
1 

 

GOBAI-O2: temporally and spatially resolved fields of ocean interior 

dissolved oxygen over nearly two decades 

Jonathan D. Sharp1,2, Andrea J. Fassbender2, Brendan R. Carter1,2, Gregory C. Johnson2, Cristina 

Schultz3,4, John P. Dunne3 

1Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA, 98105, United States 5 

2Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, WA, 98115, United States 

3Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ, 08540, United States 

4Princeton University, Princeton, NJ, 08540, United States 

Correspondence to: Jonathan D. Sharp (jonathan.sharp@noaa.gov) 

Abstract. Over a decade ago, oceanographers began installing oxygen sensors on Argo profiling floats to be deployed 10 

throughout the world ocean, with the stated objective of better constraining trends and variability in the ocean’s inventory of 

oxygen. Until now, measurements from these Argo-mounted oxygen sensors have been mainly used for localized process 

studies on air–sea oxygen exchange, upper ocean primary production, biological pump efficiency, and oxygen minimum zone 

dynamics. Here we present a four-dimensional gridded product of ocean interior oxygen, derived via machine learning 

algorithms trained on dissolved oxygen observations from Argo-mounted sensors and discrete measurements from ship-based 15 

surveys, and applied to temperature and salinity fields constructed from the global Argo array. The data product is called 

GOBAI-O2 for Gridded Ocean Biogeochemistry from Artificial Intelligence – Oxygen (Sharp et al., 2023; 

https://doi.org/10.25921/z72m-yz67; last access: 19 Mar. 2023); it covers 86% of the global ocean area on a 1° latitude by 1° 

longitude grid, spans the years 2004–2022 with monthly resolution, and extends from the ocean surface to two kilometers in 

depth on 58 levels. Two types of machine learning algorithms — random forest regressions and feed-forward neural networks 20 

— are used in the development of GOBAI-O2, and the performance of those algorithms is assessed using real observations and 

simulated observations from Earth system model output. GOBAI-O2 is evaluated through comparisons to the oxygen 

climatology from the World Ocean Atlas, the mapped oxygen product from the Global Ocean Data Analysis Project, and direct 

observations from large-scale hydrographic research cruises. Finally, potential uses for GOBAI-O2 are demonstrated by 

presenting average oxygen fields on isobaric and isopycnal surfaces, average oxygen fields across vertical–meridional sections, 25 

climatological seasonal cycles of oxygen averaged over different pressure intervals, and globally integrated time series of 

oxygen. GOBAI-O2 indicates that the oxygen inventory in the upper two kilometers of the global ocean has been declining by 

about 0.71  0.13 % dec.−1 between 2004 and 2022. 
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1 Introduction 30 

The inventory of dissolved oxygen in the global ocean has been declining over recent decades and is projected to continue to 

decline through the current century (Keeling et al., 2010; Breitburg et al., 2018; Bindoff et al., 2019; Stramma and Schmidtko, 

2019; Limburg et al., 2020), leading to detrimental consequences for aerobic marine organisms (Pörtner and Farrell, 2008; 

Sampaio et al., 2021) and changes to biogeochemical cycles, potentially triggering important climatological feedbacks (Gruber, 

2004; Berman-Frank et al., 2008). Historical deoxygenation has been inferred from analyses of globally distributed 35 

observations (Helm et al., 2011; Schmidtko et al., 2017; Ito et al., 2017) and has been reproduced in Earth system model (ESM) 

reconstructions (Bopp et al., 2013; Frölicher et al., 2009; Kwiatkowski et al., 2020). Global observational studies have 

generally indicated a greater degree of deoxygenation than model studies over recent decades, indicating that ESMs may 

misrepresent the sensitivities of the physical and biological processes leading to deoxygenation, which has implications for the 

reliability of future projections (Oschlies et al., 2017; 2018; Stramma and Schmidtko, 2021). Model studies, however, are 40 

based on gridded output that is continuously resolved in space and time, whereas observational studies rely on interpolation of 

measurements from discrete bottle samples and/or profiling sensors. These observational datasets have significant 

spatiotemporal gaps and may not robustly represent global deoxygenation trends. 

