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Abstract. Surface downward shortwave radiation (DSR) and photosynthetically active radiation (PAR) play 11 
critical roles in the Earth’s surface processes. As the main inputs of various ecological, hydrological, carbon, 12 
and solar photovoltaic models, increasing requirements for high spatiotemporal resolution DSR and PAR 13 
estimation with high accuracy have been observed in recent years. However, few existing products satisfy all of 14 
these requirements. This study employed a well-established physical-based look-up table (LUT) approach to the 15 
GeoNEX gridded top-of-atmosphere bidirectional reflectance factor data acquired by the Advanced Himawari 16 
Imager (AHI) and Advanced Baseline Imager (ABI) sensors. It produced a data product of DSR and PAR over 17 
both AHI and ABI coverage at an hourly temporal step with a 1 km spatial resolution. GeoNEX DSR data were 18 
validated over 63 stations, and GeoNEX PAR data were validated over 27 stations. The validation showed that 19 
the new GeoNEX DSR and PAR products have accuracy higher than other existing products, with root mean 20 
square error (RMSE) of hourly GeoNEX DSR achieving 74.3 𝑊/𝑚2 (18.0%), daily DSR estimation achieving 21 
18.0 𝑊/𝑚2 (9.2%), hourly GeoNEX PAR achieving 34.9 𝑊/𝑚2 (19.6%), and daily PAR achieving 9.5 𝑊/𝑚2 22 
(10.5%). The study also demonstrated the application of the high spatiotemporal resolution GeoNEX DSR 23 
product in investigating the spatial heterogeneity and temporal variability of surface solar radiation. The data 24 
product can be accessed through NASA Advanced Supercomputing Division GeoNEX data portal 25 
https://data.nas.nasa.gov/geonex/geonexdata/GOES16/GEONEX-L2/DSR-PAR/ and 26 
https://data.nas.nasa.gov/geonex/geonexdata/HIMAWARI8/GEONEX-L2/DSR-PAR/ 27 
(https://doi.org/10.5281/zenodo.7023863, Wang & Li, 2022). 28 

1. Introduction 29 

Surface downward shortwave radiation is of great importance to the surface energy balance and hence is the 30 
required input of various surface models. Downward shortwave radiation (DSR) is defined as solar radiation 31 
received at the Earth’s surface within the wavelength range of 300–4000 nm. It is the fundamental driving force 32 
of many global ecological, hydrological, and biochemical processes (Huang et al., 2019; Wang et al., 2021; 33 
Liang et al., 2019) and provides one of the most promising renewable energy sources, solar energy. 34 
Photosynthetically active radiation (PAR) is the visible component of DSR in the spectral range of 400–700 nm. 35 
It also serves as the main input for terrestrial ecosystem modeling, carbon cycle modeling, and yield estimations 36 
because of its functionality in photosynthesis (Prince and Goward, 1995; Gu et al., 2002).  37 

The need for a high spatiotemporal DSR has increased noticeably in recent years. For example, high 38 
temporal resolution of solar resource data is required by new power system models, such as the Integrated Grid 39 
Modeling System (IGMS) (Palmintier et al., 2017). Additionally, information about the short-term fluctuation of 40 
DSR is critical for storage analysis of large grid-connected photovoltaic plants through ramp-rate control 41 
(Marcos et al., 2014). High spatial resolution DSR data are prerequisites for producing small-scale solar energy, 42 
which has received increased attention in recent years (Jain et al., 2017). Hence, the combination of high spatial 43 
and temporal DSR estimations is important for the economic and stable operation of the solar grid (Buster et al., 44 
2021).  However, because of the comparatively coarse resolution of existing products, the spatial and diurnal 45 
variations in DSR at large scales have not been fully studied. Moreover, as the driving parameters of various 46 
land models, DSR and PAR data with high spatial and temporal resolutions are essential for estimating many 47 
other surface variables at high spatial and temporal scales, such as land surface temperature (Jia et al., 2022a, 48 
2022b), ground-level ozone mapping (Wei et al., 2022), and evapotranspiration (Huang et al., 2019).   49 

Satellite-based estimation of surface incident shortwave radiation has rapidly developed in recent decades. 50 
Polar-orbiting satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), provide 51 
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one of the most popular data sources because of their extended global coverage and availability of mature high-52 
level atmospheric and surface products (Liang et al., 2006; Zhang et al., 2014; Zhang et al., 2018). Many 53 
existing DSR and PAR products, such as the Breathing Earth System Simulator (BESS) (Ryu et al., 2018), 54 
Global Land Surface Satellite Downward Shortwave Radiation (GLASS) (Zhang et al., 2019), and MODIS land 55 
surface Downward Shortwave Radiation (MCD18) (Wang et al., 2020) were generated based on MODIS 56 
observations. With the future retirement of MODIS, studies have started to focus on estimating DSR from the 57 
Visible Infrared Imaging Radiometer Suite as well (Li et al., 2022). An advanced very high-resolution 58 
radiometer (AVHRR) is also a valuable data source for DSR estimation owing to its long-term data record 59 
(Yang et al., 2018). The Clouds, Albedo, and Radiation Edition 2 (CLARA) data products were based on 60 
AVHRR (Karlsson et al., 2017). However, the above-mentioned products usually generate daily DSR by 61 
interpolating from instantaneous estimation because of the limited overpass counts of polar-orbiting satellites. 62 
Because of their limitation to capture diurnal DSR variation, the root mean square error (RMSE) of these 63 
products can hardly reach 25 𝑊/𝑚2 (Li et al., 2021).  64 

