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Abstract.  10 

The Qinghai Tibet Plateau (QTP), known as the Roof of the World and the Water Tower of Asia, has the largest number of 

lakes in the world, and because of its high altitude and near absence of disturbances by human activity, the plateau has long 

been an important site for studying global climate change. Hydrological stations cannot be readily set up in this region, and in 

situ gauge data are not always publicly accessible. Satellite radar altimetry has become a very important alternative to in situ 

observations as a source of data. Estimation of the water levels of lakes via radar altimetry is often limited by temporal and 15 

spatial coverage, and, therefore, multi-altimeter data are often used to monitor lake levels. Restricted by the accuracy of 

waveform processing and the interval period between different altimetry missions, the accuracy and the sampling frequency 

of the water level series are typically low. By processing and merging data from eight different altimetry missions, the 

developed datasets provided the water level changes for 362 lakes (larger than 10 km2) in the QTP from 2002 to 2021. The 

period for the lake level change series, which affords high accuracy, can be much longer for many lake systems. The present 20 

datasets and associated approaches are valuable for calculating the changes in lake storage, trend analyses of the lake levels, 

short-term monitoring of the overflow of lakes, flooding disasters on the plateau, and the relationships between changes in the 

lake ecosystems and changes in the water resources. 

1 Introduction 

As primary water reservoirs, lakes not only play an important role in the supply and adjustment of surface water but also reflect 25 

the impact of climate change and human activities on regional and global environmental change (Adrian et al., 2009; Schindler, 

2009; Song et al., 2015). The water level of lakes is a key indicator for regional climate change and human disturbance. 

Generally, it is assumed that the changes in lake bottoms are very slight over decades, so understanding the changes in lake 

levels can help to evaluate the impact of climate change and human activities on regional water resources.  

Observation by use of a water gauge is the traditional method to measure the changes in water levels in lakes; in situ gauge 30 

measurement of lakes can afford high precision but such equipment is expensive to maintain and challenging to operate in 

remote areas. Furthermore, the total number of monitoring stations has decreased in recent years (Frappart et al., 2006; 

Kleinherenbrink et al., 2014), and lake level data in many countries and regions are not freely available to the public. 

Alternatively, satellite altimetry technology is an effective tool that can be used to measure the dynamics of the surface 

elevation of the Earth and has been successful in measuring lake levels. The Qinghai-Tibetan Plateau (QTP), known as the 35 

Roof of the World and the Water Tower of Asia, has numerous and some of the largest natural lakes in the world, and because 

of its high altitude and the near absence of human disturbances, the plateau is an important location for studying global change. 

Changes in the water level in lakes are one of the important indicators for the water balance of the QTP and these are directly 

affected by temperature, precipitation, evaporation, glaciers, perennial snow cover, and permafrost (Zhang et al., 2012; 2013a; 
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2013b). The QTP is the source of many major rivers, and more than 1.4 billion people depend on water resources from the 40 

plateau (Pritchard, 2017). However, due to the vastness and remoteness, it is a challenge to set up in situ monitoring stations. 

There are only a few lakes (such as Qinghai Lake, Namtso, and Yamdrok Yumtso) with in situ gauge stations for lake level 

measurements (Zhang, 2018). Most lakes in the QTP lack such a measurement capability making it difficult to understand the 

long-term spatial and temporal characteristics regarding the evolution and dynamics of the water levels of the lakes. 

Satellite altimetry has become the most important means to measure lake levels and their changes in the plateau. Numerous 45 

studies have focused on the use of satellite altimeters for measuring changes in lake levels in the QTP. For example, Gao et al. 

(2013) employed multi-altimeter data from Envisat, CryoSat-2, Jason-1, and Jason-2 to examine water level changes at 51 

lakes between 2002 and 2012 in the OTP. Zhang et al. (2011) used Ice, Cloud, and the land Elevation Satellite (ICESat) data 

to determine changes in lake levels in Tibet from 2003 to 2009. Hwang et al.(2016) obtained two decades of lake level 

measurements at 23 lakes in the QTP from the T/P-family altimeters. Song et al. (2015) combined ICESat-1 and Cryosat-2 50 

altimetry data to access the water level dynamics of Tibetan lakes from 2003 to 2014. Kleinherenbrink et al. (2015) and Jiang 

et al. (2017) used the CryoSat-2 data to measure changes in the water levels at 125 lakes and 70 lakes in the QTP, respectively. 