 

Discrete measurements of dissolved oxygen concentration ([O2]) are typically made using Winkler titrations (Winkler, 1888; 45 

Carpenter, 1965; Langdon, 2010), which are also used to calibrate measurements from electrode (or more recently sometimes 

optical) dissolved oxygen sensors mounted on Conductivity-Temperature-Depth (CTD) profilers. Globally distributed [O2] 

observations from discrete measurements and CTD profilers have been provided by hydrographic programs like the World 

Ocean Circulation Experiment (WOCE), the Climate and Ocean: Variability, Predictability and Change (CLIVAR) program, 

and the Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP). Data from these programs are publicly 50 

available and are conveniently compiled into databases such as the World Ocean Database (WOD; Boyer et al., 2018) and the 

Global Ocean Data Analysis Project (GLODAP; Lauvset et al., 2022). Though unprecedented spatial coverage is provided by 

global hydrographic programs, the decadal-scale temporal resolution of WOCE, CLIVAR, and GO-SHIP data precludes robust 

analyses of year-to-year and/or seasonal variability in [O2]. 

 55 

Since the mid-2000s, approximately 1,800 Argo floats equipped with oxygen sensors have been deployed. Argo floats profile 

the upper ~2000 meters of the water column every ~10 days. Many oxygen-equipped Argo floats have been deployed as parts 

of regional arrays such as the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM; 

soccom.princeton.edu) project and the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES; 

science.larc.nasa.gov/NAAMES/). More recently, the push for a global biogeochemical Argo array has spurred the deployment 60 

of oxygen-equipped Argo floats into more sparsely sampled ocean regions (Johnson and Claustre, 2016; Claustre et al., 2020). 

As more floats have been deployed, improvements have been made to sensor calibration, data adjustments, and quality control. 

http://soccom.princeton.edu/
https://science.larc.nasa.gov/NAAMES/
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Notably, pre-deployment drift corrections (D’Asaro and McNeil, 2013; Johnson et al., 2015; Bittig and Körtzinger, 2015; 

Bushinsky et al., 2016; Drucker and Riser, 2016; Nicholson and Feen, 2017), climatology-based calibrations (Takeshita et al., 

2013), calibrations via in-air oxygen measurements (Körtzinger et al., 2005; Fiedler et al., 2013; Bittig and Körtzinger, 2015; 65 

Johnson et al., 2015; Bushinsky et al., 2016), post-deployment drift corrections (Johnson et al., 2017; Bittig et al., 2018a), and 

well-established procedures for delayed-mode quality control (Maurer et al., 2021) have substantially reduced the uncertainty 

and increased the reproducibility of optode-based [O2] measurements on Argo floats. 

 

From the time it began, the Argo-Oxygen program (now oxygen is a measured variable under the Biogeochemical Argo 70 

program) intended to document ocean deoxygenation, predict and assess anoxic and hypoxic events, and determine seasonal 

to interannual changes in export production (Gruber et al., 2010). Until now, these goals have been achieved primarily on a 

regional scale. For example, [O2] measurements from biogeochemical Argo floats have been used to examine ventilation and 

air–sea exchange of oxygen in the Southern Ocean (Bushinsky et al., 2017) and during Deep Water formation in the Subpolar 

North Atlantic (Körtzinger et al., 2004; Piron et al., 2016; 2017; Wolf et al., 2018); denitrification and the spatial extent of the 75 

oxygen minimum zone in the Bay of Bengal (Sarma and Udaya Bhaskar, 2018; Johnson et al., 2019; Udaya Bhaskar et al., 

2021); and carbon production and export in the Pacific Ocean (Bushinsky and Emerson, 2015, 2018; Yang et al., 2017), 

Southern Ocean (Stukel and Ducklow, 2017; Arteaga et al., 2019), and North Atlantic Ocean (Alkire at al., 2012; Estapa et al., 

2019). Recently, in an early global-scale analysis of [O2] from the Argo array, Johnson and Bif (2021) used the diel cycle of 

oxygen measured by the ocean-wide array of biogeochemical Argo floats to constrain net primary production in the surface 80 

ocean. 

 

With the work presented here, we seek to capitalize on the collective efforts of global hydrographic programs, Biogeochemical 

Argo, and Core Argo to create a first-of-its-kind data product: a four-dimensional monthly record of dissolved oxygen in the 

global ocean. We combine autonomous observations of [O2] from BGC Argo floats with discrete observations of [O2] from 85 

hydrographic cruises in the GLODAP database to create a dataset with extensive spatial and temporal resolution. With this 

dataset, we train machine learning (ML) algorithms on ocean interior predictor variables co-located with [O2] observations; 

evaluate those algorithms using real and simulated data; and apply the algorithms to gridded ocean interior predictor variables 

mapped from Core Argo to produce a gridded [O2] data product at a monthly resolution from 2004–2022, on 58 pressure levels 

in the upper two kilometers of the ocean, and on a near-global 1° latitude by 1° longitude grid. 90 

