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Abstract. The wet-bulb temperature (Tw) comprehensively characterizes the temperature and humidity of the thermal
environment and is a relevant variable to describe the energy regulation of the human body. The daily maximum Tw can be
effectively used in monitoring humid heatwaves and their effects on health. Because meteorological stations differ in temporal
resolution and are susceptible to non-climatic influences, it is difficult to provide complete and homogeneous long-term series.
In this study, based on the sub-daily station-based dataset of HadISD and integrating the NCEP-DOE reanalysis dataset, the
daily maximum Tw series of 1834 stations that have passed quality control were homogenized and reconstructed using the
method of Climatol. These stations form a new data set of global station-based daily maximum Tw (GSDM-WBT) from 1981
to 2020. Compared with other station-based and reanalysis-based datasets of Tw, the average bias was -0.48°C and 0.34°C
respectively. GSDM-WBT handles stations with many missing values and possible inhomogeneities, and also avoid the
underestimation of the Tw calculated from reanalysis data. The GSDM-WBT dataset can effectively support the research on
global or regional extreme heat events and humid heatwaves. The dataset is available at

https://doi.org/10.5281/zenodo.7014332 (Dong et al. 2022).

1 Introduction

The trend of warming is threatening the climate system, terrestrial and marine ecosystems, and socio-economic development,
resulting in the increase of the frequency and intensity of extreme climatic events, loss of biodiversity and protected areas, and
human morbidity and mortality (Sun et al., 2014; Perkins-Kirkpatrick et al., 2020). Long-term temperature datasets have
become the basis for accurate assessment of global or local warming and its impacts, especially heatwaves and their effects on
health (Doutreloup et al., 2022; Fang et al., 2022). Previous studies on extreme heat mostly use near-surface air temperature
directly based on observations from meteorological stations or numerical climate simulations (Mazdiyasni et al., 2017; Dong
etal., 2021; Fischer et al., 2021), but the intensity of air temperature is usually not equivalent to the human body’s response to

the thermal environment. Human thermal comfort is related to many climatic and non-climatic conditions such as air
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temperature, humidity, air pressure, skin albedo and heat insulation of clothing. For example, extreme humid heat combining
with low air temperature but a high humidity might still cause lethal and even deadly events (Mora et al., 2017; Raymond et
al., 2020). Indicators such as wet-bulb temperature (Tw) (Ahmadalipour and Moradkhani, 2018), apparent temperature (Hu
and Li, 2020), humidex (Ho et al., 2017), and universal thermal climate index (UTCI) (Di Napoli et al., 2018) were proposed
to characterize thermal comfort of human bodies. Among them, Tw has clear thermodynamic properties, and the higher Tw
could dampen the evaporative cooling of sweating (Kang and Eltahir, 2018). Tw has been widely applied to multi-scale
research on humid heat stress due to the mature methods (Pal and Eltahir, 2016; Raymond et al., 2020; Zhang et al., 2021).
For example, Yu et al. (2021) found that in arid regions of Eurasia, changes of Tw had stronger dependence on relative humidity
than that in humid regions, and an increase of 1% in relative humidity would result in an increase of 0.2°C in Tw.

Near-surface air temperature and humidity are the key variables for calculating Tw (Im et al., 2017). Although reanalysis
and modelling datasets have the advantages of diverse parameters and complete series, studies have shown that changes in Tw
might be underestimated (Freychet et al., 2020). In comparison, station-based datasets are more difficult to provide continuous
and homogeneous data, because meteorological observations can be directly or potentially affected by the damage of
instruments, the relocation of stations, and also the surrounding environmental changes (Mamara et al., 2013; Li et al., 2020).
There is still a lack of public, downloadable global station-based datasets of Tw, especially for long-term series of daily
maximum Tw which can be used for research on extreme humid heat. In addition, another difficulty in generating station-based
datasets of daily maximum Tw is the impact of the temporal resolution of source data on the accuracy, because the daily
maximum Tw is not necessarily corresponding to the daily maximum temperature and daily maximum or minimum humidity.
When only the daily-scale data are available, it often has to use daily average Tw instead of calculating the real maximum
values (Yu et al., 2021; Guo et al., 2022). With the enhancement of continuity and resolution of data sources, hourly or sub-
daily Tw can be computed firstly, and then the daily maximum Ty is obtained statistically (Im et al., 2017; Speizer et al., 2022).

