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Abstract. The South China Sea (SCS) is the largest marginal sea in the North Pacific Ocean, where intensive field observations12

including mappings of the sea-surface partial pressure of CO2 (pCO2) have been conducted over the last two decades. It is one of13

the most studied marginal seas in terms of carbon cycling, and could thus be a model system for marginal sea carbon research.14

However, the cruise-based sea surface pCO2 datasets are still temporally and spatially sparse. Using a machine learning-based15

method facilitated by empirical orthogonal function (EOF) analysis, this study provides a reconstructed dataset of the monthly sea16

surface pCO2 in the SCS with a reasonably high spatial resolution (0.05º×0.05º) and temporal coverage between 2003 and 2020.17

The data input to our reconstructed model includes remote sensing-derived sea surface salinity, sea surface temperature, and18

chlorophyll, the spatial pattern of pCO2 constrained by EOF, atmospheric pCO2, and time-labels (month). We validated our19

reconstruction with three independent testing datasets that are not involved in the model training. Among them, Test 1 includes20

10% of our in situ data, Test 2 contains four independent in situ datasets corresponding to the four seasons, and Test 3 is an in situ21

monthly dataset available from 2003–2019 at the South East Asia Time-Series (SEATs) station located in the northern basin of the22

SCS. Our Test 1 validation demonstrated that the reconstructed pCO2 field successfully simulated the spatial and temporal patterns23

of sea surface pCO2 observations. The root-mean-square error (RMSE) between our reconstructed data and in situ data in Test 124

averaged ~10 μatm, which is much smaller (by ~50%) than that between the remote sensing-derived data and in situ data. Test 225

verified the accuracy of our retrieval algorithm in months lacking observations, showing a relatively small bias (RMSE: ~8 μatm).26

Test 3 evaluated the accuracy of the reconstructed long-term trend, showing that at the SEATs Station, the difference between the27

reconstructed pCO2 and in situ data ranged from -10 to 4 μ atm (-2.5% to 1%). In addition to the typical machine learning28

performance metrics, we assessed the uncertainty resulting from reconstruction bias and its feature sensitivity. These validations29
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and uncertainty analyses strongly suggest that our reconstruction effectively captures the main spatial and temporal features of sea30

surface pCO2 distributions in the SCS. Using the reconstructed dataset, we show the long-term trends of sea surface pCO2 in 531

sub-regions of the SCS with differing physico-biogeochemical characteristics. We show that mesoscale processes such as the Pearl32

River plume and China Coastal Currents significantly impact sea surface pCO2 in the SCS during different seasons. While the33

SCS is overall a weak source of atmospheric CO2, the northern SCS acts as a sink, showing a trend of increasing strength over the34

past two decades.35

36
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1 Introduction39

The ocean possesses a large portion of the global capacity for atmospheric carbon dioxide (CO2) sequestration, annually40

mitigating 22%–26% of the anthropogenic CO2 emissions associated with fossil fuel burning and land use changes over the period41

from 2012–2021 (Friedlingstein et al., 2022). Ocean margins are an essential part of the land-ocean continuum, representing a42

particularly challenging regime to study (e.g., Chen and Borges, 2009; Dai et al. 2022; Laruelle et al., 2014), as they are often43

characterized by large spatial and temporal variations in air-sea CO2 fluxes that lead to larger uncertainties in their overall44

estimation and predictions than those made in the open ocean (Dai et al., 2013, 2022; Cao et al., 2020; Laruelle et al., 2014; Chen45

and Borges, 2009 and the references therein). Limited spatiotemporal coverage of in situ observations is a large source of these46

uncertainties.47

In recent years, many studies have used numerical models or data-based approaches to improve estimates of the partial pressure of48

carbon dioxide (pCO2) at the sea surface and the accuracy of the global carbon budget for periods and regions with poor coverage49

of in situ data (e.g., Rödenbeck et al., 2015; Wanninkhof et al., 2013). Numerical models can successfully quantify the generally50

increasing trend in oceanic pCO2 and simulate some critical carbon cycling processes (e.g., net ecosystem production), but still51

suffer from regional and seasonal differences in their estimates of ocean carbonate parameters (e.g., Luo et al., 2015; Mongwe et52

al., 2016; Tahata et al., 2015; Wanninkhof et al., 2013). Thus, data-based approaches, which typically apply statistical53

interpolation and regression methods, have become an important complement to numerical models (e.g., Jones et al., 2014;54

Lefèvre et al., 2005; Landschützer et al., 2014, 2017; Telszewski et al., 2009). Statistical interpolation improves the spatial55

coverage of in situ data, but does not work for periods where in situ data are unavailable. Regression methods allow mapping of56

the relationships between in situ pCO2 data and other parameters that may drive changes in surface ocean pCO2, and then the57

extrapolation of this relationship to improve estimates of the spatiotemporal distribution of pCO2. Machine learning methods and58

remote sensing-derived products (as proxy variables in regression methods) have aided the development of data-based methods59

(Rödenbeck et al., 2015; Bakker et al., 2016), and can improve the model results for the oceanic carbonate system by numerical60
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assimilation methods. Consequently, machine learning has increasingly become a routine approach for reconstructing sea surface61

pCO2 in open ocean regimes (e.g., Zeng et al., 2017; Li et al., 2019); however, it remains challenging to extend this method to62

ocean margins, which are more dynamic in both time and space63

The South China Sea (SCS) is the largest marginal sea of the North Pacific Ocean, with a surface area of 3.5×106 km2. Although64

extensive field observations of sea surface pCO2 have been conducted in the SCS over the past two decades, their spatial and65

temporal coverage is still limited with respect to coverage of different physical-biogeochemical domains and sub-seasonal time66

scales (e.g., Guo et al., 2015; Li et al., 2020; Zhai et al., 2005; Zhai et al., 2013). Therefore, there is a strong need for improved67

surface water pCO2 coverage in the SCS to constrain air-sea CO2 fluxes and improve initial conditions of numerical models.68

Moreover, reasonably high spatiotemporal resolution of pCO2 data can help identify the controlling factors of pCO2 changes in the69

