2 yr-1). Positive numbers indicate a flux into the ocean. c) gridded SOCAT v2022 3299 
fCO2 measurements, averaged over the 2012-2021 period (µatm). In (a) model simulation A is shown. The data-products 3300 
represent the contemporary flux, i.e. including outgassing of riverine carbon, which is estimated to amount to 0.65 GtC yr-1 3301 
globally.  3302 
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 3303 

Figure B2. Evaluation of the GOBMs and data products using the root mean squared error (RMSE) for the period 1990 to 3304 
2021, between the individual surface ocean fCO2 mapping schemes and the SOCAT v2022 database. The y-axis shows the 3305 
amplitude of the interannual variability of the air-sea CO2 flux (A-IAV, taken as the standard deviation of the detrended 3306 
annual time series. Results are presented for the globe, north (>30°N), tropics (30°S-30°N), and south (<30°S) for the GOBMs 3307 
(see legend, circles) and for the fCO2-based data products (star symbols). The fCO2-based data products use the SOCAT 3308 
database and therefore are not independent from the data (see section 2.4.1).  3309 

 3310 

  3311 
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 3312 

Figure B3. Evaluation of the DGVMs using the International Land Model Benchmarking system (ILAMB; Collier et al., 3313 
2018) (left) absolute skill scores and (right) skill scores relative to other models. The benchmarking is done with observations 3314 
for vegetation biomass (Saatchi et al., 2011; and GlobalCarbon unpublished data; Avitabile et al., 2016), GPP (Jung et al., 3315 
2010; Lasslop et al., 2010), leaf area index (De Kauwe et al., 2011; Myneni et al., 1997), ecosystem respiration (Jung et al., 3316 
2010; Lasslop et al., 2010), soil carbon (Hugelius et al., 2013;Todd-Brown et al., 2013), evapotranspiration (De Kauwe et al., 3317 
2011), and runoff (Dai and Trenberth, 2002). For each model-observation comparison a series of error metrics are 3318 
calculated, scores are then calculated as an exponential function of each error metric, finally for each variable the multiple 3319 
scores from different metrics and observational data sets are combined to give the overall variable scores shown in the left 3320 
panel. Overall variable scores increase from 0 to 1 with improvements in model performance. The set of error metrics vary 3321 
with data set and can include metrics based on the period mean, bias, root mean squared error, spatial distribution, 3322 
interannual variability and seasonal cycle. The relative skill score shown in the right panel is a Z-score, which indicates in 3323 
units of standard deviation the model scores relative to the multi-model mean score for a given variable. Grey boxes 3324 
represent missing model data. 3325 
  3326 
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 3327 

Figure B4. Evaluation of the atmospheric inversion products. The mean of the model minus observations is shown for four 3328 
latitude bands in four periods: (first panel) 2001-2021, (second panel) 2001-2010, (third panel) 2011-2021, (fourth panel) 3329 
2015-2021. The 9 systems are compared to independent CO2 measurements made onboard aircraft over many places of the 3330 
world between 2 and 7 km above sea level. Aircraft measurements archived in the Cooperative Global Atmospheric Data 3331 
Integration Project (Schuldt et al. 2021, Schuldt et al. 2022) from sites, campaigns or programs that have not been 3332 
assimilated and cover at least 9 months (except for SH programs) between 2001 and 2021, have been used to compute the 3333 
biases of the differences in four 45° latitude bins. Land and ocean data are used without distinction, and observation density 3334 
varies strongly with latitude and time as seen on the lower panels.  3335 
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 3336 

Figure B5. Comparison of the estimates of each component of the global carbon budget in this study (black line) with the 3337 
estimates released annually by the GCP since 2006. Grey shading shows the uncertainty bounds representing ±1 standard 3338 
deviation of the current global carbon budget, based on the uncertainty assessments described in Appendix C. CO2 emissions 3339 
from (a) fossil CO2 emissions (EFOS), and (b) land-use change (ELUC), as well as their partitioning among (c) the atmosphere 3340 
(GATM), (d) the land (SLAND), and (e) the ocean (SOCEAN). See legend for the corresponding years, and Tables 3 and A7 for 3341 
references. The budget year corresponds to the year when the budget was first released. All values are in GtC yr-1.   3342 
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 3343 

Figure B6. Differences in the HYDE/LUH2 land-use forcing used for the global carbon budgets GCB2020 (Friedlingstein et 3344 
al., 2021), GCB2021 (Friedlingstein et al., 2022a), and GCB2022 (Friedlingstein et al., 2022b). Shown are year-to-year 3345 
changes in cropland area (middle panel) and pasture area (bottom panel). To illustrate the relevance of the update in the 3346 
land-use forcing to the recent trends in ELUC, the top panel shows the land-use emission estimate from the bookkeeping model 3347 
BLUE (original model output, i.e. excluding peat fire and drainage emissions).  3348 
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Appendix C. Extended Methodology 3349 

C.1 Methodology Fossil Fuel CO2 emissions (EFOS) 3350 

C.1.1 Cement carbonation 3351 

From the moment it is created, cement begins to absorb CO2 from the atmosphere, a process known as ‘cement 3352 
carbonation’. We estimate this CO2 sink, from 1931 onwards, as the average of two studies in the literature (Cao et al., 3353 
2020; Guo et al., 2021). The Global Cement and Concrete Association reports a much lower carbonation rate, but this is 3354 
based on the highly conservative assumption of 0% mortar (GCCA, 2021). Modelling cement carbonation requires 3355 
estimation of a large number of parameters, including the different types of cement material in different countries, the 3356 
lifetime of the structures before demolition, of cement waste after demolition, and the volumetric properties of 3357 
structures, among others (Xi et al., 2016). Lifetime is an important parameter because demolition results in the exposure 3358 
of new surfaces to the carbonation process. The main reasons for differences between the two studies appear to be the 3359 
assumed lifetimes of cement structures and the geographic resolution, but the uncertainty bounds of the two studies 3360 
overlap. 3361 

C.1.2 Emissions embodied in goods and services 3362 

CDIAC, UNFCCC, and BP national emission statistics ‘include greenhouse gas emissions and removals taking place 3363 
within national territory and offshore areas over which the country has jurisdiction’ (Rypdal et al., 2006), and are called 3364 
territorial emission inventories. Consumption-based emission inventories allocate emissions to products that are 3365 
consumed within a country, and are conceptually calculated as the territorial emissions minus the ‘embodied’ territorial 3366 
emissions to produce exported products plus the emissions in other countries to produce imported products 3367 
(Consumption = Territorial – Exports + Imports). Consumption-based emission attribution results (e.g. Davis and 3368 
Caldeira, 2010) provide additional information to territorial-based emissions that can be used to understand emission 3369 
drivers (Hertwich and Peters, 2009) and quantify emission transfers by the trade of products between countries (Peters 3370 
et al., 2011b). The consumption-based emissions have the same global total, but reflect the trade-driven movement of 3371 
emissions across the Earth's surface in response to human activities. We estimate consumption-based emissions from 3372 
1990-2020 by enumerating the global supply chain using a global model of the economic relationships between 3373 
economic sectors within and between every country (Andrew and Peters, 2013; Peters et al., 2011a). Our analysis is 3374 
based on the economic and trade data from the Global Trade and Analysis Project (GTAP; Narayanan et al., 2015), and 3375 
we make detailed estimates for the years 1997 (GTAP version 5), 2001 (GTAP6), and 2004, 2007, 2011, and 2014 3376 
(GTAP10.0a), covering 57 sectors and 141 countries and regions. The detailed results are then extended into an annual 3377 
time series from 1990 to the latest year of the Gross Domestic Product (GDP) data (2020 in this budget), using GDP 3378 
data by expenditure in current exchange rate of US dollars (USD; from the UN National Accounts main Aggregrates 3379 
database; UN, 2021) and time series of trade data from GTAP (based on the methodology in Peters et al., 2011a). We 3380 
estimate the sector-level CO2 emissions using the GTAP data and methodology, add the flaring and cement emissions 3381 
from our fossil CO2 dataset, and then scale the national totals (excluding bunker fuels) to match the emission estimates 3382 
from the carbon budget. We do not provide a separate uncertainty estimate for the consumption-based emissions, but 3383 
based on model comparisons and sensitivity analysis, they are unlikely to be significantly different than for the 3384 
territorial emission estimates (Peters et al., 2012a). 3385 



142 
 

C.1.3 Uncertainty assessment for EFOS 3386 

We estimate the uncertainty of the global fossil CO2 emissions at ±5% (scaled down from the published ±10 % at ±2σ 3387 
to the use of ±1σ bounds reported here; Andres et al., 2012). This is consistent with a more detailed analysis of 3388 
uncertainty of ±8.4% at ±2σ (Andres et al., 2014) and at the high-end of the range of ±5-10% at ±2σ reported by 3389 
(Ballantyne et al., 2015). This includes an assessment of uncertainties in the amounts of fuel consumed, the carbon and 3390 
heat contents of fuels, and the combustion efficiency. While we consider a fixed uncertainty of ±5% for all years, the 3391 
uncertainty as a percentage of emissions is growing with time because of the larger share of global emissions from 3392 
emerging economies and developing countries (Marland et al., 2009). Generally, emissions from mature economies 3393 
with good statistical processes have an uncertainty of only a few per cent (Marland, 2008), while emissions from 3394 
strongly developing economies such as China have uncertainties of around ±10% (for ±1σ; Gregg et al., 2008; Andres 3395 
et al., 2014). Uncertainties of emissions are likely to be mainly systematic errors related to underlying biases of energy 3396 
statistics and to the accounting method used by each country.  3397 

C.1.4 Growth rate in emissions 3398 

We report the annual growth rate in emissions for adjacent years (in percent per year) by calculating the difference 3399 
between the two years and then normalising to the emissions in the first year: (EFOS(t0+1)-3400 
EFOS(t0))/EFOS(t0)×100%. We apply a leap-year adjustment where relevant to ensure valid interpretations of annual 3401 
growth rates. This affects the growth rate by about 0.3% yr-1 (1/366) and causes calculated growth rates to go up 3402 
approximately 0.3% if the first year is a leap year and down 0.3% if the second year is a leap year. 3403 