A lot of effort has been made to develop the high temporal resolution DSR estimation. The hourly Earth's 65 
Radiant Energy System (CERES) and the International Satellite Cloud Climatology Project HXG product on a 66 
three-hour scale (Tang et al., 2019) are generated by incorporating high-level satellite products and other 67 
ancillary data set. The unique Lagrange point orbit of Earth Polychromatic Imaging Camera (EPIC) onboard the 68 
Deep Space Climate Observatory (DSCOVR) are also utilized to generate hourly DSR and PAR (Hao et al., 69 
2018, 2019). Geostationary sensors provide new opportunities for estimating the DSR and PAR. Previous 70 
studies have successfully estimated surface shortwave radiation from geostationary sensors, such as 71 
multifunctional transport satellites (Huang et al. 2011; Li et al., 2015) and MSG Spinning Enhanced Visible and 72 
InfraRed Imager (Schmetz et al. 2002). With the launch of new-generation geostationary satellites, more studies 73 
have shifted to the Advanced Himawari Imager (AHI), Advanced Baseline Imager (ABI), and Advanced 74 
Geosynchronous Radiation Imager (AGRI), which provide higher spectral, spatial, and temporal resolutions 75 
with geometric and radiometric accuracies comparable to those of their polar-orbiting counterparts. Zhang et al. 76 
(2020) estimated the DSR from both AHI and ABI data using an optimization method. Letu et al. (2022) 77 
generated a suite of radiation datasets from AHI aerosol and cloud products. However, the RMSE of the hourly 78 
DSR estimation based on the above-mentioned methods is generally around 100 𝑊/𝑚2 and the daily average is 79 
still around 25-30 𝑊/𝑚2. A recent study that employed a machine learning method to estimate half-hourly DSR 80 
achieved a validation RMSE of approximately 67 𝑊/𝑚2, but their validation sites were limited and depended 81 
on the training sites (Chen et al., 2021). In addition, although various methods have been developed, no uniform 82 
products have been generated based on new-generation geostationary satellites. This is partly due to the 83 
differences in the spectral configuration or scan strategy between the carried sensors and the non-transferability 84 
of some existing retrieval methods. The requirement of data storage for products with high spatial and temporal 85 
resolutions is another reason that impedes the development and generation of such data products. 86 

To address those challenges, we employed the physical-based look-up table (LUT) method, which uses top 87 
of atmosphere (TOA) reflectance as the main input and does not rely on high-level atmospheric products, such 88 
as aerosol or cloud optical parameters. Hence, it is fast and transferable across different sensors, and eliminate 89 
possible data gaps resulted from the unavailability of the high-level atmospheric products. The TOA reflectance 90 
data are obtained from the National Aeronautics and Space Administration (NASA) Advanced Supercomputing 91 
(NAS) Division GeoNEX platform, which archives a collection of gridded data from multiple geostationary 92 
satellites with consistent file formats and map projections (Yip, 2019). The generated GeoNEX DSR/PAR 93 
product covers both the AHI and ABI areas in the same format at 1 km and hourly resolution. Compared with 94 
existing products, the GeoNEX DSR/PAR product presents the highest accuracy at both hourly and daily scales. 95 
This study also took advantage of the high spatial and temporal information provided by the new product and 96 
investigated the spatiotemporal variability of DSR. The data product was archived in the NASA GeoNEX data 97 
portal. The remainder of this paper is organized as follows: Section 2 introduces the data and methods used to 98 
develop the GeoNEX DSR/PAR products; Section 3 presents validation and comparison results for the new data 99 
product; Section 4 uses two examples to demonstrate the application of the high spatiotemporal resolution 100 
product in investigating DSR variability; Section 5 describes the data products and access information. Finally, 101 
Section 6 concludes the study with a summary.   102 

2. Data and method 103 

2.1 Method 104 

This study employs the LUT approach initially developed by Liang et al. (2006). The method was further 105 
refined by extending the LUTs, considering the impacts of water vapor and surface elevation, and applied to 106 
produce the NASA MODIS DSR/PAR product (MCD18) (Wang et al., 2020). To estimate surface fluxes, two 107 
parameterization schemes model the radiative transfer process and simplify the interactions of radiation between 108 
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the atmosphere and the surface.  109 

The first parametrization scheme (Eq. 1) builds the relationship between the TOA spectral reflectance 𝑅, 110 
surface spectral reflectance 𝑟, and three parameters related to atmospheric conditions from the clearest condition 111 
to the cloudiest conditions at a given viewing geometry: path reflectance 𝑅0(𝜆), atmospheric spherical albedo 112 
𝜌(𝜆), and transmittance 𝛾(𝜆) for the spectral band. They are functions of the viewing geometry (i.e., solar zenith 113 
angle (SZA 𝜃𝑠), view zenith angle (VZA), and relative azimuth angle (RAA)), water vapor, and elevation. The 114 
values of the three parameters were stored in the first LUT. 115 