SCS, and reliably resolve long-term changes.70

Zhu et al. (2009) presented an empirical approach to estimate sea surface pCO2 in the northern SCS using remote71

sensing-derived (RS-derived) data, including sea surface temperature (SST) and chlorophyll a (Chl a). Their72

reconstructed pCO2 data were generally consistent with the in situ data. However, uncertainties remained large, primarily caused73

by limited in situ data from only two summer cruises in their study. Jo et al. (2012) developed a neural network-based algorithm74

using SST and Chl a to estimate sea surface pCO2 in the northern SCS. In their study, in situ sea surface pCO2 data were collected75

from three cruises during May 2001, and February and July 2004. The reconstruction also suffered a relatively large bias (Wang et76

al., 2021). Bai et al. (2015) employed a ‘mechanic semi-analytical algorithm (MeSAA)’ to estimate satellite remote77

sensing-derived sea surface pCO2 in the East China Sea from 2000–2014, and then expanded the application of this algorithm to78

estimate sea surface pCO2 for the whole China Seas region including the South China Sea. These authors explained that their79

MeSAA did not fully account for some localized processes, which resulted in a RMSE of about 45 µatm for the SCS (Wang et al.,80

2021). Yu et al. (2022) subsequently used a non-linear regression method to develop a retrieval algorithm for seawater pCO2 in the81

China Seas, and the RS-derived pCO2 data from 2003-2018 were provided by the SatCO2 platform (www.SatCO2.com). In this82

retrieval algorithm, the input parameters included sea surface temperature, Chl a concentrations, remote sensing reflectance at83

three bands (Rrs412, 443, 488 nm), the temperature anomaly in the longitudinal direction, and the theoretical thermodynamic84

background pCO2 under the corresponding SST. Although the RMSE associated with the RS-derived pCO2 product was relatively85

large (21.1 μatm), it successfully showed the major spatial patterns of sea surface pCO2 in the China Seas (Yu et al., 2022).86

To take advantage of both the high spatiotemporal resolution of the RS-derived pCO2 data and the accuracy of the in situ data,87

Wang et al. (2021) reconstructed a basin–scale sea surface pCO2 dataset in the SCS during summer using an empirical orthogonal88

function (EOF) based on a multi-linear regression method. They demonstrated that the spatial modes of RS-derived data89

calculated using the EOF can effectively provide spatial constraints on the data reconstruction, and thus this approach is adopted90

in this study. However, the reconstructed results may still be subject to bias when the standard deviation of spatial in situ data is91
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relatively large because of the influence of outliers (Wang et al., 2021). Therefore, many studies have used machine92

learning-based regression methods to reduce the influence of outliers in open ocean areas, and have achieved a RMSE of93

<17 μatm in most cases (e.g., Zeng et al., 2017; Li et al., 2019).94

Building on the ability of the EOF method to significantly improve reconstructions in terms of spatial patterns and accuracy95

(Wang et al., 2021), we developed a machine learning-based regression method facilitated by the EOF to fully resolve the96

long-term spatial distribution of sea surface pCO2 at a resolution of 0.05º×0.05º in the SCS. Our reconstructed model uses input97

data that includes remote sensing-derived sea surface salinity, sea surface temperature, and Chl a, the spatial pattern of pCO298

constrained by the EOF, atmospheric pCO2, and time labels (month). In addition to assessing typical machine learning99

performance metrics, we evaluated the uncertainty resulting from the bias of the reconstruction and its sensitivity to the features.100

101

2 Study site and data sources102

2.1 Study area103

The SCS, located in the northwestern Pacific, is a semi-enclosed marginal sea with a maximum water depth of ca. 4700 m (e.g.,104

Gan et al., 2006, 2010). The rhombus-shaped deep-water basin, with a southwest-northeast direction, accounts for about half of105

the total area of the SCS (Figure 1). Largely modulated by the Asian monsoon and topography, the SCS exhibits seasonally106

varying surface circulation, river inputs, and upwelling. The circulation of the upper layer shows a large cyclonic circulation107

structure in winter (Figure 1), while in summer it exhibits an anticyclonic circulation structure (Figure 1; Hu et al. 2010). In the108

northern SCS, the Pearl River discharges into the SCS with an annual freshwater input of 3.26 × 1011 m3 (e.g., Dong et al., 2004;109

Dai et al., 2014). The area influenced by the Pearl River plume may extend southeastward to a few hundred kilometers from the110

estuary in summer because of the monsoonal wind stress (Dai et al., 2014). The northern and western coastal regions of the SCS111

feature summer coastal upwelling, such as the Eastern Guangdong and Qiongdong upwelling systems in the northern SCS and the112

Vietnam upwelling systems in the western SCS (e.g., Cao et al., 2011; Chen et al., 2012; Gan et al., 2006; Gan et al., 2010; Li et113

al., 2020). These seasonal changes of sea surface circulation lead to strong seasonal characteristics of sea surface pCO2 in the114

SCS.115
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117
Figure 1. Topographic map of the South China Sea (SCS) showing basin wide cyclonic circulation in winter (solid line) and118

anticyclonic circulation over the southern half of the SCS in summer (dashed line). Also shown are the Kuroshio Branch119

(KB, orange line), the China Coastal Current (CCC, green line), and the Pearl River plume (PRP, blue line).120

121

The SCS is subject to dynamic water exchanges with the East China Sea via the Taiwan Strait and the Western Pacific via the122

Luzon Strait (Fig. 1). In winter, driven by the winter monsoon, the China Coastal Current (CCC, green line in Fig. 1; Han et al.,123

2013; Yang et al., 2022) flows south along the Chinese mainland through the Taiwan Strait, and occupies the northern SCS with124

cold, fresh, nutrient-rich waters. The strong northeast winds in winter also slow down the western boundary ocean current, forcing125

the intrusion of Kuroshio water featuring high surface salinity and high total alkalinity, into the SCS via the Luzon Strait (orange126

line in Fig. 1; Du et al., 2013; Park, 2013; Yang et al., 2022). These water exchange processes increase the complexity of the127

spatial distribution of sea surface pCO2 in the SCS, which as a result has strong seasonal characteristics and spatial variability.128

2.2 Observational pCO2 data129

Data collected from field surveys during the study period 2003-2020 are summarized in Table 1. Most observations were made in130

July, with fewer observations made in March and December of each year. The rough sea-state in the SCS in winter and early131

spring limited the field surveys during these seasons. Data collected from July 2000 to January 2018 were originally published by132

Li et al. (2020). The in situ pCO2 were collected from R/Vs Dongfanghong-2, Tan Kah Kee (TKK) (shown in Table 1). During the133

cruises, sea surface pCO2 was measured during the cruise. The measurements and data processing followed the SOCAT (Surface134