The relative growth rate of EFOS over time periods of greater than one year can be rewritten using its logarithm 3404 
equivalent as follows: 3405 
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         (2) 3406 

Here we calculate relative growth rates in emissions for multi-year periods (e.g. a decade) by fitting a linear trend to 3407 
ln(EFOS) in Eq. (2), reported in percent per year. 3408 

C.1.5 Emissions projection for 2022 3409 

To gain insight on emission trends for 2022, we provide an assessment of global fossil CO2 emissions, EFOS, by 3410 
combining individual assessments of emissions for China, USA, the EU, and India (the four countries/regions with the 3411 
largest emissions), and the rest of the world.  3412 

The methods are specific to each country or region, as described in detail below. 3413 

China: We use a regression between monthly data for each fossil fuel and cement, and annual data for consumption of 3414 
fossil fuels / production of cement to project full-year growth in fossil fuel consumption and cement production. The 3415 
monthly data for each product consists of the following: 3416 

● Coal: Proprietary estimate for monthly consumption of main coal types, from SX Coal 3417 
● Oil: Production data from the National Bureau of Statistics (NBS), plus net imports from the China Customs 3418 

Administration (i.e., gross supply of oil, not including inventory changes) 3419 
● Natural gas: Same as for oil 3420 
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● Cement: Production data from NBS 3421 

For oil, we use data for production and net imports of refined oil products rather than crude oil. This choice is made 3422 
because refined products are one step closer to actual consumption, and because crude oil can be subject to large 3423 
market-driven and strategic inventory changes that are not captured by available monthly data. 3424 

For each fuel and cement, we make a Bayesian linear regression between year-on-year cumulative growth in supply 3425 
(production for cement) and full-year growth in consumption (production for cement) from annual consumption data. In 3426 
the regression model, the growth rate in annual consumption (production for cement) is modelled as a regression 3427 
parameter multiplied by the cumulative year-on-year growth rate from the monthly data through July of each year for 3428 
past years (through 2021). We use broad Gaussian distributions centered around 1 as priors for the ratios between 3429 
annual and through-July growth rates. We then use the posteriors for the growth rates together with cumulative monthly 3430 
supply/production data through July of 2022 to produce a posterior predictive distribution for the full-year growth rate 3431 
for fossil fuel consumption / cement production in 2022. 3432 

If the growth in supply/production through July were an unbiased estimate of the full-year growth in 3433 
consumption/production, the posterior distribution for the ratio between the monthly and annual growth rates would be 3434 
centered around 1. However, in practice the ratios are different from 1 (in most cases below 1). This is a result of 3435 
various biasing factors such as uneven evolution in the first and second half of each year, inventory changes that are 3436 
somewhat anti-correlated with production and net imports, differences in statistical coverage, and other factors that are 3437 
not captured in the monthly data. 3438 

For fossil fuels, the mean of the posterior distribution is used as the central estimate for the growth rate in 2022, while 3439 
the edges of a 68% credible interval (analogous to a 1-sigma confidence interval) are used for the upper and lower 3440 
bounds. 3441 

For cement, the evolution from January to July has been highly atypical owing to the ongoing turmoil in the 3442 
construction sector, and the results of the regression analysis are heavily biased by equally atypical but different 3443 
dynamics in 2021. For this reason, we use an average of the results of the regression analysis and the plain growth in 3444 
cement production through July 2022, since this results in a growth rate that seems more plausible and in line with 3445 
where the cumulative cement production appears to be headed at the time of writing. 3446 

USA: We use emissions estimated by the U.S. Energy Information Administration (EIA) in their Short-Term Energy 3447 
Outlook (STEO) for emissions from fossil fuels to get both YTD and a full year projection (EIA, 2022). The STEO also 3448 
includes a near-term forecast based on an energy forecasting model which is updated monthly (last update with 3449 
preliminary data through August 2022), and takes into account expected temperatures, household expenditures by fuel 3450 
type, energy markets, policies, and other effects. We combine this with our estimate of emissions from cement 3451 
production using the monthly U.S. cement clinker production data from USGS for January-June 2022, assuming 3452 
changes in cement production over the first part of the year apply throughout the year. 3453 

India:  We use monthly emissions estimates for India updated from Andrew (2020b) through July 2022. These 3454 
estimates are derived from many official monthly energy and other activity data sources to produce direct estimates of 3455 
national CO2 emissions, without the use of proxies. Emissions from coal are then extended to August using a regression 3456 
relationship based on power generated from coal, coal dispatches by Coal India Ltd., the composite PMI, time, and days 3457 
per month. For the last 3-5 months of the year, each series is extrapolated assuming typical trends. 3458 
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EU: We use a refinement to the methods presented by Andrew (2021), deriving emissions from monthly energy data 3459 
reported by Eurostat. Some data gaps are filled using data from the Joint Organisations Data Initiative (JODI, 2022). 3460 
Sub-annual cement production data are limited, but data for Germany and Poland, the two largest producers, suggest a 3461 
small decline. For fossil fuels this provides estimates through July. We extend coal emissions through August using a 3462 
regression model built from generation of power from hard coal, power from brown coal, total power generation, and 3463 
the number of working days in Germany and Poland, the two biggest coal consumers in the EU. These are then 3464 
extended through the end of the year assuming typical trends. We extend oil emissions by building a regression model 3465 
between our monthly CO2 estimates and oil consumption reported by the EIA for Europe in its Short-Term Energy 3466 
Outlook (September edition), and then using this model with EIA’s monthly forecasts. For natural gas, the strong 3467 
seasonal signal allows the use of the bias-adjusted Holt-Winters exponential smoothing method (Chatfield, 1978). 3468 

Rest of the world: We use the close relationship between the growth in GDP and the growth in emissions (Raupach et 3469 
al., 2007) to project emissions for the current year. This is based on a simplified Kaya Identity, whereby EFOS (GtC yr-1) 3470 
is decomposed by the product of GDP (USD yr-1) and the fossil fuel carbon intensity of the economy (IFOS; GtC USD-1) 3471 
as follows: 3472 

𝐸#$% = 𝐺𝐷𝑃	 × 𝐼#$%         (3) 3473 

Taking a time derivative of Equation (3) and rearranging gives: 3474 
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where the left-hand term is the relative growth rate of EFOS, and the right-hand terms are the relative growth rates of 3476 
GDP and IFOS, respectively, which can simply be added linearly to give the overall growth rate.  3477 

The IFOS is based on GDP in constant PPP (Purchasing Power Parity) from the International Energy Agency (IEA) up to 3478 
2017 (IEA/OECD, 2019) and extended using the International Monetary Fund (IMF) growth rates through 2021 (IMF, 3479 
2022). Interannual variability in IFOS is the largest source of uncertainty in the GDP-based emissions projections. We 3480 
thus use the standard deviation of the annual IFOS for the period 2012-2021 as a measure of uncertainty, reflecting a 3481 
±1σ as in the rest of the carbon budget. For rest-of-world oil emissions growth, we use the global oil demand forecast 3482 
published by the EIA less our projections for the other four regions, and estimate uncertainty as the maximum absolute 3483 
difference over the period available for such forecasts using the specific monthly edition (e.g. August) compared to the 3484 
first estimate based on more solid data in the following year (April). 3485 

World: The global total is the sum of each of the countries and regions. 3486 

 3487 

C.2 Methodology CO2 emissions from land-use, land-use change and forestry (ELUC) 3488 

The net CO2 flux from land-use, land-use change and forestry (ELUC, called land-use change emissions in the rest of the 3489 
text) includes CO2 fluxes from deforestation, afforestation, logging and forest degradation (including harvest activity), 3490 
shifting cultivation (cycle of cutting forest for agriculture, then abandoning), and regrowth of forests following wood 3491 
harvest or abandonment of agriculture. Emissions from peat burning and drainage are added from external datasets (see 3492 
Appendix C.2.1 below). Only some land-management activities are included in our land-use change emissions 3493 
estimates (Table A1). Some of these activities lead to emissions of CO2 to the atmosphere, while others lead to CO2 3494 



145 
 

sinks. ELUC is the net sum of emissions and removals due to all anthropogenic activities considered. Our annual estimate 3495 
for 1960-2021 is provided as the average of results from three bookkeeping approaches (Appendix C.2.1 below): an 3496 
estimate using the Bookkeeping of Land Use Emissions model (Hansis et al., 2015; hereafter BLUE) and one using the 3497 
compact Earth system model OSCAR (Gasser et al., 2020), both BLUE and OSCAR being updated here to new land-3498 
use forcing covering the time period until 2021, and an updated version of the estimate published by Houghton and 3499 
Nassikas (2017) (hereafter updated H&N2017). All three data sets are then extrapolated to provide a projection for 3500 
2022 (Appendix C.2.5 below). In addition, we use results from Dynamic Global Vegetation Models (DGVMs; see 3501 
Appendix 2.5 and Table 4) to help quantify the uncertainty in ELUC (Appendix C.2.4), and thus better characterise our 3502 
understanding. Note that in this budget, we use the scientific ELUC  definition, which counts fluxes due to environmental 3503 
changes on managed land towards SLAND, as opposed to the national greenhouse gas inventories under the UNFCCC, 3504 
which include them in ELUC and thus often report smaller land-use emissions (Grassi et al., 2018; Petrescu et al., 2020). 3505 
However, we provide a methodology of mapping of the two approaches to each other further below (Appendix C.2.3). 3506 

C.2.1 Bookkeeping models 3507 

Land-use change CO2 emissions and uptake fluxes are calculated by three bookkeeping models. These are based on the 3508 
original bookkeeping approach of Houghton (2003) that keeps track of the carbon stored in vegetation and soils before 3509 
and after a land-use change (transitions between various natural vegetation types, croplands, and pastures). Literature-3510 
based response curves describe decay of vegetation and soil carbon, including transfer to product pools of different 3511 
lifetimes, as well as carbon uptake due to regrowth. In addition, the bookkeeping models represent long-term 3512 
degradation of primary forest as lowered standing vegetation and soil carbon stocks in secondary forests, and include 3513 
forest management practices such as wood harvests.  3514 

