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Abstract. Surface downward shortwave radiation (DSR) and photosynthetically active radiation (PAR) play critical roles in 

the Earth’s surface processes. As the main inputs of various ecological, hydrological, carbon, and solar photovoltaic models, 

increasing requirements for high spatiotemporal resolution DSR and PAR estimation with high accuracy have been observed 10 

in recent years. However, few existing products satisfy all of these requirements. This study employed a well-established 

physical-based look-up table (LUT) approach to the GeoNEX gridded top-of-atmosphere bidirectional reflectance factor data 

acquired by the Advanced Himawari Imager (AHI) and Advanced Baseline Imager (ABI) sensors. It produced a data product 

of DSR and PAR over both AHI and ABI coverage at an hourly temporal step with a 1 km spatial resolution. GeoNEX DSR 

data were validated over 63 stations, and GeoNEX PAR data were validated over 27 stations. The validation showed that the 15 

new GeoNEX DSR and PAR products have accuracy higher than other existing products, with root mean square error (RMSE) 

of hourly GeoNEX DSR achieving 74.3 𝑊/𝑚2 (18.0%), daily DSR estimation achieving 18.0 𝑊/𝑚2 (9.2%), hourly GeoNEX 

PAR achieving 34.9  𝑊/𝑚2  (19.6%), and daily PAR achieving 9.5 𝑊/𝑚2  (10.5%). The study also demonstrated the 

application of the high spatiotemporal resolution GeoNEX DSR product in investigating the spatial heterogeneity and temporal 

variability of surface solar radiation. The data product can be freely accessed through the NASA Advanced Supercomputing 20 

Division GeoNEX data portal: https://data.nas.nasa.gov/geonex/geonexdata/GOES16/GEONEX-L2/DSR-PAR/ and 

https://data.nas.nasa.gov/geonex/geonexdata/HIMAWARI8/GEONEX-L2/DSR-PAR/ 

(https://doi.org/10.5281/zenodo.7023863, Wang & Li, 2022). 

1 Introduction 

Surface downward shortwave radiation is of great importance to the surface energy balance and hence is the required input of 25 

various surface models. Downward shortwave radiation (DSR) is defined as solar radiation received at the Earth’s surface 

within the wavelength range of 300–4000 nm. It is the fundamental driving force of many global ecological, hydrological, and 

biochemical processes (Huang et al., 2019; Wang et al., 2021; Liang et al., 2019) and provides one of the most promising 
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renewable energy sources, solar energy. Photosynthetically active radiation (PAR) is the visible component of DSR in the 

spectral range of 400–700 nm. It also serves as the main input for terrestrial ecosystem modeling, carbon cycle modeling, and 30 

yield estimations because of its functionality in photosynthesis (Prince and Goward, 1995; Gu et al., 2002).  

The need for a high spatiotemporal DSR product has increased noticeably in recent years. For example, high temporal 

resolution of solar resource data is required by new power system models, such as the Integrated Grid Modeling System (IGMS) 

(Palmintier et al., 2017). Additionally, information about the short-term fluctuation of DSR is critical for storage analysis of 

large grid-connected photovoltaic plants through ramp-rate control (Marcos et al., 2014). High spatial resolution DSR data are 35 

prerequisites for producing small-scale solar energy, which has received increased attention in recent years (Jain et al., 2017). 

Hence, the combination of high spatial and temporal DSR estimations is important for the economic and stable operation of 

the solar grid (Buster et al., 2021).  However, because of the comparatively coarse resolution of existing products, the spatial 

and diurnal variations in DSR at large scales have not been fully studied. Moreover, as the driving parameters of various land 

models, DSR and PAR data with high spatial and temporal resolutions are essential for estimating many other surface variables 40 

at high spatial and temporal scales, such as land surface temperature (Jia et al., 2022a, 2022b), ground-level ozone mapping 

(Wei et al., 2022), and evapotranspiration (Huang et al., 2019).   

Satellite-based estimation of surface incident shortwave radiation has rapidly developed in recent decades. Polar-orbiting 

satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), provide one of the most popular data 

sources because of their extended global coverage and availability of mature high-level atmospheric and surface products 45 

(Liang et al., 2006; Zhang et al., 2014; Zhang et al., 2018). Many existing DSR and PAR products, such as the Breathing Earth 

System Simulator (BESS) (Ryu et al., 2018), Global Land Surface Satellite Downward Shortwave Radiation (GLASS) (Zhang 

et al., 2019), and MODIS land surface Downward Shortwave Radiation (MCD18) (Wang et al., 2020) were generated based 

on MODIS observations. With the future retirement of MODIS, studies have started to focus on estimating DSR from the 

Visible Infrared Imaging Radiometer Suite as well (Li et al., 2022). An advanced very high-resolution radiometer (AVHRR) 50 

is also a valuable data source for DSR estimation owing to its long-term data record (Yang et al., 2018). The Clouds, Albedo, 

and Radiation Edition 2 (CLARA) data products were based on AVHRR (Karlsson et al., 2017). However, the above-

mentioned products usually generate daily DSR by interpolating from instantaneous estimation because of the limited overpass 

counts of polar-orbiting satellites. Because of their limitation to capture diurnal DSR variation, the root mean square error 

(RMSE) of these products can hardly reach 25 𝑊/𝑚2 for daily DSR (Li et al., 2021).  55 

A lot of efforts have been made to develop the high temporal resolution DSR estimation. The hourly Earth's Radiant Energy 

System (CERES) and the International Satellite Cloud Climatology Project HXG product on a three-hour scale (Tang et al., 