                                           𝑅(𝜆) = 𝑅0(𝜆) +
𝑟(𝜆)

1−𝑟(𝜆)𝜌(𝜆)
𝑐𝑜𝑠(𝜃𝑠)𝛾(𝜆)/𝜋   (1) 116 

The second parameterization scheme (Eq. 2) estimates the surface broadband radiation 𝐹 from surface 117 
reflectance 𝑟 and three atmospheric parameters: path irradiance 𝐹0, atmospheric spherical albedo 𝜌, and 118 
atmospheric transmittance 𝛾 at given 𝜃𝑠. 𝐸0 is the extra-terrestrial solar broadband irradiance, which is adjusted 119 
by the distance to the sun. The second LUT was built to retrieve three atmospheric parameters with known SZA: 120 
water vapor, elevation, and visibility index retrieved from the first LUT.  121 

                                                𝐹 = 𝐹0 +
𝑟𝜌

1−𝑟𝜌
𝐸0𝑐𝑜𝑠(𝜃𝑠)𝛾    (2) 122 

To generate hourly DSR and PAR, we first calculated the instantaneous visibility index at 10- or 15-123 
minutes (the refreshing frequency of a satellite sensor) by comparing the actual TOA radiance from the sensor 124 
with the series of simulated radiances stored in the first LUT (Eq.1). The visibility indexes were then averaged 125 
to the hourly interval. Hourly DSR and PAR were estimated by searching for the second LUT using the hourly 126 
averaged visibility index.  127 

2.2 Data 128 

2.2.1 Input data 129 

The input variables and corresponding data sources are listed in Table 1. The gridded TOA reflectance of 130 
the ABI and AHI and the corresponding viewing geometry data were archived through the NASA GeoNEX data 131 
portal (Wang et al., 2020).  The ABI onboard the GOES-16 geostationary meteorological satellites is equipped 132 
with 16 spectral bands. It produces full disk scanning every 10 or 15 min covering the area from 60°N, 138°W, 133 
to 60°S, 18°W. The AHI onboard Himawari-8 has 16 spectral bands. It produces full disk scanning every 10 134 
min, covering regions from 60°N, 78°E to 60°S, 198°E. The blue band with a central wavelength of 0.47 um 135 
and 1 km spatial resolution for both ABI and AHI was used in this study to infer the atmospheric visibility 136 
index. The MCD43 and surface reflectance climatology products provided surface albedo information. The 137 
surface reflectance was obtained from the MODIS product (Schaaf & Wang, 2015). Climatological surface 138 
reflectance data were used when no valid MODIS observation was available (Jia et al., 2022). The total column 139 
water vapor data were retrieved from MERRA2 (Global Modeling and Assimilation Office, 2015), and the 140 
surface elevation data were obtained from the Global 30 Arc-Second Elevation (GTOPO30) (EROS, 2017).  141 

Table 1. The summary of input data 142 

Name Variable Spatial Resolution Temporal Resolution 

AHI/ABI TOA 

reflectance 

TOA reflectance 1km 15min or 10min 

View geometry Solar zenith angle, 

sensor zenith angle, 

relative azimuth angle 

1km 15min or 10 min 

MCD43C3 Surface albedo 0.05 degree Daily 

MERRA2 Total column water 

vapor 

0.5 x 0.625 degree Hourly 

GTOPO30 Surface elevation 30 arc seconds Static 

Surface reflectance 

climatology 

Surface reflectance 0.05 degree Static/daily 

 143 

2.2.2 Validation data 144 

Measurements from 63 stations in the ABI or AHI spatial domain were collected to validate GeoNEX 145 
DSR/PAR products. Among these, 34 sites were located in the ABI coverage domain and 29 sites in the AHI 146 
coverage area (Fig. 1). The stations belong to four networks, with 25 sites from AMERIFLUX, 11 sites from the 147 
Baseline Surface Radiation Network (BSRN), 20 sites from FLUXNET, and 7 sites from the Surface Radiation 148 
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Network (SURFRAD). All 63 sites had DSR data. The processes of ground measurement data quality checks 149 
including daily and monthly aggregation follow Li et al. (2021). Only 27 sites recorded PAR measurements. 150 
Seven sites from SURFRAD measure the PAR flux directly while the rest sites from AMERIFLUX record PAR 151 
data in quantum units (photosynthetic photon flux density, 𝜇𝑚𝑜𝑙 𝑚−2𝑠−2). The conversion between the 152 
quantum units to the energy units follows Dye (2004). 153 

