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Abstract. The wet-bulb temperature (WBTTW) comprehensively characterizes the temperature and humidity of the thermal 10 

environment and is a relevant variable to describe the energy regulation of the human body. The daily maximum WBT  TW 

can be effectively used in monitoring humid heatwaves and the responsetheir effects on human health. Because meteorological 

stations differ in temporal resolution and are susceptible to non-climatic influences, it is difficult to provide complete and 

homogeneous long-term series. In this study, based on the sub-daily station-based dataset of HadISD and integrating the 

NCEP-DOE reanalysis dataset, the daily maximum WBT  TW series of 1834 stations that have passed quality control were 15 

homogenized and reconstructed using the method of Climatol. These stations form a new data set of global station-based daily 

maximum WBT  wet-bulb temperature (GSDM-WBT) from 1981 to 2020. Compared with other station-based and reanalysis-

based datasets of WBT TW, the average bias was -0.48°C and 0.34°C respectively. GSDM-WBT handles stations with many 

missing values and possible inhomogeneities, and also offsets avoid the underestimation of the WBT  TW calculated from 

reanalysis data. The GSDM-WBT dataset can effectively support the research on global or regional extreme heat events and 20 

humid heatwaves. The dataset is available at https://doi.org/10.5281/zenodo.7014332 (Dong et al. 2022). 

1 Introduction 

The trend of warming is threatening the climate system, terrestrial and marine ecosystems, socio-economic development, 

resulting to in the increase of the frequency and intensity of extreme events, loss of biodiversity and protected areas, and human 

morbidity and mortality (Sun et al., 2014; Perkins-Kirkpatrick et al., 2020). Long-term temperature datasets have become the 25 

basis for accurate assessment of global or local warming and its impacts, especially heatwaves and their effects on health 

(Doutreloup et al., 2022; Fang et al., 2022). Previous studies on extreme heat mostly use near-surface air temperature directly 

based on observations from meteorological stations or numerical climate simulations (Mazdiyasni et al., 2017; Dong et al., 

2021; Fischer et al., 2021), but the intensity of air temperature is usually not equivalent to the human body’s response on to 

the thermal environment. Human thermal comfort is related to many climatic and non-climatic conditions such as air 30 
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temperature, humidity, air pressure, skin albedo and heat insulation of clothing. For example, extreme humid heat combining 

with an environment with relatively low air temperature but a high humidity might still cause lethal and even deadly events 

(Mora et al., 2017; Raymond et al., 2020). Indicators such as wet-bulb temperature (WBTTW) (Ahmadalipour and Moradkhani, 

2018), apparent temperature (Hu and Li, 2020), humidex (Ho et al., 2017), and universal thermal climate index (UTCI) (Di 

Napoli et al., 2018) were proposed to characterize thermal comfort of human bodies. Among these, WBT  TW has clear 35 

thermodynamic properties, and the higher TW could dampen the evaporative cooling of sweating (Kang and Eltahir, 2018). 

represents the lowest temperature at which human skin is cooled by evaporation through sweating (Kang and Eltahir, 2018), 

which TW has been widely applied to multi-scale research on humid heat stress due to its clear physical meaning and the mature 

methods (Pal and Eltahir, 2016; Raymond et al., 2020; Zhang et al., 2021). For example, Yu et al. (2021) found that in Eurasia, 

changes of WBT  TW in arid regions have stronger dependence on relative humidity than that in humid regions, and an increase 40 

of 1% in relative humidity will result in an increase of 0.2°C in WBT TW. 

Near-surface air temperature and humidity are the key variables for calculating WBT  TW (Im et al., 2017). Although 

reanalysis and modelling datasets have the advantages of diverse parameters and complete series, studies have shown that 

changes in WBT  TW might be underestimated (Freychet et al., 2020). In comparison, station-based datasets are more difficult 

to provide continuous and homogeneous data, because meteorological observations can be directly or potentially affected by 45 

the damage of instruments, the relocation of stations, and also the environmental changes (Mamara et al., 2013; Li et al., 2020). 

There is still a lack of public, downloadable global station-based datasets of WBT TW, especially for long-term series of daily 

maximum WBT  TW which can be used for research on extreme humid heat. In addition, another difficulty in generating 

station-based datasets of daily maximum WBT  TW is the impact of the temporal resolution of source data on the accuracy, 

because the daily maximum WBT  TW is not necessarily corresponding to the daily maximum temperature and daily maximum 50 

or minimum humidity. When only the daily-scale data are available, it often has to use daily average WBT  TW instead of 

calculating the real maximum values (Yu et al., 2021; Guo et al., 2022). With the enhancement of continuity and resolution of 

data sources, hourly or sub-daily WBT  TW can be computed firstly, and then the daily maximum WBT  TW is obtained 

statistically (Im et al., 2017; Speizer et al., 2022). 