2019) are generated by incorporating high-level satellite products and other ancillary data set. The unique Lagrange point orbit 

of Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) are also utilized to 
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generate hourly DSR and PAR (Hao et al., 2018, 2019). Geostationary sensors provide new opportunities for estimating the 60 

DSR and PAR. Previous studies have successfully estimated surface shortwave radiation from geostationary sensors, such as 

multifunctional transport satellites (Huang et al. 2011; Li et al., 2015) and MSG Spinning Enhanced Visible and InfraRed 

Imager (Schmetz et al. 2002). With the launch of new-generation geostationary satellites, more studies have shifted to the 

Advanced Himawari Imager (AHI), Advanced Baseline Imager (ABI), and Advanced Geosynchronous Radiation Imager 

(AGRI), which provide higher spectral, spatial, and temporal resolutions with geometric and radiometric accuracies 65 

comparable to those of their polar-orbiting counterparts. Zhang et al. (2020) estimated the instantaneous and daily aggregated 

DSR from both AHI and ABI data using an optimization method with RMSE at 104 𝑊/𝑚2 and 25 𝑊/𝑚2 respectively. Letu 

et al. (2022) claimed a new benchmark of radiation datasets from AHI aerosol and cloud products with hourly DSR retrieval 

accuracy at RMSE of 104.9 𝑊/𝑚2 and daily at 31.5 𝑊/𝑚2. A recent study that employed a machine learning method to 

estimate half-hourly DSR achieved a validation RMSE of approximately 67 𝑊/𝑚2, but their validation sites were limited and 70 

depended on the training sites (Chen et al., 2021). The resolution and accuracy of existed products still have space for 

improvements. Moreover, no uniform products based on multiple new-generation geostationary satellites are currently 

available, although several individual products have been produced by various agencies. Some products do not provide 

operational continuous data records or are not easily accessible to the international users. The map projection and data structure 

of full disk data files are also inconvenient for product processing and analysis.   75 

The GeoNEX enhanced collection of new-generation geostationary satellite data across the globe makes it possible to produce 

a gridded high spatiotemporal resolution product of DSR and PAR with substantially improved quality. Through the GeoNEX 

platform, the data from various satellite sensors are preprocessed and archived in a consistent global tile gridding system. The 

GeoNEX data processing includes several critical data-improvement steps, such as removing the residual geometric errors, 

applying the orthorectification correction, and computing the precise view geometry at the individual pixel level. Based on the 80 

improved GeoNEX L1G TOA reflectance data, an operational high spatiotemporal resolution product of land surface DSR 

and PAR was produced. The physics-based look-up table (LUT) approach was selected as the retrieval algorithm, mainly 

because it is mature and reliable and has been used to generate the MODIS surface shortwave radiation product (MCD18). 

Besides, the algorithm does not require atmospheric products, such as cloud mask, aerosol and cloud optical properties as input, 

which are not currently available in the GeoNEX processing chain. The use of the high-quality input data and the mature 85 

algorithm created the foundation for estimating DSR and PAR with substantially improved quality and accuracy.  

This data description paper introduces the estimation algorithm and procedures, summarizes the validation results of the new 

product and demonstrates its use in better understanding spatiotemporal variability of surface shortwave radiation. The 

remainder of this paper is organized as follows: Section 2 introduces the data and methods used to develop the GeoNEX 

DSR/PAR product; Section 3 presents validation and comparison results for the new data product; Section 4 uses two examples 90 
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to demonstrate the application of the high spatiotemporal resolution product in investigating DSR variability; Section 5 

describes the data products and access information. Finally, Section 6 concludes the study with a summary.   

2 Data and method 

2.1 Method 

This physics-based retrieval algorithm has been initially developed for the operational NASA MODIS DSR and PAR product 95 

(MCD18) (Liang et al., 2006; Wang et al., 2020). This algorithm has distinct advantages compared with other LUT methods. 

It mainly uses the blue band of TOA reflectance which is available for most sensors and less dependent on the additional 

atmospheric data which all ensure the high resolution, transferability, and continuity of the GeoNEX DSR algorithm. The 

extensive quality assessment of MCD18 showed that this algorithm is reliable, efficient, and highly accurate (Wang et al., 

2021; Li et al., 2021).  100 

To estimate surface shortwave radiation fluxes, two parameterization schemes that model the radiative transfer process 

between the atmosphere and the Lambertian surface were introduced (Liang, 2004; Chandrasekhar, 1960). The first 

parametrization scheme (Eq. 1) builds the relationship between the TOA spectral reflectance 𝑅, surface spectral reflectance 𝑟, 

and three parameters related to atmospheric conditions from the clearest condition to the cloudiest conditions at a given viewing 

geometry: path reflectance 𝑅0(𝜆) , atmospheric spherical albedo 𝜌(𝜆) , and transmittance  𝛾(𝜆)  for the spectral band:  105 

                                           𝑅(𝜆) = 𝑅0(𝜆) +
𝑟(𝜆)

1−𝑟(𝜆)𝜌(𝜆)
𝑐𝑜𝑠(𝜃𝑠)𝛾(𝜆)/𝜋   (1). 