  154 

 155 
Figure 1. The map of ground stations used for validating the GeoNEX DSR/PAR product.  156 

 157 

2.2.3 Other products 158 

Existing DSR products were used in this study for comparison with the new GeoNEX product. The 159 
EPIC/DSCOVER generates DSR and PAR globally at 0.1° spatial resolution and 1-2h temporal resolution. A 160 
random forest approach was applied to the data obtained by the EPIC sensor onboard the DSCOVER (Hao et al., 161 
2018, 2019). The CERES SYN1deg product provides hourly, 3hourly, daily, and monthly radiation data at the 162 
surface, TOA, and various atmospheric layers with a 1° spatial resolution. The data on surface shortwave fluxes 163 
were calculated with Langley Fu-Liou radiative transfer code from polar-orbit and geostationary satellite data, as 164 
well as other ancillary information (Rutan et al., 2015). CERES-SYN data has been extensively validated in 165 
previous studies, showed the highest accuracy compared with the most existing products; hence, it has been widely 166 
used as a baseline product (Riihelä et al., 2017; Sun et al., 2018; Li et al., 2021). The National Oceanic and 167 
Atmospheric Administration (NOAA) GOES-R series Level 2 product (ABI-L2-DSR) was also evaluated in this 168 
study. The full disk data were produced on a global latitude/longitude grid at 0.5° resolution, employing two 169 
retrieval path methods to estimate DSR (GOES-R Algorithm Working Group and GOES-R Program Office, 170 
2017). A new version of MCD18A1 has also been included in the comparison (Wang et al., 2020). It applied a 171 
similar LUT method over MODIS TOA reflectance and estimated DSR at a global scale at 1 km spatial resolution 172 
with 3hourly and daily interpolated temporal resolutions.  173 

In addition, this study employed NOAA GOES-R Series Level 2 clear sky mask data to investigate the 174 
performance of various DSR/PAR products under different cloud conditions. The product contains images in the 175 
form of binary cloud masks. To match it with hourly DSR products, the 15 min full disk data were aggregated. 176 
The sample was classified as under cloudy conditions if all four observations in an hour were cloudy and as clear 177 
if all four observations within an hour were clear. The rest were classified as partial cloudy conditions. 178 

3. Quality assessment 179 

3.1.1 Overall validation 180 

Both hourly and daily GeoNEX DSR were validated with ground measurements, as shown in the scatter 181 
plots of the ABI and AHI domains (Fig. 2). The 𝑅2 values for the hourly validations of ABI and AHI were 182 
0.929 and 0.950, respectively. RMSE were 78.2 and 69.4 𝑊/𝑚2 and relative RMSE (rRMSE) were 19.7% and 183 
16.2%.  After aggregating to the daily values, the uncertainties in estimating DSR were further reduced, while 184 
the 𝑅2 increased to 0.968 and 0.972 for ABI and AHI, respectively. The RMSE (rRMSE) achieved 18.4 (9.6%) 185 
and 17.2 (8.3%) 𝑊/𝑚2. To the best of our knowledge, it is the first satellite product of DSR with the rRMSE 186 
lower than 10% (Li et al., 2021). The validation accuracies over ABI and AHI coverage are similar, with 187 
slightly better accuracy over AHI. This is partly due to the more homogeneous and constant atmospheric 188 
conditions in the AHI domain. After aggregating into daily intervals, the differences between the two sensors 189 
decreased. The accuracy of the DSR estimation varies with cloud conditions. As shown in Fig. 3, the rRMSE 190 
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over cloudy sky (30.6%) is triple that over clear sky (10.9%), and the rRMSE of partial cloud samples (18.3%) 191 
fell in the middle of accuracies under clear and cloudy skies. The elevated errors for cloudy-sky cases partly 192 
originate from the assumption of homogenous and plane-parallel clouds in the radiative transfer code (Chen et 193 
al., 2019; Van Laake & Sanchez-Azofeifa, 2004). The linear interpolation processes in searching through the 194 
two LUTs may also lead to uncertainties in the results.  195 

Figure 4 presents the validation results of the GeoNEX PAR estimation. The 𝑅2 for hourly PAR estimation 196 
was 0.927, and the RMSE (rRMSE) was 34.7 (19.7%) 𝑊/𝑚2. The 𝑅2 for daily estimation was 0.956, and the 197 
RMSE (rRMSE) was 9.5 (10.8%) 𝑊/𝑚2. Since the PAR values of some sites are converted from the 198 
photosynthetic photon flux density which has systematic uncertainties (Dye, 2004), we also include the 199 
validation results only over SURFRAD sites where PAR flux is provided directly. The accuracies of both hourly 200 
and daily PAR estimations were higher than those of the existing products and experimental studies (Li et al., 201 
2015; Hao et al., 2018).  202 

 203 
Figure 2. Scatter plots of the estimated and observed daily and hourly DSR values for ABI and AHI data. 204 

 205 

 206 
Figure 3. Scatter plots of the estimated and observed hourly DSR values for ABI coverage under different cloud 207 
conditions 208 

 209 
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   210 
Figure 4. Scatter plots of the estimated and observed daily and hourly PAR values for ABI coverage 211 