HadISD, a sub-daily climatic dataset widely used in recent years, contains a set of basic meteorological variables, and it 55 

has also developed one humidity dataset and one heat stress dataset (Dunn et al., 2016). The humidity dataset of HadISD 

(HadISD-Humidity) includes WBT  TW data calculated from empirical formulas. Many studies used an algorithm proposed by 

Davies-Jones to calculate WBT  TW (Davies-Jones, 2008), which allows to use such climatic variables as near-surface air 

temperature, humidity, and air pressure in HadISD. However, WBT  TW calculated in this way cannot deal with missing values 

and inhomogeneities. Although producers of HadISD provide a homogeneity assessment for temperature, dew point 60 

temperature, sea level pressure and wind speed (Dunn et al., 2014), the results are mostly used for quality control to assess 

their suitability for different research objectives. To our knowledge, there is no dataset that contains long-term complete series 

of daily maximum WBT  TW based on global stations. 
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To generate a dataset of daily maximum WBT  TW from a global station dataset, we used the HadISD sub-daily dataset 

and integrated reanalysis data to produce a dataset of global station-based daily maximum WBT  TW (GSDM-WBT), which 65 

spans 40 years (1981-2020) for 1834 stations. The GSDM-WBT solved the problems of many missing values and prominent 

inhomogeneity through data quality control and homogenization. We also validated the series of GSDM-WBT by comparing 

with the HadISD-Humidity dataset, as well as another reanalysis-based dataset. The GSDM-WBT could provide data support 

for global or regional analysis (especially in the middle and high latitudes of the Northern Hemisphere) on long-term humid 

heat. 70 

2 Methods 

The production of GSDM-WBT includes four procedures: the calculation of WBT TW, data quality control, homogenization, 

and comparison and validation evaluation (Fig. 1). Specifically, based on the initial data of near-surface air temperature, 

specific humidity and station level air pressure from HadISD, the algorithm proposed by Davies-Jones was used to calculate 

the sub-daily WBT TW. Further, by defining the valid days and valid months for the long-term series of WBT TW, the data 75 

quality was controlled and the daily maximum WBT  TW was obtained for valid stations. The homogenization was carried out 

in different station zones divided by the Köppen-Geiger climate classification, and reanalysis data were integrated to 

complement the series. In this part, the method of Climatol was used to correct inhomogeneous series and infill all missing 

values. Finally, we compared the differences between the GSDM-WBT and other station-based and reanalysis-based datasets 

for better validating the accuracy. 80 
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Figure 1. Procedures of producing global daily maximum WBT wet-bulb temperature  (GSDM-WBT) dataset. The numbers 

in the parentheses indicate the counts of stations remained after each procedure. 

2.1 Data sources 85 

The HadISD was used to provide basic data of different climatic variables for GSDM-WBT. HadISD, launched by the Met 

Office Hadley Centre, uses station-based dataset from the Integrated Surface Database (ISD) (Smith et al., 2011) and is quality-

controlled, with particular preservation of historical extreme values for meteorological variables. At present, the dataset has 

covered the observed data of more than 9,000 meteorological stations around the world. The time series can be traced back to 

1931, and the temporal resolution is from one hour to daily scale (Dunn et al., 2016). Based on the algorithm of calculating 90 

WBT TW, the near-surface (2m) air temperature (℃), specific humidity (g/kg), and station level air pressure (hPa) from 1981 
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to 2020 were imported. The used version of HadISD is v3.2.0.2021f. Considering the dependence of the occurrence of 

maximum WBT  TW at sub-daily scale on local climate, we converted Universal Time Coordinated (UTC) to the local time 

zone of each station. 

Köppen-Geiger climate classification data were used for dividing station zones before homogenization. The “Present-day” 95 

climate classification was derived based on the monthly temperature and precipitation from 1980 to 2016, which included 

three levels and was produced to three resolutions (Beck et al., 2018). Considering the density of stations in this study, the 

second-level with moderate resolution (0.083°) climate classification was selected, including 13 classes as Tropical-Rainforest, 

Tropical-Monsoon, Tropical-Savannah, Arid-Desert, Arid-Steppe, Temperate-Dry summer, Temperate-Dry winter, 

Temperate-Without dry season, Cold-Dry summer, Cold-Dry winter, Cold-Without dry season, Polar-Tundra, Polar-Frost. 100 

NCEP-DOE reanalysis dataset was used for complementing series in homogenization. NCEP-DOE is the second-

generation assimilated historical dataset produced by the National Oceanic and Atmospheric Administration of U.S. 