Hwang et al. (2019) constructed a lake level time series for 61 lakes on the Tibetan Plateau between 2003 and 2016 and 

discussed the trends of the time series. Li et al. (2019) constructed high-temporal-resolution water level datasets for 52 large 

lakes on the Tibetan Plateau. These studies in the QTP reveal that estimation of the levels of lake water with a given radar 55 

altimeter is often limited by temporal and spatial coverage, and, therefore, multiple altimeters are needed to obtain multiple 

decades of changes in the water levels of lakes. However, due to the large size of the radar altimeter footprint and 

contaminations from the steep lakeshore or surrounding land, the observations of lake levels via satellites are noisy, and it is 

difficult to obtain the distance from the altimeter to the nadir points. Therefore, waveform retracking processing may be used 

to remove the contamination by land signals when lake levels are retrieved from multi-altimeter data. In this study, by 60 

combining eight sets of altimeter data from Envisat, ICESat-1, CryoSat-2, Jason-1, Jason-2, Jason-3, SARAL, and Sentinel-

3A, the trends of the changes in the water levels for 362 lakes (>10 km2) in the QTP during 2002-2021 were estimated using 

retracking and outlier detection algorithms.  

The primary objective of this study was to determine the changes in the water levels of 362 lakes in the QTP from multi-

altimeters and evaluate the accuracy of the time series and the performance of the multi-altimeter data with respect to 65 

monitoring the long-term variations in the water levels of the lakes. Readers can access the dataset described in this paper at 

https://doi.org/10.1594/PANGAEA.939427 (Chen et al., 2021). 

2 Study area and data  

2.1 Study area 

The QTP is in the southwest of China and covers about 27% of the total area of China (Zhang et al., 2002). There are more 70 

than 1000 lakes of >1 km2 (Wan et al., 2016) in the QTP, most of which belong to inland drainage systems. Based on coverage 

by altimeter data, 364 lakes of >10 km2 in the QTP were selected as the objects of study. Among these lakes, there were 13 

lakes of > 500 km2, 79 lakes of 100-500 km2, 69 lakes of 50-100 km2, and 201 lakes of 10-50 km2. Most of these lakes are 

inland lakes with surface runoff, precipitation, snow and ice melting, springs, and underground runoff as their main sources of 

water recharge. Due to minimal impact by human activity, changes in the water levels in the lakes in the region are driven 75 

mainly by natural factors such as precipitation and temperature, which are important indicators of changes in the regional 

climate and the ecological environment.  
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2.2 Data 

2.2.1 Multi-altimeter data 

Eight sets of altimeter data from Envisat, ICESat-1, CryoSat-2, Jason-1, Jason-2, Jason-3, SARAL, and Sentinel-3A were used 80 

to extract the water levels of the lakes in the QTP to obtain the lake level time series with high-space coverage. The details of 

the multi-altimeter data are given in Table 1. Envisat, CryroSat-2, and Sentinel-3A data provided by the European Space 

Agency (ESA) were available for 121, 353, and 107, lakes, respectively; Jason-1, Jason-2, and Jason-3 data provided by the 

Centre National d’Etudes Spatiales (CNES) were available for 48, 71 and 28 lakes, respectively, due to the relatively sparse 

ground tracks. ICESat-1 data provided by the National Aeronautics and Space Administration (NASA) were available for 124 85 

lakes and afforded high spatial resolution. SARAL is a joint mission of the Indian Space Research Organization (ISRO) and 

CNES and is a continuation of the Envisat mission. SARAL data were available for 135 lakes in the QTP.  

 

Table 1 Details of the multi-altimeter data used in this study 

Mission  Sensor Duration No. of lakes Diameter of footprint (km) 

Envisat RA-2 2002.05-2012.04 121 1.7 

ICESat-1 GLAS 2003.02-2009.10 124 0.07 

CryoSat-2 SIRAL 2010.07-2021.07 353 1.6 (across), 0.3 (along) 

Jason-1 Poseidon-2 2002.01-2012.03 48 2.2 

Jason-2 Poseidon-3 2009.12-2017.05 71 2.2 

Jason-3 Poseidon-3B 2016.02-2020.12 28 1 

SARAL Altika 2013.03-2016.05 135 1 

Sentinel-3A SRAL 2016.03-2019.09 107 2 (across), 0.25 (along) 

 90 

In addition, a dataset on the shapes of the lakes generated by Wan et al. (2016) was selected to determine whether the altimeter 

data encompassed the lakes, and a buffer of 1 km around the shape of the lake was generated to determine the change in the 

boundary of the lakes during the past 20 years.  