HadISD, a sub-daily climatic dataset widely used in recent years, contains a set of basic meteorological variables, and it
has also developed one humidity dataset and one heat stress dataset (Dunn et al., 2016). The humidity dataset of HadISD
(HadISD-Humidity) includes Tw data calculated from empirical formulas. Many studies used an algorithm proposed by
Davies-Jones to calculate Tw (Davies-Jones, 2008), which allows to use such climatic variables as near-surface air temperature,
humidity, and air pressure in HadISD. However, Tw calculated in this way cannot deal with missing values and
inhomogeneities. Although producers of HadISD provide a homogeneity assessment for temperature, dew point temperature,
sea level pressure and wind speed (Dunn et al., 2014), the results are mostly used for quality control to assess their suitability
for different research objectives. To our knowledge, there is no dataset that contains long-term complete series of daily
maximum Tw based on global stations.

To this end, we used the HadISD sub-daily data and integrated reanalysis data to produce a global station-based daily
maximum Tw (GSDM-WBT) dataset, which spans 40 years (1981-2020) for 1834 stations (Dong et al. 2022). The GSDM-
WBT solved the problems of many missing values and prominent inhomogeneity through data quality control and

homogenization. We also evaluated the series of GSDM-WBT by comparing with the HadISD-Humidity dataset, as well as

2



65

70

75

80

another reanalysis-based dataset. The GSDM-WBT could provide data support for global or regional analysis (especially in
the middle and high latitudes of the Northern Hemisphere) on long-term humid heat.

2 Methods

The production of GSDM-WBT includes four procedures: the calculation of Tw, data quality control, homogenization, and
comparison and evaluation (Fig. 1). Specifically, based on the initial data of near-surface air temperature, specific humidity
and station level air pressure from HadISD, the algorithm proposed by Davies-Jones was used to calculate the sub-daily Tw.
Further, by defining the valid days and valid months for the long-term series of Tw, the data quality was controlled and the
daily maximum Tw was obtained for valid stations. The homogenization was carried out in different station zones divided by
the Koppen-Geiger climate classification, and reanalysis data were integrated to complement the series. In this part, the method
of Climatol was used to correct inhomogeneous series and infill all missing values. Finally, we compared the differences

between the GSDM-WBT and other station-based and reanalysis-based datasets for better validating the accuracy.
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Figure 1. Procedures of producing global station-based daily maximum wet-bulb temperature (GSDM-WBT) dataset. The

numbers in the parentheses indicate the counts of stations remained after each procedure.

2.1 Data sources

The HadISD was used to provide basic data of different climatic variables for GSDM-WBT. HadISD, launched by the Met
Office Hadley Centre, uses station-based dataset from the Integrated Surface Database (ISD) (Smith et al., 2011) and is quality-
controlled, with particular preservation of historical extreme values for meteorological variables. At present, the dataset has
covered the observed data of more than 9,000 meteorological stations around the world. The time series can be traced back to

1931, and the temporal resolution is from one hour to daily scale (Dunn et al., 2016). Based on the algorithm of calculating
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Tw, the near-surface (2m) air temperature (°C), specific humidity (g/kg), and station level air pressure (hPa) from 1981 to 2020
were imported. The used version of HadISD is v3.2.0.2021f. Considering the dependence of the occurrence of maximum Tw
at sub-daily scale on local climate, we converted Universal Time Coordinated (UTC) to the local time zone of each station.
Koppen-Geiger climate classification data were used for dividing station zones before homogenization. The “Present-day”
climate classification was derived based on the monthly temperature and precipitation from 1980 to 2016, which included
three levels and was produced to three resolutions (Beck et al., 2018). Considering the density of stations in this study, the
second-level with moderate resolution (0.083°) climate classification was selected, including 13 classes as Tropical-Rainforest,
Tropical-Monsoon, Tropical-Savannah, Arid-Desert, Arid-Steppe, Temperate-Dry summer, Temperate-Dry winter,
Temperate-Without dry season, Cold-Dry summer, Cold-Dry winter, Cold-Without dry season, Polar-Tundra, and Polar-Frost.
NCEP-DOE reanalysis dataset was used for complementing series in homogenization. NCEP-DOE is the second-
generation assimilated historical dataset produced by the National Oceanic and Atmospheric Administration of U.S.
(Kanamitsu et al., 2002). The NCEP-DOE reanalysis reaches back to 1979 and provides 4 times daily values of various climate
variables as well as daily and monthly means. The series of 2m air temperature (K), 2m specific humidity (kg/kg), and surface
pressure (Pa) from 1981 to 2020 were used to calculate the sub-daily Tw and daily maximum Tw, and linear scaling was used

to correct the reanalysis series (Shrestha et al., 2017).