(Kanamitsu et al., 2002). The NCEP-DOE reanalysis reaches back to 1979 and provides 4 times daily values of various climate 

variables as well as daily and monthly means. The series of 2m air temperature (K), 2m specific humidity (kg/kg), and surface 

pressure (Pa) from 1981 to 2020 were used to calculate the sub-daily WBT  TW and daily maximum WBT TW, and linear 105 

scaling was used to correct the reanalysis series (Shrestha et al., 2017). 

2.2 Calculate the WBT TW 

The algorithm of calculating WBT  TW proposed by Davies-Jones has low error and is widely used (Raymond et al., 2020; 

Rogers et al., 2021). Based on the empirical formula for accurate calculation of equivalent potential temperature proposed by 

Bolton in 1980, Davies-Jones put forward the relationship among WBT TW, saturated mixing ratio, saturated vapor pressure 110 

and equivalent temperature. When an initial WBT  TW is given, the converged WBT  TW could be obtained by iterative 

calculation. The core formula is as follows: 
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        Where 𝑘𝑘3 and 𝑣𝑣 are the empirical parameters proposed by Bolton (Bolton, 1980), which are 0 and 0.2854, respectively. 115 

𝑇𝑇𝐸𝐸  and 𝑇𝑇𝑊𝑊 are equivalent temperature and WBT TW. 𝑒𝑒𝑠𝑠, 𝑟𝑟𝑠𝑠 and 𝜋𝜋 are saturation vapor pressure, saturation mixing ratio and 

nondimensional pressure. 𝐶𝐶, 𝜆𝜆 and 𝑝𝑝0 are constants, which are 273.15 K, 3.504 and 1000 mb respectively. 𝜏𝜏𝑛𝑛 and 𝜏𝜏𝑛𝑛+1 are the 

WBT  TW after the nth and n+1th iterations, and 𝜏𝜏𝑛𝑛 is set as the initial WBT  TW at the first iteration. Davies-Jones also showed 

the calculation of initial WBT TW (Davies-Jones, 2008). When the equivalent temperature is in the ranges of high values or 

low values, the relationship between WBT  TW and ( 𝐶𝐶
𝑇𝑇𝐸𝐸

)𝜆𝜆 is non-linear, otherwise there is a linear relationship. 120 

We referred to Buzan's implementation and Kopp’s Matlab code to calculate WBT TW, and the threshold of convergence 

or the maximum number of iterations were set to 0.001K and 100 respectively (Buzan et al., 2015; Kopp, 2020). Air 
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temperature (℃), specific humidity (kg/kg) or relative humidity (%) and air pressure (hPa) are input variables, and WBT  TW 

(℃) is the output variable. Specifically, long-term series of air temperature and humidity at sub-daily scale were directly 

imported, and the long-term average air pressure was used as a substitute because many observations of station level air 125 

pressure are missing. We performed the sensitivity analysis on comparing the differences in WBT  TW calculated using sub-

daily air pressure and long-term average air pressure (Section Sect. 3.1.1 for details). 

2.3 Data quality control 

Due to the differences in temporal resolutions and the number of missing values among stations, it is necessary to conduct 

quality control of the original series in order to avoid extreme distribution of sub-daily WBT  TW and few valid data when 130 

calculating daily maximum WBT  TW (Zhang et al., 2021). Several criteria for data quality control were defined for better 

selecting valid stations: 

I. Valid day: at least one WBT  TW every six hours (0-5 h, 6-11 h, 12-17 h, 18-23 h in local time) per day. Generally, the 

highest WBT  TW occurs in the daytime. However, because of the different temporal resolutions among stations or the 

inconsistent number of observations on different days at one station for HadISD, observations might only refer to extreme low 135 

values at night, thus resulting an underestimation of the daily maximum WBT TW. 

II. Valid month: at least 21 valid days (three weeks) per month. Due to the high variability of daily data for long-term 

series, monthly series are often used as the basic data to correct daily series. For example, in the homogenization of daily 

temperature, it is first necessary to detect break points for the monthly series. If many valid days are missing in a month, it 

might cause a higher statistical deviation at the monthly scale. 140 

III. Valid station: at least 400 valid months (of a total of 480 months during 1981-2020) per station. Considering the time 

span of 40 years, and hoping that the dataset could be useful for long-term research on extreme humid heat, we selected the 

stations which contains more valid months. It should be noted that here we do not require the selected stations to meet the 

definition of valid month in all 480 months, which is limited by the quality of data source. But further complementing series 

and infilling missing data could make up for this problem to a certain extent.  145 

According to the above criteria, we screened out 2248 valid stations (Fig. S1), and computed the series of daily maximum 

WBT  TW for each station. 