BLUE and the updated H&N2017 exclude land ecosystems’ transient response to changes in climate, atmospheric CO2 3515 
and other environmental factors, and base the carbon densities on contemporary data from literature and inventory data. 3516 
Since carbon densities thus remain fixed over time, the additional sink capacity that ecosystems provide in response to 3517 
CO2-fertilisation and some other environmental changes is not captured by these models (Pongratz et al., 2014). On the 3518 
contrary, OSCAR includes this transient response, and it follows a theoretical framework (Gasser and Ciais, 2013) that 3519 
allows separating bookkeeping land-use emissions and the loss of additional sink capacity. Only the former is included 3520 
here, while the latter is discussed in Appendix D4. The bookkeeping models differ in (1) computational units (spatially 3521 
explicit treatment of land-use change for BLUE, country-level for the updated H&N2017 and OSCAR), (2) processes 3522 
represented (see Table A1), and (3) carbon densities assigned to vegetation and soil of each vegetation type (literature-3523 
based for BLUE and the updated H&N2017, calibrated to DGVMs for OSCAR). A notable difference between models 3524 
exists with respect to the treatment of shifting cultivation. The update of H&N2017, introduced for the GCB2021 3525 
(Friedlingstein et al., 2022) changed the approach over the earlier H&N2017 version: H&N2017 had assumed the 3526 
"excess loss" of tropical forests (i.e., when the Global Forest Resources Assessment (FRA; FAO 2020)  indicated a 3527 
forest loss larger than the increase in agricultural areas from FAO (FAOSTAT 2021) resulted from converting forests to 3528 
croplands at the same time older croplands were abandoned. Those abandoned croplands began to recover to forests 3529 
after 15 years. The updated H&N2017 now assumes that forest loss in excess of increases in cropland and pastures 3530 
represented an increase in shifting cultivation. When the excess loss of forests was negative, it was assumed that 3531 
shifting cultivation was returned to forest. Historical areas in shifting cultivation were extrapolated taking into account 3532 
country-based estimates of areas in fallow in 1980 (FAO/UNEP, 1981) and expert opinion (from Heinimann et al., 3533 
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2017). In contrast, the BLUE and OSCAR models include sub-grid-scale transitions between all vegetation types. 3534 
Furthermore, the updated H&N2017 assumes conversion of natural grasslands to pasture, while BLUE and OSCAR 3535 
allocate pasture transitions proportionally on all natural vegetation that exists in a grid-cell. This is one reason for 3536 
generally higher emissions in BLUE and OSCAR. Bookkeeping models do not directly capture carbon emissions from 3537 
peat fires, which can create large emissions and interannual variability due to synergies of land-use and climate 3538 
variability in Southeast Asia, particularly during El-Niño events, nor emissions from the organic layers of drained peat 3539 
soils. To correct for this, we add peat fire emissions based on the Global Fire Emission Database (GFED4s; van der 3540 
Werf et al., 2017) to the bookkeeping models’ output. Emissions are calculated by multiplying the mass of dry matter 3541 
emitted by peat fires with the C emission factor for peat fires indicated in the GFED4s database. Emissions from 3542 
deforestation fires used to derive ELUC projections for 2022 are calculated analogously. As these satellite-derived 3543 
estimates of peat fire emissions start in 1997 only, we follow the approach by Houghton and Nassikas (2017) for earlier 3544 
years, which ramps up from zero emissions in 1980 to 0.04 Pg C yr-1 in 1996, reflecting the onset of major clearing of 3545 
peatlands in equatorial Southeast Asia in the 1980s. Similarly, we add estimates of  peat drainage emissions. In recent 3546 
years, more peat drainage estimates that provide spatially explicit data have become available, and we thus extended the 3547 
number of peat drainage datasets considered: We employ FAO peat drainage emissions 1990–2019 from croplands and 3548 
grasslands (Conchedda and Tubiello, 2020), peat drainage emissions 1700–2010 from simulations with the DGVM 3549 
ORCHIDEE-PEAT (Qiu et al., 2021), and peat drainage emissions 1701–2021 from simulations with the DGVM LPX-3550 
Bern (Lienert and Joos, 2018; Müller and Joos, 2021) applying the updated LUH2 forcing as also used by BLUE, 3551 
OSCAR and the DGVMs. We extrapolate the FAO data to 1850-2021 by keeping the post-2019 emissions constant at 3552 
2019 levels, by linearly increasing tropical drainage emissions between 1980 and 1990 starting from 0 GtC yr-1 in 3553 
1980, consistent with H&N2017’s assumption (Houghton and Nassikas, 2017), and by keeping pre-1990 emissions 3554 
from the often old drained areas of the extra-tropics constant at 1990 emission levels. ORCHIDEE-PEAT data are 3555 
extrapolated to 2011-2021 by replicating the average emissions in 2000-2010 (pers. comm. C. Qiu). Further, 3556 
ORCHIDEE-PEAT only provides peat drainage emissions north of 30°N, and thus we fill the regions south of 30°N by 3557 
the average peat drainage emissions from FAO and LPX-Bern. The average of the carbon emission estimates by the 3558 
three different peat drainage dataset is added to the bookkeeping models to obtain net ELUC and gross sources.   3559 

The three bookkeeping estimates used in this study differ with respect to the land-use change data used to drive the 3560 
models. The updated H&N2017 base their estimates directly on the Forest Resource Assessment of the FAO which 3561 
provides statistics on forest-area change and management at intervals of five years currently updated until 2020 (FAO, 3562 
2020). The data is based on country reporting to FAO and may include remote-sensing information in more recent 3563 
assessments. Changes in land-use other than forests are based on annual, national changes in cropland and pasture areas 3564 
reported by FAO (FAOSTAT, 2021). On the other hand, BLUE uses the harmonised land-use change data LUH2-3565 
GCB2022 covering the entire 850-2021 period (an update to the previously released LUH2 v2h dataset; Hurtt et al., 3566 
2017; Hurtt et al., 2020), which was also used as input to the DGVMs (Appendix C.2.2). It describes land-use change, 3567 
also based on the FAO data as described in Appendix C.2.2 as well as the HYDE3.3 dataset (Klein Goldewijk et al., 3568 
2017a, 2017b), but provided at a quarter-degree spatial resolution, considering sub-grid-scale transitions between 3569 
primary forest, secondary forest, primary non-forest, secondary non-forest, cropland, pasture, rangeland, and urban land 3570 
(Hurtt et al., 2020; Chini et al., 2021). LUH2-GCB2022 provides a distinction between rangelands and pasture, based 3571 
on inputs from HYDE. To constrain the models’ interpretation on whether rangeland implies the original natural 3572 
vegetation to be transformed to grassland or not (e.g., browsing on shrubland), a forest mask was provided with LUH2-3573 
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GCB2021; forest is assumed to be transformed to grasslands, while other natural vegetation remains (in case of 3574 
secondary vegetation) or is degraded from primary to secondary vegetation (Ma et al., 2020). This is implemented in 3575 
BLUE. OSCAR was run with both LUH2-GCB2022 and FAO/FRA (as used with the updated H&N2017), where the 3576 
drivers of the latter were linearly extrapolated to 2021 using their 2015–2020 trends. The best-guess OSCAR estimate 3577 
used in our study is a combination of results for LUH2-GCB2022 and FAO/FRA land-use data and a large number of 3578 
perturbed parameter simulations weighted against a constraint (the cumulative SLAND over 1960-2020 of last year’s 3579 
GCB) . As the record of the updated H&N2017 ends in 2020, we extend it to 2021 by adding the difference of the 3580 
emissions from tropical deforestation and degradation, peat drainage, and peat fire between 2020 and 2021 to the 3581 
model’s estimate for 2020 (i.e. considering the yearly anomalies of the emissions from tropical deforestation and 3582 
degradation, peat drainage, and peat fire). The same method is applied to all three bookkeeping estimates to provide a 3583 
projection for 2022. 3584 

For ELUC from 1850 onwards we average the estimates from BLUE, the updated H&N2017 and OSCAR. For the 3585 
cumulative numbers starting 1750 an average of four earlier publications is added (30 ± 20 PgC 1750-1850, rounded to 3586 
nearest 5; Le Quéré et al., 2016). 3587 

We provide estimates of the gross land use change fluxes from which the reported net land-use change flux, ELUC, is 3588 
derived as a sum. Gross fluxes are derived internally by the three bookkeeping models: Gross emissions stem from 3589 
decaying material left dead on site and from products after clearing of natural vegetation for agricultural purposes or 3590 
wood harvesting, emissions from peat drainage and peat burning, and, for BLUE, additionally from degradation from 3591 
primary to secondary land through usage of natural vegetation as rangeland. Gross removals stem from regrowth after 3592 
agricultural abandonment and wood harvesting. Gross fluxes for the updated H&N2017 for 2020 and for the 2022 3593 
projection of all three models were calculated by the change in emissions from tropical deforestation and degradation 3594 
and peat burning and drainage as described for the net ELUC above: As tropical deforestation and degradation and peat 3595 
burning and drainage all only lead to gross emissions to the atmosphere, only gross (and net) emissions are adjusted this 3596 
way, while gross sinks are assumed to remain constant over the previous year. .  3597 

This year, we provide an additional split of the net ELUC into component fluxes to better identify reasons for divergence 3598 
between bookkeeping estimates and to give more insight into the drivers of sources and sinks. This split distinguishes 3599 
between fluxes from deforestation (including due to shifting cultivation), fluxes from organic soils (i.e., peat drainage 3600 
and fires), re/afforestation and wood harvest (i.e., fluxes in forests from slash and product decay following wood 3601 
harvesting; regrowth associated with wood harvesting or after abandonment, including reforestation and in shifting 3602 
cultivation cycles; afforestation) and fluxes associated with all other transitions.  3603 