2.2 Calculate the Tw

The algorithm of calculating Tw proposed by Davies-Jones has low error and is widely used (Raymond et al., 2020; Rogers et
al., 2021). Based on the empirical formula for accurate calculation of equivalent potential temperature proposed by Bolton in
1980, Davies-Jones put forward the relationship among Tw, saturated mixing ratio, saturated vapor pressure and equivalent

temperature. When an initial Tw is given, the converged Tw could be obtained by iterative calculation. The core formula is as

follows:
c\4 _(cHA esTw Y _Akary(Ty.m)
(7) =r@wm = () [1- 22| aHanTwDexp [-26(Ty, m)] M
A
flanm)-(-=
Tn+1 = Tn = T&T)E) @

Where k3 and v are the empirical parameters proposed by Bolton (Bolton, 1980), which are 0 and 0.2854, respectively.
Ty and Ty, are equivalent temperature and wet-bulb temperature. e, 75 and 7 are saturation vapor pressure, saturation mixing
ratio and nondimensional pressure. C, A and p, are constants, which are 273.15 K, 3.504 and 1000 mb respectively. 7,, and
T,41 are the Ty after the n and n+1% iterations, and ,, is set as the initial Tw at the first iteration. Davies-Jones also showed

the calculation of initial Tw (Davies-Jones, 2008). When the equivalent temperature is in the ranges of high values or low

values, the relationship between Tw and (T—)’1 is non-linear, and otherwise there is a linear relationship.
E

We referred to Buzan's implementation and Kopp’s Matlab code to calculate Tw, and the threshold of convergence or the

maximum number of iterations were set to 0.001K and 100 respectively (Buzan et al., 2015; Kopp, 2020). Air temperature
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(°C), specific humidity (kg/kg) or relative humidity (%), and air pressure (hPa) are input variables, and Tw (°C) is the output
variable. Specifically, long-term series of air temperature and humidity at sub-daily scale were directly imported, and the long-
term average air pressure was used as a substitute because many observations of station level air pressure were missing. We
performed the sensitivity analysis on comparing the differences in Tw calculated using sub-daily air pressure and long-term

average air pressure (Sect. 3.1 for details).

2.3 Data quality control

Due to the differences in temporal resolutions and the number of missing values among stations, it is necessary to conduct
quality control of the original series in order to avoid extreme distribution of sub-daily Tw and few valid data when calculating
daily maximum Tw (Zhang et al., 2021). Several criteria for data quality control were defined for better selecting valid stations:

I. Valid day: at least one Tw every six hours (0-5 h, 6-11 h, 12-17 h, 18-23 h in local time) per day. Generally, the highest
Tw occurs in the daytime. However, because of the different temporal resolutions among stations or the inconsistent number
of observations on different days at one station for HadISD, observations might only refer to extreme low values at night, thus
resulting an underestimation of the daily maximum Tw.

II. Valid month: at least 21 valid days (three weeks) per month. Due to the high variability of daily data for long-term
series, monthly series are often used as the basic data to correct daily series. For example, in the homogenization of daily
temperature, it is first necessary to detect break points for the monthly series. If many valid days are missing in a month, it
might cause a higher statistical deviation at the monthly scale.

III. Valid station: at least 400 valid months (of a total of 480 months during 1981-2020) per station. Considering the time
span of 40 years, and hoping that the dataset could be useful for long-term research on extreme humid heat, we selected the
stations which contain more valid months. It should be noted that here we do not require the selected stations to meet the
definition of valid month in all 480 months, which is limited by the quality of data source. But further complementing series
and infilling missing data could make up for this problem to a certain extent.

According to the above criteria, we screened out 2248 valid stations (Fig. S1), and computed the series of daily maximum

Tw for each station.