2.2.2 In situ data 

In situ data on eight lakes were used to validate reliable information on the lake level time series from the multi-altimeter data. 95 

Table 2 lists details of the in situ data on the eight lakes. The in situ data for Qinghai Lake and Ngoring Lake were from the 

Hydrology and Water Resources Survey Bureau in Qinghai Province and from the Yellow River Commission of the Ministry 

of Water Resources, respectively, and the in situ data on Bamco, Dagzeco, Dawaco, Namco, Pungco and Zhari Namco were 

from the Institute of Tibetan Plateau Research, Chinese Academy of Sciences (Lei, 2018; Wang, 2018). 

  100 

Table 2 Details of the in situ data for eight lakes as used for validation 

Lake name Date Coordinates Reference Mode 

Qinghai Lake 2010.05-2019.09 100.20, 36.89 1985* Absolution 

Ngoring Lake 2010.01-2015.12 97.70, 34.90 1985 Absolution 

Bamco 2013.06-2017.10 90.58, 31.27 Customize Relative 

Dagzeco 2013.06-2016.10 87.52, 31.89 Customize Relative 

Dawaco 2013.06-2016.10 84.96, 31.24 Customize Relative 

Namco 2007.04-2016.12 90.60, 30.74 Customize Relative 

Pungco 2014.05-2017.10 90.97, 31.50 Customize Relative 
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Zhari Namco 2012.12-2017.10 85.61, 30.93 Customize Relative 

* 1985 indicates the 1985 national elevation benchmarks 

3 Methods 

3.1 Extraction of lake water levels 

With respect to the extraction of the water level data from the satellite altimetry, there is uncertainty as to whether there is a 105 

valid footprint falling on the lakes; this problem can be addressed by comparing the geographic coordinates of the footprints 

with the shape of the dynamic dataset for the lake. However, it would take considerable time to extract the dynamic shape file. 

A static shape dataset for the Tibetan Plateau was used in this study (Wan et al., 2016); we also generated a 1 km buffer for 

the shape to solve the situation regarding the changes in the boundary of lakes during the past 20 years. After picking out the 

available footprints, the height of the lake surface height can be calculated based on using Eq. (1) for each footprint: 110 

𝐻 = 𝐴𝑙𝑡 − (𝑅𝑟𝑎𝑛𝑔𝑒 + Δ𝑅𝑚 + Δ𝑅𝑑𝑟𝑦 + Δ𝑅𝑤𝑒𝑡 + Δ𝑅𝑖𝑜𝑛𝑜 + Δ𝑅𝑡𝑖𝑑𝑒 + Δ𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛) − 𝑁𝑔𝑒𝑜𝑖𝑑          (1) 

where 𝐴𝑙𝑡 is the satellite altitude, 𝑅𝑟𝑎𝑛𝑔𝑒 is the distance between the altimeter and the lake surface, Δ𝑅𝑚 is the satellite centroid 

correction, Δ𝑅𝑑𝑟𝑦 is the dry troposphere, Δ𝑅𝑤𝑒𝑡  is the wet troposphere, Δ𝑅𝑖𝑜𝑛𝑜 is the ionospheric correction, Δ𝑅𝑡𝑖𝑑𝑒 includes 

the solid earth tide, the pole tide, and the ocean tide corrections, 𝑁𝑔𝑒𝑜𝑖𝑑  is the geoid height with respect to the ellipsoid, for 

which the 2008 Earth Gravitational Model (EGM2008) was used in this study (Pavlis et al., 2012), and Δ𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 stands for 115 

the retracking correction Δ𝑅𝑟𝑒𝑡𝑟𝑎𝑐𝑘  for radar altimetry and the saturation correction Δ𝑅𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 for the laser altimetry. With 

the exception for Δ𝑅𝑟𝑒𝑡𝑟𝑎𝑐𝑘, all the corrections above are included in the altimetry data product.  

3.1.1 Waveform retracking 

The waveforms for inland water bodies are easily contaminated or even submerged by signals from land, hence it is difficult 

to obtain the distance from the altimeter to the nadir points. Accordingly, the retracking correction plays an important role in 120 

removing the contamination by land signals when radar altimetry data are applied to inland water bodies (Martin et al., 1983; 

Lee et al., 2008). In this study, the automatic multiscale-based peak detection retracker (AMPDR) (Chen et al., 2020), which 

is suitable for different altimetry and different situations to derive reliable water levels, was used on the altimeter data product. 