 

In this paper, we present the four-dimensional gridded [O2] product — which we call GOBAI-O2 (Gridded Ocean 

Biogeochemistry from Artificial Intelligence – Oxygen; Sharp et al., 2023; https://doi.org/10.25921/z72m-yz67; last access: 

19 Mar. 2023) — analyzing spatial patterns, seasonal cycles, and decadal variability. We discuss the process for creating 

GOBAI-O2, show the results of evaluation exercises, assess uncertainty in the gridded [O2] fields, and compare the data product 95 

to other gridded datasets and discrete measurements. GOBAI-O2 represents the first step in leveraging the emerging global 

https://doi.org/10.25921/z72m-yz67
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array of BGC Argo floats to produce spatially-resolved, time-varying snapshots of global ocean biogeochemical distributions 

in near real-time. Critically, GOBAI-O2 can be used to address the goals of the Argo-Oxygen program set by Gruber et al. 

(2010) over a decade ago, providing regional and global insight into ocean deoxygenation and hypoxia on timescales ranging 

from a few months to multiple years. 100 

2 Methods 

2.1 Data sources and processing 

Hydrographic cruise data were obtained from the GLODAP version 2022 data product (GLODAPv2.2022; Key et al., 2015; 

Olsen et al., 2016; Lauvset et al., 2022). GLODAPv2.2022 provides quality-controlled data from throughout the entire water 

column obtained via discrete analyses of more than 1.4 million water samples collected on 1,085 research cruises. Discrete 105 

Winkler titration data were chosen rather than CTD oxygen profiles due to the issues with the quality of calibration of some 

CTD oxygen measurements and the relatively coarse vertical resolution of the final GOBAI-O2 product, which would not 

benefit from the high vertical resolution of CTD profiles. Furthermore, the additional resolution would slow the GOBAI-O2 

algorithm training process. Data from GLODAP were chosen rather than data from the WOD or any other database due to the 

high degree of quality control applied to GLODAP data. Dissolved oxygen is the most represented biogeochemical variable 110 

in GLODAPv2.2022, with more than 1.2 million data points from 991 research cruises. Data from GLODAPv2.2022 were 

filtered to retain only samples collected after 1 Jan. 2004, from 0 to 2500 decibars (dbars), and with a quality-control flag of 1 

(meaning the data were manually inspected) and quality flags of 2 (good) for both salinity and [O2]. Temperature is not assigned 

either flag and is assumed to be of sufficient quality if it is reported (Lauvset et al., 2022). This filtering left 450,032 data 

points from 21,513 unique profiles from 393 total cruises (red points in Fig. 1). 115 

 

Float data were obtained from synthetic profile (“Sprof”) files (Bittig et al., 2022) stored in the Argo Global Data Assembly 

Centres (GDACs) via the OneArgo-Mat toolbox (Frenzel et al., 2022) for MATLAB (MathWorks). At the time data were 

obtained (03 Mar. 2023), the Argo GDACs contained data from 1,780 floats equipped with [O2] sensors. Float data were 

filtered to retain only delayed-mode-adjusted data with quality flags of 1 (good), 2 (probably good), or 8 120 

(interpolated/extrapolated) for pressure, temperature, salinity, and [O2]. This filtering ensured float data had been manually 

reviewed by a data manager and assigned an appropriate quality flag. This filtering left 26,671,557 data points from 133,488 

unique profiles from 972 total floats (blue points in Fig. 1). 

 

The discrete temperature, salinity, and [O2] data obtained from GLODAPv2.2022 and the Argo GDACs are archived online 125 

(Appendix C; https://doi.org/10.5281/zenodo.7747237). To ensure the trained machine learning algorithms were not biased 

toward BGC Argo float data, which in their native format have higher vertical resolution than GLODAP data, each profile was 

interpolated to, at most, 58 standard depth levels (the same depth levels on which the final GOBAI-O2 data product is provided). 

https://doi.org/10.5281/zenodo.7747237
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Interpolated temperature, salinity, and [O2] data from each source are also archived online (Appendix C; 

https://doi.org/10.5281/zenodo.7747237). After interpolation, the total number of GLODAP data points used for algorithm 130 

training increased to 1,096,324 and the total number of Argo float data points used for algorithm training decreased to 

6,480,283. Co-located, interpolated GLODAP and BGC Argo profiles that fell within the same 1° × 1° monthly, depth-

dependent grid cells were compared for internal consistency. The float [O2] values were adjusted according to the procedure 

in Appendix D to remove the small global discrepancy between co-located ship and float measurements to ensure internal 

consistency between the two datasets. 135 

 

 

Figure 1: Discrete profile locations from oxygen-equipped Argo floats (blue) and GLODAPv2.2022 cruises (red) from 1 Jan. 