3.1.2 Comparison with existing products 212 

We also compared the new GeoNEX DSR product with four existing DSR products at hourly and daily 213 
scales over identical samples. The statistics are summarized in Table 2. The correlation between the CERES 214 
hourly DSR product and the ground measurements had an 𝑅2 value of 0.904 and RMSE of 91.6 𝑊/𝑚2, 215 
followed by EPIC/DSCOVER with 𝑅2 = 0.798 and RMSE = 130.8 𝑊/𝑚2. ABI-L2-DSR had an 𝑅2 value of 216 
0.748 and RMSE of 148.8 𝑊/𝑚2. The proposed GeoNEX DSR outperformed all existing products (Letu et al., 217 
2022; Zhang et al., 2021; Hao et al., 2019) with 𝑅2 of 0.928 and RMSE of 78.3 𝑊/𝑚2. The relatively lower 218 
performance of the ABI-L2-DSR data may be partly because the ABI-L2-DSR is an instantaneous estimation 219 
and has a coarse spatial resolution of 0.5 °. Table 3 presents a comparison of hourly products under different 220 
cloud conditions. CERES and GeoNEX achieved comparable accuracy under clear-sky conditions. Over cloudy 221 
skies, the GeoNEX product exhibits superior accuracy with an RMSE of 95.2 𝑊/𝑚2. The RMSE of CERES 222 
and EPIC were as high as 112.8 and 159.0 𝑊/𝑚2, respectively. 223 

For daily estimation, MCD18, which retrieves DSR from the polar orbiting sensor at the highest spatial 224 
resolution of 1 km, was also included in comparison with CERES and EPIC. Other mature daily DSR products, 225 
such as GLASS, CLARA, and BESS, were not included in this study because they have shown comparable or 226 
inferior performance to CERES (Li et al., 2021). Similar to the hourly results, GeoNEX DSR outperformed all 227 
existing datasets with 𝑅2 of 0.965 and RMSE of 18.9 𝑊/𝑚2.  228 

We emphasize that the GeoNEX DSR/PAR algorithm was not trained or tuned with the field 229 
measurements used for comparison. The validation and comparison results show that this new GeoNEX 230 
shortwave radiation product provides a highly accurate DSR estimation from satellites, with hourly RMSE 231 
lower than 80 𝑊/𝑚2 and daily RMSE lower than 20 𝑊/𝑚2.  232 

Table 2. Summary of the comparison results between the GeoNEX DSR product and other DSR products 233 

Product 𝑅2 

BIAS 

(𝑊/𝑚2) 

RMSE (𝑊/
𝑚2) 

 Instantaneously 

ABI-L2-DSR 0.75 -13.9 148.8 

 Hourly 

CERES 0.90 2.7 91.6 

EPIC 0.80 2.8 130.8 
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GeoNEX 0.93 -3.4 78.3 

 Daily 

CERES 0.94 3 24.5 

MCD18 0.91 -5.2 32.6 

ABI-L2-DSR 0.77 -7.4 48.1 

EPIC 0.83 5.9 41.5 

GeoNEX 0.97 -2.4 18.9 

 234 
Table 3. Comparison of the GeoNEX DSR product with other DSR products under different cloud conditions. 235 

Product 𝑅2 

BIAS 

(𝑊/𝑚2) 

RMSE 

(𝑊/𝑚2) 𝑅2 

BIAS 

(𝑊/𝑚2) 

RMSE 

(𝑊/𝑚2) 𝑅2 

BIAS 

(𝑊/𝑚2) 

RMSE 

(𝑊/𝑚2) 

 clear cloud partial cloud 

CERES 0.97 -11.1 52.4 0.82 19.0 112.8 0.91 -10.1 91.8 

EPIC 0.94 -45.8 86.2 0.69 50.7 159.0 0.85 -15.6 115.9 

GeoNEX  0.97 -12.8 52.9 0.87 2.9 95.2 0.93 -7.5 76.5 

 236 

To evaluate their capability to monitor the temporal variability of DSR, the diurnal cycles of GeoNEX, 237 
EPIC, and CERES DSR estimations were plotted together with in-situ measurements at seven SURFRAD sites 238 
in June 2018 (Fig. 5). Although all three products could depict the diurnal trends of DSR, their performances 239 
diverged substantially over the days with high DSR variability (i.e., days of year (DOY) 174 and 175) and 240 
mountainous areas (i.e., TBL). EPIC was prone to overestimation when potential clouds existed. CERES agreed 241 
well with the in-situ measurements, but could not capture the sharp changes in DSR as accurately as GeoNEX 242 
due to coarse spatial resolution of CERES data. 243 

   244 

 245 
Figure 5. The diurnal cycles of GeoNEX, EPIC, and CERES estimations compared with in-situ measurements at 246 
seven SURFRAD sites in June 2018. Cloudy conditions are marked in dark grey and partially cloudy conditions 247 
are light grey.  248 

3.1.3 Impact of viewing geometry on estimation errors 249 

The diurnal variation of the GeoNEX DSR estimation was examined and is presented in Fig. 6. The hourly 250 
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averaged DSR matched well with the in-situ measurements for both ABI and AHI. No noticeable changes in the 251 
RMSE and BIAS were observed throughout the day. However, owing to the small average DSR values at the 252 
start and end of a day, the rRMSE increases dramatically. This phenomenon occurs in most DSR products, 253 
partly due to the Lambertian assumption adopted in the radiative transfer model.  254 