2.4 Homogenization 

Homogenization is the key procedure which first detects the break points of long-term series caused by the influences of non-

climatic factors (e.g., relocation of stations and environmental changes), and then corrects the data before and after the break 150 

points to improve the homogeneity of whole series (Brugnara et al., 2019; Fioravanti et al., 2019). The generally recognized 

process of correcting daily series was adopted, that is, firstly detecting break points at the monthly scale (480 time-steps in this 

study), and then correcting the daily series (14610 time-steps). Since it is difficult to obtain accurate historical information of 

stations, a relatively homogeneous reference series are often constructed from the data of stations surrounding the candidate 
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station. The break points could be identified through comparing whether there are significant differences between reference 155 

and candidate series. 

2.4.1 Divide station zones 

The surrounding stations used to construct the reference series should have similar climatic backgrounds with the candidate 

station (Gubler et al., 2017), so as to ensure that the constructed reference series could be effectively used for detecting break 

points, especially for large number of stations at the large scale. According to the second-level Köppen-Geiger climate 160 

classification at moderate resolution, there are 13 climate classifications in the world. As for 2248 valid stations selected after 

quality control, we divided them into several station zones based on climate classifications in ArcGIS 10.4, and then the 

homogenization was performed in each station zone. In addition, so that there werefor sufficient surrounding stations used to 

construct reference series, we required that there were at least 5 stations in each station zone, and finally got 41 station zones 

containing 1834 meteorological stations (Fig. S2). 165 

2.4.2 Complement series 

Whether the reference value could be estimated for each time step of candidate station depends on how many missing data 

exists in of the surrounding stations at this step. When all surrounding stations lack data, the estimation cannot be completed. 

Therefore, when the above situation arose, we introduced the reanalysis series as the complementary series to achieve 

homogenization for the candidate station. The NCEP-DOE reanalysis dataset also includes air temperature, specific humidity, 170 

and surface pressure every 6 hours from 1980 to 2020, but it might be affected by systematic and random errors, leading to the 

deviations from actual observations (Yan et al., 2020). A total of 36 station zones (except for the Z13, Z19, Z25, Z26 and Z29) 

needed to be supplemented by reanalysis series in this study. First, the air temperature, specific humidity and surface pressure 

of the grid point nearest to each station were extracted, and the sub-daily (six-hour interval) TW was calculated (see Sect. 2.2). 

Then the initial series of daily maximum WBT  TW and monthly mean were calculatedcomputed before bias correction. 175 

Furthermore,Then the linear scaling (Shrestha et al., 2017) was used to calculate the bias of the average monthly mean series 

between each station and the nearest grid point from January to December. Finally, the bias was used to correct the daily 

maximum WBT  TW of the nearest grid point for each month. Equations are as follows: 

𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟)∗ =  𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟) + [𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)  −  𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟)] (3) 

Where, 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟) and 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟)∗ are the original and corrected series of daily maximum WBT  TW based on reanalysis 180 

data, respectively. 𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)  and 𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟) are the long-term average monthly mean series from station-based data and 

reanalysis-based data, respectively. 

Due to the relatively coarse resolution of reanalysis dataset, one grid might involve two or more stations spatially. We 

deleted the duplicate series and paired it with the station-based series with highest correlation coefficients for further bias 

correction. TheoreticallyBesides, the number of complemented series is equal to the number of stations in such zones that 185 

should be supplemented theoretically, but too many complementary reanalysis data would reduce the reliability of constructing 
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reference series. After removing the duplicating series, Rreanalysis series which have the top 10% correlation coefficients 

(p<0.05) with station-based series were selected as complementary series for the corresponding station zone. 

2.4.3 Infill missing data and homogenization 

Many algorithms of identifying inhomogeneity and homogenization have been proposed, such as MASH (Mamara et al., 2013), 190 

RHtests (Brugnara et al., 2020), HOMER (Coll et al., 2020), and Climatol (Dumitrescu et al., 2020). These algorithms differ 

in methods of detecting break points, applicable variables and their resolutions, the number of series to be processed, and the 

ability of automation. Climatol has the advantages of high tolerance for missing data, unlimited variables, and unlimited sample 

size. Climatol selects the reference stations according to the distance to candidate stations, estimates the reference series based 

on the Reduced reduced Major major Axis axis Regressionregression, and then applies the Standard Normal Homogeneity 195 

Test (SNHT) to the series of anomalies between the actual values and the reference values to identify the break points 

(Alexandersson, 1986). Since SNHT is a method of detecting single break-point, Climatol conducts the detections on the 

stepped overlapping temporal windows and on the complete series respectively in order to avoid ignoring the multiple break 

points in the series. One inhomogeneous series can be divided into several homogenous sub-series. Finally, all missing data 

were infilled by averaging neighbouring values. Both infilling missing data and constructing reference series rely on data 200 

normalization, which might have high uncertainty when the series is incomplete. Climatol iteratively infills missing data 

multiple times until the mean of series becomes stable (Paulhus and Kohler, 1952). The procedures of Climatol are shown in 

Fig. S3. 