2.4 Homogenization

Homogenization is the key procedure which first detects the break points of long-term series caused by the influences of non-
climatic factors (e.g., relocation of stations and surrounding environmental changes), and then corrects the data before and
after the break points to improve the homogeneity of whole series (Brugnara et al., 2019; Fioravanti et al., 2019). The generally
recognized process of correcting daily series was adopted, that is, firstly detecting break points at the monthly scale (480 time-
steps in this study), and then correcting the daily series (14610 time-steps). Since it is difficult to obtain accurate historical

information of stations, a relatively homogeneous reference series are often constructed from the data of stations surrounding
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the candidate station. The break points could be identified through comparing whether there are significant differences between

reference and candidate series.

2.4.1 Dividing station zones

The surrounding stations used to construct the reference series should have similar climatic backgrounds with the candidate
station (Gubler et al., 2017), so as to ensure that the constructed reference series could be effectively used for detecting break
points, especially in the context of large number of stations at the large scale. According to the second-level Képpen-Geiger
climate classification at moderate resolution, there are 13 climate classifications in the world. As for 2248 valid stations
selected after quality control, we divided them into several station zones based on climate classifications in ArcGIS 10.4, and
then the homogenization was performed in each station zone. In addition, in order to ensure that there were sufficient
surrounding stations used to construct reference series, we required that there were at least 5 stations in each station zone, and

finally got 41 station zones containing 1834 meteorological stations (Fig. S2).

2.4.2 Complementing series

Whether the reference value could be estimated for each time step of candidate station depends on how many missing data of
surrounding stations at this step. When all surrounding stations lack data, the estimation cannot be completed. Therefore, when
the above situation arose, we introduced the reanalysis series as the complementary series to achieve homogenization for the
candidate station. The NCEP-DOE reanalysis dataset also includes air temperature, specific humidity, and surface pressure
every 6 hours from 1980 to 2020, but it might be affected by systematic and random errors, leading to the deviations from
actual observations (Yan et al., 2020). A total of 36 station zones (except for Z13, Z19, Z25, Z26 and Z29) needed to be
supplemented by reanalysis series in this study. Firstly, the air temperature, specific humidity and surface pressure of the grid
point nearest to each station were extracted, and the sub-daily (six-hour interval) Tw was calculated (see Sect. 2.2). Then the
initial series of daily maximum Tw and monthly mean were computed before bias correction. Furthermore, the linear scaling
(Shrestha et al., 2017) was used to calculate the bias of the average monthly mean series between each station and the nearest
grid point from January to December. Finally, the bias was used to correct the daily maximum Tw of the nearest grid point for
each month. Equations are as follows:
TWina (1) = TWynae (1) + [MOTeqn(s) = MOMpoen ()] 3)

Where, TW,,,q (1) and TW,,, 4, (r)* are the original and corrected series of daily maximum Tw based on reanalysis data,
respectively. Monpeqn(s) and Mon,.q, (1) are the long-term average monthly mean series from station-based data and
reanalysis-based data, respectively.

Due to the relatively coarse resolution of reanalysis dataset, one grid might involve two or more stations spatially. We
deleted the duplicate series and paired it with the station-based series with the highest correlation coefficients for further bias
correction. Besides, the number of complemented series is equal to the number of stations in such zones that should be

supplemented theoretically, but too many complementary reanalysis data would reduce the reliability of constructing reference
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series. After removing the duplicating series, reanalysis series which had the top 10% correlation coefficients (p<0.05) with

station-based series were selected as complementary series for the corresponding station zone.

2.4.3 Infilling missing data and homogenization

Many algorithms of identifying inhomogeneity and homogenization have been proposed, such as MASH (Mamara et al., 2013),
RHtests (Brugnara et al., 2020), HOMER (Coll et al., 2020), and Climatol (Dumitrescu et al., 2020). These algorithms differ
in methods of detecting break points, applicable variables and their resolutions, the number of series to be processed, and the
ability of automation. Climatol has the advantages of high tolerance for missing data, unlimited variables, and unlimited sample
size. Climatol selects the reference stations according to the distance to candidate stations, estimates the reference series based
on the reduced major axis regression, and then applies the Standard Normal Homogeneity Test (SNHT) to the series of
anomalies between the actual values and the reference values to identify the break points (Alexandersson, 1986). Since SNHT
is a method of detecting single break-point, Climatol conducts the detections on the stepped overlapping temporal windows
and on the complete series respectively in order to avoid ignoring the multiple break points in the series. One inhomogeneous
series can be divided into several homogenous sub-series. Finally, all missing data were infilled by averaging neighbouring
values. Both infilling missing data and constructing reference series rely on data normalization, which might have high
uncertainty when the series is incomplete. Climatol iteratively infills missing data multiple times until the mean of series
becomes stable (Paulhus and Kohler, 1952). The procedures of Climatol are shown in Fig. S3.