The second parameterization scheme (Eq. 2) estimates the surface broadband radiation flux 𝐹 from surface reflectance 𝑟 and 

three atmospheric parameters: path irradiance 𝐹0, atmospheric spherical albedo 𝜌, and atmospheric transmittance 𝛾 at given 

𝜃𝑠. 𝐸0 is the extra-terrestrial solar broadband irradiance, which is adjusted by the distance to the sun: 

                                                𝐹 = 𝐹0 +
𝑟𝜌

1−𝑟𝜌
𝐸0𝑐𝑜𝑠(𝜃𝑠)𝛾    (2). 110 

The parameters used in the two equations are pre-calculated from the offline simulations with the atmospheric radiative transfer 

model. The results are saved in two LUT files. Two major steps are used to produce the GeoNEX DSR and PAR product from 

TOA reflectance data (Figure 1). In the first step, the first equation together with the TOA LUT file is used to predict the 

visibility index of the atmosphere. The geometric and radiometric corrected GeoNEX TOA reflectance values are the main 

input of this step. Total precipitable water vapor (TQV) is included to account for the effects of water vapor absorption. Surface 115 

elevation is also used to consider the effect of air mass on gas scattering and absorption. It should be noted that the terrain 

effect plays increasingly important role for estimating surface solar radiation at finer spatial resolution. The impacts of aspect 
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and slope on solar radiation need to be included in the future improvement. Given the viewing geometry (solar zenith angle 

(SZA 𝜃𝑠), view zenith angle (VZA), and relative azimuth angle (RAA)), possible values of TOA reflectance are calculated 

with Eq. 1 for various levels of visibility index (from the most clear atmosphere to the most cloudy case). The visibility index 120 

that provides the closest match between the calculated TOA reflectance and the observed TOA reflectance is retrieved. With 

the visibility index retrieved from the first step, surface shortwave radiation can be easily calculated from Eq. 2 and the surface 

LUT file through the second step.   

 

Figure 1. The flowchart of generating the GeoNEX DSR and PAR product. 125 

2.2 Data 

2.2.1 Input data 

The input variables and corresponding data sources are listed in Table 1. The TOA reflectance data are obtained from the 

National Aeronautics and Space Administration (NASA) Advanced Supercomputing (NAS) Division GeoNEX platform, 

which archives a collection of gridded data from multiple geostationary satellites with consistent file formats and map 130 
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projections (Wang et al., 2020).  The ABI onboard the GOES-16 geostationary meteorological satellites is equipped with 16 

spectral bands. It produces full disk scanning every 10 or 15 min covering the area from 60°N, 138°W, to 60°S, 78°W. The 

AHI onboard Himawari-8 has 16 spectral bands. It produces full disk scanning every 10 min, covering regions from 60°N, 

78°E to 60°S, 162°W. The blue band with a central wavelength of 0.47 um and 1 km spatial resolution for both ABI and AHI 

was used in this study to infer the atmospheric visibility index.  135 

The MCD43 and surface reflectance climatology products provided surface albedo information. The surface reflectance was 

obtained from the MODIS product (Schaaf & Wang, 2015). Climatological surface reflectance data were used when no valid 

MODIS observation was available (Jia et al., 2022). The TQV data were obtained from the MERRA2 reanalysis product 

(Global Modeling and Assimilation Office, 2015) and the surface elevation data were from the Global 30 Arc-Second Elevation 

(GTOPO30) product (EROS, 2017).  140 

Table 1. The summary of input data 

Name Variable Spatial Resolution Temporal Resolution 

AHI/ABI TOA 

reflectance 

TOA reflectance 1km 15min or 10min 

View geometry Solar zenith angle, sensor 

zenith angle, relative 

azimuth angle 

1km 15min or 10 min 

MCD43C3 Surface albedo 0.05 degree Daily 

MERRA2 Total precipitable water 

vapor 

0.5 x 0.625 degree Hourly 

GTOPO30 Surface elevation 30 arc seconds Static 

Surface reflectance 

climatology 

Surface reflectance 0.05 degree Static/daily 

2.2.2 Validation data 

Measurements from 63 stations in the ABI or AHI spatial domain were collected to validate GeoNEX DSR/PAR products. 

Among these, 34 sites were located in the ABI coverage domain and 29 sites in the AHI coverage area (Figure 2). The stations 

belong to four networks, with 25 sites from AMERIFLUX, 11 sites from the Baseline Surface Radiation Network (BSRN), 20 145 

sites from FLUXNET, and 7 sites from the Surface Radiation Network (SURFRAD). All 63 sites had DSR data. The processes 

of ground measurement data quality checks including daily and monthly aggregation follow Li et al. (2021). Only 27 sites 

recorded PAR measurements. Seven sites from SURFRAD measure the PAR flux directly while the rest sites from 

AMERIFLUX record PAR data in quantum units (photosynthetic photon flux density, 𝜇𝑚𝑜𝑙 𝑚−2𝑠−2 ). The conversion 

between the quantum units to the energy units follows Dye (2004). 150 
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Figure 2. The map of ground stations and their networks used for validating the GeoNEX DSR/PAR product.  

2.2.3 Other products 155 

Existing DSR products were used in this study for comparison with the new GeoNEX product. The EPIC/DSCOVER generates 

DSR and PAR globally at 0.1° spatial resolution and 1-2h temporal resolution. A random forest approach was applied to the 

data obtained by the EPIC sensor onboard the DSCOVER (Hao et al., 2018, 2019). The CERES SYN1deg product provides 

hourly, 3hourly, daily, and monthly radiation data at the surface, TOA, and various atmospheric layers with a 1° spatial 

resolution. The data on surface shortwave fluxes were calculated with Langley Fu-Liou radiative transfer code from polar-160 
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orbit and geostationary satellite data, as well as other ancillary information (Rutan et al., 2015). CERES-SYN data has been 

extensively validated in previous studies, showed the highest accuracy compared with the most existing products; hence, it has 

been widely used as a baseline product (Riihelä et al., 2017; Sun et al., 2018; Li et al., 2021). The National Oceanic and 

Atmospheric Administration (NOAA) GOES-R series Level 2 product (ABI-L2-DSR) was also evaluated in this study. The 

full disk data were produced on a global latitude/longitude grid at 0.5° resolution, employing two retrieval path methods to 165 

estimate DSR (GOES-R Algorithm Working Group and GOES-R Program Office, 2017). A new version of MCD18A1 has 

also been included in the comparison (Wang et al., 2020). It applied a similar LUT method over MODIS TOA reflectance and 

estimated DSR at a global scale at 1 km spatial resolution with 3hourly and daily interpolated temporal resolutions.  