In this study, Climatol (version 3.1.2) with an R script was used to perform homogenization in each station zone. Since 

Climatol selects the reference station based on the distances between stations and ignores the correlations of series, we 205 

calculated the average correlation coefficients of the candidate and the surrounding series with the increase of the number of 

reference stations in each station zone, and then determined the maximum number of reference stations as the imported 

parameter in Climatol (Section Sect. 3.1.2 for details). In addition, in the stage of infilling missing values, Climatol allows 

setting weights to surrounding stations, that is, the weights decay as the distances to the candidate station increase. In each 

station zone, the average distance between the candidate stations and the nearest stations was set as the distance parameter for 210 

half weight. In the stage of detecting break points, we first conducted exploratory experiments to obtain the standard deviation 

of the series and the frequency distribution of SNHT values, and determined the thresholds for deleted outliers and break points 

and deleted outliers (Table S1 for details on parameters). Higher standard deviations and SNHT values mean higher probability 

of such stations to be detected as the outliers and break points. Through setting the above parameters, we detected the break 

points for the monthly series of average daily maximum WBT TW, that is, set it as the known meta-data information, and then 215 

split the daily series and reconstructed series. 
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2.5 Sensitivity analysis 

There are two possible uncertainties in the procedures of calculating WBT  TW and homogenization when producing GSDM-

WBT. First, due to the missing observations of station level air pressure, we assumed that the influence of air pressure on WBT  

TW was much lower than that of air temperature and humidity in the long-term state, so the long-term average air pressure was 220 

used instead of the sub-daily air pressure. We assessed the average bias of the daily maximum WBT  TW to check the effect of 

long-term average air pressure. Second, the important difference between the Climatol and other algorithms of homogenization 

is that the reference stations are selected based on their distances from the candidate stations rather than the correlation of 

series. Therefore, when setting the maximum number of reference stations, we also considered the changes of correlation 

between different numbers of reference stations and candidate stations.  225 

3 Results 

3.1 The eEffect of long-term average air pressure  

To evaluate the effect of long-term average air pressure on the daily maximum WBT TW, we applied the same algorithm to 

calculate WBT  TW based on sub-daily air pressure, and also used the same criteria of data quality control to select 398 valid 

stations. The average bias of the daily maximum WBT  TW based on the long-term average and sub-daily air pressure for such 230 

398 stations was 0.12℃. From spatial patterns (Fig. 2), arid and semi-arid regions had the clustering of high bias, and other 

mid-latitude regions had lower bias which was mostly concentrated at 0-0.15°C, whereas the bias increased in high-latitude 

regions. Sensitivity analysis of previous studies also showed that the effect of surface pressure on WBT  TW is at 0.1°C 

(Raymond et al., 2020). When targeting on the stations with average daily maximum TW more than 20°C, where humid heat 

conditions are highly relevant to human health, the average bias was also maintained at 0-0.11°C. 235 
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Figure 2. Sensitivity of air pressure on WBT TW. Sensitivity, or average bias, was calculated by subtracting the daily 

maximum TW calculated by sub-daily pressure from the daily maximum TW based on long-term average pressure. Sub-plot 

showed the histogram of average bias when average daily maximum TW was more than 20°C, where the red dashed line 240 

indicated the mean (0.04°C).Sensitivity, or average bias, was calculated by subtracting the daily maximum WBT based on 

long-term average pressure by daily maximum WBT calculated from sub-daily pressure.  
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3.2 Correlation between candidate and reference stations 

Before the homogenization, we calculated the changes of average correlation coefficients between the candidate series and 

surrounding series with the increase of the number of reference stations (Fig. 3). Stations that were closer to the candidate 245 

stations were preferentially selected. Except for the Z32, Z33, Z35, Z36 and Z41 station zones, no matter how many reference 

stations are selected, the average correlation coefficients always remained above 0.9 (1789 stations in total). While ensuring a 

certain number of reference stations, the average correlation coefficients of Z32, Z33 and Z41 could be stable above 0.8, while 

Z35 and Z36 located near the equator have lower regional average coefficients. Therefore, it is emphasized that the GSDM-

WBT might have higher reliability in mid-to-high latitudes. 250 

 
Figure 3. Average correlation coefficients between series of candidate and reference stations in different station zones. Note 

that the red box highlights the number of maximum reference stations which was used for homogenization. 