The AMPDR showed excellent performance for the Jason-2/3, Sentinel-3, and Cryosat-2, but sometimes there were biases for 

the retracking correction caused by the hooking effect or the scatter signal of the off-nadir point for Jason-1, Envisat, and 125 

SARAL. Therefore, some modifications for AMPDR were adopted for Jason-1, Envisat, and SARAL data in this study. 

To ensure that the different typologies of multi-waveforms can be dealt with, we implemented a two-step process for the 

modified AMPDR here. The steps of the modified retracker are illustrated in Fig. 1. The optimal retracked range was determined 

using several criteria: 

(1) The optimal retracked levels should be within the range 𝐻𝐷𝐸𝑀 ± 20 m. 130 

(2) The DistanceThresh in AMPDR produced the smallest difference for the median of the water levels derived from the 

neighboring cycles if time has continuity. 

(3) The standard deviation of the water level of the current cycle was decreased if the data were not continuous; that is to say, 

the difference between the neighboring cycle and the current cycle was more than ten days or several months. 
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  135 

 

Fig. 1 Flowchart outlining the waveform retracking process. Steps with a yellow background are the preparation steps for 

using the shortest path algorithm. Steps with a green background are the retracking for the abnormal track by the selected 

DEM. 

 140 

In the first run, the normal operation of the AMPDR was considered, and the lake level time series was calculated. Details 

regarding the definition and implementation of AMPDR are available elsewhere (Chen et al., 2020). Next, a second run of the 

retracking for the abnormal track, which was selected by the Digital Elevation Model (DEM) and the water level derived from 

the neighboring cycle, was implemented. However, this time the DistanceThresh in AMPDR was constructed by one of three 

minimum second-order difference quotients of the cumulative distribution function (CDF) of the rounded water levels. In this 145 

way, it was ensured that the DistanceThresh was approached by the median of the water levels in neighboring cycles. 

Additionally, the retracking point from the ICE-1 algorithm was added to the construction of the “point cloud” and the CDF 

given that the multiscale-based adaptive threshold retracking would fail in some situations. An example of the operation of the 

modified two-step retracker is shown in Fig. 2.  
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 150 

Fig. 2 An example of the operation of the modified two-step retracker. (a) shows the two water level time series for 

processing by the two-step retracker. (b) shows the along-track water level in the green rectangle from (a) when processing 

by the two-step retracker. 

3.1.2 Removal of noise footprints 

Due to the use of a 1 km buffer to pick out the shape of the available footprints, there would be many noise footprints caused 155 

by the reflected signals of the terrain or by the scatter signals of the off-nadir points. The noise footprints should be removed 

before constructing the lake level time series. Waveform classification is an effective method for identifying the noise 

footprints. Studies have proposed the use of various waveform classification methods and good recognition results have been 

achieved (Göttl et al., 2016; Lee et al., 2016; Marshall and Deng, 2016; Shen et al., 2017).  

Different from the previous study whereby the waveforms are divided into multiple classes, this study only needs to divide the 160 

waveforms into noise and non-noise waveforms using a random forest (RF) classifier. The RF classifier was set up using a 

training set of approximately 300 waveforms over inland lakes for each altimetry, Additionally, the following features of the 

waveforms were selected: the pulse peakiness (Strawbridge and Laxon, 1994), the mean value of the waveform, the skewness 

of the waveform, the kurtosis of the waveform, the amplitude of the waveform, the width of the waveform determined by the 

Offset Center of Gravity (OCOG) retracker (Bamber 1994), the bin position corresponding to the center of gravity determined 165 

by the OCOG retracker, and the peakiness of the left and right pulse (Ricker et al., 2014). After discarding these noise footprints, 

the tracks with fewer than five observations were excluded from this study. 

3.1.3 Construction of time series 

Despite removing the noise footprints using waveform classification, the dataset also has outliers in the lake level time series 

for each cycle of a certain altimeter. Therefore, any point level in each cycle yielding a difference larger than three times the 170 

standard deviation (3𝜎 rule) was removed. Then, the lake level time series was estimated using the R package tsHydro 

(https://github.com/cavios/tshydro). The core of tsHydro is a state-space model consisting of a process model and an 

observation model.  