In addition, this study employed NOAA GOES-R Series Level 2 clear sky mask data to investigate the performance of various 

DSR/PAR products under different cloud conditions. The product contains images in the form of binary cloud masks. To match 170 

it with hourly DSR products, the 15 min full disk data were aggregated. The sample was classified as under cloudy conditions 

if all four observations in an hour were cloudy and as clear if all four observations within an hour were clear. The rest were 

classified as partial cloudy conditions. 

3 Quality assessment and error analysis 

3.1 Overall validation 175 

The GeoNEX DSR and PAR product is currently produced from the GOES16-17/ABI and Himawari8/AHI data, covering the 

area of East Asia, Australia, North America and South America from 78°E to 18°W between 60°N and 60°S (Figure 3). The 

GeoNEX hourly and daily DSR data were validated with ground measurements over one year to provide a comprehensive 

evaluation of the product across various seasons (Figure 4). The 𝑅2 values for the hourly DSR from ABI and AHI were 0.929 

and 0.950, respectively. RMSE were 78.2 and 69.4 𝑊/𝑚2  and relative RMSE (rRMSE) were 19.7% and 16.2%.  After 180 

aggregating to the daily values, the uncertainties in estimating DSR were further reduced, while the 𝑅2 increased to 0.968 and 

0.972 for ABI and AHI, respectively. The RMSE (rRMSE) achieved 18.4 (9.6%) and 17.2 (8.3%) 𝑊/𝑚2. To the best of our 

knowledge, it is the first satellite product of DSR with the rRMSE lower than 10% (Li et al., 2021). The validation accuracies 

over ABI and AHI coverage are similar, with slightly better accuracy over AHI. This is partly due to the more homogeneous 

and constant atmospheric conditions in the AHI domain. After aggregating into daily intervals, the differences between the 185 

two sensors decreased. The accuracy of the DSR estimation varies with cloud conditions. As shown in Figure 5, the rRMSE 

over cloudy sky (30.6%) is triple that over clear sky (10.9%), and the rRMSE of partial cloud samples (18.3%) fell in the 

middle of accuracies under clear and cloudy skies. The elevated errors for cloudy-sky cases partly originate from the 

assumption of homogenous and plane-parallel clouds in the radiative transfer code (Chen et al., 2019; Van Laake & Sanchez-
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Azofeifa, 2004). The linear interpolation processes in searching through the two LUTs may also lead to uncertainties in the 190 

results.  

 

 
 

Figure 3. The daily DSR (a) and PAR (b) maps of from the GeoNEX product on June 19th 2018. 195 Formatted: Superscript
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Figure 4. Scatter plots of the estimated and observed daily and hourly DSR values for ABI and AHI data. 

Figure 6 presents the validation results of the GeoNEX PAR estimation. The 𝑅2 for hourly PAR estimation was 0.927, and the 

RMSE (rRMSE) was 34.7 (19.7%) 𝑊/𝑚2. The 𝑅2 for daily estimation was 0.956, and the RMSE (rRMSE) was 9.5 (10.8%) 200 

𝑊/𝑚2. Since the PAR values of some sites are converted from the photosynthetic photon flux density which has systematic 

uncertainties (Dye, 2004), we also include the validation results only over SURFRAD sites where PAR flux is provided directly. 

The accuracies of both hourly and daily PAR estimations were higher than those of the existing products and experimental 

studies (Li et al., 2015; Hao et al., 2018). 

  205 
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Figure 5. Scatter plots of the estimated and observed hourly DSR values for ABI coverage under different cloud conditions 
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Figure 6. Scatter plots of the estimated and observed daily and hourly PAR values for ABI coverage 

3.2 Comparison with existing products 

We also compared the new GeoNEX DSR product with four existing DSR products at hourly and daily scales over identical 215 

samples. The statistics are summarized in Table 2. The correlation between the CERES hourly DSR product and the ground 

measurements had an 𝑅2 value of 0.904 and RMSE of 91.6 𝑊/𝑚2, followed by EPIC/DSCOVER with 𝑅2 = 0.798 and RMSE 

= 130.8  𝑊/𝑚2 . ABI-L2-DSR had an 𝑅2  value of 0.748 and RMSE of 148.8  𝑊/𝑚2 . The proposed GeoNEX DSR 

outperformed all existing products (Letu et al., 2022; Zhang et al., 2021; Hao et al., 2019) with 𝑅2 of 0.928 and RMSE of 

78.3 𝑊/𝑚2 . The relatively lower performance of the ABI-L2-DSR data may be partly because the ABI-L2-DSR is an 220 

instantaneous estimation and has a coarse spatial resolution of 0.5 °. Table 3 presents a comparison of hourly products under 

different cloud conditions. CERES and GeoNEX achieved comparable accuracy under clear-sky conditions. Over cloudy skies, 

the GeoNEX product exhibits superior accuracy with an RMSE of 95.2 𝑊/𝑚2. The RMSE of CERES and EPIC were as high 

as 112.8 and 159.0 𝑊/𝑚2, respectively. 