2004 to 3 Mar. 2023. Data from these profiles were binned and used to train ML algorithms to estimate [O2] in each of seven 

regions: the Atlantic Ocean (Atl.), Pacific Ocean (Pac.), Indian Ocean (Ind.), Arctic Ocean (Arc.), Mediterranean Sea (Med.), 140 

northern section of the Southern Ocean (N. Sou.), and southern section of the Southern Ocean (S. Sou.). Overlapping areas 

between regions are shown in grey (Ovrlp.), where [O2] estimates are made by taking distance-weighted averages of outputs 

from two regional ML algorithms. The regional boundaries are presented in numerical form in Table B1. 

 

BGC Argo float and GLODAP cruise data were combined into a single dataset after this bias adjustment, which will be referred 145 

to as the “combined dataset” from here on. The combined dataset was grouped into seven overlapping regions (Fig. 1, Table 

B1). This grouping was intended to account implicitly for similar physical–biogeochemical relationships within large ocean 

regions and to reduce the computational burden of the machine learning (ML) algorithm fits described below. The regions 

were initially chosen to imitate the biomes presented by Fay and McKinley (2014), and were then expanded to relatively large 

https://doi.org/10.5281/zenodo.7747237
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regions bound either by land masses or by overlapping boundaries along constant lines of latitude. The number of profiles 150 

made within each 1° × 1° box by either a discrete ship cast or Argo float (supplementary material, Fig. A1) provides a measure 

of the temporal resolution of the combined dataset in addition to the spatial distribution shown in Fig. 1. 

 

Gridded temperature and salinity data to which the trained algorithms were applied were obtained from the latest version of 

the Roemmich and Gilson (2009) (RG09) Argo Climatology (https://sio-argo.ucsd.edu/RG_Climatology.html; last access: 12 155 

Jan. 2023). The RG09 climatology is an upper ocean (0–2000 dbar) gridded temperature and salinity product constructed 

exclusively from Argo observations. Long-term (2004–2018) mean fields of temperature and salinity are provided on 58 depth 

levels, along with monthly anomaly fields on each of those depth levels from 2004 to the present day. The most recent major 

update of the RG09 climatology was made in 2019, and new monthly anomaly fields are provided in near-real-time between 

major updates. Monthly gridded temperature and salinity were calculated from the RG09 long-term mean and monthly 160 

anomaly fields (Fig. A2), then used for the creation of the gridded [O2] product discussed below. 

 

Output from the NOAA Geophysical Fluid Dynamics Laboratory’s Earth System Model Version 4 (GFDL-ESM4; Dunne et 

al., 2020) was used to assess algorithm performance. Model output was downloaded from the World Climate Research 

Programme database (https://esgf-node.llnl.gov/projects/cmip6/; last access: 8 Apr. 2022), which hosts data from models 165 

participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). Potential temperature, practical 

salinity, and [O2] were downloaded to coincide with available ocean interior observations (Fig. A3). Historical outputs (2004–

2014) and projected outputs under SSP2-4.5 (2015–2022) were combined to cover the time period over which observations 

were available. A spatial mask was applied to retain only GFDL-ESM4 grid cells with corresponding temperature and salinity 

values in the RG09 climatology, because that is the final grid on which GOBAI-O2 is produced. 170 

2.2 Algorithm training 

The combined dataset was used to train ML algorithms for each region to estimate [O2] from absolute salinity, conservative 

temperature, potential density anomaly, hydrostatic pressure, bottom depth, and additional spatiotemporal information to allow 

for geographic, seasonal, and interannual variation (see Table 1). Though biology is not explicitly accounted for in the ML 

algorithms, Giglio et al. (2018) demonstrate that, with an appropriately distributed dataset, the inclusion of spatiotemporal 175 

variables in algorithm training can implicitly accommodate biological processes. 