C.2.2 Dynamic Global Vegetation Models (DGVMs) 3604 

Land-use change CO2 emissions have also been estimated using an ensemble of 16 DGVMs simulations. The DGVMs 3605 
account for deforestation and regrowth, the most important components of ELUC, but they do not represent all processes 3606 
resulting directly from human activities on land (Table A1). All DGVMs represent processes of vegetation growth and 3607 
mortality, as well as decomposition of dead organic matter associated with natural cycles, and include the vegetation 3608 
and soil carbon response to increasing atmospheric CO2 concentration and to climate variability and change. Most 3609 
models explicitly simulate the coupling of carbon and nitrogen cycles and account for atmospheric N deposition and N 3610 
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fertilisers (Table A1). The DGVMs are independent from the other budget terms except for their use of atmospheric 3611 
CO2 concentration to calculate the fertilisation effect of CO2 on plant photosynthesis.  3612 

All DGVMs use the LUH2-GCB2022 dataset as input, which includes the HYDE cropland/grazing land dataset (Klein 3613 
Goldewijk et al., 2017a, 2017b), and additional information on land-cover transitions and wood harvest. DGVMs use 3614 
annual, half-degree (regridded from 5 minute resolution),  fractional data on cropland and pasture from HYDE3.3.  3615 

DGVMs that do not simulate subgrid scale transitions (i.e., net land-use emissions; see Table A1) used the HYDE 3616 
information on agricultural area change. For all countries, with the exception of Brazil and the Democratic Republic of 3617 
the Congo, these data are based on the available annual FAO statistics of change in agricultural land area available from 3618 
1961 up to and including 2017. The FAO retrospectively revised their reporting for the Democratic Republic of the 3619 
Congo, which was newly available until 2020. In addition to FAO country-level statistics the HYDE3.3 3620 
cropland/grazing land dataset is constrained spatially based on multi-year satellite land cover maps from ESA CCI LC 3621 
(see below). . After the year 2017, LUH2 extrapolates, on a gridcell-basis, the cropland, pasture, and urban data linearly 3622 
based on the trend over the previous 5 years, to generate data until the year 2021. This extrapolation methodology is not 3623 
appropriate for countries which have experienced recent rapid changes in the rate of land-use change, e.g. Brazil which 3624 
has experienced a recent upturn in deforestation. Hence, for Brazil we replace FAO state-level data for cropland and 3625 
grazing land in HYDE by those from in-country land cover dataset MapBiomas (collection 6) for 1985-2020 (Souza et 3626 
al. 2020). ESA-CCI is used to spatially disaggregate as described below. Similarly, an estimate for the year 2021 is 3627 
based on the MapBiomas trend 2015-2020. The pre-1985 period is scaled with the per capita numbers from 1985 from 3628 
MapBiomas, so this transition is smooth.  3629 

HYDE uses satellite imagery from ESA-CCI from 1992 – 2018 for more detailed yearly allocation of cropland and 3630 
grazing land, with the ESA area data scaled to match the FAO annual totals at country-level. The original 300 metre 3631 
spatial resolution data from ESA was aggregated to a 5 arc minute resolution according to the classification scheme as 3632 
described in Klein Goldewijk et al (2017a).  3633 

DGVMs that simulate subgrid scale transitions (i.e., gross land-use emissions; see Table A1) use more detailed land use 3634 
transition and wood harvest information from the LUH2-GCB2022 data set. LUH2-GCB2022 is an update of the more 3635 
comprehensive harmonised land-use data set (Hurtt et al., 2020), that further includes fractional data on primary and 3636 
secondary forest vegetation, as well as all underlying transitions between land-use states (850-2020; Hurtt et al., 2011, 3637 
2017, 2020; Chini et al., 2021; Table A1). This data set is of quarter degree fractional areas of land-use states and all 3638 
transitions between those states, including a new wood harvest reconstruction, new representation of shifting 3639 
cultivation, crop rotations, management information including irrigation and fertiliser application. The land-use states 3640 
include five different crop types in addition to splitting grazing land into managed pasture and rangeland. Wood harvest 3641 
patterns are constrained with Landsat-based tree cover loss data (Hansen et al. 2013). Updates of LUH2-GCB2022 over 3642 
last year’s version (LUH2-GCB2021) are using the most recent HYDE release (covering the time period up to 2017, 3643 
revision to Brazil and the Democratic Republic of the Congo as described above). We use the same FAO wood harvest 3644 
data as last year for all dataset years from 1961 to 2019, and extrapolate to the year 2022. The HYDE3.3 population 3645 
data is also used to extend the wood harvest time series back in time. Other wood harvest inputs (for years prior to 3646 
1961) remain the same in LUH2. These updates in the land-use forcing are shown in comparison to the more 3647 
pronounced version change from  the GCB2020 (Friedlingstein et al., 2020) to GCB2021, which was discussed in 3648 
Friedlingstein et al. (2022a) in Figure B6 and their relevance for land-use emissions discussed in Section 3.2.2. DGVMs 3649 
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implement land-use change differently (e.g., an increased cropland fraction in a grid cell can either be at the expense of 3650 
grassland or shrubs, or forest, the latter resulting in deforestation; land cover fractions of the non-agricultural land differ 3651 
between models). Similarly, model-specific assumptions are applied to convert deforested biomass or deforested area, 3652 
and other forest product pools into carbon, and different choices are made regarding the allocation of rangelands as 3653 
natural vegetation or pastures. 3654 

The difference between two DGVMs simulations (see Appendix C4.1 below), one forced with historical changes in 3655 
land-use and a second with time-invariant pre-industrial land cover and pre-industrial wood harvest rates, allows 3656 
quantification of the dynamic evolution of vegetation biomass and soil carbon pools in response to land-use change in 3657 
each model (ELUC). Using the difference between these two DGVMs simulations to diagnose ELUC means the DGVMs 3658 
account for the loss of additional sink capacity (around 0.4 ± 0.3 GtC yr-1; see Section 2.7 and Appendix D4), while the 3659 
bookkeeping models do not. 3660 

As a criterion for inclusion in this carbon budget, we only retain models that simulate a positive ELUC during the 1990s, 3661 
as assessed in the IPCC AR4 (Denman et al., 2007) and AR5 (Ciais et al., 2013).  All DGVMs met this criterion, 3662 
although one model was not included in the ELUC estimate from DGVMs as it exhibited a spurious response to the 3663 
transient land cover change forcing after its initial spin-up.  3664 

C.2.3 Mapping of national GHG inventory data to ELUC 3665 

An approach was implemented to reconcile the large gap between land-use emissions estimates from bookkeeping 3666 
models and from national GHG Inventories (NGHGI) (see Tab. A8). This gap is due to different approaches to 3667 
calculating “anthropogenic” CO2 fluxes related to land-use change and land management (Grassi et al. 2018). In 3668 
particular, the land sinks due to environmental change on managed lands are treated as non-anthropogenic in the global 3669 
carbon budget, while they are generally considered as anthropogenic in NGHGIs (“indirect anthropogenic fluxes”; 3670 
Eggleston et al., 2006). Building on previous studies (Grassi et al. 2021), the approach implemented here adds the 3671 
DGVMs estimates of CO2 fluxes due to environmental change from countries’ managed forest area (part of SLAND) to 3672 
the ELUC flux. This sum is expected to be conceptually more comparable to LULUCF than ELUC. 3673 

ELUC data are taken from bookkeeping models, in line with the global carbon budget approach. To determine SLAND on 3674 
managed forest, the following steps were taken: Spatially gridded data of “natural” forest NBP (SLAND i.e., due to 3675 
environmental change and excluding land use change fluxes) were obtained with S2 runs from DGVMs up to 2021 3676 
from the TRENDY v11 dataset. Results were first masked with a forest map that is based on Hansen (Hansen et 3677 
al.2013) tree cover data. To do this conversion (“tree” cover to “forest” cover), we exclude gridcells with less than 20% 3678 
tree cover and isolated pixels with maximum connectivity less than 0.5 ha following the FAO definition of forest. 3679 
Forest NBP are then further masked with the “intact” forest map for the year 2013, i.e. forest areas characterised by no 3680 
remotely detected signs of human activity (Potapov et al. 2017). This way, we obtained the SLAND in “intact” and 3681 
“non-intact” forest area, which previous studies (Grassi et al. 2021) indicated to be a good proxy, respectively, for 3682 
“unmanaged” and “managed” forest area in the NGHGI. Note that only 4 models (CABLE-POP, CLASSIC, JSBACH 3683 
and YIBs) had forest NBP at grid cell level. For the other DGVMs, when a grid cell had forest, all the NBP was 3684 
allocated to forest. However, since S2 simulations use pre-industrial forest cover masks that are at least 20% larger than 3685 
today’s forest (Hurtt et al. 2020), we corrected this NBP by a ratio between observed (based on Hansen) and prescribed 3686 
(from DGVMs) forest cover. This ratio is calculated for each individual DGVM that provides information on prescribed 3687 
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forest cover (LPX-Bern, OCN, JULES, VISIT, VISIT-NIES, SDGVM). For the others (IBIS, CLM5.0, ORCHIDEE, 3688 
ISAM, DLEM, LPJ-GUESS) a common ratio (median ratio of all the 10 models that provide information on prescribed 3689 
forest cover) is used. The details of the method used are explained here: 3690 
https://github.com/RamAlkama/LandCarbonBudget_IntactAndNonIntactForest 3691 

LULUCF data from NGHGIs are from Grassi et al. (2022a). While Annex I countries report a complete time series 3692 
1990-2020, for Non-Annex I countries gap-filling was applied through linear interpolation between two points and/or 3693 
through extrapolation backward (till 1990) and forward (till 2020) using the single closest available data. For all 3694 
countries, the estimates of the year 2021 are assumed to be equal to those of 2020. This data includes all CO2 fluxes 3695 
from land considered managed, which in principle encompasses all land uses (forest land, cropland, grassland, 3696 
wetlands, settlements, and other land), changes among them, emissions from organic soils and from fires. In practice, 3697 
although almost all Annex I countries report all land uses, many non-Annex I countries report only on deforestation and 3698 
forest land, and only few countries report on other land uses. In most cases, NGHGIs include most of the natural 3699 
response to recent environmental change, because they use direct observations (e.g., national forest inventories) that do 3700 
not allow separating direct and indirect anthropogenic effects (Eggleston et al., 2006). 3701 