Ocean CO2 Atlas) protocol (Li et al., 2020). More details of the data collection methods are provided in Li et al. (2020). The135
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spatial coverage and frequency of the observations are shown in Figure 2, revealing pronounced seasonal changes across a large136

spatial area. For example, the spatial coverage of the in situ data in spring and fall are relatively uniformly distributed, and the137

south end of the spatial coverage reaches 5 ºN in spring, whereas during other seasons the data are concentrated in the northern138

and central regions of the SCS. In addition, only one observation was made in the basin area in winter, while the northern coastal139

area was more frequently surveyed, especially in summer.140

Table 1. Summary of seasonal in situ data of sea surface pCO2 in the South China Sea for the period 2003-2020 used in this141

study.142

Season Spring Summer

Cruise
time

March April May June July August

2004.03

2005.04
2008.04
2009.04
2012.04
2020.04*

2004.05
2011.05
2014.05
2020.05*

2006.06
2016.06
2017.06*
2019.06*
2020.06*

2004.07
2005.07
2007.07
2008.07
2009.07
2012.07
2015.07*
2019.07*

2007.08
2008.08
2019.08*

Season Fall Winter

Cruise
time

September October November December January February

2004.09
2007.09
2008.09
2020.09*

2003.10
2006.10

2006.11
2010.11

2006.12
2009.01
2010.01
2018.01

2004.02
2006.02

Data
source

Li et al. (2020)
*This study
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143

Figure 2. Cruise tracks of the observations conducted in the South China Sea in each season from 2000 to 2020: (a) Winter,144

(b) Spring, (c) Summer, and (d) Fall. The data collected before February 2018 are from Li et al. (2020), except those145

collected in July 2015 and June 2017.146

Figure 3 shows the spatial and temporal distributions of in situ sea surface pCO2. Seasonally, the lowest pCO2 occurs in January,147

and the highest concentrations occur in May and June. Spatially, the pCO2 distribution in the basin is relatively homogeneous,148

although is highly variable in the northern region. In the northern coastal area in summer, the pCO2 distribution is affected by the149

Pearl River plume (yielding low values) and coastal upwelling (yielding high values), which last into early fall. In winter and early150

spring, relatively low pCO2 values (~350 μatm) were found in the near-shore area. In addition, the high pCO2 values recorded on151

the western side of the Luzon Strait in December demonstrate the influence of winter upwelling during some of the surveys.152

In addition to the above in situ sea surface pCO2 data, we selected in situ sea surface pCO2 data collected during four independent153

surveys across the four seasons: September 2018 (fall), December 2018 (winter), August 2019 (summer), and April 2020 (spring)154

to verify the accuracy of our reconstruction model in extrapolating periods lacking training datasets. Furthermore, we used an155

additional dataset of sea surface pCO2 calculated from observed dissolved inorganic carbon and total alkalinity during 2003–2019156

Season
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at the Southeast Asia Time-Series (SEATs) station (data from Dai et al., 2022) to test the long-term consistency of the157

reconstruction.158

159

Figure 3. Seasonal and monthly sea surface pCO2 fields in the South China Sea: a. Winter; b. December; c. January; d.160

February; e. Spring; f. March; g. April; h. May; i. Summer; j. June; k. July; l. August; m. Fall; n. September; o. October;161

p. November. The data sources are given in Table 1.162

163

2.3 Remote sensing-derived sea surface pCO2 data164
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The gridded (0.05º×0.05º) RS-derived pCO2 data cover almost the entire SCS (5–25º N, 109–122º E), and show major variations165

in sea surface pCO2 at the basin scale (Wang et al., 2021; Yu et al., 2022). Further details of the RS-derived pCO2 data can be166

found on the SatCO2 platform (www.SatCO2.com).167

A grid-to-grid comparison was undertaken between the RS-derived pCO2 and the in situ pCO2 data (Table 2). The differences in168

between range from 35 to 120 μatm in the near-shore area. The largest biases occur in summer when the RMSE is up to 29.95169

μatm (Table 2). Relatively large discrepancies may reflect the limitations of the current algorithm (MeSAA and non-linear170

regression), which only considers biological processes and the turbidity induced by the Pearl River discharge (characterized by171

Chl a and the remote sensing reflectance at 555 nm (rrs555), and does not take into account the riverine dissolved inorganic172

carbon and the input of other substances that may affect pCO2 (Bai et al.,2015, Yu et al., 2022 and Wang et al.,2021)).173

To remove the influence of the bias in RS-derived pCO2 data on our reconstructed results, this study used the EOF method to174

compute the spatial patterns of the RS-derived pCO2 data as input data instead of directly using the RS-derived pCO2 data.175

Moreover, using EOF modes of the RS-derived pCO2 as input data in the reconstructed model can provide spatial constraints on176

the pCO2 reconstruction.177

Table 2. Biases between the seasonal remote sensing-derived pCO2 data and in situ pCO2 data, and between the178

reconstructed and the in situ pCO2 data. (unit: μatm; the remote sensing-derived pCO2 data during 2003-2019 are from179

www.SatCO2.com and the source of in situ data can be found in Table1. The reconstructed pCO2 data are from section 3;180

all data were gridded into 0.05°*0.05°; / means no data). MAE = mean absolute error; RMSE = root mean square error;181

R2= coefficient of determination; MAPE = mean absolute percentage error.182

RS-derived

pCO2 data
Training data Testing data I Testing data II Testing data III

Spring

MAE 9.00 2.44 4.76 1.68 /

RMSE 12.70 3.47 7.43 2.26 /

R2 / 0.98 0.92 / /

MAPE / 0.01 0.01 / /

Summer

MAE 16.75 2.48 8.46 5.73 /

RMSE 29.95 3.54 14.69 15.18 /

R2 / 0.99 0.89 / /

MAPE / 0.01 0.02 / /

Fall

MAE 9.93 2.41 4.90 7.133 /

RMSE 13.08 3.39 6.85 8.94 /

R2 / 0.98 0.92 / /
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MAPE / 0.01 0.01 / /