3.3 The eEffect of homogenization 

Detection of inhomogeneity could identify the break points caused by non-climatic factors for long-term series. After 255 

homogenization, in theory the corrected series of candidate stations should have a better correlation with the surrounding series 

in theory. We paired 1834 stations and calculated the mutual correlation coefficients before and after homogenization (Fig. 

4(a)). Overall, the correlation coefficients after correction were higher and the maximum increment of coefficients was 0.28. 

It is also notable that there was a significant increase in correlation between stations that were closer together as shown in the 

blue dots. In the sub-plot of Figure 4 (a), about 80.23% of paired stations had larger coefficients after homogenizations. Overall, 260 

the correlation coefficients after correction were higher, especially since there was a significant increase in correlation between 

stations that were closer together. To further demonstrate the effect of homogenization, we selected one typical station from 

each station zone that either had the most break points, had higher SNHT values, or had more missing data (Table S2 for 
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details). The changes of annual average daily maximum WBT  TW before and after the homogenization and the number of 

infilled and corrected data were shown in Z1-Z41 of Fig. 4. On the one hand, before the break points, some stations showed a 265 

significant increase or decrease in the average daily maximum WBT  TW before and after homogenization (e.g., Z2, Z8, Z18 

and Z41), but the overestimation or underestimation of the original series is related to the equipment, environment and 

statistical methods of monitoring stations in different countries. On the other hand, many missing data directly lead to 

discontinuous series and abnormal statistical values. For example, a large number of missing values in the Z25 and Z29 station 

zones around 1995 caused abnormal fluctuations. 270 
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Figure 4. Correlation coefficients (p<0.05) between paired series before and after homogenization (a), annual average daily 

maximum WBT  TW (℃) and the number of infilled or corrected data for one typical station in each station zone (Z1-Z41). 

Note that sub-plot of (a) showed the correlation coefficients between paired stations of which distances lower than the first 275 

quarter. When the coefficients were more than 0, the dots in the upper areas of black diagonal indicated the higher 

coefficients after homogenization. Detailed information of all typical stations was shown in Table S2. 

In addition, complementing series was an essential process to achieve all homogenizations, and reanalysis dataset was 

introduced in this study. To reduce the impact of uncertainty in the reanalysis data, we selected complementary series based 

on the correlation coefficients (see Methods) and also demonstrated the effect in different station zones as shown in Table S3. 280 

The number of complementary series was limited to no more than 10% of the number of all stations (at least one 

complementary series). The reanalysis-based dataset was mainly used to provide reference daily maximum TW when the values 

in each time step of all candidate stations were missing. But such situation was not universal since the percentages of void 

time steps in series (0.04%-2.59%) relative to 14610 total time steps were quite low.  

3.4 Evaluations 285 

3.4.1 Comparison with station-based data 

In addition to the basic meteorological variables, HadISD-Humidity also includes WBT  TW calculated by the simple empirical 

formulas. Since HadISD-Humidity directly uses the original dataset to calculate WBT  TW without further post-processing, it 

still has the shortcomings of many missing values and possible heterogeneity. We used the same definition to calculate the 

valid days for HadISD-Humidity, and counted the number of missing days in January-December during 1981 and- 2020 for 290 

all 1834 stations (Fig. 5). The median number of missing days in each month over past forty years in the Northern Hemisphere 

is less than 100 days, much lower than the corresponding months in the Southern Hemisphere (Fig. 5). In terms of seasonality, 

there are evidently more missing days in the warm season (May-September) in the Northern Hemisphere, especially in summer 

(June-August). Because the extremely humid heat events are generally identified based on daily TW and the daily thresholds 

in the historical baselines, more missing values could cause inaccurate thresholds or insufficient events to be detected. 295 

Therefore, it needs to be noticed the probable uncertainties when directly using HadISD-Humidity to characterize humid 

heat.Therefore, HadISD-Humidity might have relatively lower accuracy and higher uncertainties when it is used for heat 

research. 
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Figure 5. Number of missing days in different months during 1981-2020 for HadISD-Humidity dataset. The lower and upper 300 

hinges correspond to the 25th and 75th percentiles, and the horizontal lines in the boxes show the medians. The lower and upper 

whiskers are the minimum and maximum values. 

The bias of daily maximum WBT  TW from GSDM-WBT and HadISD-Humidity was further calculated. Because the 

series of WBT  TW from HadISD-Humidity were not corrected for homogeneity, the 1834 stations could not be fully matched. 