To provide additional, largely independent assessments of fluxes on unmanaged vs managed lands, we include a 3702 
DGVM that allows diagnosing fluxes from unmanaged vs managed lands by tracking vegetation cohorts of different 3703 
ages separately. This model, ORCHIDEE-MICT (Yue et al., 2018), was run using the same LUH2 forcing as the 3704 
DGVMs used in this budget (Section 2.5) and the bookkeeping models BLUE and OSCAR (Section 2.2). Old-aged 3705 
forest was classified as primary forest after a certain threshold of carbon density was reached again, and the model-3706 
internal distinction between primary and secondary forest used as proxies for unmanaged vs managed forests; 3707 
agricultural lands are added to the latter to arrive at total managed land. 3708 

Tab. A8 shows the resulting mapping of global carbon cycle models' land flux definitions to that of the NGHGI 3709 
(discussed in Section 3.2.2). ORCHIDEE-MICT estimates for SLAND on intact forests are expected to be higher than 3710 
based on DGVMs in combination with the NGHGI managed/unmanaged forest data because the unmanaged forest 3711 
area, with about 27 mio km2, is estimated to be substantially larger by ORCHIDEE-MICT than, with less than 10 mio 3712 
km2, by the NGHGI, while managed forest area is estimated to be smaller (22 compared to 32 mio km2). Related to 3713 
this, ELUC plus SLAND on non-intact lands is a larger source estimated by ORCHIDEE-MICT compared to NGHGI. We 3714 
also show as comparison FAOSTAT emissions totals (FAO, 2021), which include emissions from net forest conversion 3715 
and fluxes on forest land (Tubiello et al., 2021) as well as CO2 emissions from peat drainage and peat fires. The 2021 3716 
data was estimated by including actual 2021 estimates for peatlands drainage and fire and a carry forward from 2020 to 3717 
2021 for the forest land stock change. The FAO data shows a global source of 0.24 GtC yr-1 averaged over 2012-2021, 3718 
in contrast to the sink of -0.54 GtC yr-1 of the gap-filled NGHGI data. Most of this difference is attributable to different 3719 
scopes: a focus on carbon fluxes for the NGHGI and a focus on area and biomass for FAO. In particular, the NGHGI 3720 
data includes a larger forest sink for non-Annex 1 countries resulting from a more complete coverage of non-biomass 3721 
carbon pools and non-forest land uses. NGHGI and FAO data also differ in terms of underlying data on forest land 3722 
(Grassi et al., 2022a). 3723 



151 
 

C.2.4 Uncertainty assessment for ELUC 3724 

Differences between the bookkeeping models and DGVMs models originate from three main sources: the different 3725 
methodologies, which among others lead to inclusion of the loss of additional sink capacity in DGVMs (see Appendix 3726 
D1.4), the underlying land-use/land cover data set, and the different processes represented (Table A1). We examine the 3727 
results from the DGVMs models and of the bookkeeping method and use the resulting variations as a way to 3728 
characterise the uncertainty in ELUC. 3729 

Despite these differences, the ELUC estimate from the DGVMs multi-model mean is consistent with the average of the 3730 
emissions from the bookkeeping models (Table 5). However there are large differences among individual DGVMs 3731 
(standard deviation at around 0.5 GtC yr-1; Table 5), between the bookkeeping estimates (average difference 1850-2020 3732 
BLUE-updated H&N2017 of 0.8 GtC yr-1, BLUE-OSCAR of 0.4 GtC yr-1, OSCAR-updated H&N2017 of 0.3 GtC yr-3733 
1), and between the updated estimate of H&N2017 and its previous model version (Houghton et al., 2012). A factorial 3734 
analysis of differences between BLUE and H&N2017 attributed them particularly to differences in carbon densities 3735 
between natural and managed vegetation or primary and secondary vegetation (Bastos et al., 2021). Earlier studies 3736 
additionally showed the relevance of the different land-use forcing as applied (in updated versions) also in the current 3737 
study (Gasser et al., 2020). Ganzenmüller et al. (2022) recently showed that ELUC estimates with BLUE are 3738 
substantially smaller when the model is driven by a new high-resolution land-use dataset (HILDA+). They identified 3739 
shifting cultivation and the way it is implemented in LUH2 as a main reason for this divergence. They further showed 3740 
that a higher spatial resolution reduces the estimates of both sources and sinks because successive transitions are not 3741 
adequately represented at coarser resolution, which has the effect that—despite capturing the same extent of transition 3742 
areas—overall less area remains pristine at the coarser compared to the higher resolution. 3743 

The uncertainty in ELUC of ±0.7 GtC yr-1 reflects our best value judgement that there is at least 68% chance (±1σ) that 3744 
the true land-use change emission lies within the given range, for the range of processes considered here. Prior to the 3745 
year 1959, the uncertainty in ELUC was taken from the standard deviation of the DGVMs. We assign low confidence to 3746 
the annual estimates of ELUC because of the inconsistencies among estimates and of the difficulties to quantify some of 3747 
the processes in DGVMs.  3748 

C.2.5 Emissions projections for ELUC 3749 

We project the 2022 land-use emissions for BLUE, the updated H&N2017 and OSCAR, starting from their estimates 3750 
for 2021 assuming unaltered peat drainage, which has low interannual variability, and the highly variable emissions 3751 
from peat fires, tropical deforestation and degradation as estimated using active fire data (MCD14ML; Giglio et al., 3752 
2016). Those latter scale almost linearly with GFED over large areas (van der Werf et al., 2017), and thus allows for 3753 
tracking fire emissions in deforestation and tropical peat zones in near-real time.  3754 

 3755 

C.3 Methodology Ocean CO2 sink 3756 

C.3.1 Observation-based estimates 3757 

We primarily use the observational constraints assessed by IPCC of a mean ocean CO2 sink of 2.2 ± 0.7 GtC yr-1 for the 3758 
1990s (90% confidence interval; Ciais et al., 2013) to verify that the GOBMs provide a realistic assessment of SOCEAN.  3759 
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This is based on indirect observations with seven different methodologies and their uncertainties, and further using 3760 
three of these methods that are deemed most reliable for the assessment of this quantity (Denman et al., 2007; Ciais et 3761 
al., 2013). The observation-based estimates use the ocean/land CO2 sink partitioning from observed atmospheric CO2 3762 
and O2/N2 concentration trends (Manning and Keeling, 2006; Keeling and Manning, 2014), an oceanic inversion 3763 
method constrained by ocean biogeochemistry data (Mikaloff Fletcher et al., 2006), and a method based on penetration 3764 
time scale for chlorofluorocarbons (McNeil et al., 2003). The IPCC estimate of 2.2 GtC yr-1 for the 1990s is consistent 3765 
with a range of methods (Wanninkhof et al., 2013). We refrain from using the IPCC estimates for the 2000s (2.3 ± 0.7 3766 
GtC yr-1), and the period 2002-2011 (2.4  ± 0.7 GtC yr-1, Ciais et al., 2013) as these are based on trends derived mainly 3767 
from models and one data-product (Ciais et al., 2013). Additional constraints summarised in AR6 (Canadell et al., 3768 
2021) are the interior ocean anthropogenic carbon change (Gruber et al., 2019) and ocean sink estimate from 3769 
atmospheric CO2 and O2/N2 (Tohjima et al., 2019) which are used for model evaluation and discussion, respectively. 3770 

We also use eight estimates of the ocean CO2 sink and its variability based on surface ocean fCO2 maps obtained by the 3771 
interpolation of surface ocean fCO2 measurements from 1990 onwards due to severe restriction in data availability prior 3772 
to 1990 (Figure 10).  These estimates differ in many respects: they use different maps of surface fCO2, different 3773 
atmospheric CO2 concentrations, wind products and different gas-exchange formulations as specified in Table A3. We 3774 
refer to them as fCO2-based flux estimates. The measurements underlying the surface fCO2 maps are from the Surface 3775 
Ocean CO2 Atlas version 2022 (SOCATv2022; Bakker et al., 2022), which is an update of version 3 (Bakker et al., 3776 
2016) and contains quality-controlled data through 2021 (see data attribution Table A5). Each of the estimates uses a 3777 
different method to then map the SOCAT v2022 data to the global ocean. The methods include a data-driven diagnostic 3778 
method combined with a multi linear regression approach to extend back to 1957 (Rödenbeck et al., 2022; referred to 3779 
here as Jena-MLS), three neural network models (Landschützer et al., 2014; referred to as MPI-SOMFFN; Chau et al., 3780 
2022; Copernicus Marine Environment Monitoring Service, referred to here as CMEMS-LSCE-FFNN; and Zeng et al., 3781 
2014; referred to as NIES-NN), one cluster regression approaches (Gregor and Gruber, 2021, referred to as OS-ETHZ-3782 
GRaCER), and a multi-linear regression method (Iida et al., 2021; referred to as JMA-MLR), and one method that 3783 
relates the fCO2 misfit between GOBMs and SOCAT to environmental predictors using the extreme gradient boosting 3784 
method (Gloege et al., 2022). The ensemble mean of the fCO2-based flux estimates is calculated from these seven 3785 
mapping methods. Further, we show the flux estimate of Watson et al. (2020) who also use the MPI-SOMFFN method 3786 
to map the adjusted fCO2 data to the globe, but resulting in a substantially larger ocean sink estimate, owing to a 3787 
number of adjustments they applied to the surface ocean fCO2 data. Concretely, these authors adjusted the SOCAT 3788 
fCO2 downward to account for differences in temperature between the depth of the ship intake and the relevant depth 3789 
right near the surface, and included a further adjustment to account for the cool surface skin temperature effect. The 3790 
Watson et al. flux estimate hence differs from the others by their choice of adjusting the flux to a cool, salty ocean 3791 
surface skin. Watson et al. (2020) showed that this temperature adjustment leads to an upward correction of the ocean 3792 
carbon sink, up to 0.9 GtC yr-1, that, if correct, should be applied to all fCO2-based flux estimates. A reduction of this 3793 
adjustment to 0.6 GtC yr-1 was proposed by Dong et al. (2022). The impact of the cool skin effect on air-sea CO2 flux is 3794 
based on established understanding of temperature gradients (as discussed by Goddijn-Murphy et al 2015), and 3795 
laboratory observations (Jähne and Haussecker, 1998; Jähne, 2019), but in situ field observational evidence is lacking 3796 
(Dong et al., 2022). The Watson et al flux estimate presented here is therefore not included in the ensemble mean of the 3797 
fCO2-based flux estimates. This choice will be re-evaluated in upcoming budgets based on further lines of evidence.  3798 
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Typically, data products do not cover the entire ocean due to missing coastal oceans and sea ice cover. The CO2 flux 3799 
from each fCO2-based product is already at or above 99% coverage of the ice-free ocean surface area in two products 3800 
(Jena-MLS, OS-ETHZ-GRaCER), and filled by the data-provider in three products (using Fay et al., 2021a, method for 3801 
JMA-MLR and LDEO-HPD; and Landschützer et al., 2020, methodology for MPI-SOMFFN). The products that 3802 
remained below 99% coverage of the ice-free ocean (CMEMS-LSCE-FFNN, MPI-SOMFFN, NIES-NN, UOx-Watson) 3803 
were scaled by the following procedure. 3804 
In previous versions of the GCB, the missing areas were accounted for by scaling the globally integrated fluxes by the 3805 
fraction of the global ocean coverage (361.9e6 km2 based on ETOPO1, Amante and Eakins, 2009; Eakins and Sharman, 3806 
2010) with the area covered by the CO2 flux predictions. This approach may lead to unnecessary scaling when the 3807 
majority of the missing data are in the ice-covered region (as is often the case), where flux is already assumed to be 3808 
zero. To avoid this unnecessary scaling, we now scale fluxes regionally (North, Tropics, South) to match the ice-free 3809 
area (using NOAA’s OISSTv2, Reynolds et al., 2002): 3810 
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In the equation, A represents area, (1 – ice) represents the ice free ocean, A_{FCO2}^{region} represents the coverage 3812 
of the data product for a region, and FCO_2^{region} is the integrated flux for a region. 3813 
 We further use results from two diagnostic ocean models, Khatiwala et al. (2013) and DeVries (2014), to estimate the 3814 
anthropogenic carbon accumulated in the ocean prior to 1959. The two approaches assume constant ocean circulation 3815 
and biological fluxes, with SOCEAN estimated as a response in the change in atmospheric CO2 concentration calibrated to 3816 
observations. The uncertainty in cumulative uptake of ±20 GtC (converted to ±1σ) is taken directly from the IPCC’s 3817 
review of the literature (Rhein et al., 2013), or about ±30% for the annual values (Khatiwala et al., 2009). 3818 