Winter

MAE 9.25 2.18 5.61 11.41 /

RMSE 14.26 3.14 8.82 12.63 /

R2 / 0.98 0.89 / /

MAPE / 0.01 0.01 / /

Annual

MAE 11.95 2.41 6.30 5.27 6.19

RMSE 20.66 3.43 10.79 11.18 8.26

R2 / 0.99 0.91 / /

MAPE / 0.01 0.01 / /

183

2.4 Other data184

The RS-derived SST data produced by MODIS (https://oceancolor.gsfc.nasa.gov/) are adopted in our reconstruction. The185

uncertainty of this dataset in the SCS is ~0.27o (Qin et al., 2014). For sea surface salinity (SSS) data, Wang et al. (2022) found186

relatively large differences between different open source SSS databases (i.e., multi-satellite fusion data from187

https://podaac.jpl.nasa.gov/; model data from https://climatedataguide.ucar.edu/; multidimensional covariance model data from188

https://resources.marine.copernicus.eu/) and the in situ SSS data. Thus, Wang et al. (2022) produced an RS-derived SSS database189

using machine learning methods based on the MODIS-Aqua remote sensing data. The bias between the RS-derived SSS (Wang et190

al., 2022) and in situ data was near-zero (mean absolute error, MAE: ~0.25). Next, we used Chl-a (from191

https://oceancolor.gsfc.nasa.gov/) as an indicator of biological influence, which has a bias of ~0.35 on a log scale and ~115% in192

the SCS (Zhang et al., 2006). Atmospheric pCO2 also influences sea surface pCO2 through air–sea CO2 exchange. We chose the193

atmospheric CO2 mole fraction (xCO2) data from the monthly mean CO2 concentrations measured at the Mauna Loa Observatory,194

Hawaii (https://gml.noaa.gov/), and then calculated the atmospheric pCO2 values from xCO2 using the method of Li et al. (2020).195

196

3 Methods197

The pCO2 reconstruction procedure is shown in Figure 4. It includes: (1) data processing and (2) model training and testing. For198

the former, we firstly gridded the in situ data and RS-derived pCO2 data into 0.05°×0.05° boxes with a monthly temporal199

resolution. Secondly, we filled missing pCO2 measurements with the RS-derived pCO2 data according to Fay et al. (2021) (see200

more details in Section 3.1). We then used EOF to ignore any biases in the RS-derived pCO2 dataset itself or from the pCO2 filling201

method. Thirdly, the gridded in situ pCO2 data and their corresponding RS-derived data were divided into a training set (90%) and202

a testing set (10%) to calculate the pCO2 retrieval model. To ensure that the model had sufficient training samples in the coastal203

area, we divided the entire SCS into two regions along the 200 m isobath (as shown in Figure 5). The data from these two regions204

删除[Author]:

删除[Author]:

here删除[Author]:

the删除[Author]:

SSS删除[Author]:

.删除[Author]:

the删除[Author]:

.Wang et al. (in preparation2022) found a

relatively high differential between the values found in

删除[Author]:

in preparation删除[Author]:

reconstructedproducted删除[Author]:

remote sensing删除[Author]:

删除[Author]:

by删除[Author]:

based on based on a combination of

MODIS-Aqua remote sensing data and a large cruise in

删除[Author]:

remote sensing删除[Author]:

reconstructed删除[Author]:

observed删除[Author]:

. Chl-a data from MODIS

(https://oceancolor.gsfc.nasa.gov/) are adopted in the present

删除[Author]:

have删除[Rick Smith]:

water删除[Author]:

atmosphere删除[Rick Smith]:

.删除[Author]:

T删除[Author]:

were calculated删除[Author]:

by删除[Author]:

5删除[Author]:

observed删除[Author]:

删除[Author]:

RS pCO2 data删除[Author]:

grid删除[Rick Smith]:

And all these data used in machine learning

have been interpolated on the same grid.

删除[Author]:

used the pCO2 filling method according to Fay

et al. (2021) to

删除[Author]:

the删除[Author]:

删除[Author]:

删除[Author]:

http://www.satco2.com
https://oceancolor.gsfc.nasa.gov/
https://podaac.jpl.nasa.gov/;
https://climatedataguide.ucar.edu/;
https://resources.marine.copernicus.eu/
https://podaac.jpl.nasa.gov/;
https://climatedataguide.ucar.edu/;
https://resources.marine.copernicus.eu/
https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/
https://gml.noaa.gov/


11

were divided into training and testing sets with the same ratios listed above (9:1), and then combined to obtain the final training205

and testing sets. Note that all the data used in the machine learning have been interpolated on the same grid.206

207

Figure 4. Procedure for the reconstruction of surface water pCO2 using machine learning. RS-derived data = remote208

sensing derived data, RMSE = root mean square error, MAPE= mean absolute percentage error, and R2 = coefficient of209

determination, and MAE = mean absolute error.210
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211

Figure 5. Spatial distributions of Training samples (a) and Testing samples (b); The black dashed line shows the 200 m212

isobath.213

For model training and testing, we chose a relatively reliable algorithm to undertake the pCO2 reconstruction. Next, we214

determined the optimal range of the parameters using hyperparameter methods (code from https://github.com/optuna/) for the215

training set. The final optimal parameter values were then determined using the K-fold and cross validation method (code from216

https://github.com/suryanktiwari/Linear-Regression-and-K-fold-cross-validation) for the training set. These optimal parameters217

were applied to the chosen algorithm. Finally, the testing set was used to verify the accuracy of the pCO2 retrieval algorithm218

produced by the training set, and some indicators of the model’s accuracy were calculated. More detailed methods employed in219

the present study are described below.220

3.1 Remote sensing data filling221

As mentioned in the SatCO2 platform (www.SatCO2.com), RS-derived pCO2 datasets have some missing values. Thus, we used222

the pCO2 data filling method suggested by Fay et al. (2021) to obtain the missing datapoints. First, a scaling factor for a filled223

month was calculated according to Equation 1:224

�����2 = �����,�(
���2

���

���2
����) (1)225

where �����2 is the scaling factor, ���2
��� is the monthly RS-derived pCO2 data, and ���2

���� is the monthly climatology226

RS-derived pCO2 data; x and y indicate that we took the area-weighted average over longitude (x) and latitude (y) to produce the227

monthly sfpCO2 value. Then, the filled portion of the data can be calculated from the ���2
���� data multiplied by the �����2 value228

(see Fay et al. (2021) for details of this method).229
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Briefly, this filling method scales the climatological monthly pCO2 field values to fill in the missing measurements. Therefore,230

although specific values may be biased, the interpolated measurements still retain the main spatial distribution pattern of the filled231

months.232

3.2 Feature engineering and selection233

As mentioned above, the pCO2 data filling method may bias some of the actual values. To avoid the influence of such biases on the234

reconstructed results, instead of directly using the RS-derived pCO2 data as features in our reconstructed model, we used the EOF235

method to obtain the main spatiotemporal distribution patterns of the RS-derived pCO2 data as features in our reconstructed model.236

