			删除[Author]: of
1	Spatial reconstruction of long-term (2003-2020) sea surface <i>p</i> CO ₂ in the		删除[Author]: and constraints of spatiotemporal modes of
r	South China Sea using a machine learning based regression method		删除[Author]: The SCS
2	South China Sea using a machine learning based regression method		删除[Author]: and
3	aided by empirical orthogonal function analysis		删除[Author]: .
4	Zhixuan Wang ¹ , Guizhi Wang ^{1,2} , Xianghui Guo ¹ , Yan Bai ³ , Yi Xu ¹ and Minhan Dai ^{1,*}		删除[Author]: mapping sea surface pCO_2 of this region is …
5	¹ State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen,		删除[Author]: which
6	361102, China		删除[Author]: The South China Sea (SCS) is the largest …
7	² Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China		删除[Author]: datasets of
8	³ State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic		删除[Author]: incomplete
9	Administration, Hangzhou, 310012, China		删除[Author]: capable of constraining the spatiality
10	Correspondence to: Minhan Dai (mdai@xmu.edu.cn)		删除[Author]: and selecting the remote sensing derived …
11			删除[Author]: input
12	Abstract. The South China Sea (SCS) is the largest marginal sea in the North Pacific Ocean, where intensive field observations		删除[Author]: in
13	including mappings of the sea-surface partial pressure of CO ₂ (pCO ₂) have been conducted over the last two decades. It is one of		删除[Author]: O
14	the most studied marginal seas in terms of carbon cycling, and could thus be a model system for marginal sea carbon research,		删除[Author]: ion was initiated by using
15	However, the cruise-based sea surface pCO ₂ datasets are still temporally and spatially sparse. Using a machine learning-based		删除[Author]: s
16	method facilitated by empirical orthogonal function (EOF) analysis, this study provides a reconstructed dataset of the monthly sea		删除[Author]: the
17	surface pCO_2 in the SCS with a reasonably high spatial resolution (0.05°×0.05°) and temporal coverage between 2003 and 2020.		删除[Author]:
18	The data input to our reconstructed model includes remote sensing derived sea surface salinity, sea surface temperature, and		删除[Author]: data (which include
19	chlorophyll, the spatial pattern of pCO ₂ constrained by EOF atmospheric pCO ₂ , and time-labels (month), We validated our		副除[Author]: and
20	reconstruction with three independent testing datasets that are not involved in the model training. Among them, Test 1 includes		则际[Autor]. and
21	10% of our <u>in situ</u> data, Test 2 contains four independent, in situ datasets corresponding to the four seasons, and Test 3 is an in situ		mll你[Author]: s
22	monthly dataset available from 2003–2019 at the South East Asia Time-Series (SEATs) station located in the northern basin of the		删际[Author]: calculated
23	SCS. Our Test 1 validation demonstrated that the reconstructed p CO ₂ field successfully simulated the spatial and temporal patterns		删除[Author]:)
24	of sea surface pCO_2 observations. The root-mean-square error (RMSE) between our reconstructed data and in situ data in Test 1		删除[Author]:
25	averaged $\sim 10 \mu$ atm, which is much smaller (by $\sim 50\%$) than that between the remote sensing- <u>derived data</u> and <u>in situ</u> data. Test 2		删除[Author]: as inputs data
26	verified the accuracy of our retrieval algorithm, in months lacking observations, showing a relatively small bias (RMSE: ~8 µatm).		删除[Author]:,
27	Test 3 <u>evaluated</u> the accuracy of the reconstructed long-term trend, showing that at the SEATs Station, the difference between the		删除[Author]: (it indicates that this part of the datawhich
28	reconstructed pCO ₂ and in situ, data ranged from -10 to 4 µ atm (-2.5% to 1%). In addition to the typical machine learning		删除[Author]: is completely
29	performance metrics, we assessed the uncertainty resulting from reconstruction bias and its feature sensitivity. These validations		删除[Author]: un
	1		删除[Author]:)
			删除[Author]: where,
			删除[Author]: EST
		# #NUU	

删除[Author]: ocean

			删除[Author]:	analysis
30	and uncertainty analyses strongly suggest that our reconstruction effectively captures the main spatial and temporal features of sea /		删除[Author]:	in both the spatial and temporal patternso
31	surface pCO_2 distributions in the SCS. Using the reconstructed dataset, we show the long-term trends of sea surface pCO_2 in 5 /	/	删除[Author]:	much
32	sub-regions of the SCS with differing physico-biogeochemical characteristics. We show that mesoscale processes such as the Pearl		删除[Author]:	and
33	River plume and China Coastal Currents significantly impact sea surface pCO_2 in the SCS during different seasons. While the		删除[Author]:	essd
34	SCS is overall a weak source of atmospheric CO ₂ , the northern SCS acts as a sink, showing a trend of increasing strength over the		删除[Author]:	the
35	past two decades.		删除[Author]:	S
36			删除[Author]:	during
37	Key words: Sea surface pCO_2 ; reconstruction; machine learning; South China Sea		删除[Author]:	1960
38			删除[Author]:	19
39	1 Introduction		删除[Author]:	0
40	The ocean possesses a large portion of the global capacity for atmospheric carbon dioxide (CO ₂) sequestration, annually		 删除[Author]:	However, it remains largely unknown whe
41	mitigating, 22%–26% of the anthropogenic CO ₂ emissions associated with fossil fuel burning and land use changes over the period			,
42	from <u>2012</u> –20 <u>21</u> (Friedlingstein et al., 2022). Ocean margins are, an essential part of the land-ocean continuum, representing a		删除[admin]:	and despite occupying only 7% of the surfactory
43	particularly challenging regime to study (e.g., Chen and Borges, 2009; Dai et al. 2022; Laruelle et al., 2014), as they are often	$\overline{\}$	删除[Author]:	and
44	characterized by large spatial and temporal variations in air-sea CO ₂ fluxes that lead to larger uncertainties in their overall	$\langle \rangle$	删除[admin]:	
45	estimation and predictions than those made in the open ocean (Dai et al., 2013, 2022; Cao et al., 2020; Laruelle et al., 2014; Chen		则除[author].	Thiss laws uppertainty is minimarily offsile []
46	and Borges, 2009 and the references therein). Limited spatiotemporal coverage of in situ observations is a large source of these			
47	uncertainties.			bilities
48	In recent years, many studies have used numerical models or data-based approaches to improve estimates of the partial pressure of		删除[Author]:	у
49	<u>carbon dioxide (pCO_2) at the sea surface</u> and the accuracy of the global carbon budget for periods and regions with poor coverage		删除[Author]:	of
50	of in situ data (e.g., Rödenbeck et al., 2015; Wanninkhof et al., 2013). Numerical models can successfully quantify the generally		删除[Author]:	even
51	increasing trend in oceanic <u>pCO₂</u> and <u>simulate</u> some critical carbon cycling <u>processes</u> (e.g., net ecosystem production), but still		删除[Author]:	у
52	suffer from regional and seasonal differences in their estimates of ocean carbonate parameters (e.g., Luo et al., 2015; Mongwe et		删除[Author]:	prediction
53	al., 2016; Tahata et al., 2015; Wanninkhof et al., 2013). Thus, data-based approaches, which typically apply statistical		删除[Author]:	those
54	interpolation and regression methods, have become an important complement to numerical models (e.g., Jones et al., 2014;		删除[Author]:	occurring
55	Lefèvre et al., 2005; Landschützer et al., 2014, 2017; Telszewski et al., 2009). Statistical interpolation improves the spatial		删除[Author]:	al data
56	coverage of in situ data, but does not work for periods where in situ data are unavailable. Regression methods allow mapping of		删除[Author]:	n important
57	the relationships between in situ pCO_2 data and other parameters that may drive changes in surface ocean pCO_2 , and then the		删除[Author]:	sea surface
58	extrapolation of this relationship to improve estimates of the spatiotemporal distribution of pCO ₂ . Machine learning methods and		删除[Author]:	partial pressure
59	remote sensing-derived products (as proxy variables in regression methods) have aided the development of data-based methods		删除[Author]:	CO ₂ distribution
60	(Rödenbeck et al., 2015; Bakker et al., 2016), and can improve the model results for the oceanic carbonate system by numerical		删除[Author]:	observational
	2		删除[admin]:	ocean