 

Absolute salinity (SA) was calculated from practical salinity (SP), hydrostatic pressure (P), latitude, and longitude. Conservative 

temperature (θ) was calculated from in situ temperature (T), SA, and P. Potential density anomaly (σθ) was calculated from SA 

and θ. These calculations were made using the Gibbs-SeaWater (GSW) Oceanographic Toolbox for MATLAB (McDougall 180 

and Barker, 2011). As was done by Carter et al. (2021), longitude was transformed into two separate predictors: cos(Longitude 

− 20° E) and cos(Longitude − 110° E). Cosine functions were applied to maintain the cyclical nature of longitude as a predictor, 

https://sio-argo.ucsd.edu/RG_Climatology.html
https://esgf-node.llnl.gov/projects/cmip6/
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and offsets of 20° E and 110° E were intended to shift regions where the cosine function has minimum explanatory power over 

landmasses. Bottom depth was determined by matching each observational location with the corresponding bathymetry from 

the ETOPO2v2 global relief model (NOAA National Geophysical Data Center, 2006). 185 

 

Table 1. Predictor variables used to train random forest regressions and feed-forward neural networks to predict [O2]. 

Predictor Variable Abbreviation Unit Range (approx.) 

Conservative Temperature θ °C −2 to 32 

Absolute Salinity SA N/A 14 to 40 

Potential Density Anomaly σθ kg m–3 9.3 to 29.3 

Hydrostatic Pressure P dbar 0 to 2000 

Latitude lat ° −78 to 90 

cos(Longitude – 20°) loncos20 N/A −1 to 1 

cos(Longitude – 110°) loncos110 N/A −1 to 1 

Bottom depth bot meters 0 to 10,000 

Year yr years 2004 to 2023 

sin(2 · Day of Year / 365.25) doysin N/A −1 to 1 

cos(2 · Day of Year / 365.25) doycos N/A −1 to 1 

 

Two types of ML algorithms were trained: feed-forward neural networks (FNNs; Demuth et al., 2008) and random forest 

regressions (RFRs; Breiman, 2001), each of which were trained on the input variables given in Table 1 to produce estimates 190 

of [O2] (Fig. A4). Three separate FNNs were trained for each of the seven basins shown in Fig. 1, with an average of the three 

taken to obtain one equally weighted FNN result. The FNNs were constructed using the “feedforwardnet” function and trained 

using the “train” function, both from Version 14.4 of the Deep Learning Toolbox for MATLAB (R2022a). Each FNN was 

trained using a Levenberg-Marquardt algorithm, with 15% of the data reserved for testing the network during training steps. 

Each FNN had two hidden layers, with the following combinations of neurons in the first and second layer, respectively: 20 195 

and 10, 15 and 15, and 10 and 20. One RFR was trained for each of the seven basins shown in Fig. 1. RFRs are ensembles of 

decision trees, each created with a bootstrapped version of the full dataset chosen randomly with replacement. Each RFR 

consisted of 600 trees, a minimum leaf size of 5, and six of the eleven predictors used for each decision split. These parameters 

were chosen after some trial and error to strike a balance between computational efficiency and algorithm performance. The 

MATLAB “treebagger” function was used to train RFRs. 200 

 

In areas where two regions overlap (see Fig. 1), weighted averages of [O2] estimates were calculated in overlapping grid cells 

from each regional algorithm. These averages were weighted by distance from the center latitude line of the overlapping area 

(e.g., a point at 33 °S in the overlapping area between the N. Sou. region (whose northern border extends to 25 °S) and the Atl. 

region (whose southern border extends to 35 °S) would be calculated as [O2] = 0.8[O2]N.Sou. + 0.2[O2]Atl.). Overlapping areas 205 

were used to mitigate discontinuities at the boundaries between regions in the final gridded product. 
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The average of FNN and RFR estimates (ENS, for ensemble average) was used as the [O2] estimate for a given set of input 

data. This ensemble averaging procedure was implemented due to insights from previous work showing that averaging the 

outputs of multiple ML algorithms or linear regression models often outperforms the output from just one approach on its own 210 

(Gregor et al., 2017; 2019; Bittig et al., 2018b; Carter et al., 2021; Djeutchouang et al., 2022), likely due to complementary 

strengths and weaknesses of each approach. For this work, any especially erroneous result from either the FNN or RFR should 

be mitigated by better results from the other algorithm. 