But HadISD provides the test values of detecting inhomogeneity based on the pairwise homogenization algorithm (Menne and 305 

Williams, 2009PHA) for the monthly mean diurnal range of air temperature and dew point temperature. Based on the detected 

results, 245 completely homogenous stations were screened in this study from 1981 to 2020, and it was found that completely 

homogenous stationsthey were concentrated in the middle latitudes (Fig. 6). But it is notable that the existing missing values 

might increase the potential inhomogeneity of daily maximum TW series in HadISD-Humidity. Overall, the daily maximum 

WBT  TW of GSDM-WBT is lower than that of HadISD-Humidity. The mean of average bias for all stations was -0.48°C, and 310 

the average root mean square error (RMSE) was 0.72°C.  The average bias of all stations was -0.48°C, the median was -0.42°C, 

and the root mean square error (RMSE) was 0.57°C. From spatial patterns, western Europe had high consistency for these two 

datasets, and part stations in arid and semi-arid regions of central Asia and western North America have poor consistency. 
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 315 

Figure 6. Average bias between daily maximum WBT  TW of GSDM-WBT and HadISD-Humidity. 

3.4.2 Comparison with reanalysis-based data 

ERA5 (Hersbach et al., 2020) has also been widely used in calculating various heat stress index and producing the 

corresponding dataset in recent years. Yan et al., (2021) launched a high-resolution thermal stress dataset (HiTiSEA) covering 

South and East Asia. The dataset with a spatial resolution of 0.1° × 0.1° and a time span of 1981-2019 includes daily maximum 320 
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WBT TW. There are 587 stations of GSDM-WBT located in the spatial range of HiTiSEA. We extracted the HiTiSEA series 

of daily maximum WBT  TW in the nearest grid points to all 587 stations, and compared the average bias with GSDM-WBT 

(Fig. 7). Overall, compared with HiTiSEA, the means of average bias and RMSE for all stations were 0.34°C and 1.61°C 

respectively. Overall, compared with HiTiSEA, the average bias of all stations was 0.34°C, the median was 0.26°C, and the 

RMSE was 0.82°C. High inconsistency between two datasets existed in the north eastern and southern regions. 325 

The verification of HiTiSEA showed that its average bias of the daily maximum WBT  TW from the meteorological 

stations was -0.4°C (Yan et al., 2021), which is consistent with our study. It should be noted that HiTiSEA was produced from 

the sub-daily data of UTC, so we checked the correlation between the longitudes of stations and the average bias. The extremely 

low correlation coefficients indicated that the average bias is not dependent on longitude (local time zone) (Fig. S4).  
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Figure 7. Average bias between station-based daily maximum WBT  TW of GSDM-WBT and that of the nearest grid points 

in HiTiSEA. 

3.4.3 Year-to-year comparison 

The annual average daily maximum WBT  TW was further calculated in 245 stations for the comparative analysis of GSDM-335 

WBT and HadISD-Humidity, and in 587 stations for the comparative analysis of GSDM-WBT and HiTiSEA (Fig. 8). Overall, 

whether focusing on all months or only the warm season, the annual average daily maximum WBT  TW of GSDM-WBT was 

lower than that of station-based HadISD-Humidity, but higher than that of reanalysis-based HiTiSEA. From the relative 

accuracy, the former inconsistency may be caused by the existing missing values of HadISD-Humidity and the homogenization 

of GSDM-WBT. The former inconsistency may be caused by HadISD-Humidity without homogenization and thus 340 

overestimation of air temperature or humidity. The latter differences have reached a similar conclusion in previous studies, 

that is, the WBT  TW and other heat stress indices calculated based on reanalysis are underestimated. 

 
Figure 8. Annual average daily maximum WBT  TW between HadISD-Humidity, HiTiSEA and GSDM-WMT WBT in all 

months and warm season (May, June, July, August and September). 345 

4 Discussion 

4.1 Applications of GSDM-WBT on climate change research 

WBT, a characteristic temperature that integrates temperature and humidity, reflects the response of human bodies to the 

thermal environment and has been widely used in the fields of heat waves, climate and health, and social vulnerability (Coffel 

et al., 2018; Kang and Eltahir, 2018). Based on the observed data of HadISD and integrating reanalysis data, we produced a 350 

dataset of daily maximum WBT  TW from 1981 to 2020 for 1834 stations around the world, which can effectively support 
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global or regional research on climate change and its impact. Two main advantages of GSDM-WBT should be emphasized. 

Firstly, compared with other thermal comfort indices index, the algorithm of computing WBT  TW is relatively mature, and 

the required data sources are not complicated. The UTCI is also one typical thermal comfort indicator that has been gradually 

recognized in recent years, because it not only considers more climate variables such as temperature, wind speed and humidity, 355 

but also considers parameters as skin albedo and clothing conditions (Wang and Yi, 2021). The complete model of UTCI has 

high complexity, and the existing research mainly uses the approximate polynomial fitting method. In addition, the localized 

parameters of UTCI are difficult, thus that UTCI is still mostly performed at small scales (Dong et al., 2020). Although WBT  

TW is suitable for large-scale applications, there is still a lack of long-term datasets based on meteorological stations. 