For daily estimation, MCD18, which retrieves DSR from the polar orbiting sensor at the highest spatial resolution of 1 km, 225 

was also included in comparison with CERES and EPIC. Other mature daily DSR products, such as GLASS, CLARA, and 
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BESS, were not included in this study because they have shown comparable or inferior performance to CERES (Li et al., 2021). 

Similar to the hourly results, GeoNEX DSR outperformed all existing datasets with 𝑅2 of 0.965 and RMSE of 18.9 𝑊/𝑚2.  

We emphasize that the GeoNEX DSR/PAR algorithm was not trained or tuned with the field measurements used for 

comparison. The validation and comparison results show that this new GeoNEX shortwave radiation product provides a highly 230 

accurate DSR estimation from satellites, with hourly RMSE lower than 80 𝑊/𝑚2 and daily RMSE lower than 20 𝑊/𝑚2.  

Table 2. Summary of the comparison results between the GeoNEX DSR product and other DSR products 

Product 𝑅2 BIAS (𝑊/𝑚2) RMSE (𝑊/𝑚2) 

 Instantaneous 

ABI-L2-DSR 0.75 -13.9 148.8 

 Hourly 

CERES 0.90 2.7 91.6 

EPIC 0.80 2.8 130.8 

GeoNEX 0.93 -3.4 78.3 

 Daily 

CERES 0.94 3 24.5 

MCD18 0.91 -5.2 32.6 

ABI-L2-DSR 0.77 -7.4 48.1 

EPIC 0.83 5.9 41.5 

GeoNEX 0.97 -2.4 18.9 

 

Table 3. Comparison of the GeoNEX DSR product with other DSR products under different cloud conditions. 

Product 𝑅2 

BIAS 

(𝑊/𝑚2) 

RMSE 

(𝑊/𝑚2) 𝑅2 

BIAS 

(𝑊/𝑚2) 

RMSE 

(𝑊/𝑚2) 𝑅2 

BIAS 

(𝑊/𝑚2) 

RMSE 

(𝑊/𝑚2) 

 Clear Cloud Partly cloud 

CERES 0.97 -11.1 52.4 0.82 19.0 112.8 0.91 -10.1 91.8 

EPIC 0.94 -45.8 86.2 0.69 50.7 159.0 0.85 -15.6 115.9 

GeoNEX  0.97 -12.8 52.9 0.87 2.9 95.2 0.93 -7.5 76.5 

 235 

To evaluate their capability to monitor the temporal variability of DSR, the diurnal cycles of GeoNEX, EPIC, and CERES 

DSR estimations were plotted together with in-situ measurements at seven SURFRAD sites in June 2018 (Figure 7). Although 

all three products could depict the diurnal trends of DSR, their performances diverged substantially over the days with high 

DSR variability (i.e., days of year (DOY) 174 and 175) and mountainous areas (i.e., TBL). EPIC was prone to overestimation 

when potential clouds existed. CERES agreed well with the in-situ measurements, but could not capture the sharp changes in 240 

DSR as accurately as GeoNEX due to coarse spatial resolution of CERES data.  
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Figure 7. The diurnal cycles of GeoNEX, EPIC, and CERES estimations compared with in-situ measurements at seven 

SURFRAD sites in June 2018. Cloudy conditions are marked in dark grey and partially cloudy conditions are in light grey.  245 

3.3 Impact of viewing geometry on estimation errors 

The diurnal variation of the GeoNEX DSR estimation was examined and is presented in Figure 8. The hourly averaged DSR 

matched well with the in-situ measurements for both ABI and AHI. No noticeable changes in the RMSE and BIAS were 

observed throughout the day. However, owing to the small average DSR values at the start and end of a day, the rRMSE 

increases dramatically. This phenomenon occurs in most DSR products, partly due to the Lambertian assumption adopted in 250 

the radiative transfer model.  
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Figure 8: Diurnal variation of DSR estimation for ABI (a) and AHI (c), and the impact of SZA on ABI (b) and AHI (d) 

estimation. The left-hand y-axis corresponds to the line plot, while the right-hand y-axis corresponds to the bar plot.Figure 8. The 255 
diurnal variation  and the impact of SZA on AHI and ABI DSR estimation. 

Geostationary satellites maintain a static position relative to the Earth, and thus each pixel in the image has a fixed value of 
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VZA. Figure 9 presents the rRMSE and rBias of each site located under AHI and ABI coverage. The pink stars represent the 

positions of the AHI and ABI sensors. For the rRMSE, a radial distribution is presented. A large rRMSE existed at sites far 

from the sensors. The same result was obtained for the rBias distribution. Underestimation was observed over the sites near 260 

the sensor, whereas overestimation was observed for sites far from the sensor. Overall, more uncertainties may exist at higher 

latitudes, as the geostationary sensors are located at the equator. To quantitatively analyze the influence of VZA, regression 

lines between VZA and rRMSE/rBias are plotted in Figure 10. Positive slopes exist for both rRMSE and rBias. The p-values 

for both the rRMSE and rBias are less than 5%, which demonstrates that these positive correlations are significant.  

 265 

  
Figure 9. The spatial distribution of rRMSE (a) and rBIAS (b) of DSR estimation. The pink stars represent the position of the 

AHI and ABI sensors. 
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Figure 10. The impact of VZA on DSR estimation rRMSE (a) and rBias (b). The regression equation and p-value are shown.  