In this study, Climatol (version 3.1.2) with an R script was used to perform homogenization in each station zone. Since
Climatol selects the reference station based on the distances between stations and ignores the correlations of series, we
calculated the average correlation coefficients of the candidate and the surrounding series with the increase of the number of
reference stations in each station zone, and then selected the maximum number of reference stations as the imported parameter
in Climatol (Sect. 3.2 for details). In addition, in the stage of infilling missing values, Climatol allows setting weights to
surrounding stations, that is, the weights decay as the distances to the candidate station increase. In each station zone, the
average distance between the candidate stations and the nearest stations was set as the distance parameter for half weight. In
the stage of detecting break points, we firstly conducted exploratory experiments to obtain the standard deviation of the series
and the frequency distribution of SNHT values, and then determined the thresholds for deleted outliers and break points (Table
S1 for details on parameters). Higher standard deviations and SNHT values mean higher probability of such stations to be
detected as the outliers and break points. Through setting the above parameters, we detected the break points for the monthly
series of average daily maximum Tw, that is, set it as the known meta-data information, and then split the daily series and

reconstructed series.

2.5 Sensitivity analysis

There are two potential uncertainties in the procedures of calculating Tw and homogenization when producing GSDM-WBT.

Firstly, due to the missing observations of station level air pressure, we assumed that the influence of air pressure on Tw was
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much lower than that of air temperature and humidity in the long-term state, and thus the long-term average air pressure was
used instead of the sub-daily air pressure. We assessed the average bias of the daily maximum Tw to check the effect of long-
term average air pressure. Secondly, the important difference between the Climatol and other algorithms of homogenization is
that the reference stations are selected based on their distances from the candidate stations rather than the correlation of series.
Therefore, when setting the maximum number of reference stations, we also considered the changes of correlation between

different numbers of reference stations and candidate stations.

3 Results
3.1 Effect of long-term average air pressure

To evaluate the effect of long-term average air pressure on the daily maximum Tw, we applied the same algorithm to calculate
Tw based on sub-daily air pressure, and also used the same criteria of data quality control to select 398 valid stations. The
average bias of the daily maximum Tw based on the long-term average and sub-daily air pressure for such 398 stations was
0.12°C. In view of spatial patterns (Fig. 2), arid and semi-arid regions had the clustering of high bias, and other mid-latitude
regions had lower bias which was mostly concentrated at 0-0.15°C, whereas the bias increased in high-latitude regions.
Sensitivity analysis of previous studies also showed that the effect of surface pressure on Tw was about 0.1°C (Raymond et
al., 2020). When targeting on the stations with average daily maximum Tw more than 20°C, where humid heat conditions were
highly relevant to human health, the average bias was also maintained at 0-0.11°C.
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Figure 2. Sensitivity of Tw to air pressure. Sensitivity, i.e., average bias, was calculated by subtracting the daily maximum
Tw calculated by sub-daily pressure from the daily maximum Tw based on long-term average pressure. Sub-plot showed the
histogram of number of stations with corresponding average bias when average daily maximum Tw was more than 20°C,

where the red dashed line indicated the mean (0.04°C).

3.2 Correlation between candidate and reference stations

Before the homogenization, we calculated the changes of average correlation coefficients between the candidate series and
surrounding series with the increase of the number of reference stations (Fig. 3). Stations that were closer to the candidate
stations were preferentially selected. Except for the Z32, 7233, Z35, Z36 and Z41 station zones, no matter how many reference
stations are selected, the average correlation coefficients always remained above 0.9 (1789 stations in total). Ensuring a certain
number of reference stations, the average correlation coefficients of Z32, Z33 and Z41 could be stable above 0.8, while Z35
and Z36 located near the equator have lower regional average coefficients. Therefore, it is emphasized that the GSDM-WBT
might have higher reliability in mid-to-high latitudes.
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Figure 3. Average correlation coefficients between series of candidate and reference stations in different station zones. The

red box highlights the number of maximum reference stations which was used for homogenization.