𝐻𝑖
𝑡𝑟𝑢𝑒 = 𝐻𝑖−1

𝑡𝑟𝑢𝑒 + √𝑡𝑖 − 𝑡𝑖−1𝜎𝑅𝑊𝑧𝑖，      𝑧𝑖~𝑁(0,1)                                                                                                                   (2) 

𝐻𝑖𝑗
𝑜𝑏𝑠 = 𝐻𝑖

𝑡𝑟𝑢𝑒 + 𝜎𝑜𝑏𝑠𝜀𝑖𝑗                                                                                                                                                              (3) 175 

The process model is used to describe the relationship between the true water level 𝐻(𝑡𝑟𝑢𝑒), and the observation model is 

described by the observed water level 𝐻(𝑜𝑏𝑠), with an error term 𝜀𝑖𝑗, being used to describe the relationship between 𝐻(𝑜𝑏𝑠) 

and 𝐻(𝑡𝑟𝑢𝑒).The model is described in detail by Nielsen et al. (2015). According to the Laplace estimation, the mean value of 
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the range was selected to represent the water level of the lake for each cycle. Meanwhile,  the standard deviation of each cycle 

was reserved to evaluate the uncertainty of the time series. 180 

3.2 Fusion of multi-altimeter time series 

It is not uncommon that the reference plane between different altimeters should be different. Before merging the lake level 

from different altimeters, the reference plane should be unified as WGS84/EGM 2008. The reference system of Jason-1/2/3 is 

the Topex/Poseidon (T/P) ellipsoid system instead of the WGS84 system, thus it was necessary to perform an ellipsoid system 

transformation from T/P to WGS84 by subtracting 0.71 m from the vertical height (Bhang et al., 2007). 185 

Due to the variations in orbits and the disparities between instruments, systematic biases existed among the lake level time 

series extracted from the multi-altimetry, although they were corrected to the same reference system. In most studies (Li et al., 

2019; Gao et al., 2013; Huang et al., 2016), the altimeters with the longest overlap period would be merged for the first time, 

but there may be some special situations whereby for some lakes the lake level time series for each altimeter cannot be merged. 

In this study, the dynamic reference time series was used to merge the lake-level time series. We first merged the two products 190 

with the longest period for the time series and chose the altimeter-derived water level with the longer time series as the baseline. 

We then adjusted the time series from another altimeter by subtracting the discrepancy compared with the reference series 

(Lee et at., 2011; Kropáček et al., 2012) according to Eq. (4). Then, a similar process was applied to the remaining products 

and the merged products connecting the three altimeters. The result for the merged altimetry data when all sensors are available 

is shown in Fig. 3. 195 

𝑆𝑒𝑟𝑖𝑒𝑠2𝑐𝑜𝑟(𝑡𝑖) = 𝑆𝑒𝑟𝑖𝑒𝑠2𝑖𝑛𝑖(𝑡𝑖) + (𝑆𝑒𝑟𝑖𝑒𝑠1𝑟𝑒𝑓 − 𝑆𝑒𝑟𝑖𝑒𝑠2𝑖𝑛𝑖)                                                                                               (4) 

where 𝑆𝑒𝑟𝑖𝑒𝑠2𝑖𝑛𝑖(𝑡𝑖) is the uncorrected lake level at time 𝑡𝑖, 𝑆𝑒𝑟𝑖𝑒𝑠1𝑟𝑒𝑓  is the mean value of the water level time series from 

the baseline, and 𝑆𝑒𝑟𝑖𝑒𝑠2𝑖𝑛𝑖  is the mean value of the other water level time series at the same time as 𝑆𝑒𝑟𝑖𝑒𝑠1𝑟𝑒𝑓 .  

 

 200 

Fig. 3 The process of merging multi-altimetry in Zhari Namco which contains six altimeters. 
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Nevertheless, not all the lake-level time series can be merged successfully following the steps outlined above. For instance, 

Cuona Lake, Xiasa'er Co, and Bei Hulsan Lake cannot be merged successfully because only ICESat and Cryosat-2 were 

available on these lakes before 2013, while there is no overlap period between ICESat and Cryosat-2. In this study, 18 lakes 205 

were found to have similar problems.  