3.4 Impact of spatial and temporal resolutions on estimation errors 

Previous studies have suggested that the accuracy of DSR estimation is influenced by the spatial and temporal aggregation 

scales (Li et al., 2021; Zhang et al., 2021). For instantaneous PAR and DSR estimation, the optimal scale for applying 1-D 275 

transfer models is approximately 20 km (Chen et al., 2019; Zhang et al., 2021). For daily estimation, Li et al. (2021) 

demonstrated that generally lower spatial resolution can result in higher accuracy for most existing products, but it is noticeable 

that the products validated in previous studies are usually interpolated from instantaneous estimation. To further examine the 

influence of spatial and temporal resolution on surface shortwave radiation estimation, this study compared the accuracy of 

DSR estimation at different scales (Figure 11 and Table 4). This agrees well with previous findings that temporal aggregation 280 

exerts a greater impact on accuracy than spatial aggregation (Zhang et al., 2021).  The hourly rRMSE was approximately 18%, 
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while the monthly are approximately 6%. The higher the temporal resolution, the greater the influence of the spatial resolution 

on the estimation accuracy. As shown in Figure 11, the differences in RMSE among different spatial resolutions decreased as 

the temporal resolution decreased. At the hourly scale, the highest rRMSE reached 19.8% at 100 km and the lowest was 17.1% 

at 10 km, whereas at the monthly scale, the DSR estimation was nearly independent of the spatial scale. Moreover, compared 285 

with previous analysis of instantaneous interpolated daily DSR estimation (Li et al., 2021), our results at a daily scale are less 

variable among different spatial scales, suggesting that the aggregation of hourly DSR is a possible solution to mitigate the 

impact of spatial resolution on daily DSR estimation and enables daily DSR estimation at spatial resolutions as high as 1 km.  

 
Figure 11. Influence of spatial and temporal resolution on DSR estimation 290 

Table 4. Summary of spatial and temporal influence on hourly and daily DSR estimation.  

 

Resolution 𝑅2 

BIAS 

(𝑊/𝑚2) 

RMSE 

(𝑊/𝑚2) 𝑅2 

BIAS 

(𝑊/𝑚2) 

RMSE 

(𝑊/𝑚2) 

  Hourly Daily 

1km 0.94  -9.4 74.3 0.97  -4.3 18.0 

5km 0.94  -9.8 72.2 0.97  -4.4 17.7 

10km 0.94  -9.3 72.0 0.97  -4.4 17.8 

25km 0.94  -8.8 73.9 0.97  -4.1 18.0 

50km 0.93  -8.7 77.2 0.97  -4.1 18.6 

100km 0.92  -8.4 83.8 0.96  -4.0 20.4 

 

3.5 Analysis of sensitivity to the input parameters 
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Surface reflectance and TQV are two major ancillary input variables to the DSR retrieval algorithm. To study the impact of 295 

input data quality on retrieval errors, a sensitivity study was conducted with the simulated data. Random errors of various 

levels were added to the two input variables. The error-added surface reflectance and TQV were then used to estimate DSR 

through the LUT retrieval approach. The estimated DSR were compared with the true DSR previously simulated to calculate 

retrieval errors. The mean absolute error (MAE) were then calculated for various levels of input errors (Figure 12). For both 

input variables, MAE of estimating DSR increases with the errors in input data. In general, the DSR accuracy is dependent 300 

more on surface reflectance than TQV, because the LUT algorithm needs the difference information between surface 

reflectance and TOA reflectance to infer atmospheric conditions. For example, 10% of error in surface reflectance can lead to 

a MAE increase around 10 /𝑚2 , while for TQV it is about 0.5 𝑊/𝑚2. The results also suggest the sensitivity to the two input 

variables both change with solar angles. Larger MAE is generated when SZA is higher. However, the retrieval errors increase 

much more quickly with SZA for the input variable of TQV than surface reflectance. When SZA is within 60 to 80 degrees, 305 

the MAE can achieve near 2.5 times of the MAE when SZA is lower than 20 degrees. It can be attributed to the stronger 

absorption of water vapor as SZA increases.  

 

 

Figure 12. Sensitivity of the DSR retrieval algorithm to errors in the input data of surface reflectance and TQV. 310 

4 Application demonstrations 

The importance of spatial and temporal heterogeneity of the DSR has been demonstrated in many studies (Gueymard et al., 

2011; Yan et al., 2018; Sweerts et al., 2019). However, such issues have not been fully investigated owing to the limited spatial 

and temporal resolutions as well as relatively low accuracy of the existing products. The new GeoNEX DSR/PAR product, 

with their unique characteristics, provide a valuable opportunity to re-examine these issues. Here, two examples are used to 315 

demonstrate the applications of the high spatial-temporal resolution DSR product. In Section 4.1, we investigated how the 
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overpass time and counts of polar-orbiting satellites affect the accuracy of estimating the daily DSR values. In Section 4.2 we 

studied the spatial heterogeneity of DSR at various temporal scales. 

4.1 Effects of overpass time on estimating daily DSR 

As shown in Table 2, although the GeoNEX DSR and PAR adapted the heritage algorithm of the MCD18, its accuracy is much 320 

higher than that of MCD18 because of the high temporal resolution of geostationary data. One reason is that the quality of 

existing DSR products derived from polar-orbiting satellite data relies heavily on temporal upscaling schemes to calculate the 

daily DSR from instantaneous observations (Wang et al., 2010). We took advantage of the high frequency of the GeoNEX 

DSR product to simulate how the estimates of daily DSR change with overpass time and counts. 