C.3.2 Global Ocean Biogeochemistry Models (GOBMs) 3819 

The ocean CO2 sink for 1959-20121 is estimated using ten GOBMs (Table A2). The GOBMs represent the physical, 3820 
chemical, and biological processes that influence the surface ocean concentration of CO2 and thus the air-sea CO2 flux. 3821 
The GOBMs are forced by meteorological reanalysis and atmospheric CO2 concentration data available for the entire 3822 
time period. They mostly differ in the source of the atmospheric forcing data (meteorological reanalysis), spin up 3823 
strategies, and in their horizontal and vertical resolutions (Table A2). All GOBMs except two (CESM-ETHZ, CESM2) 3824 
do not include the effects of anthropogenic changes in nutrient supply (Duce et al., 2008). They also do not include the 3825 
perturbation associated with changes in riverine organic carbon (see Section 2.7 and Appendix D.3).  3826 

Four sets of simulations were performed with each of the GOBMs. Simulation A applied historical changes in climate 3827 
and atmospheric CO2 concentration. Simulation B is a control simulation with constant atmospheric forcing (normal 3828 
year or repeated year forcing) and constant pre-industrial atmospheric CO2 concentration. Simulation C is forced with 3829 
historical changes in atmospheric CO2 concentration, but repeated year or normal year atmospheric climate forcing. 3830 
Simulation D is forced by historical changes in climate and constant pre-industrial atmospheric CO2 concentration. To 3831 
derive SOCEAN from the model simulations, we subtracted the slope of a linear fit to the annual time series of the control 3832 
simulation B from the annual time series of simulation A. Assuming that drift and bias are the same in simulations A 3833 
and B, we thereby correct for any model drift. Further, this difference also removes the natural steady state flux 3834 
(assumed to be 0 GtC yr-1 globally without rivers) which is often a major source of biases. This approach works for all 3835 
model set-ups, including IPSL, where simulation B was forced with constant atmospheric CO2 but observed historical 3836 
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changes in climate (equivalent to simulation D). This approach assures that the interannual variability is not removed 3837 
from IPSL simulation A. 3838 

The absolute correction for bias and drift per model in the 1990s varied between <0.01 GtC yr-1 and 0.41 GtC yr-1, with 3839 
seven models having positive biases, two having negative biases and one model having essentially no bias (NorESM). 3840 
The MPI model uses riverine input and therefore simulates outgassing in simulation B.By subtracting simulation B, 3841 
also the ocean carbon sink of the MPI model follows the definition of SOCEAN. This correction reduces the model mean 3842 
ocean carbon sink by 0.04 GtC yr-1 in the 1990s. The ocean models cover 99% to 101% of the total ocean area, so that 3843 
area-scaling is not necessary. 3844 

C.3.3 GOBM evaluation and uncertainty assessment for SOCEAN 3845 

The ocean CO2 sink for all GOBMs and the ensemble mean falls within 90% confidence of the observed range, or 1.5 3846 
to 2.9 GtC yr-1 for the 1990s (Ciais et al., 2013) before and after applying adjustments. An exception is the MPI model, 3847 
which simulates a low ocean carbon sink of 1.38 GtC yr-1 for the 1990s in simulation A owing to the inclusion of 3848 
riverine carbon flux. After adjusting to the GCB’s definition of SOCEAN by subtracting simulation B, the MPI model falls 3849 
into the observed range with an estimated sink of 1.69 GtC yr-1.  3850 

The GOBMs and data products have been further evaluated using the fugacity of sea surface CO2 (fCO2) from the 3851 
SOCAT v2022 database (Bakker et al., 2016, 2022). We focused this evaluation on the root mean squared error 3852 
(RMSE) between observed and modelled fCO2 and on a measure of the amplitude of the interannual variability of the 3853 
flux (modified after Rödenbeck et al., 2015).  The RMSE is calculated from detrended, annually and regionally 3854 
averaged time series calculated from GOBMs and data-product fCO2 subsampled to SOCAT sampling points to 3855 
measure the misfit between large-scale signals (Hauck et al., 2020). To this end, we apply the following steps: (i) 3856 
subsample data points for where there are observations (GOBMs/data-products as well as SOCAT), (ii) average 3857 
spatially, (iii) calculate annual mean, (iv) detrend both time-series (GOBMs/data-products as well as SOCAT), (v) 3858 
calculate RMSE.  This year, we do not apply an open ocean mask of 400 m, but instead a mask based on the minimum 3859 
area coverage of the data-products. This ensures a fair comparison over equal areas. The amplitude of the SOCEAN 3860 
interannual variability (A-IAV) is calculated as the temporal standard deviation of the detrended annual CO2 flux time 3861 
series after area-scaling (Rödenbeck et al., 2015, Hauck et al., 2020). These metrics are chosen because RMSE is the 3862 
most direct measure of data-model mismatch and the A-IAV is a direct measure of the variability of SOCEAN on 3863 
interannual timescales. We apply these metrics globally and by latitude bands. Results are shown in Figure B2 and 3864 
discussed in Section 3.5.5.  3865 

We quantify the 1-σ uncertainty around the mean ocean sink of anthropogenic CO2 by assessing random and systematic 3866 
uncertainties for the GOBMs and data-products. The random uncertainties are taken from the ensemble standard 3867 
deviation (0.3 GtC yr-1 for GOBMs, 0.3  GtC yr-1 for data-products). We derive the GOBMs systematic uncertainty by 3868 
the deviation of the DIC inventory change 1994-2007 from the Gruber et al (2019) estimate (0.4 GtC yr-1) and suggest 3869 
these are related to physical transport (mixing, advection) into the ocean interior. For the data-products, we consider 3870 
systematic uncertainties stemming from uncertainty in fCO2 observations (0.2 GtC yr-1 , Takahashi et al., 2009; 3871 
Wanninkhof et al., 2013), gas-transfer velocity (0.2 GtC yr-1 , Ho et al., 2011; Wanninkhof et al., 2013; Roobaert et al., 3872 
2018), wind product (0.1 GtC yr-1, Fay et al., 2021a), river flux adjustment (0.3 GtC yr-1, Regnier et al., 2022, formally 3873 
2-σ uncertainty), and fCO2 mapping (0.2 GtC yr-1, Landschützer et al., 2014). Combining these uncertainties as their 3874 
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squared sums, we assign an uncertainty of ± 0.5 GtC yr-1 to the GOBMs ensemble mean and an uncertainty of  ± 0.6 3875 
GtC yr-1 to the data-product ensemble mean. These uncertainties are propagated as σ(SOCEAN) = (1/22 * 0.52 + 1/22 * 3876 
0.62)1/2 GtC yr-1 and result in an ± 0.4 GtC yr-1 uncertainty around the best estimate of SOCEAN.  3877 
We examine the consistency between the variability of the model-based and the fCO2-based data products to assess 3878 
confidence in SOCEAN. The interannual variability of the ocean fluxes (quantified as A-IAV, the standard deviation after 3879 
detrending, Figure B2) of the seven fCO2-based data products plus the Watson et al. (2020) product for 1990-2021, 3880 
ranges from 0.12 to 0.32 GtC yr-1 with the lower estimates by the two ensemble methods (CMEMS-LSCE-FFNN, OS-3881 
ETHZ-GRaCER). The inter-annual variability in the GOBMs ranges between 0.09 and 0.20 GtC yr-1, hence there is 3882 
overlap with the lower A-IAV estimates of two data-products. 3883 
Individual estimates (both GOBMs and data products) generally produce a higher ocean CO2 sink during strong El 3884 
Niño events. There is emerging agreement between GOBMs and data-products on the patterns of decadal variability of 3885 
SOCEAN with a global stagnation in the 1990s and an extra-tropical strengthening in the 2000s (McKinley et al., 2020, 3886 
Hauck et al., 2020). The central estimates of the annual flux from the GOBMs and the fCO2-based data products have a 3887 
correlation r of 0.94 (1990-2021). The agreement between the models and the data products reflects some consistency 3888 
in their representation of underlying variability since there is little overlap in their methodology or use of observations.  3889 
 3890 