3.3 Effect of homogenization

Detection of inhomogeneity could identify the break points caused by non-climatic factors for long-term series. After
homogenization, in theory the corrected series of candidate stations should have a better correlation with the surrounding series.
We paired 1834 stations and calculated the mutual correlation coefficients before and after homogenization (Fig. 4(a)). Overall,
the correlation coefficients after correction were higher and the maximum increment of coefficients was 0.28. It was also

notable that there was a significant increase in correlation between stations that were closer together as shown in the blue dots.
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In the sub-plot of Figure 4 (a), about 80.23% of paired stations had larger coefficients after homogenizations. To further
demonstrate the effect of homogenization, we selected one typical station from each station zone that either had the most break
points, had higher SNHT values, or had more missing data (Table S2 for details). The changes of annual average daily
maximum Tw before and after the homogenization and the number of infilled and corrected data were shown in Z1-Z41 of Fig.
4. On the one hand, before the break points, some stations showed a significant increase or decrease in the average daily
maximum Tw before and after homogenization (e.g., Z2, Z8, Z18 and Z41). The overestimation or underestimation of the
original series is mainly related to the equipment, environment and statistical methods of monitoring stations in different
countries. On the other hand, many missing data directly lead to discontinuous series and abnormal statistical values. For

example, a large number of missing values in the Z25 and Z29 station zones around 1995 caused abnormal fluctuations.
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Figure 4. Correlation coefficients (p<0.05) between paired series before and after homogenization (a), and annual average
daily maximum Tw (°C) and the number of infilled or corrected data for one typical station in each station zone (Z1-Z41).
Sub-plot of the figure (a) showed the correlation coefficients between paired stations of which distances lower than the first
quarter. When the coefficients were more than 0, the dots in the upper areas of black diagonal indicated the higher

coefficients after homogenization. Detailed information of all typical stations was shown in Table S2.

In addition, complementing series was an essential process to achieve all homogenizations, and reanalysis dataset was
introduced in this study. To reduce the impact of uncertainty in the reanalysis data, we selected complementary series based
on the correlation coefficients (Sect. 2.4) and also demonstrated the effect in different station zones as shown in Table S3. The
number of complementary series was limited to no more than 10% of the number of all stations (at least one complementary
series). The reanalysis-based dataset was mainly used to provide reference daily maximum Tw when the values in each time
step of all candidate stations were missing. However, such situation was not universal since the percentages of void time steps

in series (0.03%-2.59%) relative to 14610 total time steps were quite low.

3.4 Evaluations
3.4.1 Comparison with station-based data

In addition to the basic meteorological variables, HadISD-Humidity also includes Tw calculated by the simple empirical
formulas. Since HadISD-Humidity directly uses the original dataset to calculate Tw without further post-processing, it still has
the shortcomings of many missing values and possible heterogeneity. We used the same definition to calculate the valid days
for HadISD-Humidity, and counted the number of missing days in January-December during 1981-2020 for all 1834 stations.
The median number of missing days in each month over past forty years in the Northern Hemisphere was less than 100 days,
much lower than the corresponding months in the Southern Hemisphere (Fig. 5). In terms of seasonality, there were evidently
more missing days in the warm season (May-September) in the Northern Hemisphere, especially in summer (June-August).
Because the extremely humid heat events are generally identified based on daily Tw and the daily thresholds in the historical
baselines, more missing values could cause inaccurate thresholds or insufficient events to be detected. Therefore, the potential

uncertainties should be noticed when directly using HadISD-Humidity to characterize humid heat.
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Figure 5. Number of missing days in different months during 1981-2020 for HadISD-Humidity dataset. The lower and upper
hinges correspond to the 25" and 75™ percentiles, and the horizontal lines in the boxes show the medians. The lower and upper

whiskers are the minimum and maximum values.

The bias of daily maximum Tw between GSDM-WBT and HadISD-Humidity was further calculated. Because the series
of Tw from HadISD-Humidity were not corrected for homogeneity, the 1834 stations could not be fully matched. However,
HadISD provides the test values of detecting inhomogeneity based on the pairwise homogenization algorithm (Menne and
Williams, 2009), for the monthly mean diurnal range of air temperature and dew point temperature. Based on the detected
results, 245 completely homogenous stations were screened out in this study from 1981 to 2020, which were concentrated in
the middle latitudes (Fig. 6), although it is notable that the existing missing values might increase the potential inhomogeneity
of daily maximum TW series in HadISD-Humidity. Overall, the daily maximum Tw of GSDM-WBT is lower than that of
HadISD-Humidity. The mean of average bias for all stations was -0.48°C, and the average root mean square error (RMSE)
was 0.72°C. In view of spatial patterns, western Europe had high consistency for these two datasets, and part stations in arid

and semi-arid regions of central Asia and western North America had poor consistency.
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Figure 6. Average bias between daily maximum Tw of GSDM-WBT and HadISD-Humidity.