删除[Author]: of performance

删除[Author]: CO2

			删除[Author]: Thus
61	assimilation methods. Consequently, machine learning has increasingly become a routine approach for reconstructing sea surface.		删除[Author]: been
62	acconstruction includes. Consequences (e.g., Zeng et al. 2017: Li et al. 2019): however, it remains challenging to extend this method to	$\overline{\mathbb{N}}$	删除[Author]: widely used forin
63	ocean marging which are more dynamic in both time and space		删除[Author]: the
64	The South China Sea (SCS) is the largest marginal sea of the North Pacific Ocean, with a surface area of 3.5×10^6 km ² . Although		删除[Author]: on
65	extensive field observations of sea surface nCO_2 have been conducted in the SCS over the past two decades, their spatial and		删除[Author]: of
66	temporal coverage is still limited with respect to coverage of different physical-biogeochemical domains and sub-seasonal time		删除[Author]: for the global ocean
67	scales (e.g. Guo et al. 2015: Li et al. 2020: Zhai et al. 2005: Zhai et al. 2013). Therefore, there is a strong need for improved		删除[Author]: (refs?
68	surface water nCO_2 coverage in the SCS to constrain air-sea CO_2 fluxes and improve initial conditions of numerical models		删除[Author]: .
60	Surface water $p \in O_2$ coverage in the SeS $\frac{1}{200}$ constraint an sea CO_2 nucles and improve initial conditions of numerical models.		删除[Author]: hH
70	Note over, $\frac{1}{\sqrt{2}}$ cases and reliably resolve long term changes		则你(Author). still
70	The at al. (2009) presented an empirical approach to estimate see surface pCOs in the portherm SCS using remote		mure a constant a cons
71	Zhu et al. (2009) presented an empirical approach to estimate, sea surface $p_{\rm CO_2}$ in the northern SCS, using temote		删除[admin]: marginal seas
72	sensing-perived (RS-derived) data, including sea surface temperature (SST) and chlorophyll a (Chl a_{1} , Their		删除[Author]: featuringe
73	reconstructed pCO_2 data were generally consistent with the <u>in situ</u> data. However, <u>incertainties remained large</u> , <u>primarily</u> caused		删除[Author]: changes in both time and spacespatially an …
74	by Jimited <u>In situ</u> data <u>from</u> only two summer cruises <u>in their study</u> . Jo et al. (2012) developed a neural network-based algorithm		删除[Author]: have been conducted
/5	using SST and Chl <i>a</i> to estimate sea surface pCO_2 in the northern SCS. In their study, in situ sea surface pCO_2 data were collected		删除[Author]: in
76	from three cruises during May 2001 and February and July 2004. The reconstruction also suffered a relatively large bias (Wang et		删除[Rick Smith]: in different
77	al 2021). Bai et al. (2015) employed a 'mechanic semi-analytical algorithm (MeSAA)' to estimate satellite remote		删除[Rick Smith]: of the SCS
78	sensing-derived sea surface pCO_2 in the East China Sea from 2000–2014, and then expanded the application of this algorithm to		删除[Rick Smith]: at
79	estimate sea surface pCO_2 for the whole China Seas region including the South China Sea. These authors explained that their		删除[Author]: clear
80	<u>MeSAA</u> did not fully account for some local <u>ized</u> processes, which resulted in a RMSE of about 45 µatm for the SCS (Wang et al.,		删除[Rick Smith]: to achieve
81	2021), Yu et al. (2022) subsequently used a non-linear regression method to develop a retrieval algorithm for seawater pCO_2 in the		删除[Rick Smith]: with a highest spatiotemporal resolutic …
82	China Seas, and the RS-derived pCO ₂ data from 2003-2018 were provided by the SatCO ₂ platform (www.SatCO2.com). In this		删除[Rick Smith]: in the SCS
83	retrieval algorithm, the input parameters included sea surface temperature, Chl a concentrations, remote sensing reflectance at		删除[Author]: and
84	three bands (Rrs412, 443, 488 nm), the temperature anomaly in the longitudinal direction, and the theoretical thermodynamic		
85	background pCO ₂ under the corresponding SST. Although the RMSE associated with the RS-derived pCO ₂ product was relatively		mipk[Kick Smin]: so as toneip
86	large (21.1 µatm), it successfully showed the major spatial patterns of sea surface pCO ₂ in the China Seas (Yu et al., 2022).		删除[Author]: develop
87	To take advantage, of both the high spatiotemporal resolution of the RS-derived pCO2 data and the accuracy of the in situ data,		删除[Author]: d
88	Wang et al. (2021) reconstructed a basin-scale sea surface pCO ₂ dataset in the SCS during summer using an empirical orthogonal		删除[Author]: a
89	function (EOF) based on a multi-linear regression method, They demonstrated that the spatial modes of RS-derived data		删除[Author]: the
90	calculated using the EOF can effectively provide spatial constraints on the data reconstruction, and thus this approach is adopted		删除[Author]: that
91	in this study. However, the reconstructed results may still be subject to bias, when the standard deviation of spatial in situ data is		删除[Author]: d
	3		删除[Author]: in summer

删除[Author]: satellite

删除[Author]: -

			设置格式[admin]: 非突出显示
92	relatively large because of the influence of outliers (Wang et al. 2021). Therefore, many studies have used machine /		删除[Author]: the
93	learning-based regression methods to reduce the influence of outliers in open ocean areas and have achieved a RMSE of		删除[Author]: for
94	<17 ustm in most cases (e.g. Zeng et al. 2017: Li et al. 2019)		删除[Rick Smith]: with
95 95	Ruilding on the ability of the EOE method to significantly improve reconstructions in terms of spatial patterns and accuracy		删除[Author]: of
96	(Wang et al. 2021) we developed a machine learning based regression method facilitated by the EOE to fully resolve the		删除[Rick Smith]: up
97	(wang et al., 2021), we developed a machine rearing-based regression method facilitated by the EOF $\underline{-0.100}$ resolution of $0.05^{\circ} \times 0.05^{\circ}$ in the SCS. Our reconstructed model uses input		删除[Rick Smith]: that
08	data that includes remote sensing derived sea surface salinity sea surface temperature, and Chl a the spatial pattern of nCO_2		删除[Rick Smith]: d
00	constrained by the EOE atmospheric nCO: and time labels (month). In addition to assessing turnical machine learning		删除[Rick Smith]: the
100	constrained by the EOF, autospheric pCO ₂ , and three labers (month). In addition to assessing typical machine rearring		副除[Author].
100	performance metrics, we evaluated the uncertainty resulting from the bias of the reconstruction and its sensitivity to the realures.		则际[Aumor]: ,
101			删际[Rick Smith]: Aand the input data in
102	2 Study site and data sources		删除[Rick Smith]: o
103	2.1 Study area		删除[Rick Smith]: include
104	The SCS, located in the northwestern Pacific, is a semi-enclosed marginal sea, with a maximum water depth of ca. 4700 m (e.g.,		删除[admin]: chlorophyll
105	Gan et al., 2006, 2010). The rhombus-shaped deep-water basin, with a southwest-northeast direction, accounts for about half of		删除[Author]: the
106	the total area of the SCS (Figure 1). Largely modulated by the Asian monsoon and topography, the SCS exhibits seasonally		删除[Rick Smith]: assessed
107	varying surface circulation, river inputs, and upwelling. The circulation of the upper layer shows a large cyclonic circulation		删除[Author]: we present a novel uncertainty calculation …
108	structure in winter (Figure, 1), while in summer it exhibits an anticyclonic circulation structure, (Figure, 1; Hu et al. 2010). In the		删除[XHGuo]: sea basin
109	northern SCS, the Pearl River discharges into the SCS with an annual freshwater input of 3.26×10^{11} m ³ (e.g., Dong et al., 2004;		删除[admin]: has
110	Dai et al., 2014). The area influenced by the Pearl River plume may extend southeastward to a few hundred kilometers from the		删除[Author]:.
111	estuary in summer because of the monsoonal wind stress (Dai et al., 2014). The northern and western coastal regions of the SCS		删除[admin]: The oceanography of the SCS is l
112	feature summer coastal upwelling, such as the Eastern Guangdong and Qiongdong upwelling systems in the northern SCS and the		删除[Rick Smith]: the
113	Vietnam upwelling systems in the western SCS (e.g., Cao et al., 2011; Chen et al., 2012; Gan et al., 2006; Gan et al., 2010; Li et		副除[admin]: thus
114	al., 2020). These seasonal changes of sea surface circulation lead to strong seasonal characteristics of sea surface pCO ₂ in the		
115	<u>SCS.</u>		删际[admin]: ing
116			删除[admin]: Forced by the northeast winds in winter, t
			删除[Author]: red solid line in
			删除[Author]: .
			删除[admin]: forced by southwest winds
			删除[Author]: red dashed line in
			删除[Author]: .
			删除[Author]: P
	4		删除[Author]: river
			删除[admin]: also
			删除[Rick Smith]: in summer

删除[Rick Smith]: an 删除[Author]: gyre 设置格式[admin]: 图案: 清除(自动设置), 非突出显示 删除[admin]: is a semi-enclosed sea basin with 设置格式[admin]:图案:清除(自动设置),非突出显示 删除[Author]: yellow 删除[admin]:, which shows 删除[Rick Smith]: . A 删除[admin]: s 删除[Rick Smith]: a resul 删除[Rick Smith]:, 删除[admin]: A high-spatial-resolution sea surface 删除[Author]: carbon cycle 删除[admin]: . 删除[admin]: Most 删除[Rick Smith]: and 删除[Rick Smith]: were 删除[Rick Smith]: 删除[Zhixuan Wang]:, etc. 删除[admin]: . 删除[Author]: continuously 删除[Author]: methods 删除[Author]: those of 删除[Author]:, http://www.socat.info/news.html 删除[Author]: protocol 删除[Author]: T 删除[Author]: used in this study 删除[Rick Smith]: have been introduced