The modislike11 and modislike13 data are generated using visibility indexes at local times 11:00 and 13:00, corresponding to 325 

the Terra and Aqua passing time, as the constant atmospheric condition of the whole day. The Modislike2p data were generated 

to emulate the cases where observations from both Terra and Aqua are available. It uses the visibility index at 11:00 to represent 

the atmospheric condition before 11:00 and the visibility index at 13:00 to represent that after 13:00. Between 11:00 and 13:00, 

The visibility index was linearly interpolated (Wang et al., 2010). A similar interpolation method was used to generate the 

MCD18 products (Wang et al., 2020). The mechanism is shown in Figure 13, where different data were compared over the 330 

seven SURFRAD stations on June 19th. The results show that all methods work well under no-cloud conditions, such as at the 

DRA site, where the visibility index at 13:00 and 11:00 can represent the entire day’s atmospheric condition. However, large 

uncertainties arise when atmospheric conditions vary substantially during the day. Such uncertainties may be reduced with 

additional observations in the modislike2p scenario, as in the case of the PSU. Nevertheless, the limited number of observations 

is one of the major error sources for estimating the daily DSR from polar-orbiting satellite data.  335 
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Figure 13. Comparison of hourly DSR between the GeoNEX product and the MODIS-interpolated data between modislike 

hourly DSR and GeoNEX DSR over seven SURFRAD stations on June 19th.  

The relative bias (rBias) and RMSE (rRMSE) of the daily averaged DSR between modislike interpolated data and ABI data 340 

throughout the year were calculated (Figure 14). The rBias maps showed that the representativeness of the visibility index at 

11:00 varied spatially. More overestimations were observed over high-elevation areas, and underestimations were observed at 



 

25 

 

the edge of these areas, which may be because the morning clouds have not been formed or could not reach certain heights. 

Moreover, the visibility index at 13:00 h was not sufficiently representative. The rBias map shows that interpolation from the 

visibility index at 13:00 will lead to underestimation over all study areas, which is attributed to more cloud formation in the 345 

afternoon. The rRMSE maps demonstrate the efficiencies of incorporating two passes when interpolating daily DSR from 

polar-orbiting sensors, as the modislike2p generates less variability compared with ABI-based daily DSR; however, the 

average rRMSE reaches 10%. For both modislike10 and modislike 13, the high rRMSE is around the mountainous areas, the 

maximum rRMSE is approximately 70%, and the average rRMSE is approximately 18%. 

 350 

  

Figure 14. The temporal representation maps are generated by calculatingshowing the rBias (relative bias) and the rRMSE 

(relative RMSE) of daily-averaged DSR between the GeoNEX product and the MODIS-interpolated data from visibility index at 

local times of 11:00 (modislike11), 13:00 (modislike13), and both (modislike2p)between modislike10, modislike13, and modislike2p 

daily interpolated data and ABI data. 355 

4.2 Spatial heterogeneity of DSR 
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Existing global or regional shortwave radiation products mostly have a spatial resolution coarser than 5 km, which meets the 

requirements of some terrestrial models. However, other studies may require data with a much higher spatial resolution. For 

instance, whether the character of a solar resource at one location can be representative of nearby locations is a critical question 

for solar grid design and deployment. Attempts have been made to analyze the spatial heterogeneity of DSR, but most have 360 

focused on regional scales or used coarse resolution data as inputs (Kariuki & Sato, 2018; Sarr et al., 2021; Tapia et al., 2022). 

With the help of the high spatiotemporal resolution GeoNEX DSR data, we were able to quantify the spatial heterogeneity of 

DSR at a large spatial scale over different temporal scales.   

We employed the metric used in the previous studies (Gueymard et al., 2011; Yan et al., 2018) to calculate the coefficient of 

variance (COV) to represent spatial heterogeneity of DSR.  COV is defined as: 365 

𝐶𝑂𝑉 =  
𝜎𝑛

𝐸𝑛

∗ 100 

where n denotes the number of pixels surrounding the central pixel. N was set as 10×10 and 100×100 km, respectively, to 

examine spatial heterogeneity at different scales. 𝜎𝑛 and 𝐸𝑛 are the standard deviation and mean of these n pixels, respectively.  

Annual and seasonal spatial representation maps were generated at 10×10 and 100×100 km, which highlight areas susceptible 

to high heterogeneity in the DSR (Fig. 14). A high COV usually corresponds to mountainous and high elevation areas. For the 370 

annual COV in the 10×10 matrix over CONUS, the lowest COV occurs in central Missouri and increases towards the east and 

west coasts. Some regions at the edge of the American Cordillera, such as Denver, have a high COV. A high COV extends 

from northern Rocky in Canada along the American Cordillera to Mexico and further reaches the entire Andes Mountains in 

South America. Over Asia and Oceania under the AHI coverage (Fig. 14), a high COV is present at the edge of the Tibetan 

Plateau, especially along the Himalayan Mountains and extends to the Annamite range. It also occurs in mountainous regions 375 

of island countries such as Indonesia, Japan, and New Zealand. The patterns between 10×10 km and 100×100 km were similar, 

with greater variability and extent in the latter representation maps. Larger COV pixels appear along the Appalachian 

Mountains in the US, eastern mountainous areas in Brazil, the northern part of the Tibetan Plateau in China, and southeast 

Australia. The analysis here suggests the need for high-spatial-resolution DSR data for these regions. Some seasonal changes 

in the COV values were also observed. We plotted aggregated June, July, and August (JJA) as well as December, January, and 380 

February (DJF) aggregated variation maps, as shown in Figure 15. In general, a higher variance was observed in the Northern 

Hemisphere during DJF and in the Southern Hemisphere during JJA. It impacts high latitude most. It is also noticeable that a 

horizontal line appears at approximately 55°N in both AHI and ABI 100×100km maps during DJF. This might correspond to 

the polar front where a sharp gradient in temperature occurs and suggests that these two air masses with different temperatures 

leads to significant DSR variation at the surface at a 100 km scale. 385 
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Figure 15. Spatial representation coefficient of variance (COV) maps at 10kmx10km and 100kmx100km scales during for JJA 

(June, July, and August); and  DJF (December, January, and February); and the annual mean. 