C.4 Methodology Land CO2 sink 3891 

C.4.1 DGVM simulations 3892 

The DGVMs model runs were forced by either the merged monthly Climate Research Unit (CRU) and 6 hourly 3893 
Japanese 55-year Reanalysis (JRA-55) data set or by the monthly CRU data set, both providing observation-based 3894 
temperature, precipitation, and incoming surface radiation on a 0.5°x0.5° grid and updated to 2021 (Harris et al., 2014, 3895 
2020). The combination of CRU monthly data with 6 hourly forcing from JRA-55 (Kobayashi et al., 2015) is performed 3896 
with methodology used in previous years (Viovy, 2016) adapted to the specifics of the JRA-55 data.  3897 

Introduced in GCB2021 (Friedlingstein et al., 2022a), incoming short-wave radiation fields to take into account aerosol 3898 
impacts and the division of total radiation into direct and diffuse components as summarised below. 3899 

The diffuse fraction dataset offers 6-hourly distributions of the diffuse fraction of surface shortwave fluxes over the 3900 
period 1901-2021. Radiative transfer calculations are based on monthly-averaged distributions of tropospheric and 3901 
stratospheric aerosol optical depth, and 6-hourly distributions of cloud fraction. Methods follow those described in the 3902 
Methods section of Mercado et al. (2009), but with updated input datasets. 3903 

The time series of speciated tropospheric aerosol optical depth is taken from the historical and RCP8.5 simulations by 3904 
the HadGEM2-ES climate model (Bellouin et al., 2011). To correct for biases in HadGEM2-ES, tropospheric aerosol 3905 
optical depths are scaled over the whole period to match the global and monthly averages obtained over the period 3906 
2003-2020 by the CAMS Reanalysis of atmospheric composition (Inness et al., 2019), which assimilates satellite 3907 
retrievals of aerosol optical depth. 3908 

The time series of stratospheric aerosol optical depth is taken from the by Sato et al. (1993) climatology, which has 3909 
been updated to 2012. Years 2013-2020 are assumed to be background years so replicate the background year 2010. 3910 
That assumption is supported by the Global Space-based Stratospheric Aerosol Climatology time series (1979-2016; 3911 
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Thomason et al., 2018). The time series of cloud fraction is obtained by scaling the 6-hourly distributions simulated in 3912 
the Japanese Reanalysis (Kobayashi et al., 2015) to match the monthly-averaged cloud cover in the CRU TS v4.06 3913 
dataset (Harris et al., 2020). Surface radiative fluxes account for aerosol-radiation interactions from both tropospheric 3914 
and stratospheric aerosols, and for aerosol-cloud interactions from tropospheric aerosols, except mineral dust. 3915 
Tropospheric aerosols are also assumed to exert interactions with clouds.  3916 

The radiative effects of those aerosol-cloud interactions are assumed to scale with the radiative effects of aerosol-3917 
radiation interactions of tropospheric aerosols, using regional scaling factors derived from HadGEM2-ES. Diffuse 3918 
fraction is assumed to be 1 in cloudy sky. Atmospheric constituents other than aerosols and clouds are set to a constant 3919 
standard mid-latitude summer atmosphere, but their variations do not affect the diffuse fraction of surface shortwave 3920 
fluxes. 3921 

In summary, the DGVMs forcing data include time dependent gridded climate forcing, global atmospheric CO2 3922 
(Dlugokencky and Tans, 2022), gridded land cover changes (see Appendix C.2.2), and gridded nitrogen deposition and 3923 
fertilisers (see Table A1 for specific models details).  3924 

Four simulations were performed with each of the DGVMs. Simulation 0 (S0) is a control simulation which uses fixed 3925 
pre-industrial (year 1700) atmospheric CO2 concentrations, cycles early 20th century (1901-1920) climate and applies a 3926 
time-invariant pre-industrial land cover distribution and pre-industrial wood harvest rates. Simulation 1 (S1) differs 3927 
from S0 by applying historical changes in atmospheric CO2 concentration and N inputs. Simulation 2 (S2) applies 3928 
historical changes in atmospheric CO2 concentration, N inputs, and climate, while applying time-invariant pre-3929 
industrial land cover distribution and pre-industrial wood harvest rates. Simulation 3 (S3) applies historical changes in 3930 
atmospheric CO2 concentration, N inputs, climate, and land cover distribution and wood harvest rates.  3931 

S2 is used to estimate the land sink component of the global carbon budget (SLAND). S3 is used to estimate the total land 3932 
flux but is not used in the global carbon budget. We further separate SLAND into contributions from CO2 (=S1-S0) and 3933 
climate (=S2-S1+S0).   3934 

C.4.2 DGVM evaluation and uncertainty assessment for SLAND 3935 

We apply three criteria for minimum DGVMs realism by including only those DGVMs with (1) steady state after 3936 
spin up, (2) global net land flux (SLAND – ELUC) that is an atmosphere-to-land carbon flux over the 1990s ranging 3937 
between -0.3 and 2.3 GtC yr-1, within 90% confidence of constraints by global atmospheric and oceanic observations 3938 
(Keeling and Manning, 2014; Wanninkhof et al., 2013), and (3) global ELUC that is a carbon source to the atmosphere 3939 
over the 1990s, as already mentioned in Appendix C.2.2. All DGVMs meet these three criteria.  3940 

In addition, the DGVMs results are also evaluated using the International Land Model Benchmarking system (ILAMB; 3941 
Collier et al., 2018). This evaluation is provided here to document, encourage and support model improvements through 3942 
time. ILAMB variables cover key processes that are relevant for the quantification of SLAND and resulting aggregated 3943 
outcomes. The selected variables are vegetation biomass, gross primary productivity, leaf area index, net ecosystem 3944 
exchange, ecosystem respiration, evapotranspiration, soil carbon, and runoff (see Figure B3 for the results and for the 3945 
list of observed databases). Results are shown in Figure B3 and discussed in Section 3.6.5. 3946 

For the uncertainty for SLAND, we use the standard deviation of the annual CO2 sink across the DGVMs, averaging to 3947 
about ± 0.6 GtC yr-1 for the period 1959 to 2021. We attach a medium confidence level to the annual land CO2 sink and 3948 
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its uncertainty because the estimates from the residual budget and averaged DGVMs match well within their respective 3949 
uncertainties (Table 5). 3950 

 3951 

C.5 Methodology Atmospheric Inversions 3952 

C.5.1 Inversion System Simulations 3953 

Nine atmospheric inversions (details of each in Table A4) were used to infer the spatio-temporal distribution of the CO2 3954 
flux exchanged between the atmosphere and the land or oceans. These inversions are based on Bayesian inversion 3955 
principles with prior information on fluxes and their uncertainties. They use very similar sets of surface measurements 3956 
of CO2 time series (or subsets thereof) from various flask and in situ networks. One inversion system also used satellite 3957 
xCO2 retrievals from GOSAT and OCO-2.  3958 
Each inversion system uses different methodologies and input data but is rooted in Bayesian inversion principles. These 3959 
differences mainly concern the selection of atmospheric CO2 data and prior fluxes, as well as the spatial resolution, 3960 
assumed correlation structures, and mathematical approach of the models. Each system uses a different transport model, 3961 
which was demonstrated to be a driving factor behind differences in atmospheric inversion-based flux estimates, and 3962 
specifically their distribution across latitudinal bands (Gaubert et al., 2019; Schuh et al., 2019). 3963 
The inversion systems all prescribe similar global fossil fuel emissions for EFOS; specifically, the GCP’s Gridded Fossil 3964 
Emissions Dataset version 2022 (GCP-GridFEDv2022.2; Jones et al., 2022), which is an update through 2021 of the 3965 
first version of GCP-GridFED presented by Jones et al. (2021), or another recent version of GCP-GridFED (Table A4). 3966 
All GCP-GridFED versions scale gridded estimates of CO2 emissions from EDGARv4.3.2 (Janssens-Maenhout et al., 3967 
2019) within national territories to match national emissions estimates provided by the GCP for the years 1959-2021, 3968 
which are compiled following the methodology described in Appendix C.1. GCP-GridFEDv2022.2 adopts the 3969 
seasonality of emissions (the monthly distribution of annual emissions) from the Carbon Monitor (Liu et al., 2020a,b; 3970 
Dou et al., 2022) for Brazil, China, all EU27 countries, the United Kingdom, the USA and shipping and aviation bunker 3971 
emissions. The seasonality present in Carbon Monitor is used directly for years 2019-2021, while for years 1959-2018 3972 
the average seasonality of 2019 and 2021 are applied (avoiding the year 2020 during which emissions were most 3973 
impacted by the COVID-19 pandemic). For all other countries, seasonality of emissions is taken from EDGAR 3974 
(Janssens-Maenhout et al., 2019; Jones et al., 2022), with small annual correction to the seasonality present in year 3975 
2010 based on heating or cooling degree days to account for the effects of inter-annual climate variability on the 3976 
seasonality of emissions (Jones et al., 2021). Earlier versions of GridFED used Carbon Monitor-based seasonality only 3977 
during the years 2019 onwards. In addition, we note that GCP-GridFEDv2022.1 and v2022.2 include emissions from 3978 
cement production and the cement carbonation CO2 sink (Appendix C.1.1), whereas earlier versions of GCP-GridFED 3979 
did not include the cement carbonation CO2 sink.  3980 