•••

•••

删除[Rick Smith]: a

删除[Author]: gyre

- spatial coverage and frequency of the observations are shown in Figure 2, revealing pronounced seasonal changes across a large
- 137 spatial area. For example, the spatial coverage of the in situ data in spring and fall are relatively uniformly distributed, and the
- 138 south end of the spatial coverage reaches 5 °N in spring, whereas during other seasons the data are concentrated in the northern
- and central regions of the SCS. In addition, only one observation was made in the basin area in winter, while the northern coastal
- 140 area was more frequently surveyed, especially in summer.
- 141 Table 1. Summary of seasonal in situ data of sea surface pCO₂ in the South China Sea for the period 2003-2020 used in this
- 142 **study.**

Season		<u>Spring</u>			<u>Summer</u>	
	March	<u>April</u>	May	June	<u>July</u>	<u>August</u>
					2004.07	
		2005.04		2006.06	<u>2005.07</u>	
<u>Cruise</u>		2003.04	<u>2004.05</u>	2000.00	2007.07	2007.08
time	2004 03	2004.03 2009.04 2011.05	2017.06*	<u>2008.07</u>	2007.08	
	2001.05	2012.04	<u>2014.05</u>	2019.06*	<u>2009.07</u>	2019 08*
		2020.04*	<u>2020.05*</u>	2020.06*	2012.07	2017.00
		2020.01		2020.00	<u>2015.07*</u>	
					<u>2019.07*</u>	
<u>Season</u>		Fall			Winter	
	<u>September</u>	October	November	December	<u>January</u>	<u>February</u>
<u>Cruise</u>	<u>September</u> 2004.09	October	November	December	January	<u>February</u>
<u>Cruise</u> <u>time</u>	<u>September</u> 2004.09 2007.09	<u>October</u> 2003.10	<u>November</u> 2006.11	December	<u>January</u> <u>2009.01</u> 2010.01	<u>February</u> 2004.02
<u>Cruise</u> <u>time</u>	<u>September</u> 2004.09 2007.09 2008.09	<u>October</u> <u>2003.10</u> <u>2006.10</u>	<u>November</u> <u>2006.11</u> <u>2010.11</u>	<u>December</u> 2006.12	<u>January</u> <u>2009.01</u> <u>2010.01</u> 2018.01	<u>February</u> 2004.02 2006.02
<u>Cruise</u> <u>time</u>	September 2004.09 2007.09 2008.09 2020.09*	<u>October</u> <u>2003.10</u> <u>2006.10</u>	<u>November</u> <u>2006.11</u> <u>2010.11</u>	<u>December</u> 2006.12	<u>January</u> 2009.01 2010.01 2018.01	February 2004.02 2006.02
<u>Cruise</u> <u>time</u> <u>Data</u>	September 2004.09 2007.09 2008.09 2020.09*	<u>October</u> <u>2003.10</u> <u>2006.10</u>	<u>November</u> <u>2006.11</u> <u>2010.11</u> <u>Li et al</u>	<u>December</u> <u>2006.12</u> . (2020)	<u>January</u> 2009.01 2010.01 2018.01	<u>February</u> 2004.02 2006.02

- 删除[admin]: and
- 删除[Rick Smith]: show that there are
- 删除[Rick Smith]: and that the data cover
- 删除[Author]: observed
- 删除[Author]: that
- 删除[Author]: is
- 删除[Author]: the

删除[Author]: observational data

•••

112

删除[Author]:

删除[admin]: in situ

删除[Author] data

145

157 at the Southeast Asia Time-Series (SEATs) station (data from Dai et al., 2022) to test the long-term consistency of the

158 <u>reconstruction.</u>

8

165	The gridded $(0.05^{\circ} \times 0.05^{\circ})$ RS-derived pCO ₂ data cover, almost the entire SCS (5–25° N, 109–122° E), and show, major variations
166	in sea surface pCO_2 at the basin scale (Wang et al., 2021; Yu et al., 2022), Further details of the RS-derived pCO_2 data can be
167	found on the SatCO ₂ platform (www.SatCO2.com).
168	A grid-to-grid comparison was undertaken, between the <u>RS-derived pCO_2 and</u> the in situ pCO_2 data (Table 2). The differences in
169	between range, from 35 to 120 µatm in the <u>near-shore</u> area. The largest biases occur in summer, when the <u>RMSE is up to 29.95</u>
170	µatm <u>(Table 2)</u> . Relatively large discrepancies may reflect the limitations of the current algorithm (MeSAA and non-linear
171	regression), which only considers biological processes and the turbidity induced by the Pearl River discharge (characterized by
172	Chl a and the remote sensing reflectance at 555 nm (rrs555) _a and does not take into account the riverine dissolved inorganic
173	carbon and the input of other substances that may affect pCO ₂ (Bai et al., 2015, Yu et al., 2022 and Wang et al., 2021))
174	To remove the influence of the bias in RS-derived pCO_2 data on our reconstructed results, this study, used the EOF method, to
175	compute the spatial patterns of the RS-derived pCO2 data as input data instead of directly using the RS-derived pCO2 data
176	Moreover, using EOF modes of the RS-derived pCO2 as input data in the reconstructed model can provide spatial constraints or
177	the pCO_2 reconstruction,
178	Table 2. Biases between the seasonal remote sensing derived pCO_2 data and in situ pCO_2 data, and between the
179	reconstructed and the <u>in situ</u> pCO_2 data. (unit: µatm; the remote sensing-derived pCO_2 data during 2003-2019 are from
180	www.SatCO2.com and the source of <u>in situ</u> data can be found in Table1. The reconstructed <i>p</i> CO ₂ data are from section 3
181	all data were gridded into 0.05°*0.05°; / <u>means</u> , no data). MAE = mean absolute error; RMSE = root mean square error;
182	R ² = coefficient of determination; MAPE = mean absolute percentage error.

		RS-derived	Training data	Testing data I	Testing data II	Testing data III
		<u>pCO2 data</u>		Testing data 1		
	MAE	9.00	2.44	4.76	1.68	/
с ·	RMSE	12.70	3.47	7.43	2.26	/
Spring	R ²	/	0.98	0.92	/	/
	MAPE	/	0.01	0.01	/	/
	MAE	16.75	2.48	8.46	5.73	/
G	RMSE	29.95	3.54	14.69	15.18	/
Summer	R ²	/	0.99	0.89	/	/
	MAPE	/	0.01	0.02	/	/
	MAE	9.93	2.41	4.90	7.133	/
Fall	RMSE	13.08	3.39	6.85	8.94	/
	R ²	/	0.98	0.92	/	/
				9		

/1	删除[admin]: remote sensing
, //I	删除[admin]: ed
	删除[Author]: the
Ì	删除[Author]: CO2
<u>1</u>	删除[Author]: at a
	删除[Rick Smith]: on
<u>r</u>	删除[Author]: large
/	删除[Author]: Bai
c	删除[Author]: unpublished
	删除[Author]: In the retrieval algorithm of Yu et al. (202 $\overline{\cdots}$)
)	删除[Author]:
•	删除[Author]: remote sensing (RS) data
1	删除[Author]: i
	删除[Author]: (Fig. 4)
e 1	删除[Author]: and the RMSE of
1	删除[Author]:
; 1	删除[Author]: dataRS data-derived pCO ₂
2	删除[Author]: values were compared with
	删除[Author]: observed
	删除[Author]: data
	删除[admin]: This comparison shows that the
	删除[Rick Smith]: between the RS- derived p CO ₂ dataRS …
	删除[Author]: data
	删除[Rick Smith]: s
	删除[Author]: coastal
	删除[admin]:, and that t
	删除[Rick Smith]: . TIn terms of the RMSE (Table 2), the $\overline{\cdots}$
	删除[Author]: bias
	删除[Author]: reaches
	删除[Author]: 30.0
	删除[Rick Smith]: in summer
	删除[Author]: Bai et al. (2015), Yu et al. (2022); unpublis …
	删除[Author]: pointed out that r
	删除[admin]: only

	MAPE	/	0.01	0.01	/	/
	MAE	9.25	2.18	5.61	11.41	/
X 7' (RMSE	14.26	3.14	8.82	12.63	/
Winter	R ²	/	0.98	0.89	/	/
	MAPE	/	0.01	0.01	/	/
	MAE	11.95	2.41	6.30	5.27	6.19
	RMSE	20.66	3.43	10.79	11.18	8.26
Annual	R ²	/	0.99	0.91	/	/
	MAPE	/	0.01	0.01	/	/

183

184 **2.4 Other data**

185	The RS-derived_SST data produced by MODIS (https://oceancolor.gsfc.nasa.gov/) are adopted in our reconstruction. The
186	uncertainty of this dataset in the SCS is ~0.27° (Qin et al., 2014). For <u>sea surface salinity (SSS)</u> , data, <u>Wang et al.</u> (2022) found
187	relatively large differences between, different open source SSS databases (i.e., multi-satellite fusion data from
188	https://podaac.jpl.nasa.gov/; model data from https://climatedataguide.ucar.edu/; multidimensional covariance model data from
189	https://resources.marine.copernicus.eu/) and the in situ SSS data, Thus, Wang et al. (2022) produced an RS-derived SSS database
190	using machine learning methods based on the MODIS-Aqua remote sensing data. The bias between the RS-derived SSS (Wang et
191	al., 2022) and in situ data was near-zero (mean absolute error, MAE: ~0.25). Next, we used Chl-a (from
192	<u>https://oceancolor.gsfc.nasa.gov/</u>) as an indicator of biological influence, which has a bias of ~ 0.35 on a log scale and $\sim 115\%$ in
193	the SCS (Zhang et al., 2006). Atmospheric pCO_2 also influences sea surface pCO_2 through air-sea CO_2 exchange. We chose the
194	atmospheric CO ₂ mole fraction (xCO ₂) data from the monthly mean CO ₂ concentrations measured at the Mauna Loa Observatory,
195	Hawaii (https://gml.noaa.gov/), and then calculated the atmospheric pCO_2 values from xCO_2 using the method of Li et al. (2020).
196	