A combined linear-periodic-residual model (Liao et al., 2014) was used to simulate and forecast the lake-level time series in 

the no-overlap period to merge the two altimeters with no overlap period. Numerous studies (Medina et al., 2008; Irvine et al., 

1992; Kropáček et al., 2012; Lee et al., 2011) have indicated that the changes in the lake-level exhibited a clear linear trend 

and inter-periodic fluctuations at some scales such as 10 or 20 years in line with Eq. (5).  210 

𝑥𝑖 = 𝑎 + 𝑏𝑡 + ∑ (𝛼𝑖𝑐𝑜𝑠
2𝜋

𝑇𝑖
𝑡 + 𝛽𝑖𝑠𝑖𝑛

2𝜋

𝑇𝑖
𝑡)

𝑝
𝑖=1 + 𝜀𝑡                                                                                                                    (5) 

where 𝑎 and 𝑏 are the linear components of the lake-level time series, 𝑇𝑖  indicates the 𝑖th periodic component, and 𝜀𝑡 is the 

remaining random component after removal of the linear and periodic components. 

A result for the merged altimetry data of Cuona Lake is presented in Fig. 4. First, singular spectrum analysis (SSA) algorithms 

are used to reduce the noise of the lake-level time series and to extract the effective fluctuating signal. Second, we decomposed 215 

the fluctuating signal into a linear component, a periodic component, and the remaining residuals using a simple linear fitting, 

wavelet analysis; then simple regression analysis, trigonometric function fitting, and the autoregressive-moving-average 

(ARMA) model were used to fit each component, respectively. Finally, we combined the modeling data of each component 

and obtain the simulated water level. The diagram for fusion processing is shown in Fig. 5. 

 220 

 

Fig. 4 The process of merging multi-altimetry in Cuona Lake. 
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Fig. 5 Flowchart of fusion processing for the water level time series from different altimeters. Steps with a yellow 

background indicate preparation for merging the time series. 225 

4 Validation of data quality 

4.1 Validation and accuracy of lake level time series 

Due to the lack of in situ data for the water levels of lakes in the QTP, only in situ data for eight lakes were collected to validate 

the accuracy of the lake level time series. Table 3 gives the statistical results for a comparison between the lake level time 

series and the in-situ data for the eight lakes. The results show that the accuracy for all eight lakes was less than 0.35 m, and 230 

the average accuracy was 0.213 m. Dawaco had the lowest root-mean-square errors (RMSEs) (0.149 m), and Ngoring Lake 

had the highest RMSEs (0.335 m), indicating that the results of this study are reliable and the accuracy of the time series can 

reach the decimeter level with respect to the monitoring inland lakes. At the same time, except for Dawaco, the lake levels 

obtained in this study agreed well with those from the in situ gauges, showing a good correlation (the correlation 

coefficients >0.60). Furthermore, it can be seen from the comparison between the satellite-derived lake levels and the in situ 235 

water levels for the eight lakes that the satellite-derived lake level series followed the gauged data quite well, especially for 

Qinghai Lake, Bamco, and Pungco (correlation coefficients >0.90). 

 

Table 3 Comparison between the lake levels in this study and the in situ water levels 

Lake Correlation coefficient RMSE (m) Number of validation points 

Qinghai_Lake 0.977 0.190 570 

Ngoring_Lake 0.635 0.335 284 

Bamco 0.930  0.181  19 
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Dagzeco 0.744 0.199 156 

Dawaco 0.209 0.149 7 

Namco 0.738 0.179 60 

Pungco 0.924 0.222 29 

Zhari Namco 0.762 0.251 314 

 240 

4.2 Cross-validation with similar products 

We compared our product with the lake level data set provided by the LEGOS Hydroweb. There were 11 lakes that were 

featured in both studies conducted from 2002 to 2020. The annual trends for the lake levels for 2002-2020 are compared in 

Fig. 6, and the results indicate that the two products are consistent with each other, and the R2 of the linear fit for the two 

products is 0.83. 245 

 

Fig. 6 Cross-validation of the lake levels in the QTP derived from the present study with those provided by the LEGOS 

Hydroweb database. 

4.3 Description of the data set 

The lake-level change time series for 362 lakes (196 lakes for the time series from 2002 to 2021 and 168 lakes for time the 250 

series from 2010 to 2021) are available on the datasets. The water level time series for each lake are archived as 362 entities 

based on the names of the lakes, with a table describing all the information about each lake. The first part of each file describes 

the basic information of the lake-level time series, such as the geographic information, the start date of the time series, the end 

date of the time series, and the number of data points. Next is the main part for each file: the first row stands for the time, the 

second row records the water level, the third row is the uncertainty of the water level, and the final row stands for the source 255 

of the data. It should be noted that the uncertainty of the water level time series was calculated using the standard deviation 

for the processing in constructing the time series with the “R” package. 