The EOF reflects the spatial commonality of variables shown in the time-series, and thus it is widely used to calculate spatial237

patterns of climate variability (e.g. Levitus et al., 2005; Dye et al., 2020; McMonigal and Larson, 2022). Typically, the spatial238

commonality of variables (EOF modes) is found by computing the eigenvalues and eigenvectors of a spatially weighted anomaly239

covariance matrix of a field. Each EOF modes’ corresponding variance represents its degree of interpretation of the spatial pattern240

of a variable. For each of the 12 months, the cumulative variance contribution of the first eight EOF values was consistently >241

90%, indicating that it could explain the main pCO2 spatial characteristics during each month; we therefore selected them as242

features.243

The features selected in our reconstructed model can be divided into two main categories. In the first category, the features are244

related to the underlying physicochemical mechanisms controlling the pCO2 distribution: for example, that SST exerts a primary245

control on the seasonal variations in surface water pCO2 in the northern SCS (Zhai et al., 2005; Chen et al., 2007; Li et al., 2020).246

In the second category, they provide spatiotemporal information for the pCO2 reconstruction. Previous studies (Landschützer et al.,247

2014; Laruelle et al., 2017; Denvil et al., 2019) have shown that Chl-a plays a critical role in fitting the influence of biological248

activity to pCO2, especially in the northern SCS (Landschützer et al., 2014; Laruelle et al., 2017; Denvil et al., 2019). Sutton et al.249

(2017) suggest that increasing atmospheric pCO2 controls the overall increase in seawater pCO2. For the features that provide250

spatiotemporal information for the pCO2 reconstruction, in the present study we selected the first eight EOF values of pCO2 as the251

main spatial distribution feature and monthly information of the in situ datasets as the temporal feature.252

3.3 Algorithm selection253

Ensemble learning, which is the process of training multiple machine learning models and combining their output to improve the254

reliability and accuracy of predictions, is one of the most powerful machine learning techniques (e.g., Zhan et al., 2022; Chen et255

al., 2020). (e.g., Zhan et al., 2022; Chen et al., 2020). In other words, several different models are used as the basis to develop an256

optimal predictive model. There are two main ways to employ ensemble learning: bagging (to decrease the model’s variance), or257

boosting (to decrease the model’s bias). The random forest algorithm (code from https://scikit-learn.org/stable/) is an extension of258

the bagging method as it utilizes both bagging and feature randomness to create an uncorrelated forest of decision trees. The Light259

Gradient Boosting Machine (LightGBM; code from https://github.com/microsoft/LightGBM/) is a gradient boosting framework260

非上标/ 下标设置格式[Rick Smith]:

删除[Author]:

RS pCO2 data删除[Author]:

feengineered featured data (via the删除[Author]:

)删除[Author]:

删除[Author]:

RS pCO2 data删除[Author]:

删除[Rick Smith]:

, also named删除[Rick Smith]:

删除[Rick Smith]:

,删除[Rick Smith]:

are删除[Author]:

The EOF reflects the spatial commonality of

variables shown in the time series, thus it is widely used to

删除[Author]:

it删除[Rick Smith]:

,删除[Rick Smith]:

and删除[Rick Smith]:

selection删除[Rick Smith]:

T删除[Rick Smith]:

one删除[Rick Smith]:

is删除[Rick Smith]:

, and删除[Rick Smith]:

other one删除[Rick Smith]:

can删除[Rick Smith]:

:. fFor example, thate SST exerts a

primary dominating control on the seasonal variations in

删除[Zhixuan Wang]:

researches删除[Rick Smith]:

s删除[Author]:

the删除[Rick Smith]:

e in删除[Rick Smith]:

whereas删除[Rick Smith]:

observed删除[Author]:

provides删除[Rick Smith]:

It is the process of training multiple

machine learning models and combining their output to

删除[Rick Smith]:

Different删除[Rick Smith]:

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/climate-variation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/climate-variation
https://www.unite.ai/what-is-machine-learning/
https://scikit-learn.org/stable/)
https://scikit-learn.org/stable/)


14

that uses tree-based learning algorithms. LightGBM can be used for regression, classification, and other machine learning tasks; it261

exhibits rapid, high-performance as a machine learning algorithm. CATBOOST (code from https://github.com/catboost/) is a262

gradient boosting algorithm, which improves prediction accuracy by adjusting weights according to the data distribution and by263

incorporating prior knowledge about the dataset. This can help to reduce overfitting and improve general performance.264

From the above options, we chose three ensemble learning algorithms as the machine learning-based regression portion, and265

multi-linear regression methods (Wang et al., 2021) as the linear regression portion. We then used the K-fold and cross validation266

methods to verify the applicability of different regression algorithms in the pCO2 reconstruction for seasonal training data. The267

results show that in summer the CATBOOST algorithm yields the best degree of accuracy, with an RMSE of 16 μatm (Table R1).268

In contrast, the RMSE of LightGBM was 27 μatm, and that of Random Forest was 26 μatm. The RMSE was nearly 20 μatm using269

the linear regression algorithm employed by Wang et al. (2021). Thus, CATBOOST appears to provide a reliable algorithm for270

reconstructing pCO2. In the other three seasons, however, using different algorithms resulted in minor differences (~2 μatm in271

RMSE).272

Table 3. RMSEs associated with different algorithms in the four seasons.273

Season Random Forest LightGBM CATBOOST Multi-linear regression
(Wang et al., 2021)

Spring 10.65 μatm 9.52 μatm 8.17 μatm NaN*
Summer 26.53 μatm 27.83 μatm 16.15 μatm 20.13 μatm
Fall 10.34 μatm 11.56 μatm 10.35 μatm NaN

Winter 12.48 μatm 12.75 μatm 11.52 μatm NaN
*NaN stands for missing values274

275

3.4 Evaluation metrics276

It is necessary to evaluate the accuracy of any model based on certain error metrics before applying it to specific scenarios.277

Common model evaluation metrics include RMSE, MAPE, R2 (coefficient of determination), and MAE.278

The mean squared error (MSE) is the standard deviation of the residuals (prediction error), and the residuals are the distances279

between the fitted line and the data points (i.e., the residuals show the degree of concentration of the reconstructed data around280

the regression line. In regression analysis, RMSE is commonly used to verify experimental results. To assess bias, the RMSE281

needs to combine the magnitude of the model data and is calculated as:282

RMSE = 1
� �=1

� (�� − ���)2� . (2)283

where y stands for the in situ data, yr represents the reconstructed data, and n is the number of datapoints.284