3 Methods

The *p*CO₂ reconstruction procedure is shown in Figure 4. It includes: (1) data processing and (2) model training and testing. For the former, we firstly gridded the <u>in situ data</u> and <u>RS-derived *p*CO₂ data</u> into $0.05^{\circ} \times 0.05^{\circ}$ boxes with a monthly temporal resolution. <u>Secondly, we filled missing *p*CO₂ measurements with the RS-derived *p*CO₂ data according to Fay et al. (2021) (see more details in Section 3.1). We then used <u>EOF</u> to ignore any biases in the <u>RS-derived *p*CO₂ dataset</u> itself or from the *p*CO₂ filling method. Thirdly, the gridded in situ *p*CO₂ data and their corresponding RS-derived data were divided into a training set (90%) and a testing set (10%) to calculate the *p*CO₂ retrieval model. To ensure that the model had sufficient training samples in the coastal area, we divided the entire SCS into two regions along the 200 m isobath (as shown in Figure 5). The data from these two regions 10</u>

	删除[Author]:		•••
	删除[Author]:		
	删除[Author]:	here	
	删除[Author]:	the	
	删除[Author]:	SSS	
	删除[Author]:		
	删除[Author]:	the	
	删除[Author]:	.Wang et al. (in preparation2022) found a	•••
	删除[Author]:	in preparation	
	删除[Author]:	reconstructedproducted	
	删除[Author]:	remote sensing	
	删除[Author]:		
ne	删除[Author]:	by	
d	删除[Author]:	based on based on a combination of	•••
<u>m</u> ///	删除[Author]:	remote sensing	
<u>m</u>	删除[Author]:	reconstructed	
se /	删除[Author]:	observed	
<u>et</u>	删除[Author]:	. Chl-a data from MODIS	•••
<u>m / / /</u>	删除[Rick Smi	th]: have	
	删除[Author]:	water	
ne /	删除[Rick Smi	th]: atmosphere	
y,	删除[Author]:		
$\langle \neg \rangle$	删除[Author]:	Т	
	删除[Author]:	were calculated	
	删除[Author]:	by	
or 	删除[Author]:	5	
	删除[Author]:	observed	
σ	删除[Author]:		
ıd	删除[Author]:	RS p CO ₂ data	
al	删除[Rick Smi	th]: grid	
15	删除[Author]:	And all these data used in machine learnin	•••
	删除[Author]:	used the p CO ₂ filling method according to	•••
	删除[Author]:	the	
	删除[Author]:		

230	Briefly, this filling method scales the climatological monthly pCO_2 field values to fill in the missing measurements. Therefore,	设置格式[Rick Smith]: 非上标/ 下标
231	although specific values may be biased, the interpolated measurements still retain the main spatial distribution pattern of the filled	删除[Author]:
232	months.	删除[Author]: RS pCO ₂ data
233	3.2 Feature engineering and selection	/ 删除[Author]: feengineered featured data (via the
234	As mentioned above, the <i>p</i> CO ₂ data filling method may bias some of the actual values. To avoid the influence of such biases on the	/ 删除[Author]:)
235	reconstructed results, instead of directly using the RS-derived pCO2 data as features in our reconstructed model, we used the EOF	删除[Author]:
236	method to obtain the main spatiotemporal distribution patterns of the <u>RS_r derived pCO₂ data as features in our reconstructed model.</u>	删除[Author]: RS pCO2 data
237	The EOF reflects the spatial commonality of variables shown in the time-series, and thus it is widely used to calculate spatial	删除[Rick Smith]:
238	patterns of climate variability (e.g. Levitus et al., 2005; Dye et al., 2020; McMonigal and Larson, 2022). Typically, the spatial	一 删除[Rick Smith]:, also named
239	commonality of variables, (EOF modes), is found by computing the eigenvalues and eigenvectors of a spatially weighted anomaly	删除[Rick Smith]:
240	covariance matrix of a field. Each EOF modes' corresponding variance represents its degree of interpretation of the spatial pattern	│ 删除[Rick Smith]:,
241	of a variable. For each of the 12 months, the cumulative variance contribution of the first eight EOF values was consistently >	删除[Author]: are
242	90%, indicating that it could explain the main pCO_2 spatial characteristics during each month, we therefore selected them as	删除[Author]: The EOF reflects the spatial commonality …
243	features.	刪除[Rick Smith]: it
244	The features selected in our reconstructed model can be divided into two main categories. In the first category, the features are	一 刪除[Rick Smith]
245	related to the underlying physicochemical mechanisms controlling the pCO_2 distribution: for example, that SST exerts a primary	删除[Rick Smith]: and
246	control on the seasonal variations in surface water pCO ₂ in the northern SCS (Zhai et al., 2005; Chen et al., 2007; Li et al., 2020),	副除[Rick Smith], adaption
247	In the second category, they provide spatiotemporal information for the pCO2 reconstruction, Previous studies (Landschützer et al.,	ml际[Rick Smin]: selection
248	2014; Laruelle et al., 2017; Denvil et al., 2019) have shown that Chl-a plays a critical role in fitting the influence of biological	删除[Rick Smith]: 1
249	activity to pCO ₂ , especially in the northern SCS (Landschützer et al., 2014; Laruelle et al., 2017; Denvil et al., 2019). Sutton et al.	删除[Rick Smith]: one
250	(2017) suggest that increasing atmospheric pCO_2 controls the overall increase in seawater pCO_2 . For the features that provide	删除[Rick Smith]: is
251	spatiotemporal information for the pCO_2 reconstruction, in the present study we selected the first eight EOF values of pCO_2 as the	删除[Rick Smith]:, and
252	main spatial distribution feature and monthly information of the in situ datasets as the temporal feature.	删除[Rick Smith]: other one
253	3.3 Algorithm selection	删除[Rick Smith]: can
254	Ensemble learning, which is the process of training multiple machine learning models and combining their output to improve the	删除[Zhixuan Wang]: :. fFor example, thate SST exerts a …
255	reliability and accuracy of predictions, is one of the most powerful machine learning techniques (e.g., Zhan et al., 2022; Chen et	删除[Rick Smith]: researches
256	al., 2020). (e.g., Zhan et al., 2022; Chen et al., 2020). In other words, several different models are used as the basis to develop an	删除[Author]: s
257	optimal predictive model. There are two main ways to employ ensemble learning: bagging (to decrease the model's variance) ₂ or	删除[Rick Smith]: the
258	boosting (to decrease the model's bias). The random forest algorithm (code from https://scikit-learn.org/stable/) is an extension of	删除[Rick Smith]: e in
259	the bagging method as it utilizes both bagging and feature randomness to create an uncorrelated forest of decision trees. The Light	删除[Rick Smith]: whereas
260	Gradient Boosting Machine (LightGBM; code from https://github.com/microsoft/LightGBM/) is a gradient boosting framework	删除[Author]: observed
	13	删除[Rick Smith]: provides
		删除[Rick Smith]: It is the process of training multiple …

删除[Rick Smith]: Different

- that uses tree-based learning algorithms. LightGBM can be used for regression, classification, and other machine learning tasks; it
- 262 exhibits rapid, high-performance as a machine learning algorithm. CATBOOST (code from https://github.com/catboost/) is a
- 263 gradient boosting algorithm, which improves prediction accuracy by adjusting weights according to the data distribution and by
- 264 incorporating prior knowledge about the dataset. This can help to reduce overfitting and improve general performance.
- 265 From the above options, we chose three ensemble learning algorithms as the machine learning-based regression portion, and
- 266 multi-linear regression methods (Wang et al., 2021) as the linear regression portion. We then used the K-fold and cross validation
- 267 methods to verify the applicability of different regression algorithms in the pCO_2 reconstruction for seasonal training data. The
- 268 results show that in summer, the CATBOOST algorithm yields the best degree of accuracy, with an RMSE of 16 µatm (Table R1).
- 269 In contrast, the RMSE of LightGBM was 27 µatm, and that of Random Forest was 26 µatm. The RMSE was nearly 20 µatm using
- the linear regression algorithm employed by Wang et al. (2021). Thus, CATBOOST appears to provide a reliable algorithm for
- 271 reconstructing pCO₂. In the other three seasons, however, using different algorithms resulted in minor differences (~2 µatm in
- 272 <u>RMSE)</u>
- 273 Table 3. RMSEs associated with different algorithms in the four seasons

Season	Random Forest	LightGBM	CATBOOST	Multi-linear regression
				(Wang et al., 2021)
Spring	10.65 µatm	9.52 µatm	8.17 µatm	NaN*
Summer	26.53 µatm	27.83 µatm	16.15 µatm	20.13 µatm
Fall	10.34 µatm	11.56 µatm	10.35 µatm	NaN
Winter	12.48 µatm	12.75 µatm	11.52 µatm	NaN