5 Applications 

5.1 Spatio-temporal analysis of changes in lake levels in the QTP 

Based on the changes in the water levels of the lakes, the spatial patterns for the trends in the lake levels during 2002-2021 are 260 

shown in Fig. 7. Overall, the lake levels in the QTP show a clear rising trend, and the overall average annual rate of change is 

0.175 m/a; further, the number of lakes with rising water levels accounts for 78% of all lakes. The total area of lakes with 

rising water levels (35213 km2) is much larger than the total area of lakes with falling water levels (6364km2), indicating that 
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the water storage of lakes on the QTP is growing. From the distribution of the annual average rate of change of lake levels 

(Fig. 8), among the monitored lakes between 2002 and 2021, there are more lakes with rising water levels than those with 265 

falling water levels. Among the lakes with an average annual rate of change greater than 0.20 m/a, the number of lakes with 

an increasing trend in the water levels is much higher (281 lakes) than the number of lakes with a decreasing trend (81 lakes). 

 

Fig. 7 Spatial distribution of trends in the changes in the water levels of lakes on the QTP during 2002-2021. The black line 

shows the boundary of the basin of the QTP (refered to Wan et al., 2016). The lowercase letters indicate different basins. The  270 

DEM of the base map is from the Global Multi-resolution Terrain Elevation Data 2010（GMTED2010）(GMTED: 

https://topotools.cr.usgs.gov/gtmed_viewer/) 

(a Qaidam; b Yangtze; c Yellow; d Qinghai Lake; e Brahmaputra; f. Indus; g Hexi Corridor; h Salween; i Northern Inner 

Plateau; j Central Inner Plateau; k Southern Inner Plateau; l Ganges) 

 275 

 

Fig. 8 Histogram of trends in the lake level changes on the QTP during 2002-2021. 
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Analysis of the trends in the changes in the water levels based on the lake areas shows that there is a clear rising trend in the 

water level of lakes on the QTP, the most significant trends in the case of rising water levels being for larger-size lakes (>500 280 

km2) and also for smaller size (<50 km2) lakes, and intermediate size lakes showing significant rising trend (Table 4). 

 

Table 4 The trends for changes in the lake water levels in the QTP during 2002-2021 

Lake 

area/km2 

No. of lakes Annual rate 

of change 

(m·a-1) 

No. of 

lakes with 

rising water 

levels  

Mean rate of 

rise (m·a-1) 

No. of lakes 

with 

decreasing 

water levels 

Mean rate of 

decrease 

(m·a-1) 

>500 13 0.167 12 0.198 1 -0.201 

[200,500] 31 0.186 24 0.262 7 -0.075 

[100,200) 48 0.232 36 0.333 12 -0.069 

[50,100) 69 0.157 50 0.243 19 -0.069 

[10,50) 201 0.142 159 0.195 42 -0.058 

 

To better understand the spatial distribution pattern of the changes in the water levels of the lakes, the trends for the changes 285 

in the water levels of the lakes in each basin of the QTP were analyzed (Table 5). Overall, during the period 2002-2021, the 

water levels of the lakes in all basins increased significantly, except for the Brahmaputra basin. The area of lakes with rising 

water levels was larger than that for lakes with decreasing water levels. Amongst all the basins, the lakes with a decreasing 

water level were distributed mainly in the Brahmaputra, Ganges, and Salween basins (Fig. 9). 

 290 

Table 5 The trends in the changes in the water levels of the lakes in the different basins of the QTP during 2002-2021 

Basin No. of 

lakes 

No. of 

lakes 

with 

rising 

water 

levels 

Annual rate 

of rise (m/a) 

Area of lakes 

with rising 

water levels 

(km2) 

No. of 

lakes with 

decreasing 

water 

levels 

Annual 

rate of fall 

(m/a ) 

Area of lakes 

with 

decreasing 

water levels 

(km2) 