 255 
 256 

 257 
Figure 6. The diurnal variation and the impact of SZA on AHI and ABI DSR estimation 258 

Geostationary satellites maintain a static position relative to the Earth, and thus each pixel in the image has 259 
a fixed value of VZA. Figure 7 presents the rRMSE and rBias of each site located under AHI and ABI coverage. 260 
The pink stars represent the positions of the AHI and ABI sensors. For the rRMSE, a radial distribution is 261 
presented. A large rRMSE existed at sites far from the sensors. The same result was obtained for the rBias 262 
distribution. Underestimation was observed over the sites near the sensor, whereas overestimation was observed 263 
for sites far from the sensor. Overall, more uncertainties may exist at higher latitudes, as the geostationary 264 
sensors are located at the equator. To quantitatively analyze the influence of VZA, regression lines between 265 
VZA and rRMSE/rBias are plotted in Fig. 8. Positive slopes exist for both rRMSE and rBias. The p-values for 266 
both the rRMSE and rBias are less than 5%, which demonstrates that these positive correlations are significant.  267 

 268 
Figure 7. The spatial distribution of rRMSE and rBIAS of DSR estimation. The pink stars represent the position 269 
of the AHI and ABI sensors. 270 

 271 
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 272 
Figure 8. The impact of VZA on DSR estimation. The regression equation and p-value are shown.  273 

 274 

3.1.4 Impact of spatial and temporal resolutions on estimation errors 275 

Previous studies have suggested that the accuracy of DSR estimation is influenced by the spatial and 276 
temporal aggregation scales (Li et al., 2021; Zhang et al., 2021). For instantaneous PAR and DSR estimation, 277 
the optimal scale for applying 1-D transfer models is approximately 20 km (Chen et al., 2019; Zhang et al., 278 
2021). For daily estimation, Li et al. (2021) demonstrated that generally lower spatial resolution can result in 279 
higher accuracy for most existing products, but it is noticeable that the products validated in previous studies are 280 
usually interpolated from instantaneous estimation. To further examine the influence of spatial and temporal 281 
resolution on surface shortwave radiation estimation, this study compared the accuracy of DSR estimation at 282 
different scales (Fig. 9 and Table 4). This agrees well with previous findings that temporal aggregation exerts a 283 
greater impact on accuracy than spatial aggregation (Zhang et al., 2021).  The hourly rRMSE was approximately 284 
18%, while the monthly are approximately 6%. The higher the temporal resolution, the greater the influence of 285 
the spatial resolution on the estimation accuracy. As shown in Fig. 9, the differences in RMSE among different 286 
spatial resolutions decreased as the temporal resolution decreased. At the hourly scale, the highest rRMSE 287 
reached 19.8% at 100 km and the lowest was 17.1% at 10 km, whereas at the monthly scale, the DSR estimation 288 
was nearly independent of the spatial scale. Moreover, compared with previous analysis of instantaneous 289 
interpolated daily DSR estimation (Li et al., 2021), our results at a daily scale are less variable among different 290 
spatial scales, suggesting that the aggregation of hourly DSR is a possible solution to mitigate the impact of 291 
spatial resolution on daily DSR estimation and enables daily DSR estimation at spatial resolutions as high as 1 292 
km.  293 

 294 
Figure 9. Influence of spatial and temporal resolution on DSR estimation 295 

 296 
Table 4. Summary of spatial and temporal influence on hourly and daily DSR estimation.  297 

 298 

Resolution 𝑅2 

BIAS 

(𝑊/𝑚2) 

RMSE 

(𝑊/𝑚2) 𝑅2 

BIAS 

(𝑊/𝑚2) 

RMSE 

(𝑊/𝑚2) 

  Hourly Daily 
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1km 0.94  -9.4 74.3 0.97  -4.3 18.0 

5km 0.94  -9.8 72.2 0.97  -4.4 17.7 

10km 0.94  -9.3 72.0 0.97  -4.4 17.8 

25km 0.94  -8.8 73.9 0.97  -4.1 18.0 

50km 0.93  -8.7 77.2 0.97  -4.1 18.6 

100km 0.92  -8.4 83.8 0.96  -4.0 20.4 

 299 

4. Application demonstrations 300 

The importance of spatial and temporal heterogeneity of the DSR has been demonstrated in many studies 301 
(Gueymard et al., 2011; Yan et al., 2018; Sweerts et al., 2019). However, such issues have not been fully 302 
investigated owing to the limited spatial and temporal resolutions as well as relatively low accuracy of the 303 
existing products. The new GeoNEX DSR/PAR product, with their unique characteristics, provide a valuable 304 
opportunity to re-examine these issues. Here, two examples are used to demonstrate the applications of the high 305 
spatial-temporal resolution DSR product. In Section 4.1, we investigated how the overpass time and counts of 306 
polar-orbiting satellites affect the accuracy of estimating the daily DSR values. In Section 4.2 we studied the 307 
spatial heterogeneity of DSR at various temporal scales. 308 

4.1 Effects of overpass time on estimating daily DSR 309 

The quality of existing DSR products derived from polar-orbiting satellite data relies heavily on temporal 310 
upscaling schemes to calculate the daily DSR from instantaneous observations (Wang et al., 2010). We took 311 
advantage of the high frequency of the GeoNEX DSR product to simulate how the estimates of daily DSR 312 
change with overpass time and counts. 313 