3.4.2 Comparison with reanalysis-based data

ERAS (Hersbach et al., 2020) has also been widely used in calculating various heat stress index and producing the
corresponding dataset in recent years. Yan et al. (2021) launched a high-resolution thermal stress dataset (HiTiSEA) covering
South and East Asia. The dataset with a spatial resolution of 0.1° % 0.1° and a time span of 1981-2019, includes daily maximum
Tw. There are 587 stations of GSDM-WBT located in the spatial range of HiTiISEA. We extracted the HiTiSEA series of daily
maximum Tw in the nearest grid points to all 587 stations, and compared the average bias with GSDM-WBT (Fig. 7). Overall,
compared with HiTiSEA, the means of average bias and RMSE for all stations were 0.34°C and 1.61°C respectively. High

inconsistency between the two datasets existed in the north eastern and southern regions.

The verification of HiTiSEA showed that its average bias of the daily maximum Tw from the meteorological stations was
-0.4°C (Yan et al., 2021), which was consistent with our study. It should also be noted that HiTiSEA was produced from the
sub-daily data of UTC, and thus we checked the correlation between the longitudes of stations and the average bias. The

extremely low correlation coefficients indicated that the average bias was not dependent on longitude (local time zone) (Fig.

S4).
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Figure 7. Average bias between station-based daily maximum Tw of GSDM-WBT and that of the nearest grid points in
HiTiSEA.

3.4.3 Year-to-year comparison

The annual average daily maximum Tw was further calculated in 245 stations for the comparative analysis of GSDM-WBT
and HadISD-Humidity, and in 587 stations for the comparative analysis of GSDM-WBT and HiTiSEA (Fig. 8). Overall,
whether focusing on all months or only the warm season, the annual average daily maximum Tw of GSDM-WBT was lower
than that of station-based HadISD-Humidity, but higher than that of reanalysis-based HiTiSEA. In view of the relative accuracy,
the former inconsistency may be caused by the existing missing values of HadISD-Humidity and the homogenization of
GSDM-WBT. The latter differences have reached a similar conclusion in previous studies, that is, the Tw and other heat stress

indices calculated from reanalysis-based data are underestimated.
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Figure 8. Annual average daily maximum Tw between HadISD-Humidity, HiTiSEA and GSDM-WBT in all months and
warm season (May, June, July, August and September in the Northern Hemisphere).

4 Discussion
4.1 Advantages of GSDM-WBT in climate change research

Tw, a characteristic temperature that integrates temperature and humidity, reflects the response of human bodies to the thermal
environment and has been widely used in the fields of heat waves, climate and health, and social vulnerability (Coffel et al.,
2018; Kang and Eltahir, 2018). Although Tw is suitable for large-scale applications, there is still a lack of long-term datasets
based on meteorological stations. Based on the observed data of HadISD and integrating reanalysis data, we have produced a
dataset of daily maximum Tw from 1981 to 2020 for 1834 stations around the world, which can effectively support global or
regional research on climate change and its impact. Two main advantages of GSDM-WBT should be emphasized. Firstly,
compared with other thermal comfort indices, the algorithm of computing Tw is relatively mature, and the required data sources
are not complicated. The UTCI is also one typical thermal comfort indicator that has been gradually recognized in recent years,
because it not only considers more climatic variables such as temperature, wind speed and humidity, but also considers the
parameters of skin albedo and clothing conditions (Wang and Yi, 2021). However, the complete model of UTCI has high
complexity, and the existing research mainly uses the approximate polynomial fitting method. In addition, UTCI is mostly
performed at small scales (Dong et al., 2020), while the localized parameters of UTCI are still difficult to obtain.