274 <u>*NaN stands for missing values</u>

275

276 **3.4 Evaluation metrics**

- 277 It is necessary to evaluate the accuracy of any model based on certain error metrics before applying it to specific scenarios.
- 278 Common model evaluation metrics include RMSE, MAPE, R² (coefficient of determination), and MAE.
- 279 The mean squared error (MSE) is the standard deviation of the residuals (prediction error), and the residuals are the distances
- between the fitted line and the data points (i.e., the residuals show the degree of concentration of the reconstructed data around
- the regression line. In regression analysis, RMSE is commonly used to verify experimental results. To assess bias, the RMSE

(2)

282 needs to combine the magnitude of the model data and is calculated as:

283 $RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n} (y_i - y_{ri})^2} \quad .$

- where y stands for the $\frac{1}{n}$ situ data, y_r represents the reconstructed data, and n is the number of datapoints.
- 285 The mean absolute percentage error (MAPE) is a statistical measure used to define the accuracy of a machine learning algorithm
- 286 on a particular dataset. It is commonly used because, compared to other metrics, it uses a percentage to measure the magnitude of

- 删除[Rick Smith]: and
- 删除[Zhixuan Wang]: ization
- 删除[Author]: the
- 删除[Author]: We
- 删除[Author]:,
- 删除[Author]:,
- 删除[Author]: For comparison
- 删除[Author]:
- 删除[Author]: Note that
- 删除[Author]: for other three seasons only
- 删除[Author]: From the above options, we chose three ensemble learning algorithms as the machine learning-based regression portion, and multi-linear regression methods (Wang et al., 2021) as the linear regression portion, and we then used the K-fold and cross validation methods to verify the
- 删除[Author]: between
- 删除[Rick Smith]: different

删除[Author]: The RMSE between the CO2 different algorithm and in situ data of different seasonal (NaN stand for the missing value

删除[Rick Smith]: the

- 删除[Author]:
- 删除[Rick Smith]: stands for
- 删除[Rick Smith]: where
- 删除[Rick Smith]: represent
- 删除[Rick Smith]:,
- 删除[Author]:.
- 删除[Author]: it
- 删除[Rick Smith]: stands for
- 删除[Author]: observational data

			设置格式[Rick Smith]: 非上标/ 下标	
287	the bias and is easy to understand and interpret; the lower the value of the MAPE, the better a model is at forecasting. MAPE is	A DESCRIPTION OF A DESC	删除[Rick Smith]:,	
²⁰⁷	colculated as follows:		删除[Rick Smith]:, and	
200			删除[Author]: field observations	
289	$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{ y_i - y_{ri} }{ y_i } $ (3)		删除[Author]:	
			删除[Rick Smith]: were	
290	The regression error metric, the coefficient of determination (\mathbb{R}^2) , can describe the performance of a model by evaluating the		删除[Rick Smith]: mostly	
291	accuracy and efficiency of modeled results i.e., it indicates the magnitude of the dependent variable, calculated by the regression		删除[Author]: the	
292	model, that can be explained by the independent variable. It is calculated as:		删除[Rick Smith]:;	
••••	$\sum_{i=1}^{n} (y_i - \overline{y_i})^2$		删除[Author]: s	
293	$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - y_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - y_{i})^{2}} $ (4)		删除[Author]: between	
294	MAE is the average absolute difference between the in situ data (true values) and the model output (predicted values). The sign of		删除[Author]: coastal	
295	these differences is ignored so that cancellations between positive and negative values do not occur. It is calculated as:		删除[Author]: and basin areas	
			删除[Rick Smith]: we	
296	$MAE = \frac{1}{n} \sum_{i}^{n} y_i - y_{ri} $ (5)		删除[Rick Smith]: of	
297	3.5 Uncertainty		删除[Rick Smith]: calculation	
298	In previous studies, RMSE and MAE have primarily been used to represent the uncertainties in reconstructed datasets. However,		删除[Author]: $+ (part 1)$	•••
299	this expression of uncertainty ignores the sensitivity of the reconstructed model to the features; i.e., the biases that the features		删除[Author]: parts	
300	themselves pass to the reconstructed model are ignored. Moreover, it is clearly unreasonable to use a single RMSE or MAE value		删除[Author]: ;	
301	to represent the entire region because the spatial bias pattern in the coastal region clearly differs from that in the basin		删除[Zhivuan Wang]: (part 1the first term)	
302	Thus, here we present a novel method for calculating uncertainty, as shown below:		咖嗦[Zinxuan wang]. (part tine inst term)	
303	$\underline{Uncertainty} = MAX([\frac{\sum_{i=1,j=1,k=1}^{n} \frac{ OR \ Monthly \ Data(i,j,k) - Obs \ Monthly \ Data(i,j,k) }{Obs \ Monthly \ Data(i,j,k)}}, \dots, \frac{\sum_{i=1,j=1,k=n}^{n} \frac{ OR \ Monthly \ Data(i,j,k) - Obs \ Monthly \ Data(i,j,k) }{Obs \ Monthly \ Data(i,j,k)}}) *$			
304	$\frac{nam(t)+nam(t)}{100\% * nCO2} recon+(-\frac{\partial pCO2}{2}) dEeqture (6)$		删际[Zhixuan Wang]: (the second term)	
205	<u>HOUN # POOL FECON</u> (<u>OFeature</u> <u>Jureuture</u> (Of		删除[Author]: (part 2)	
305	Equation (6) includes two terms: the first term is the conservative bias between the reconstructed pCO_2 fields and the in situ data.		删除[Author]: F	
306	and the second is the sum over sensitivity of the reconstructed model to the features. For the first term in Equation 6, k stands for y		删除[Author]: R1	
307	the kth month, <u>OR Monthly Data(i, j, k)</u> stands for the kth monthly reconstructed data at longitude(i) and latitude(j), and (i, j, k)	Δ	删除[Author]: the	
308	<u>Obs Monthly Data($(I, J, K$) stands for the kth monthly in situ data at longitude (i) and latitude (j). Therefore, <u>MAX in the first term</u></u>	Δ	删除[Author]: that	
309	stands for the maximum of the k monthly bias ratios. And pCO_2 recon stands for the reconstructed pCO_2 data, in the second	\square	删除[Author]: value between	
211	term, where <u>ureuture</u> stands for the bias of the features, we conducted a sensitivity analysis using a chain rule to evaluate the		删除[Author]: or part 1, $ stands for the monthly$	
511	influence of these blases in the features on $p \in O_2$. I hen we estimated $p \in O_2$ changes due to these features variabilities by		删除[Author]:	
312	constraining these features based on our model, and computed $\frac{\partial p coz}{\partial Feature}$. For example, for $\frac{\partial p coz}{\partial SST}$, we only changed the value of SST		删除[Author]: For part	
	15		删除[Author]: 2	
			删除[Author]:,	
			删除[Author]: w	

313 and kept the values of the other features constant to calculate the effect of each additional unit of SST on the simulated pCO₂.

314 4 Results and discussion

315 4.1 Results

The reconstructed pCO_2 fields show relatively low values in the northern coastal region of the study area, and generally high values in the mid and southern basins (Fig. 6). The continuous changes of the spatiotemporal distribution can be found in the reconstruction results (Fig. 6). The reconstructed pCO_2 fields show a trend of slow but sustained increases from 2003 to 2020. Spatial patterns of pCO_2 change between 2003 and 2020, such that the coastal portion of the northern SCS shows relatively complex variability from multiple controlling factors, such as coastal upwelling, river plumes, biological activity, etc. However, pCO_2 values in the mid and southern basins are relatively homogeneous, as they are mainly controlled by atmospheric pCO_2 forcing and SST. Temporal changes in pCO_2 between 2003 and 2020, are relatively large (~44 µatm) in summer and relatively

323 small (\sim 33 µatm) in winter.

删除[Author]:, 删除[Author]:results 删除[Author]:of the 删除[Author]:simulation 删除[Rick Smith]:study 删除[Rick Smith]:but 删除[Rick Smith]:shows 删除[Author]:continuity 删除[Rick Smith]:because 删除[Rick Smith]:of

The relatively large bias (14.67 µatm) in the summer may be the influence of relatively complex regional processes, such as river 删除[Author]: largestgreatest

删除[Rick Smith]: T

删除[Rick Smith]: reconstruction

plumes and upwelling. The four evaluation metrics indicate that our reconstructed pCO₂ field is highly accurate in simulating both

333

设置格式[Zhixuan Wang]: 行距: 单倍行距

356 precipitation (~30mm/day; https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.surface.html) occurred around the Pearl River 357 estuary region (24-20 °N), which led to intensification of the Pearl River plume, The plume has relatively low pCO2 values that eventually decreased the observed values along the coast. However, the monthly average runoff of the Pearl River during that 358 359 month (August, 2019; http://www.pearlwater.gov.cn/; Pearl River Plume Index in Wang et al., 2022) was low, indicating that our 360 retrieval algorithm is still highly reliable from the perspective of monthly averages. Thus, the inconsistencies between the 361 reconstructed (monthly average) and the in situ datasets are mainly due to the differences in the time scales of the remote sensing and the in situ data. The reconstructed data in this study were determined on a monthly scale, while the temporal resolution of 362 363 the in situ data was on the order of hours. It is clear that relatively pronounced short-term changes in pCO_2 , such as the diurnal 364 variability caused by short-term heavy precipitation, cannot be reflected in the reconstructed data.