The modislike11 and modislike13 data are generated using visibility indexes at local times 11:00 and 314 
13:00, corresponding to the Terra and Aqua passing time, as the constant atmospheric condition of the whole 315 
day. The Modislike2p data were generated to emulate the cases where observations from both Terra and Aqua 316 
are available. It uses the visibility index at 11:00 to represent the atmospheric condition before 11:00 and the 317 
visibility index at 13:00 to represent that after 13:00. Between 11:00 and 13:00, The visibility index was linearly 318 
interpolated (Wang et al., 2010). A similar interpolation method was used to generate the MCD18 products 319 
(Wang et al., 2020). The mechanism is shown in Fig. 10, where different data were compared over the seven 320 
SURFRAD stations on June 19th. The results show that all methods work well under no-cloud conditions, such 321 
as at the DRA site, where the visibility index at 13:00 and 11:00 can represent the entire day’s atmospheric 322 
condition. However, large uncertainties arise when atmospheric conditions vary substantially during the day. 323 
Such uncertainties may be reduced with additional observations in the modislike2p scenario, as in the case of 324 
the PSU. Nevertheless, the limited number of observations is one of the major error sources for estimating the 325 
daily DSR from polar-orbiting satellite data.  326 

 327 
Figure 10. Comparison between modislike hourly DSR and GeoNEX DSR over seven SURFRAD stations on 328 
June 19th.  329 
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The relative bias (rBias) and RMSE (rRMSE) of the daily averaged DSR between modislike interpolated 330 
data and ABI data throughout the year were calculated (Fig. 11). The rBias maps showed that the 331 
representativeness of the visibility index at 11:00 varied spatially. More overestimations were observed over 332 
high-elevation areas, and underestimations were observed at the edge of these areas, which may be because the 333 
morning clouds have not been formed or could not reach certain heights. Moreover, the visibility index at 13:00 334 
h was not sufficiently representative. The rBias map shows that interpolation from the visibility index at 13:00 335 
will lead to underestimation over all study areas, which is attributed to more cloud formation in the afternoon. 336 
The rRMSE maps demonstrate the efficiencies of incorporating two passes when interpolating daily DSR from 337 
polar-orbiting sensors, as the modislike2p generates less variability compared with ABI-based daily DSR; 338 
however, the average rRMSE reaches 10%. For both modislike10 and modislike 13, the high rRMSE is around 339 
the mountainous areas, the maximum rRMSE is approximately 70%, and the average rRMSE is approximately 340 
18%. 341 

 342 
 343 

 344 
Figure 11. The temporal representation maps are generated by calculating rBias and the rRMSE between 345 
modislike10, modislike13, and modislike2p daily interpolated data and ABI data. 346 
 347 

4.2 Spatial heterogeneity of DSR 348 

Existing global or regional shortwave radiation products mostly have a spatial resolution coarser than 5 349 
km, which meets the requirements of some terrestrial models. However, other studies may require data with a 350 
much higher spatial resolution. For instance, whether the character of a solar resource at one location can be 351 
representative of nearby locations is a critical question for solar grid design and deployment. Attempts have 352 
been made to analyze the spatial heterogeneity of DSR, but most have focused on regional scales or used coarse 353 
resolution data as inputs (Kariuki & Sato, 2018; Sarr et al., 2021; Tapia et al., 2022). With the help of the high 354 
spatiotemporal resolution GeoNEX DSR data, we were able to quantify the spatial heterogeneity of DSR at a 355 
large spatial scale over different temporal scales.   356 

We employed the metric used in the previous studies (Gueymard et al., 2011; Yan et al., 2018) to calculate 357 
the coefficient of variance (COV) to represent spatial heterogeneity of DSR.  COV is defined as: 358 
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𝐶𝑂𝑉 =  
𝜎𝑛

𝐸𝑛

∗ 100 359 

where n denotes the number of pixels surrounding the central pixel. N was set as 10×10 and 100×100 km, 360 
respectively, to examine spatial heterogeneity at different scales. 𝜎𝑛 and 𝐸𝑛 are the standard deviation and mean 361 
of these n pixels, respectively.  362 

Annual and seasonal spatial representation maps were generated at 10×10 and 100×100 km, which 363 
highlight areas susceptible to high heterogeneity in the DSR (Fig. 12). A high COV usually corresponds to 364 
mountainous and high elevation areas. For the annual COV in the 10×10 matrix over CONUS, the lowest COV 365 
occurs in central Missouri and increases towards the east and west coasts. Some regions at the edge of the 366 
American Cordillera, such as Denver, have a high COV. A high COV extends from northern Rocky in Canada 367 
along the American Cordillera to Mexico and further reaches the entire Andes Mountains in South America. 368 
Over Asia and Oceania under the AHI coverage (Fig. 12), a high COV is present at the edge of the Tibetan 369 
Plateau, especially along the Himalayan Mountains and extends to the Annamite range. It also occurs in 370 
mountainous regions of island countries such as Indonesia, Japan, and New Zealand. The patterns between 371 
10×10 km and 100×100 km were similar, with greater variability and extent in the latter representation maps. 372 
Larger COV pixels appear along the Appalachian Mountains in the US, eastern mountainous areas in Brazil, the 373 
northern part of the Tibetan Plateau in China, and southeast Australia. The analysis here suggests the need for 374 
high-spatial-resolution DSR data for these regions. Some seasonal changes in the COV values were also 375 
observed. We plotted aggregated June, July, and August (JJA) as well as December, January, and February 376 
(DJF) aggregated variation maps, as shown in Fig. 12. In general, a higher variance was observed in the 377 
Northern Hemisphere during DJF and in the Southern Hemisphere during JJA. It impacts high latitude most. It 378 
is also noticeable that a horizontal line appears at approximately 55°N in both AHI and ABI 100×100km maps 379 
during DJF. This might correspond to the polar front where a sharp gradient in temperature occurs and suggests 380 
that these two air masses with different temperatures leads to significant DSR variation at the surface at a 100 381 
km scale. 382 