Another advantage of GSDM-WBT is that Climatol was applied to achieve homogenization for daily maximum Tw,
thereby eliminating the possible break points affected by non-climatic factors, and reconstructing the series without missing
values. Although HadISD dataset has been used to compute Tw in previous analysis of humid heat, such research either usually

ignored the inhomogeneity and missing values, or selected fewer stations by improving quality control (Zhang et al., 2021).
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Therefore, the complete series reconstructed by GSDM-WBT can better serve the daily-scale research on thermal environment.
For example, if there are many missing days, a continuous heatwave event would be divided into multiple independent events,
and the cumulative intensity and duration of the heatwave might be underestimated. In addition, more accurate extreme values
at the daily scale can be obtained based on sub-daily data sources. Previous research showed the differences of extreme humid
heat between using monthly and sub-daily temperature and humidity could be up to more than 4°C at regional scale, and lead
to substantial uncertainty of future predictions (Buzan and Huber, 2020). Different from the evaluations of extreme heat events
in view of the average temperature, the daily maximum Tw of GSDM-WBT better shows the real extreme thermal situation

for one day.

4.2 Limitations and future improvements of dataset

Homogenization is an important procedure in the production of GSDM-WBT. Generally, detection of inhomogeneity is often
applied to observed climate variables such as temperature, humidity and wind speed (Azorin-Molina et al., 2016; Li et al.,
2020). Furthermore, it has also been applied in recent years for non-traditional meteorological variables such as plant
phenology (Brugnara et al., 2020). We adopted the idea of calculating the Tw first and then performing homogenization, but
inevitably, the calculation of Tw might smooth the break points of original series. The ideal process is to first perform
homogenizations on several single variables (i.e., air temperature, humidity, and air pressure) for Tw, and then to combine all
homogeneous series to calculate the Tw. However, the complexity and uncertainty of such ideal process are difficult to estimate.
On the one hand, the temporal resolution of univariates is at hourly or sub-daily scale. The resolution is higher, the operation
time increases, and more missing values may lead to lower accuracy of interpolation. Besides, the detected break points of
different univariates do not correspond completely. When the historical meta-data is lacking, it is difficult to judge whether
there is a conflict in break points between all variables, and to make sure how to determine the thresholds used for
homogenization. Therefore, we conducted the procedures of calculating the Ty firstly and then completing the homogenization.
In the future, with the improvement of data availability, mature algorithm and complete records, homogenous series of
univariates could be obtained firstly, followed by the calculation of daily maximum Ty.

Recent studies have also attempted to use existing algorithms to perform homogenization on sub-daily or hourly series,
although they are still carried out at small scale (Dumitrescu et al., 2020). This is mainly because high-resolution
meteorological datasets with good quality always need multi-sectoral cooperation within countries or cities. In the future, with
the enhancement of the global meteorological station networks and data records, the Tw dataset with higher temporal resolution
could be constructed, which could not only improve the accuracy of daily statistics, but also promote the research on the
differences between daytime and nighttime for better characterizing humid heat and exploring potential mitigations.
Meanwhile, the complex changes in the relationship, but not the simply fixed joint, between temperature and humidity, was
investigated around different regions based on the multivariate analysis (Mckinnon and Poppick, 2020). Then the historical
dataset of Tw could be expanded to future longer periods based on observation-based relationship between temperature and

humidity (Poppick and Mckinnon, 2020).
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5 Data availability

The GSDM-WBT dataset was freely available at https://doi.org/10.5281/zenodo.7014332 (Dong et al. 2022). We provide the
NetCDF files of GSDM-WBT for each station and one compressed file containing all data.

6 Conclusions

Based on HadISD station-based observations and integrating with the NCEP-DOE reanalysis data, the daily maximum Tw of
1834 stations around the world was produced through the calculation of Tw, data quality control, infilling missing values and
homogenization. The GSDM-WBT covers the complete daily series of forty years from 1981 to 2020. The production with
the application of Climatol successfully corrected the inhomogeneities of series caused by non-climatic factors, and also
infilled all missing data to reconstruct complete series for each station. Compared with the existing public-downloaded station-
based and reanalysis-based Tw datasets, the overall average bias of GSDM-WBT was -0.48°C and 0.34°C, with the average
RMSE of 0.72°C and 1.61°C, respectively. This new dataset can better support the studies on global or regional humid heat
events. We also hope that with the improvement of observations and reconstructed algorithms, the uncertainty of producing

the dataset can be further reduced and a global station-based Tw dataset with hourly resolution can be produced in the future.
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