366

365

Figure 9. Difference between the reconstructed pCO₂ data and four independently tested in situ, datasets during the four
seasons. In (a), the numbers 1–4 represent September (2018.9, b), December 2018 (2018.12, c), August 2019 (2019.8, d), and
April 2020 (2020.4, e), respectively.

Dai et al. (2022) produced a time-series of <u>in situ data</u> from 2003 to 2019 at the SEATs station, which we used here to validate the accuracy of the long-term trends of our model data (results shown in Fig. 10). The long-term trend of reconstructed pCO_2 data at the SEATs station <u>is</u> largely consistent with the <u>in situ data</u>, with differences mainly found before 2005. Thus, the long-term trend

373 produced in our reconstructed model is also highly reliable.

删除[Rick Smith]: ,
删除[Rick Smith]: such that the plume with
删除[Author]: in preparation
删除[Rick Smith]: is
删除[Author]: e
删除[Author]: reconstruction model
删除[Author]: a
删除[Rick Smith]: perspective
删除[Rick Smith]: inconsistency
删除[Rick Smith]: is
删除[Author]: field-observed

22

删除[Rick Smith]: s

423 Figure 14. Time series of spatially averaged monthly *p*CO₂ data in five subregions (a-e) and the entire South China Sea (f)

under study. The sub_regions are shown in (g). The lines indicate the deseasonalized long-term trend of the spatially
averaged monthly *p*CO₂ data for each sub-region with the slopes shown in Table 3. The deseasonalized method can be
found in Landschützer et al. (2016).

427

430

428 Table<u>4.</u> Deseasonalized long-term trend of the spatially averaged monthly pCO_2 data for each sub-region of the South 429 China Sea. (unit: μ atm yr⁻¹).

	All_region	Subregion_A	Subregion_B	Subregion_C	Subregion_D	Subregion_D
Reconstructed <u>pCO2</u>	2.12±0.17	1.82±0.14	2.23±0.12	2.17±0.12	2.20±0.13	2.16±0.13
In situ pCO ₂	2.10±0.79	1.80±0.86	1.73±0.84	1.81±0.85	1.41±1.16	2.13±1.10

431	We divided SCS into five sub-regions according to Li et al. (2020). In Fig.14, Subregion A stands for the northern coastal area of
432	the SCS, Subregion B stands for the slope area of the northern SCS, Subregion C stands for the SCS basin, Subregion D stands
433	for the region west of the Luzon Strait, and Subregion E stands for the slope and basin area of the western SCS. "All_region"
434	indicates the whole region containing the five sub-regions described above. We then calculated the deseasonalized long-term trend
435	of spatially averaged monthly data for each sub-region, and the results are shown in Figure 14 and Table.3. This deseasonalized
436	trend is consistent with that of in situ data, and its uncertainty is on the 95% confidence interval much lower than that shown by
437	the in situ data. We can thus also infer that the long-term trend of our reconstructed data shows high reliability in all sub-regions,
438	and that our data can serve as an important basis for predicting future changes of pCO_2 in the SCS.
439	In Fig.14 a-e, we found that the sea surface pCO_2 of the entire SCS is slightly higher than the atmospheric pCO_2 , indicating that
440	the SCS is a weak source of atmospheric CO ₂ . This conclusion is consistent with previous studies (e.g., Li et al., 2020). Moreover,
441	compared to the rate of atmospheric CO ₂ increase (~2.2 μ atm yr ⁻¹), for <u>Subregion</u> A, the <i>p</i> CO ₂ trend is much slower than that of
442	atmospheric $pCO2$, and the spatially averaged monthly mean pCO_2 is lower than the atmospheric $pCO2$. Thus, carbon
443	accumulation in this region is expected to increase in the future. For rSubregion C and Subregion E, the spatially averaged
444	monthly mean pCO_2 is higher than the atmospheric pCO_2 ; thus, these two regions will still provide a weak source of atmospheric
445	CO ₂ in the future. Finally, whether Subregion B and Subregion D act as a source or sink of the atmospheric CO ₂ is influenced by
446	seasonal changes and physical processes. Subregion B can be a zone of significant sink of atmospheric CO2 as demonstrated by

448 intrusion is strong, both Subregions B and D have high sea surface pCO_2 , indicating both subregions are sources of atmospheric

its low sea surface pCO₂ when the Pearl River plume spreads more widely in summer. In contrast, in winter when the Kuroshio

449 450

447

150

451 **5 Data availability**

CO₂

删除[Author]:, 删除[Author]:. 删除[Author]: 3 删除[XHGuo]: Data 设置格式[XHGuo]: 字体: 倾斜 设置格式[XHGuo]: 下标 删除[Author]: Observation 删除[XHGuo]: Data 删除[Author]: region A 删除[Author]: region 删除[Author]: region 删除[Author]: region 删除[Author]: W 删除[Author]: region 删除[Author]: observational data 删除[Author]: observational data 设置格式[XHGuo]: 上标 删除[Author]: region 删除[Author]: egions 设置格式[XHGuo]: 下标 删除[Author]: regions 删除[Author]: zone 删除[Author]: is spreading 删除[Author]: into a wider spatial coverage 删除[Author]: s

删除[Author]: When the Pearl River plume is relatively strong in summer, resulting in relatively low pCO_2 in Sub_region B, this sub_region turns into a sink of atmospheric CO2. When the Kuroshio invasion or water mixing is strong in winter, resulting in relatively high pCO_2 in Sub_region B and Sub_region D, both two sub_regional turn into a source of atmospheric CO2.

452	The data	(the reconstructed)	CO2 data.	the in situ_ <i>p</i> CO	2 data before 2	2018 (0.5° <mark>Ø</mark> 0.5°)), and the remote sensing	derived CO ₂ data)
101	1 no aata		COL aada,				, and the remote benoming	

453 for this paper are available under the link <u>https://doi.org/10.57760/sciencedb.02050</u> (Wang & Dai, 2022).

454

455 6 Conclusions

456	Based on the machine learning method, we reconstructed the sea surface pCO_2 fields in the SCS with an $0.05 \beta_{0.05}$ spatial
457	resolution over the last two decades (2003-2020) by calculating the statistical relationship between the in situ, pCO_2 data and
458	RS-derived data. The input data we used in machine learning include, RS-derived data (sea surface salinity, sea surface
459	temperature, chlorophyll), the spatial patterns of pCO ₂ calculated by EOF, atmospheric CO ₂ , and time labels (month). The
460	machine learning method (CATBOOST) used in this study was facilitated by the EOF method, which provides spatial constraints
461	for the data reconstruction. In addition to the typical machine learning performance metrics, we present a novel method for
462	uncertainty calculation that incorporates the bias of both the reconstruction and the sensitivity of reconstructed models to its
463	features. This method effectively shows the spatiotemporal patterns of bias, and makes up for the spatial representation of the
464	typical performance metrics.
465	We validate our reconstruction with three independent testing datasets, and the results show that the bias between our
466	reconstruction and $\frac{1}{10} \frac{1}{10} pCO_2$ data in the SCS is relatively small (about 10 µatm). Our reconstruction successfully <u>captures</u> the
467	main features of the spatial and temporal patterns of pCO_2 in the SCS, indicating that we can use these reconstructed data to
468	further analyze the effect of meso-microscale processes (e.g., the Pearl River plume, and CCC) on sea surface pCO ₂ in the SCS.
469	We divided the SCS into five sub-regions and separately calculated the deseasonalized long term trend of p CO ₂ in each subregion,
470	and compared them with the long-term trend of atmospheric pCO_2 . Our results show that the reconstructed data are consistent
471	with those of in situ data. Moreover, the strength of the CO_2 sink in the northern SCS shows an increasing trend, whereas pCO_2
472	trends in other subregions are essentially the same as that of atmospheric pCO_2 .
473	This high spatiotemporal resolution of sea surface pCO_2 data is helpful to clarify the controlling factors of pCO_2 change in the

474 SCS and may be useful to predict changes of CO₂ source or sink patterns in this system.

475

476 **Author contribution**

477 Minhan Dai conceptualized and directed the field program of in situ observations. Xianghui Guo and Yi Xu participated in the in 478 situ data collection. Yan Bai provided the remote sensing-derived pCO_2 data. Minhan Dai, Guizhi Wang and Zhixuan Wang 479 developed the reconstruction method, wrote the codes, analyzed the data, and plotted the figures. Zhixuan Wang wrote the 480 manuscript. Minhan Dai, Xianghui Guo and Guizhi Wang contributed to the writing, editing and revision of the original 481 manuscript.