 383 
Figure 12. Spatial representation maps at 10km and 100km scales during June, July, August (JJA) and 384 
December, January, and February (DJF) 385 

Figure 13 shows the distribution of daily and hourly COV frequencies at 10 and 100 km in all study areas. 386 
For the daily COV at 100 km, 86% of the areas were within the range of 3%-10%. For daily COV at 10 km, 387 
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85% of areas showed a COV lower than 3%, and most areas had a COV distributed within the range of 2%-3%. 388 
For the hourly COV at 100 km, 73% of the areas had a COV higher than 5%, and most areas were distributed 389 
within 20%-30%. For the hourly COV at 10 km, 64% of the areas had a COV within the range of 3%-10%. The 390 
values between 5%-10% were dominant for COV. The results demonstrate that the higher the temporal 391 
resolution, the more severe the spatial heterogeneity issues. DSR products with spatial resolutions of 392 
approximately 100 km are not sufficient for analysis at temporal scales higher than daily for most areas. The 10 393 
km DSR products may be sufficient for analysis using daily DSR data, but for those with hourly data, 394 
uncertainties in COV of 5%-10% existed for most areas. The results further demonstrate the importance of high-395 
spatial-resolution products, particularly at high temporal resolution.  396 

 397 

 398 
 399 

 400 
Figure 13. Histogram of daily and hourly COV at 10km and 100km. The number above the bar indicates the 401 
relative frequency.  402 

5. Data availability 403 

The GeoNEX DSR/PAR data product can be downloaded from 404 
https://data.nas.nasa.gov/geonex/geonexdata/GOES16/GEONEX-L2/DSR-PAR/ and 405 
https://data.nas.nasa.gov/geonex/geonexdata/HIMAWARI8/GEONEX-L2/DSR-PAR/ 406 
(https://doi.org/10.5281/zenodo.7023863, Wang & Li, 2022). It is a gridded product organized in a tile system 407 
that follows the convention of standard GeoNEX data sets. Each tile contains 600x600 pixels, representing a 408 
region of 6° by 6°. Detailed information regarding the gridding system can be found at 409 
https://www.nasa.gov/geonex/dataproducts. Each file contains three scientific datasets: the DSR hourly array, 410 
PAR hourly array, and quality control (QC) array. Users should use the filling value of -9999 to check whether 411 
DSR/PAR is successfully retrieved. The DSR or PAR values should be multiplied by a scale factor (0.1) before 412 
use. The QC was used to indicate the input source of the surface reflectance data (0 labeled data from the 413 
MODIS product and 1 from climatology data).  414 

6. Conclusions 415 

A gridded high spatiotemporal resolution product of DSR and PAR was produced from new-generation 416 
geostationary ABI and AHI data archived through the NASA GeoNEX platform using a physical-based LUT 417 
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approach. Hourly DSR and PAR were estimated at 1km resolution over the ABI and AHI coverage domains 418 
(60°N to 60°S, 78°E to 18°W). Validation demonstrated that the new GeoNEX DSR and PAR products were 419 
highly reliable. The RMSE of hourly DSR estimation is 74.3 𝑊/𝑚2 (18.0%) and that of daily DSR estimation is 420 
18.0 𝑊/𝑚2 (9.2%) when evaluated against 63 sites from four different networks. The hourly PAR achieves 421 
34.9 𝑊/𝑚2 (19.6%) and daily PAR achieves 9.5 𝑊/𝑚2 (10.5%) validated over 27 sites. It should be noted that 422 
the GeoNEX DSR and PAR data were retrieved using a physical LUT approach and did not require any training 423 
or tuning based on any of the validation sites. The independent validation results suggest the superior accuracy 424 
of the new data product over other existing products, such as CERES, MCD18, EPIC, and NOAA-L2-DSR.  425 

The high-quality gridded dataset of surface incident shortwave radiation provides new opportunities to 426 
study its spatial and temporal variability. We demonstrate the application of this new product using two 427 
examples. We first mapped the errors in estimating the daily DSR from the polar-orbit satellite data. It was 428 
found that one observation per day led to an average relative RMSE of 18 %, and an increase in the daily 429 
observation number to two reduced the relative RMSE to 10%. In addition, we characterized the spatial 430 
heterogeneity of the DSR based on the new GeoNEX DSR product. It was shown that mountainous and high-431 
latitude areas are more susceptible to high spatial-temporal variation. DSR products with a resolution of 432 
approximately 100 km are insufficient for daily and monthly analyses. Analysis at an hourly temporal scale 433 
requires DSR data with spatial resolutions finer than 10 km.  434 
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