Another advantage of GSDM-WBT is that we applied Climatol to achieve homogenization for daily maximum WBT TW, 360 

thereby eliminating the possible break points affected by non-climatic factors, and reconstructing the series without missing 

values. Although HadISD dataset has been used to compute WBT  TW in previous analysis of humid heat, such research either 

usually ignored the inhomogeneity and missing values, or selected fewer stations by improving quality control (Zhang et al., 

2021). Therefore, the complete series reconstructed by GSDM-WBT can better serve the daily-scale research on thermal 

environment. For example, if there are many missing days, a continuous heatwave would be divided into multiple independent 365 

events, and the cumulative intensity and duration of heatwaves might be underestimated. In addition, more accurate extreme 

values at the daily scale can be obtained based on sub-daily data sources. Previous research showed the differences of extreme 

humid heat between using monthly and sub-daily temperature and humidity could be up to more than 4℃ at reginal scales, 

and lead to substantial effect on future predictions (Buzan and Huber, 2020). Different from the evaluations of extreme heat 

events from the average temperature, the daily maximum WBT  TW of GSDM-WBT better shows the real extreme high 370 

situation for one day.  

4.2 Limitations and future improvements of dataset 

Homogenization is an important procedure in the production of GSDM-WBT. Generally, detection of inhomogeneity is often 

applied to observed climate variables such as temperature, humidity and wind speed (Azorin-Molina et al., 2016; Li et al., 

2020), but has also been applied in recent years for non-traditional meteorological variables such as plant phenology (Brugnara 375 

et al., 2020). We adopted the idea of calculating the WBT  TW first and then did homogenization, but inevitably, the calculation 

of WBT  TW might smooth the break points of original series. The ideal process is to first perform homogenizations on several 

single variables (air temperature, humidity, air pressure for WBT TW), and then combine all homogeneous series to calculate 

the WBT TW. However, the complexity and uncertainty of such ideal process are difficult to estimate. On the one hand, the 

temporal resolution of univariates is at hourly or sub-daily scale. The resolution is higher, the operation time increases, and 380 

more missing values may lead to lower accuracy of interpolation. Besides, the detected break points of different univariates 

do not correspond completely. When the historical meta-data is lacking, it is difficult to judge whether there is a conflict in 

break points between all variables, and how to determine the thresholds used for homogenization. Therefore, we conducted 

the procedures of calculating the WBT  TW first and then completing the homogenization. In the future, with the improvement 
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of data availability, mature algorithm and complete records, homogenous series of univariates could be obtained first, and then 385 

calculate daily maximum WBT TW. 

Recent studies have also attempted to use existing algorithms to perform homogenization on sub-daily or hourly series, 

but they still carried out at a small scale (Dumitrescu et al., 2020), because high-resolution meteorological datasets with good 

quality always need multi-sectoral cooperation within countries or cities. In the future, with the enhancement of the global 

meteorological station networks and its data records, the WBT  TW dataset with higher temporal resolution could be constructed, 390 

which could not only improve the accuracy of daily statistics, but promote the research on the differences of daytime and night 

for better characterizingcognizing humid heat and finding mitigations. Meanwhile, the complex changes in the relationship 

but not the simply fixed joint between temperature and humidity, was investigated around different regions based on the 

multivariate analysis (Mckinnon and Poppick, 2020). Then the historical dataset of TW could be expanded to future longer 

periods based on observation-based relationship between temperature and humidity (Poppick and Mckinnon, 2020). 395 

5 Data availability 

The GSDM-WBT dataset was freely available at https://doi.org/10.5281/zenodo.7014332 (Dong et al. 2022). We provide the 

NetCDF files of GSDM-WBT for each station and one compressed file containing all data. 

6 Conclusions 

Based on HadISD station-based observations and integrating with the NCEP-DOE reanalysis data, the daily maximum WBT  400 

TW of 1834 stations around the world was produced through the calculation of WBT TW, data quality control, infilling missing 

values and homogenization. The GSDM-WBT covers the complete daily series of forty years from 1981 to 2020. The 

production with the application of Climatol successfully correct the inhomogeneities of series caused by non-climatic factors, 

and also infills all missing data to reconstructs complete series for each station. Compared with the existing public-downloaded 

station-based and reanalysis-based WBT  TW datasets, the overall average bias of GSDM-WBT is -0.48°C and 0.34°C, and the 405 

RMSE is 0.57°C and 0.82°C, respectively. This new dataset can better support the studies on global and regional humid heat 

events. We also hope that with the improvement of observations and reconstructed algorithms, the uncertainty of producing 

the dataset can be further reduced and a global station-based WBT  TW dataset with hourly resolution can be produced in the 

future. 
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