The mean absolute percentage error (MAPE) is a statistical measure used to define the accuracy of a machine learning algorithm285

on a particular dataset. It is commonly used because, compared to other metrics, it uses a percentage to measure the magnitude of286
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the bias and is easy to understand and interpret; the lower the value of the MAPE, the better a model is at forecasting. MAPE is287

calculated as follows:288

MAPE = 1
� �=1

� |��−���|
|��|

� (3)289

The regression error metric, the coefficient of determination (R2), can describe the performance of a model by evaluating the290

accuracy and efficiency of modeled results: i.e., it indicates the magnitude of the dependent variable, calculated by the regression291

model, that can be explained by the independent variable. It is calculated as:292

R2 = 1 − �=1
� (��−��)2�

�=1
� (��−���)2�

(4)293

MAE is the average absolute difference between the in situ data (true values) and the model output (predicted values). The sign of294

these differences is ignored so that cancellations between positive and negative values do not occur. It is calculated as:295

MAE = 1
� �

� | �� − ���� | (5)296

3.5 Uncertainty297

In previous studies, RMSE and MAE have primarily been used to represent the uncertainties in reconstructed datasets. However,298

this expression of uncertainty ignores the sensitivity of the reconstructed model to the features: i.e., the biases that the features299

themselves pass to the reconstructed model are ignored. Moreover, it is clearly unreasonable to use a single RMSE or MAE value300

to represent the entire region because the spatial bias pattern in the coastal region clearly differs from that in the basin.301

Thus, here we present a novel method for calculating uncertainty, as shown below:302

����������� = ���([ �=1,�=1,�=1
� |��_����ℎ��_����(�,�,�)−���_����ℎ��_����(�,�,�)|

���_����ℎ��_����(�,�,�)�

���(�)+���(�)
, . . . , �=1,�=1,�=�

� |��_����ℎ��_����(�,�,�)−���_����ℎ��_����(�,�,�)|
���_����ℎ��_����(�,�,�)�

���(�)+���(�)
) ∗303

100% ∗ ���2_�����+( ����2
��������

)�������� (6)304

Equation (6) includes two terms: the first term is the conservative bias between the reconstructed pCO2 fields and the in situ data ,305

and the second is the sum over sensitivity of the reconstructed model to the features. For the first term in Equation 6, k stands for306

the kth month, ��_����ℎ��_����(�, �, �) stands for the kth monthly reconstructed data at longitude(i) and latitude(j), and307

���_����ℎ��_����(�, �, �) stands for the kth monthly in situ data at longitude (i) and latitude (j). Therefore, MAX in the first term308

stands for the maximum of the k monthly bias ratios. And ‘pCO2_recon’ stands for the reconstructed pCO2 data. In the second309

term, where �������� stands for the bias of the features. We conducted a sensitivity analysis using a chain rule to evaluate the310

influence of these biases in the features on pCO2. Then we estimated pCO2 changes due to these features’ variabilities by311

constraining these features based on our model, and computed ����2
��������

. For example, for ����2
����

, we only changed the value of SST312
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and kept the values of the other features constant to calculate the effect of each additional unit of SST on the simulated pCO2.313

4 Results and discussion314

4.1 Results315

The reconstructed pCO2 fields show relatively low values in the northern coastal region of the study area, and generally high316

values in the mid and southern basins (Fig. 6). The continuous changes of the spatiotemporal distribution can be found in the317

reconstruction results (Fig. 6). The reconstructed pCO2 fields show a trend of slow but sustained increases from 2003 to 2020.318

Spatial patterns of pCO2 change between 2003 and 2020, such that the coastal portion of the northern SCS shows relatively319

complex variability from multiple controlling factors, such as coastal upwelling, river plumes, biological activity, etc. However,320

pCO2 values in the mid and southern basins are relatively homogeneous, as they are mainly controlled by atmospheric pCO2321

forcing and SST. Temporal changes in pCO2 between 2003 and 2020, are relatively large (~44 μatm) in summer and relatively322

small (~33 μatm) in winter.323

,删除[Author]:

results删除[Author]:

of the删除[Author]:

simulation删除[Author]:

study删除[Rick Smith]:

but删除[Rick Smith]:

shows删除[Rick Smith]:

continuity删除[Author]:

because删除[Rick Smith]:

of删除[Rick Smith]:

because删除[Rick Smith]:



17

324

Figure 6. Reconstructed seasonal and annual pCO2 fields in the South China Sea from 2003 to 2020 (a, 2003-2011; b,325

2012-2020).326

4.2 Model validation327

Figure 7 compares the monthly reconstructed and in situ data. For the training dataset, the reconstructed pCO2 fields of the four328

seasons fit the in situ data well (Fig. 7), with an average RMSE of 3.43 μatm and an average MAE of 2.14 μatm (Table 2). For the329

testing sets, although there are some outliers, most of the reconstructed pCO2 data are consistent with the in situ data, with RMSE330

averaging 10.79 μatm and MAE averaging 6.30 μatm. The R2 of the testing set is ca. 0.91. In terms of MAPE, the accuracies of331

the four seasonal models are all around 99% (Table 2), with the highest value for spring data and the lowest value for summer data.332
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The relatively large bias (14.67 μatm) in the summer may be the influence of relatively complex regional processes, such as river333

plumes and upwelling. The four evaluation metrics indicate that our reconstructed pCO2 field is highly accurate in simulating both334

the training and testing sets.335

336

Figure 7. Comparisons between the monthly reconstructed and in situ pCO2 values for the testing set (monthly results are337

grouped into the four seasons: (a) Winter: Dec., Jan., Feb.; (b) Spring: Mar., Apr., May; (c) Summer: Jun., Jul., Aug.; (d)338

Fall: Sept., Oct., Nov.).339

The distributions of the biases between the reconstructed fields and the in situ data for both the training and testing datasets can be340

found in Figure 8. In terms of the temporal pattern, the larger biases were more concentrated in the summer. For the spatial pattern,341

the biases in the northern coastal area are much greater than those in the basin. However, 95% of the biases are < ±10 μatm;342

therefore, our reconstructed dataset exhibits relatively high accuracy.343
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345

Figure 8. Differences between the reconstructed and in situ pCO2 data both seasonally and monthly for the testing set (a.346

Winter; b. December; c. January; d. February; e. Spring; f. March; g. April; h. May; i. Summer; j. June; k. July; l. August;347

m. Fall; n. September; o. October; p. November). .348

Figure 9 shows the bias between our reconstructed fields and the four independent in situ datasets corresponding to the four349

seasons. This validation can verify the accuracy of the retrieval algorithm for months without observations, namely the350

applicability of the retrieval algorithm extrapolation. This comparison shows that the retrieval algorithm is relatively accurate in351

the basin, with a near-zero bias (MAE: ~8 μatm, Fig. 9 a). The largest bias occurs in the Pearl River plume area in summer (~35352