 The consistent use of recent versions of GCP-GridFED for EFOS ensures a close alignment with the estimate of EFOS 3981 
used in this budget assessment, enhancing the comparability of the inversion-based estimate with the flux estimates 3982 
deriving from DGVMs, GOBMs and fCO2-based methods. To ensure that the estimated uptake of atmospheric CO2 by 3983 
the land and oceans was fully consistent with the sum of the fossil emissions flux from GCP-GridFEDv2022.2 and the 3984 
atmospheric growth rate of CO2, small corrections to the fossil fuel emissions flux were applied to inversions systems 3985 
using other versions of GCP-GridFED. 3986 
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The land and ocean CO2 fluxes from atmospheric inversions contain anthropogenic perturbation and natural pre-3987 
industrial CO2 fluxes. On annual time scales, natural pre-industrial fluxes are primarily land CO2 sinks and ocean CO2 3988 
sources corresponding to carbon taken up on land, transported by rivers from land to ocean, and outgassed by the 3989 
ocean. These pre-industrial land CO2 sinks are thus compensated over the globe by ocean CO2 sources corresponding to 3990 
the outgassing of riverine carbon inputs to the ocean, using the exact same numbers and distribution as described for the 3991 
oceans in Section 2.4. To facilitate the comparison, we adjusted the inverse estimates of the land and ocean fluxes per 3992 
latitude band with these numbers to produce historical perturbation CO2 fluxes from inversions. 3993 

C.5.2 Inversion System Evaluation 3994 

All participating atmospheric inversions are checked for consistency with the annual global growth rate, as both are 3995 
derived from the global surface network of atmospheric CO2 observations. In this exercise, we use the conversion 3996 
factor of 2.086 GtC/ppm to convert the inverted carbon fluxes to mole fractions, as suggested by Prather (2012). This 3997 
number is specifically suited for the comparison to surface observations that do not respond uniformly, nor 3998 
immediately, to each year’s summed sources and sinks. This factor is therefore slightly smaller than the GCB 3999 
conversion factor in Table 1 (2.142 GtC/ppm, Ballantyne et al., 2012). Overall, the inversions agree with the growth 4000 
rate with biases between 0.03-0.08 ppm (0.06-0.17 GtCyr-1) on the decadal average. 4001 

The atmospheric inversions are also evaluated using vertical profiles of atmospheric CO2 concentrations (Figure B4). 4002 
More than 30 aircraft programs over the globe, either regular programs or repeated surveys over at least 9 months, have 4003 
been used in order to draw a robust picture of the system performance (with space-time data coverage irregular and 4004 
denser in the 0-45°N latitude band; Table A6). The nine systems are compared to the independent aircraft CO2 4005 
measurements between 2 and 7 km above sea level between 2001 and 2021. Results are shown in Figure B4, where the 4006 
inversions generally match the atmospheric mole fractions to within 0.7 ppm at all latitudes, except for CT Europe in 4007 
2011-2021 over the more sparsely sampled southern hemisphere. 4008 

 4009 

Appendix D: Processes not included in the global carbon budget  4010 

D.1 Contribution of anthropogenic CO and CH4 to the global carbon budget 4011 

Equation (1) includes only partly the net input of CO2 to the atmosphere from the chemical oxidation of reactive 4012 
carbon-containing gases from sources other than the combustion of fossil fuels, such as: (1) cement process emissions, 4013 
since these do not come from combustion of fossil fuels, (2) the oxidation of fossil fuels, (3) the assumption of 4014 
immediate oxidation of vented methane in oil production. However, it omits any other anthropogenic carbon-containing 4015 
gases that are eventually oxidised in the atmosphere, forming a diffuse source of CO2, such as anthropogenic emissions 4016 
of CO and CH4. An attempt is made in this section to estimate their magnitude and identify the sources of uncertainty. 4017 
Anthropogenic CO emissions are from incomplete fossil fuel and biofuel burning and deforestation fires. The main 4018 
anthropogenic emissions of fossil CH4 that matter for the global (anthropogenic) carbon budget are the fugitive 4019 
emissions of coal, oil and gas sectors (see below). These emissions of CO and CH4 contribute a net addition of fossil 4020 
carbon to the atmosphere. 4021 
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In our estimate of EFOS we assumed (Section 2.1.1) that all the fuel burned is emitted as CO2, thus CO anthropogenic 4022 
emissions associated with incomplete fossil fuel combustion and its atmospheric oxidation into CO2 within a few 4023 
months are already counted implicitly in EFOS and should not be counted twice (same for ELUC and anthropogenic CO 4024 
emissions by deforestation fires). The diffuse atmospheric source of CO2 deriving from anthropogenic emissions of 4025 
fossil CH4 is not included in EFOS. In reality, the diffuse source of CO2 from CH4 oxidation contributes to the annual 4026 
CO2 growth. Emissions of fossil CH4 represent 30% of total anthropogenic CH4 emissions (Saunois et al. 2020; their 4027 
top-down estimate is used because it is consistent with the observed CH4 growth rate), that is 0.083 GtC yr-1 for the 4028 
decade 2008-2017. Assuming steady state, an amount equal to this fossil CH4 emission is all converted to CO2 by OH 4029 
oxidation, and thus explain 0.083 GtC yr-1 of the global CO2 growth rate with an uncertainty range of 0.061 to 0.098 4030 
GtC yr-1  taken from the min-max of top-down estimates in Saunois et al. (2020). If this min-max range is assumed to 4031 
be 2 σ because Saunois et al. (2020) did not account for the internal uncertainty of their min and max top-down 4032 
estimates, it translates into a 1-σ uncertainty of 0.019 GtC yr-1. 4033 

Other anthropogenic changes in the sources of CO and CH4 from wildfires, vegetation biomass, wetlands, ruminants, or 4034 
permafrost changes are similarly assumed to have a small effect on the CO2 growth rate. The CH4 and CO emissions 4035 
and sinks are published and analysed separately in the Global Methane Budget and Global Carbon Monoxide Budget 4036 
publications, which follow a similar approach to that presented here (Saunois et al., 2020; Zheng et al., 2019).  4037 

D.2 Contribution of other carbonates to CO2 emissions 4038 

Although we do account for cement carbonation (a carbon sink), the contribution of emissions of fossil carbonates 4039 
(carbon sources) other than cement production is not systematically included in estimates of EFOS, except for Annex I 4040 
countries and lime production in China (Andrew and Peters, 2021). The missing processes include CO2 emissions 4041 
associated with the calcination of lime and limestone outside of cement production. Carbonates are also used in various 4042 
industries, including in iron and steel manufacture and in agriculture. They are found naturally in some coals. CO2 4043 
emissions from fossil carbonates other than cement not included in our dataset are estimated to amount to about 0.3% 4044 
of EFOS (estimated based on Crippa et al., 2019).  4045 

D.3 Anthropogenic carbon fluxes in the land-to-ocean aquatic continuum 4046 

The approach used to determine the global carbon budget refers to the mean, variations, and trends in the perturbation 4047 
of CO2 in the atmosphere, referenced to the pre-industrial era. Carbon is continuously displaced from the land to the 4048 
ocean through the land-ocean aquatic continuum (LOAC) comprising freshwaters, estuaries, and coastal areas (Bauer et 4049 
al., 2013; Regnier et al., 2013). A substantial fraction of this lateral carbon flux is entirely ‘natural’ and is thus a steady 4050 
state component of the pre-industrial carbon cycle. We account for this pre-industrial flux where appropriate in our 4051 
study (see Appendix C.3). However, changes in environmental conditions and land-use change have caused an increase 4052 
in the lateral transport of carbon into the LOAC – a perturbation that is relevant for the global carbon budget presented 4053 
here.  4054 

The results of the analysis of Regnier et al. (2013) can be summarised in two points of relevance for the anthropogenic 4055 
CO2 budget. First, the anthropogenic perturbation of the LOAC has increased the organic carbon export from terrestrial 4056 
ecosystems to the hydrosphere by as much as 1.0 ± 0.5 GtC yr-1 since pre-industrial times, mainly owing to enhanced 4057 
carbon export from soils. Second, this exported anthropogenic carbon is partly respired through the LOAC, partly 4058 
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sequestered in sediments along the LOAC and to a lesser extent, transferred to the open ocean where it may accumulate 4059 
or be outgassed. The increase in storage of land-derived organic carbon in the LOAC carbon reservoirs (burial) and in 4060 
the open ocean combined is estimated by Regnier et al. (2013) at 0.65 ± 0.35GtC yr-1. The inclusion of LOAC related 4061 
anthropogenic CO2 fluxes should affect estimates of SLAND and SOCEAN in Eq. (1) but does not affect the other terms. 4062 
Representation of the anthropogenic perturbation of LOAC CO2 fluxes is however not included in the GOBMs and 4063 
DGVMs used in our global carbon budget analysis presented here. 4064 

D.4 Loss of additional land sink capacity 4065 

Historical land-cover change was dominated by transitions from vegetation types that can provide a large carbon sink 4066 
per area unit (typically, forests) to others less efficient in removing CO2 from the atmosphere (typically, croplands). 4067 
The resultant decrease in land sink, called the ‘loss of additional sink capacity’, can be calculated as the difference 4068 
between the actual land sink under changing land-cover and the counterfactual land sink under pre-industrial land-4069 
cover. This term is not accounted for in our global carbon budget estimate. Here, we provide a quantitative estimate of 4070 
this term to be used in the discussion. Seven of the DGVMs used in Friedlingstein et al. (2019) performed additional 4071 
simulations with and without land-use change under cycled pre-industrial environmental conditions. The resulting loss 4072 
of additional sink capacity amounts to 0.9 ± 0.3 GtC yr-1 on average over 2009-2018 and 42 ± 16 GtC accumulated 4073 
between 1850 and 2018 (Obermeier et al., 2021). OSCAR, emulating the behaviour of 11 DGVMs finds values of the 4074 
loss of additional sink capacity of 0.7 ± 0.6 GtC yr-1 and 31 ± 23 GtC for the same time period (Gasser et al., 2020). 4075 
Since the DGVM-based ELUC estimates are only used to quantify the uncertainty around the bookkeeping models' 4076 
ELUC, we do not add the loss of additional sink capacity to the bookkeeping estimate. 4077 