Figure 16 shows the distribution of daily and hourly COV frequencies at 10 and 100 km in all study areas. For the daily COV 390 

at 100 km, 86% of the areas were within the range of 3%-10%. For daily COV at 10 km, 85% of areas showed a COV lower 

than 3%, and most areas had a COV distributed within the range of 2%-3%. For the hourly COV at 100 km, 73% of the areas 

had a COV higher than 5%, and most areas were distributed within 20%-30%. For the hourly COV at 10 km, 64% of the areas 

had a COV within the range of 3%-10%. The values between 5%-10% were dominant for COV. The results demonstrate that 

the higher the temporal resolution, the more severe the spatial heterogeneity issues. DSR products with spatial resolutions of 395 

approximately 100 km are not sufficient for analysis at temporal scales higher than daily for most areas. The 10 km DSR 

products may be sufficient for analysis using daily DSR data, but for those with hourly data, uncertainties in COV of 5%-10% 

existed for most areas. The results further demonstrate the importance of high-spatial-resolution products, particularly at high 
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temporal resolution.  

 400 
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Figure 16. Histogram of the coefficient of variance (COV) for daily and hourly scales at 10 km x 10 km and 100 km x 100 km 405 
resolutions over the study area. The number above each bar indicates the relative frequency.Figure 16. Histogram of daily and 

hourly COV at 10km and 100km. The number above the bar indicates the relative frequency.  

5 Data availability 

The GeoNEX DSR and PAR product is a gridded GeoNEX Level 2 data set and can be accessed through the NASA GeoNEX 

data portal at https://data.nas.nasa.gov/geonex/geonexdata/GOES16/GEONEX-L2/DSR-PAR/ and 410 

https://data.nas.nasa.gov/geonex/geonexdata/HIMAWARI8/GEONEX-L2/DSR-PAR/ 

(https://doi.org/10.5281/zenodo.7023863, Wang & Li, 2022). The DSR and PAR data files are organized in the standard 

GeoNEX tile system with the geographic latitude/longitude projection. Each tile file has a dimension of 600 by 600 pixels at 

a spatial resolution of 0.01°, covering a region of 6° by 6°. Detailed information regarding the GeoNEX tile system can be 

found at https://www.nasa.gov/geonex/dataproducts. The DSR/PAR data files include three scientific datasets: hourly DSR 415 

array, hourly PAR array, and quality control (QC) array. The DSR or PAR values should be multiplied by a scaling factor (0.1) 
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before use. The QC was used to indicate the quality of DSR and PAR estimation (0: high quality retrieval using the observed 

surface reflectance data, 1: degraded data using the climatology reflectance data, 2: invalid retrieval and filling value). 

6 Conclusions 

Based on the GeoNEX enhanced L1G TOA reflectance data, an operational high spatiotemporal resolution product of DSR 420 

and PAR was produced for multiple new-generation geostationary satellite sensors. The GeoNEX DSR and PAR product can 

be freely accessed through the NASA GeoNEX data portal in a user-friendly global tile system. The new product also displays 

superior data quality due to the reliable retrieval algorithm and the high-quality input data. Compared to the original 

geostationary data, the data enhancement provided by the GeoNEX L1G processing includes removal of the residual geometric 

errors, the orthorectification correction and the supplement of precise view geometry information at the pixel level. The current 425 

GeoNEX collection includes GOES16, GOES17 and Himawari 8 satellite covering from 78°E to 18°W between 60°N and 

60°S. The ultimate goal is to incorporate additional new-generation geostationary data to provide a global coverage between 

60°N and 60°S. 

The new GeoNEX DSR and PAR product was extensively validated against one year of ground measurements across multiple 

continents. The comparison with existing products demonstrated the superior accuracy of the GeoNEX DSR and PAR product. 430 

The RMSE of hourly DSR estimation is 74.3 𝑊/𝑚2 (18.0%) and that of daily DSR estimation is 18.0 𝑊/𝑚2 (9.2%) when 

evaluated against 63 sites from four different networks. The hourly PAR achieves 34.9 𝑊/𝑚2 (19.6%) and daily PAR achieves 

9.5 𝑊/𝑚2 (10.5%) validated over 27 sites. It should be noted that the GeoNEX DSR and PAR data were retrieved using a 

physical LUT approach and did not require any training or tuning based on any of the validation sites.  

The high-quality gridded dataset of surface incident shortwave radiation provides new opportunities to study its spatial and 435 

temporal variability. We demonstrate the application of this new product using two examples. We first mapped the errors in 

estimating the daily DSR from the polar-orbit satellite data. It was found that one observation per day led to an average relative 

RMSE of 18 %, and an increase in the daily observation number to two reduced the relative RMSE to 10%. In addition, we 

characterized the spatial heterogeneity of the DSR based on the new GeoNEX DSR product. It was shown that mountainous 

and high-latitude areas are more susceptible to high spatial-temporal variation. DSR products with a resolution of 440 

approximately 100 km are insufficient for daily and monthly analyses. Analysis at an hourly temporal scale requires DSR data 

with spatial resolutions finer than 10 km.  
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