μatm). The retrieval algorithm also has a high accuracy for pCO2 spatial variability, except in the Pearl River plume area in353

summer (22–20 oN, Fig. 9 b–e). The effect of the Pearl River plume on the pCO2 spatial distribution in our retrieval algorithm is354

smaller than that shown by the in situ data. This is because at around the survey time (August 24–28, 2019), a large amount of355

删除[Author]:

seasonal and monthly删除[Rick Smith]:

and the observedin situ pCO2删除[Rick Smith]:

w删除[Author]:

The open circles represent the difference

between the training set and observational datain situ data,

删除[Author]:

field observation删除[Author]:

e删除[Author]:

reconstruction model删除[Author]:

in删除[Rick Smith]:

data删除[Rick Smith]:

no删除[Author]:

e删除[Author]:

reconstruction model删除[Author]:

e删除[Author]:



20

precipitation (~30mm/day; https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.surface.html) occurred around the Pearl River356

estuary region (24–20 oN), which led to intensification of the Pearl River plume. The plume has relatively low pCO2 values that357

eventually decreased the observed values along the coast. However, the monthly average runoff of the Pearl River during that358

month (August, 2019; http://www.pearlwater.gov.cn/; Pearl River Plume Index in Wang et al., 2022) was low, indicating that our359

retrieval algorithm is still highly reliable from the perspective of monthly averages. Thus, the inconsistencies between the360

reconstructed (monthly average) and the in situ datasets are mainly due to the differences in the time scales of the remote sensing361

and the in situ data. The reconstructed data in this study were determined on a monthly scale, while the temporal resolution of362

the in situ data was on the order of hours. It is clear that relatively pronounced short-term changes in pCO2, such as the diurnal363

variability caused by short-term heavy precipitation, cannot be reflected in the reconstructed data.364

365

366

Figure 9. Difference between the reconstructed pCO2 data and four independently tested in situ datasets during the four367

seasons. In (a), the numbers 1–4 represent September (2018.9, b), December 2018 (2018.12, c), August 2019 (2019.8, d), and368

April 2020 (2020.4, e), respectively.369

Dai et al. (2022) produced a time-series of in situ data from 2003 to 2019 at the SEATs station, which we used here to validate the370

accuracy of the long-term trends of our model data (results shown in Fig. 10). The long-term trend of reconstructed pCO2 data at371

the SEATs station is largely consistent with the in situ data, with differences mainly found before 2005. Thus, the long-term trend372

produced in our reconstructed model is also highly reliable.373
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374

Figure 10. Comparison of the reconstructed pCO2 with in situ data at the Southeast Asia Time Series (SEATs) station (116◦375

E, 18◦ N). The in situ data are from Dai et al. (2022), which were calculated from dissolved inorganic carbon and total376

alkalinity values.377

378

4.3 Uncertainties379

As shown in Table 2, our reconstructed data have a high degree of accuracy, with an RMSE of ~10 μatm and MAE of ~6 μatm.380

According to Equation 6, the bias of RS-derived pCO2 data used in the second term of Equation 6 is ~21 μatm (Table 2), the bias381

of SST is ~ 0.27°C (Qin et al., 2014), the bias of SSS is ~0.33 (Wang et al., 2022), and the bias of Chl-a is ~115% (Zhang et al.,382

2006). We then estimated the pCO2 changes due to these features’ variations by constraining these features based on our model,383

and computed ����2
��������

.384

The overall uncertainty in the reconstructed dataset is greater in the coastal area (~13 μatm) than in the basin (~10 μatm) (Fig. 11385

a), and this spatial pattern is mainly determined by the second term in Equation 6. The spatial distribution of the first term in386

Equation 6 (Fig. 11 b), calculated from a “max bias ratio,” is consistent with that of pCO2 (Fig. 11 b). The second term in387

Equation 6 (Fig. 11 c) is calculated from the propagation of bias from each variable (Fig. 11 c). The Chl a bias (Fig. 11 f) shows it388

has the greatest effect on the reconstruction, among all the features (Fig. 11 f). Although the bias of the RS-derived pCO2 data is389

relatively large, the final influence it has on the results from the retrieval algorithm is negligible due to the use of the EOF method390

(Fig. 11 g).391
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392
Figure 11. Uncertainties of the reconstructed pCO2 fields (a, Total uncertainty in Equation 6; b. the first term of Equation393

6; c. the second term of Equation 6; d. (�����
����

)���� in the the second term of Equation 6; e. (�����
����

)���� in the the394

second term of Equation 6; f. ( �����
���� �

)���� � in the the second term of Equation 6; g.395

( �����
���_�������_����

)���_�������_���� in the the second term of Equation 6.396

4.4 Spatial and temporal pCO2 features397

The climatological monthly reconstructed pCO2 fields are shown in Figure 12. The highest values occur in May and June, and the398

lowest values occur in January. In winter, pCO2 first decreases in December and then increases after January; the pCO2 value is ca.399

325 μatm in the northern coastal area, and ca. 350 μatm in the basin. In spring, pCO2 gradually increases from the basin to the400

northern coastal area, and the high pCO2 values in the central basin gradually expand outward starting in April. In summer, pCO2401

gradually declines starting in June. In fall, pCO2 increases from north to south, and the southern region shows consistently high402

values.403

These two parts were then added together to

obtain the final uncertainty, and results are displayed in Figure

删除[Author]:

删除[Author]:

stands for the删除[Author]:

stands for the删除[Author]:

stands for the删除[Author]:

stands for the删除[Author]:

<math>删除[Author]:

Figure 11. Uncertainties of the

reconstructed pCO2 fields.