482

设置格式[XHGuo]: 字体: 倾斜 删除[Author]: Observational 设置格式[XHGuo]: 字体: 倾斜 删除[XHGuo]: * 删除[Author]: https://github.com/Elricriven/co2data 删除[Author]: et al., 删除[XHGuo]: × 删除[admin]: 删除[Author]: 删除[admin]: high 删除[admin]: (0.05*0.05°) 删除[Author]: underway observational 删除[admin]: remote sensing 删除[Author]: 删除[Author]: s 删除[admin]: remote sensing 删除[admin]:, because the latter can 删除[admin]: method 删除[Author]: observational 删除[admin]: shows 删除[Author]: s 删除[Author]: observational data 删除[Author]: pCO₂

483 Competing interests

484 The authors declare that they have no conflict of interest.

485

486 Acknowledgements

- We thank the support of the National Natural Science Foundation of China (grant No. 42188102, 42141001, and 41890800), and
 the National Basic Research Program of China (973 Program, grant No. 2015CB954000).
- 489
- 490

491 References

- 492 Bai, Y., Cai, W., He, X., Zhai, W., Pan, D., Dai, M., and Yu, P.: A mechanistic semi-analytical method for remotely sensing sea
- 493 surface pCO_2 in river-dominated coastal oceans: A case study from the East China Sea, J. Geophys. Res.: Oceans, 120,
- 494 2331-2349, 2015.
- Bakker, D., Pfeil, B., Landa, C., Metzl, N., and Xu, S.: A multi-decade record of high-quality *f*CO₂ data in version 3 of the Surface
- 496 Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383-413, 2016.
- Borges, A. V., Delille, B., and Frankignoulle, M.: Budgeting sinks and sources of CO₂ in the coastal ocean: Diversity of
 ecosystems counts, Geophys. Res. Lett., 32, L14601, 2005.
- 499 Cao, Z. and Dai, M.: Shallow-depth CaCO₃ dissolution: Evidence from excess calcium in the South China Sea and its export to
- 500 the Pacific Ocean, Global Biogeochem. Cy., 25, GB2019, 2011.
- 501 Cao, Z., Dai, M., Zheng, N., Wang, D., Li, Q., Zhai, W., Meng, F., and Gan, J.: Dynamics of the carbonate system in a large
- 502 continental shelf system under the influence of both a river plume and coastal upwelling, J. Geophys. Res.: Biogeo., 116,
 503 G02010, 2011.
- Cao, Z., Yang, W., Zhao, Y., Guo, X., Yin, Z., Du, C., Zhao, H., and Dai, M.: Diagnosis of CO₂ dynamics and fluxes in global
 coastal oceans, Natl. Sci. Rev., 7, 786-797, 2020.
- 506 Chen, C. and Borges, A. V.: Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and 507 near-shore ecosystems as sources of atmospheric CO₂, Deep-Sea Res. I, 56, 578-590, 2009.
- 508 Chen, C., Lai, Z., Beardsley, R. C., Xu, Q., Lin, H., and Viet, N. T.: Current separation and upwelling over the southeast shelf
- of Vietnam in the South China Sea, J. Geophys. Res.: Oceans, 117, C03033, 2012.
- 510 Chen, F., Cai, W. J., Benitez-Nelson, C., and Wang, Y.: Sea surface pCO₂? -SST relationships across a cold-core cyclonic eddy:
- 511 Implications for understanding regional variability and air-sea gas exchange, Geophys. Res. Lett., 341, 265-278, 2007.
- 512 Cheng, C., Xu, P. F., Cheng, H., Ding, Y., Zheng, J., Ge, T., and Xu, J.: Ensemble learning approach based on stacking for
- 513 unmanned surface vehicle's dynamics. Ocean Eng., 207, 107388, 2020.

- 514 Dai, M. H., Cao, Z., Guo, X., Zhai, W., Liu, Z., Yin, Q., Xu, Y., Gan, J., Hu, J., and Du, C.: Why are some marginal seas sources
- 515 of atmospheric CO₂?, Geophys. Res. Lett., 40, 2154-2158, 2013.
- 516 Dai, M., Gan, J., Han, A., Kung, H., and Yin, Z.: "Physical Dynamics and Biogeochemistry of the Pearl River Plume"" in
- 517 Biogeochemical Dynamics at Large River-Coastal Interfaces. Eds. T. Bianchi, M. Allison and W. J. Cai (Cambridge University
- 518 Press, Cambridge), 321-352, 2014.
- 519 Dai, M., J. Su, Zhao, Y., Hofmann, E. E., Cao, Z., Cai, W., Gan, J., Lacroix, F., Laruelle, G., Meng, F., Müller, J., Regnier, P., Wang,
- 520 G., and Wang, Z.: Carbon fluxes in the coastal ocean: Synthesis, boundary processes and future trends, Annu. Rev. Earth Pl. Sc.,
- 521 50, 593-626, 2022.
- 522 Du, C., Liu, Z., Dai, M., Kao, S. J., and Li, Y.: Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern 523 South China Sea: insights from an isopycnal mixing model, Biogeosciences, 10, 6419-6432, 2013.
- 524 Dong, L., Su, J. Wong, L. Cao, Z. and Chen, J.: Seasonal variation and dynamics of the Pearl River plume, Cont. Shelf 525 Res., 24, 1761-1777, 2004.
- 526 Dye, A. W., Rastogi, B., Clemesha, R. E. S., Kim, J. B., Samelson, R. M., Still, C. J., & Williams, A. P.: Spatial patterns and trends
 527 of summertime low cloudiness for the Pacific Northwest, 1996–2017. Geophysical Research Letters, 47, e2020GL088121,
- 528 <u>2020</u>
- 529
 Fassbender, A. J., Rodgers, K. B., Palevsky, H. I., and Sabine, C. L.: Seasonal Asymmetry in the Evolution of Surface Ocean
 删除[Author]:

 530
 pCO₂, and pH Thermodynamic Drivers and the Influence on Sea Air CO₂ Flux, Global Biogeochem. Cy., 32, 1476-1497,
 删除[Author]: pCO₂
- 531 2018.

532 Fay, A., Gregor, L., Landschützer, P., McKinley, G., Gruber, N., Gehlen, M., Iida, Y., Laruelle, G., Rödenbeck, C., Roobaert, A.,

- and Zeng, J.: SeaFlux: harmonization of air-sea CO2 fluxes from surface pCO_2 data products using a standardized approach,
- 534 Earth Syst. Sci. Data, 13, 4693-4710, 2021
- 535 Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le
- 536 Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker,
- 537 M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D.,
- 538 Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K.,
- Joetzjer, E., Kaplan, J. O., Kato, E., Klein Goldewijk, K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N.,
- 540 Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M.
- 541 S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson,
- 542 E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Werf, G. R.,
- 543 Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2019, Earth Syst. Sci. Data, 11, 1783-1838, 2019.
- 544 Gan, J., Li, H., Curchitser, E. N., and Haidvogel, D. B.: Modeling South China sea circulation: Response to seasonal forcing

- 545 regimes, J. Geophys. Res.: Oceans, 111, C06034, 2006.
- 546 Gan, J., Li, L., Wang, D., and Guo, X.: Interaction of a river plume with coastal upwelling in the northeastern South China Sea,
- 547 Cont. Shelf Res., 29, 728-740, 2009.
- 548 Gan, J., Lu, Z., Dai, M., Cheung, A. Y. Y., Liu, H., and Harrison, P.: Biological response to intensified upwelling and to a river
- plume in the northeastern South China Sea: A modeling study, J. Geophys. Res.: Oceans, 115, C09001, 2010.
- 550 Guo, X. and Wong, G.: Carbonate chemistry in the Northern South China Sea shelf-sea in June 2010, Deep Sea Res. II, 117,
- 551 119-130, 2015.
- 552 Han, A. Q., Dai, M. H., Gan, J. P., Kao, S. J., Zhao, X. Z., Jan, S., Li, Q., Lin, H., Chen, C. T. A., and Wang, L.: Inter-shelf nutrient
- 553 transport from the East China Sea as a major nutrient source supporting winter primary production on the northeast South China
- 554 Sea shelf, Biogeosciences, 10, 8159-8170, 2013.
- 555 Hu, J., Kawamura, H., Li, C., Hong, H., and Jiang, Y.: Review on current and seawater volume transport through the Taiwan Strait,
- 556 J. Oceanogr., 66, 591-610, 2010.
- 557 Jones, S. D., Quéré, C., and Rödenbeck, C.: Spatial decorrelation lengths of surface ocean fCO₂ results in NetCDF format, Global
- 558 Biogeochem. Cy., 26, GB2042, 2014.
- Jo, Y., Dai, M., Zhai, W., Yan, X., and Shang, S.: On the Variations of Sea Surface pCO₂ in the Northern South China Sea A 删除[Author]: pCO2
 Remote Sensing Based Neural Network Approach, J. Geophys. Res.: Oceans, 117, C08022, 2012.
- 561 Landschützer, P., Gruber, N., and Bakker, D.: Decadal variations and trends of the global ocean carbon sink, Global Biogeochem.
- 562 Cy., 30, 1396-1417, 2016.
- 563 Landschützer, P., Gruber, N., and Bakker, D. C. E.: An updated observation-based global monthly gridded sea surface pCO₂ and
- air-sea CO₂ flux product from 1982 through 2015 and its monthly climatology, Dataset, 2017.
- 565 Laruelle, G., Lauerwald, R., Pfeil, B., and Regnier, P.: Regionalized global budget of the CO₂ exchange at the air-water interface
- in continental shelf seas, Global Biogeochem. Cy., 28, 1199-1214, 2015.
- 567 Landschützer, P., Bakker, D. C. E., Gruber, N., and Schuster, U.: Recent variability of the global ocean carbon sink, Global
- 568 Biogeochem. Cy., 28, 927-949, 2014.
- 569 Lefèvre, N., Watson, A., and Waston, A.,: A comparison of multiple regression and neural network techniques for mapping in situ
- 570 *p*CO₂ data, Tellus B, 57, 375-384, 2005.
- 571 Lefévre, N., Watson, A. J., and Watson, A. R.: A comparison of multiple regression and neural network techniques for mapping in
- 572 situ pCO_2 data, Tellus B: Chemical and Physical Meteorology, Dataset, 2017.
- 573 Levitus, S., Antonov, J. I., Boyer, T. P., Garcia, H. E., and Locarnini, R. A.: EOF analysis of upper ocean heat content,
- 574 <u>1956–2003, Geophys. Res. Lett.</u>, 32, L18607, 2005.
- 575 Li, Y., Xie, P., Tang, Z., Jiang, T., and Qi, P.: SVM-Based Sea-Surface Small Target Detection: A False-Alarm-Rate-Controllable