Qaidam 22 13 0.115 986 9 -0.027 685 

Yangtze 15 12 0.158 590 3 -0.008 97 

Yellow 11 7 0.069 1285 4 -0.019 82 

Qinghai Lake 3 2 0.124 4391 1 -0.005 115 

Brahmaputra 13 7 0.163 224 6 -0.114 1048 

Indus 8 4 0.062 762 4 -0.077 869 

Northern Inner 

Plateau 

80 73 0.378 7285 7 -0.079 506 

Central Inner 

Plateau 

105 86 0.236 5681 19 -0.050 1013 

Southern Inner 

Plateau 

98 75 0.137 13617 23 -0.094 1466 
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Salween 3 1 0.003 17 2 -0.008 212 

Ganges 3 0 / / 3 -0.101 335 

Hexi Corridor 1 1 0.189 609 0 / / 

 

 

Fig. 9 Relative proportions of the trends in the changing levels of water in the lakes in each basin. The boundry of each basin 

is referred to Wan et al.(2016). The  DEM of the base map is from the Global Multi-resolution Terrain Elevation Data 2010295 

（GMTED2010）(GMTED: https://topotools.cr.usgs.gov/gtmed_viewer/) (the lowercase letters indicate the different lake 

basins studied as in Fig. 7). 

 

5.2 Exploring the responses of the lake levels to river regulation 

Aided by the availability of the high-space-coverage lake level time series, it is possible to explore the responses of the water 300 

levels in the lakes to river regulation to provide support for integrated management of the lake water resources. Here, the 

streamflow of the rivers  and lakes in the source area of the Yellow River are taken as an example to analyze the relationships 

between changes in the streamflow of the source area of the Yellow River and the Nogring Lake and Gyaring Lake. From 

inspection of Fig. 10, the discharge at the source of the Yellow River is directly affected by the regulation and storage of these 

two lakes, which results in changes to the annual distribution of the discharge at the source; thus, the discharge along the 305 

Yellow River is more uniform than that in the lower reaches of Tangnaihai and Xunhua (Fig. 11). However, the correlation 

between precipitation and the changes in the discharge at the source of the Yellow River is very poor, and there is a certain 

time lag. The changes in water levels of the lakes are basically synchronized with the changes in the streamflow at the source 

of the Yellow River (Fig. 10), indicating that the streamflow is interannual regulated. 
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 310 

Fig. 10 Responses of water levels in the lakes to regulation of streamflow in the river (Nogring WL represents the water 

level of Nogring Lake; Gyaring WL represents the water level of Gyaring Lake; PRE represents precipitation). 

 

 

Fig. 11 Changes in the discharge along the Yellow River and the lower reaches of Tangnaihai and Xunhua. 315 
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6 Data availability 

The derived water levels in the lakes of the QTP are archived and available at https://doi.org/10.1594/PANGAEA.939427 

(Chen et al., 2021). 

7 Conclusion 

In this study, high-resolution datasets for changes in the water levels for 362 lakes on the QTP during 2002-2021 were 320 

developed based on multi-altimeter data from Envisat, ICESat-1, CryoSat-2, Jason-1, Jason-2, Jason-3, SARAL, and Sentinel-

3A. A modified waveform retracker and a noise-footprint removal method were used to extract the water levels, and the lake 

level time series were then estimated using the R package tsHydro. The dynamic reference time series was then used to merge 

the lake-level time series from the multi-altimeter data. It was found that the merged water levels based on the altimetry 

increased the overall sampling frequency regardless of the lake size. The water levels derived from the altimeter data were 325 

validated with in situ data, and the accuracy of the time series for monitoring lakes reached the decimeter level. Based on 

comparison with the LEGOS Hydroweb dataset, the new product was found to be consistent with the LEGOS Hydroweb 

product, and the R2 of the linear fit of the two products was 0.83, indicating that the datasets were reliable. In addition, the 

spatio-temporal changes in the water levels of the lakes on the QTP during 2002-2021 were explored. Overall, the measured 

lake levels on the QTP were indicative of a rising trend with an overall average annual rate of change of 0.175 m/a; moreover, 330 

the number of lakes with rising water levels accounted for 78% of the total examined. The lakes with the most significant rises 

in the water levels were those of large size (>500 km2) and small size (<50 km2), and the intermediate size lakes showed the 

significant rising trend in the water levels The water levels of lakes in all basins have been increasing significantly over the 

period 2002 to 2021 except for the Brahmaputra basin. The lakes with decreasing water levels were distributed mainly in 

Brahmaputra, Ganges, and Salween basins. Further applications of the lake level dataset of the QTP are anticipated. For 335 

example, the dataset may be used to analyze the responses of the lake levels to river regulation to provide support for 

managing lake water resources. 
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