删除[Author]:

of the reconstructed pCO2 fields删除[Rick Smith]:

s删除[Rick Smith]:

in删除[Author]:

非上标/ 下标设置格式[Rick Smith]:

非上标/ 下标设置格式[Rick Smith]:

high-value删除[Rick Smith]:

center删除[Rick Smith]:

s删除[Rick Smith]:



23

404

Figure 12. Long-term (2003–2020) seasonal and monthly average pCO2 field (unit: μatm) (a. Winter; b. December; c.405

January; d. February; e. Spring; f. March; g. April; h. May; i. Summer; j. June; k. July; l. August; m. Fall; n. September;406

o. October; p. November).407

To better show specific regions in the northern coastal area, we zoomed in on the reconstructed pCO2 fields at locations north of408

18°N (Fig. 13). The reconstructed pCO2 fields successfully reflect the influence of the meso-small scale processes on pCO2 in this409

northern coastal area of the SCS. For example, in winter, the relatively low pCO2 values, which last into early spring, are mainly410

controlled by the low SST, and the high pCO2 around Luzon Strait affected by winter upwelling. In summer, the reconstructed411

pCO2 field shows that the influence of the Pearl River plume on pCO2 is the strongest in July and lasts until September; it also412

effectively shows the influence of coastal upwelling in the northeastern shelf (~23°N, 117°E). Thus, our reconstructed pCO2 fields413

clearly reflect the spatial pattern of the in situ pCO2 (Fig. 3), which are generally consistent with previously reported patterns (Li414

et al., 2020; Zhai et al., 2013; Gan et al., 2010).415
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416
417

Figure 13. Long-term (2003–2020) seasonal and monthly averaged pCO2 field in the region north of 18°N (unit: μatm) (a.418

Winter; b. December; c. January; d. February; e. Spring; f. March; g. April; h. May; i. Summer; j. June; k. July; l. August;419

m. Fall; n. September; o. October; p. November).420

421

422

Figure 14. Time series of spatially averaged monthly pCO2 data in five subregions (a-e) and the entire South China Sea (f)423
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under study. The sub-regions are shown in (g). The lines indicate the deseasonalized long-term trend of the spatially424

averaged monthly pCO2 data for each sub-region with the slopes shown in Table 3. The deseasonalized method can be425

found in Landschützer et al. (2016).426

427

Table 4. Deseasonalized long-term trend of the spatially averaged monthly pCO2 data for each sub-region of the South428

China Sea. (unit: μatm yr-1).429

All_region Subregion_A Subregion_B Subregion_C Subregion_D Subregion_D

Reconstructed pCO2 2.12±0.17 1.82±0.14 2.23±0.12 2.17±0.12 2.20±0.13 2.16±0.13

In situ pCO2 2.10±0.79 1.80±0.86 1.73±0.84 1.81±0.85 1.41±1.16 2.13±1.10

430

We divided SCS into five sub-regions according to Li et al. (2020). In Fig.14, Subregion_A stands for the northern coastal area of431

the SCS, Subregion_B stands for the slope area of the northern SCS, Subregion_C stands for the SCS basin, Subregion_D stands432

for the region west of the Luzon Strait, and Subregion_E stands for the slope and basin area of the western SCS. “All_region”433

indicates the whole region containing the five sub-regions described above. We then calculated the deseasonalized long-term trend434

of spatially averaged monthly data for each sub-region, and the results are shown in Figure 14 and Table.3. This deseasonalized435

trend is consistent with that of in situ data, and its uncertainty is on the 95% confidence interval much lower than that shown by436

the in situ data. We can thus also infer that the long-term trend of our reconstructed data shows high reliability in all sub-regions,437

and that our data can serve as an important basis for predicting future changes of pCO2 in the SCS.438

In Fig.14 a-e, we found that the sea surface pCO2 of the entire SCS is slightly higher than the atmospheric pCO2, indicating that439

the SCS is a weak source of atmospheric CO2. This conclusion is consistent with previous studies (e.g., Li et al., 2020). Moreover,440

compared to the rate of atmospheric CO2 increase (~2.2 μatm yr-1), for Subregion_A, the pCO2 trend is much slower than that of441

atmospheric pCO2, and the spatially averaged monthly mean pCO2 is lower than the atmospheric pCO2. Thus, carbon442

accumulation in this region is expected to increase in the future. For rSubregion_C and Subregion_E, the spatially averaged443

monthly mean pCO2 is higher than the atmospheric pCO2; thus, these two regions will still provide a weak source of atmospheric444

CO2 in the future. Finally, whether Subregion_B and Subregion_D act as a source or sink of the atmospheric CO2 is influenced by445

seasonal changes and physical processes. Subregion_B can be a zone of significant sink of atmospheric CO2 as demonstrated by446

its low sea surface pCO2 when the Pearl River plume spreads more widely in summer. In contrast, in winter when the Kuroshio447

intrusion is strong, both Subregions B and D have high sea surface pCO2, indicating both subregions are sources of atmospheric448

CO2.449

450
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The data (the reconstructed pCO2 data, the in situ pCO2 data before 2018 (0.5o0.5o), and the remote sensing derived CO2 data)452

for this paper are available under the link https://doi.org/10.57760/sciencedb.02050. (Wang & Dai, 2022).453

454

6 Conclusions455

Based on the machine learning method, we reconstructed the sea surface pCO2 fields in the SCS with an 0.050.05o spatial456

resolution over the last two decades (2003-2020) by calculating the statistical relationship between the in situ pCO2 data and457

RS-derived data. The input data we used in machine learning include RS-derived data (sea surface salinity, sea surface458

temperature, chlorophyll), the spatial patterns of pCO2 calculated by EOF, atmospheric CO2, and time labels (month). The459

machine learning method (CATBOOST) used in this study was facilitated by the EOF method which provides spatial constraints460

for the data reconstruction. In addition to the typical machine learning performance metrics, we present a novel method for461

uncertainty calculation that incorporates the bias of both the reconstruction and the sensitivity of reconstructed models to its462

features. This method effectively shows the spatiotemporal patterns of bias, and makes up for the spatial representation of the463

typical performance metrics.464

We validate our reconstruction with three independent testing datasets, and the results show that the bias between our465

reconstruction and in situ pCO2 data in the SCS is relatively small (about 10 μatm). Our reconstruction successfully captures the466

main features of the spatial and temporal patterns of pCO2 in the SCS, indicating that we can use these reconstructed data to467

further analyze the effect of meso-microscale processes (e.g., the Pearl River plume, and CCC) on sea surface pCO2 in the SCS.468

We divided the SCS into five sub-regions and separately calculated the deseasonalized long term trend of pCO2 in each subregion,469

and compared them with the long-term trend of atmospheric pCO2. Our results show that the reconstructed data are consistent470

with those of in situ data. Moreover, the strength of the CO2 sink in the northern SCS shows an increasing trend, whereas pCO2471

trends in other subregions are essentially the same as that of atmospheric pCO2.472

This high spatiotemporal resolution of sea surface pCO2 data is helpful to clarify the controlling factors of pCO2 change in the473

SCS and may be useful to predict changes of CO2 source or sink patterns in this system.474
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