- 576 Approach, IEEE Geosc. i Remote S., 16, 1225-1229, 2019.
- 577 Li, H., Wiesner, M. G., Chen, J., Lin, Z., Zhang, J., and Ran, L.: Long-term variation of mesopelagic biogenic flux in the central
- 578 South China Sea: Impact of monsoonal seasonality and mesoscale eddy, Deep Sea Res. I, 126, 62-72, 2017.
- 579 Li, Q., Guo, X., Zhai, W., Xu, Y., Dai, M.: Partial pressure of CO₂ and air-sea CO₂ fluxes in the South China Sea: Synthesis of an
- 580 18-year dataset, Prog. Oceanogr., 182, 102272, 2020.
- 581 Luo, X., Hao, W., Zhe, L., and Liang, Z.: Seasonal variability of air-sea CO₂ fluxes in the Yellow and East China Seas: A case
- 582 study of continental shelf sea carbon cycle model, Cont. Shelf Res., 107, 69-78, 2015.
- 583 McMonigal, K., & Larson, S. M.: ENSO explains the link between Indian Ocean dipole and Meridional Ocean heat
- 584 transport. Geophysical Research Letters, 49, e2021GL095796, 2022.
- 585 Mongwe, N. P., Chang, N., and Monteiro, P.: The seasonal cycle as a mode to diagnose biases in modelled CO₂ fluxes in the
- 586 Southern Ocean, Ocean Model., 106, 90-103, 2016.
- 587 Park, J. H.: Effects of Kuroshio intrusions on nonlinear internal waves in the South China Sea during winter, J. Geophys. Res.:
- 588 Oceans, 118, 7081-7094, 2013.
- 589 Qin, H., Chen, G., Wang, W., Wang, D., and Zeng, L.: Validation and application of MODIS-derived SST in the South China Sea,
- 590 Int. J. Remote Sens., 35, 4315-4328, 2014.
- 591 Rödenbeck, C., Bakker, D. C. E., Gruber, N., Iida, Y., Jacobson, A. R., Jones, S., Landschützer, P., Metzl, N., Nakaoka, S., and
- 592 Olsen, A.: Data-based estimates of the ocean carbon sink variability-first results of the Surface Ocean pCO_2 Mapping
- 593 intercomparison (SOCOM), Biogeosciences, 12, 14-49, 2015.
- 594 Sheu, D. D., Chou, W. C., Wei, C. L., Hou, W. P., Wong, G., and Hsu, C. W.: Influence of El Niño the sea-to-air CO₂ flux at the
- 595 SEATs time-series site, northern South China Sea, J. Geophys. Res.: Oceans, 115, C10021, 2010.
- 596 Tahata, M., Sawaki, Y., Ueno, Y., Nishizawa, M., Yoshida, N., Ebisuzaki, T., Komiya, T., and Maruyama, S.: Three-step
- 597 modernization of the ocean: Modeling of carbon cycles and the revolution of ecological systems in the Ediacaran/Cambrian
- 598 periods, Geosci. Front., 6, 121-136, 2015.
- Telszewski, M., Chazottes, A., Schuster, U., Watson, A. J., and Wanninkhof, R.: Estimating the monthly *p*CO₂ distribution in the
 North Atlantic using a self-organizing neural network, Biogeosciences, 6, 1405-1421, 2009.
- Wang, G., Shen, S. S. P., Chen, Y., Bai, Y., Qin, H., Wang, Z., Chen, B., Guo, X., and Dai, M.: Feasibility of reconstructing the
- basin-scale sea surface partial pressure of carbon dioxide from sparse in situ observations over the South China Sea, Earth Syst.
 Sci. Data, 13, 1403-1417, 2021.
- Wanninkhof, R., Park, G. H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., Gruber, N., Doney, S. C., Mckinley, G. A., and
- Lenton, A.: Global ocean carbon uptake: magnitude, variability and trend, Biogeosciences, 10, 1983-2000, 2013
- Wang, Z._and Dai, M.: Datasets of reconstructed sea surface pCO2 in the South China Sea, Science Data Bank,

删除[Author]:, Wang, G., Guo, X., Bai, Y., Xu, Y.,

删除[Author]: Spatial reconstruction of long-term (2003-2020) sea surface pCO2 in the South China Sea using a machine learning based regression method aided by empirical orthogonal function analysis

删除[Author]: Github

607 https://doi.org/10.57760/sciencedb.02050,

删除[Author]: https://github.com/Elricriven/co2data

- 608 Wang, Z., Wang, G., Guo, X., Hu, J., and Dai, M. Reconstruction of High-Resolution Sea Surface Salinity over 2003–2020 in the
- 609 South China Sea Using the Machine Learning Algorithm LightGBM Model. Remote. Sens., 14, 6147, 2022.
- 610 https://doi.org/10.3390/rs14236147.
- 611 Xu, X., Zang, K., Zhao, H., Zheng, N., Huo, C., and Wang, J.: Monthly CO₂ at A4HDYD station in a productive shallow marginal 删除[Author]:
- 612 sea (Yellow Sea) with a seasonal thermocline: Controlling processes, J. Marine Syst., 159, 89-99, 2016.
- Jo, Y., Dai, M., Zhai, W., Yan, X., and Shang, S.: On the variations of sea surface pCO₂ in the northern South China Sea: A remote
- 614 sensing based neural network approach, J. Geophys. Res.: Oceans, 117, C08022, 2012.
- 415 Yang, W., Guo, X., Cao, Z., Wang, L., Guo, L., Huang, T., Li, Y., Xu, Y., Gan, J., and Dai, M.: Seasonal dynamics of the carbonate
- system under complex circulation schemes on a large continental shelf: The northern South China Sea, Prog Oceanogr., 197,
- 617 1026-1045, 2021.
- 618 Yu, S., Song, Z., Bai, Y., and He, X.: Remote Sensing based Sea Surface partial pressure of CO2 (pCO2) in China Seas
 619 (2003-2019) (2.0). Zenodo, 2022. https://doi.org/10.5281/zenodo.7372479.
- 620 Yu, Z., Shang, S., Zhai, W., and Dai, M.: Satellite-derived surface water pCO₂ and air-sea CO₂ fluxes in the northern South China
- 621 Sea in summer, Prog. Nat. Sci., 19, 775-779, 2009.
- Zeng, J., Matsunaga, T., Saigusa, N., Shirai, T., Nakaoka, S. I., and Tan, Z. H.: Technical note: Evaluation of three machine
 learning models for surface ocean CO₂ mapping, Ocean Sci., 13, 303-313, 2017.
- Zhai, W., Dai, M., Cai, W. J., Wang, Y., and Hong, H.: The partial pressure of carbon dioxide and air-sea fluxes in the northern
 South China Sea in spring, summer and fall, Mar. Chem., 96, 87-97, 2005.
- 626 Zhai, W. D., Dai, M. H., Chen, B. S., Guo, X. H., Li, Q., Shang, S. L., Zhang, C. Y., Cai, W. J., and Wang, D. X.: Seasonal
- variations of sea-air CO₂ fluxes in the largest tropical marginal sea (South China Sea) based on multiple-year underway
 measurements, Biogeosciences, 10, 7775-7791, 2013.
- 629 Zhang, C., Hu, C., Shang, S., Müller-Karger, F., Yan, L., Dai, M., Huang, B., Ning, X., and Hong, H.: Bridging between SeaWiFS
- and MODIS for continuity of chlorophyll-a concentration assessments off Southeastern China, Remote Sens. Environ., 102,
 250-263, 2006.
- 632 Zhan, Y., Zhang, H., Li, J., and Li, G.: Prediction Method for Ocean Wave Height Based on Stacking Ensemble Learning Model. J.
- 633 Mar. Sci. Eng., 10, 1150, 2022.
- 634 Zhu, Y., Shang, S., Zhai, W., and Dai, M.: Satellite-derived surface water pCO₂ and air-sea CO₂ fluxes in the northern South China
- 635 Sea in summer, Prog. Nat. Sci., 19, 775-779, 2009.