2.3 Algorithm evaluation 

We performed two exercises to evaluate the effectiveness of the ML algorithms used to estimate [O2]. The first exercise 215 

involved training separate evaluation algorithms (RFRData-Eval and FNNData-Eval algorithms) as described in section 2.2 using a 

subset of the observational dataset for training while reserving the remaining subset for assessment. For this exercise, data 

were split randomly into training (80%) and assessment (20%) groups; this split was made according to measurement platform 

(cruise or float; see Fig. A5) to ensure that inherent correlations among the data points from a single cruise or float did not 

contribute to the apparent effectiveness of each ML algorithm. Then [O2] values from the subset of reserved assessment data 220 

were compared to estimates of [O2] from RFRData-Eval, FNNData-Eval, and the ensemble average of the two (ENSData-Eval). This 

exercise was intended to evaluate the ability of the ML algorithms to reproduce measured data that was not involved in 

algorithm training (section 3.1.1). 

 

The second exercise involved training evaluation algorithms (RFRESM4-Eval and FNNESM4-Eval algorithms) using synthetic 225 

“profiles” extracted from gridded GFDL-ESM4 output at the times and locations where observational data were available, then 

assessing the evaluation algorithms using spatially and temporally continuous monthly GFDL-ESM4 output from 2004 

through 2022. For this exercise, synthetic profiles for algorithm training were defined by matching the latitude, longitude, 

month, and year of each available grid cell from the binned observational dataset with the corresponding GFDL-ESM4 output. 

This resulted in 74,589 synthetic profiles for algorithm training. RFRESM4-Eval and FNNESM4-Eval algorithms were trained as 230 

described in section 2.2 with the synthetic training data, then used to produce [O2] estimates for the complete model output.  

These [O2] estimates from RFRESM4-Eval, FNNESM4-Eval, and an ensemble average of the two (ENSESM4-Eval) were compared to 

[O2] values from the full GFDL-ESM4 output fields at the grid-cell level. This exercise was intended to evaluate the ability of 

the ML algorithms to estimate [O2] in a spatiotemporally resolved Earth system model environment when limited to training 

data representative of the available collection of ocean oxygen observations (section 3.1.2). The four-dimensional field of [O2] 235 

from ENSESM4-Eval that represents a reconstruction of the GFDL-ESM4 environment, which we refer to as GOBAI-O2-ESM4, 

can also be used as an analogue for how well GOBAI-O2 (trained on real observational data, section 2.4) might represent [O2] 

variability in the real-world environment. For this reason, the four-dimensional field of differences between GOBAI-O2-ESM4 

and GFDL-ESM4 output were used to inform the evaluation of GOBAI-O2 uncertainty (sections 2.5 and  3.2.4). Additionally,  

we quantified global means, seasonal cycle amplitudes, long-term trends, and interannual variabilities in [O2] across different 240 
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depth intervals of GOBAI-O2-ESM4. To evaluate the performance of GOBAI-O2-ESM4 on a global scale, these metrics are 

compared to the same metrics for the spatiotemporally resolved GFDL-ESM4 output and subsampled grid cells in GFDL-

ESM4 corresponding to observational data coverage (section 3.1.2). Comparisons of global means from GOBAI-O2-ESM4 to 

GFDL-ESM4 are also used to approximate uncertainty in oxygen inventories for the assessment of trends (section 3.2.3). 

2.4 Creation of GOBAI-O2 245 

FNNs and RFRs for each of the seven regions shown in Fig. 1 were trained with the full combined dataset, using the predictor 

variables shown in Table 1, with [O2] as a target variable. Then, the FNNs and RFRs were applied to SA, θ, and σθ calculated 

from RG09 temperature and salinity fields, along with spatiotemporal information from RG09 grid cells. Weighted averages 

were calculated where regions overlapped, and ensemble averages (ENS) were calculated from the FNN and RFR estimates. 

This produced a monthly gridded [O2] product in the upper two kilometers of the ocean on a global grid from January 2004 to 250 

December 2022, i.e. GOBAI-O2 (Sharp et al., 2022; https://doi.org/10.25921/z72m-yz67; last access: 19 Mar. 2023; sections 

3.2.1–3.2.3). GOBAI-O2 was compared to gridded climatological oxygen fields from the 2018 World Ocean Atlas (WOA18; 

Garcia et al., 2019; section 3.2.5), the GLODAP mapped data product (Lauvset et al., 2016; section 3.2.5), and discrete 

measurements of oxygen from select cruises between 2004 and 2022 (section 3.2.6). 

2.5 Uncertainty estimation 255 

Similar to previous studies that have estimated uncertainty in observation-based biogeochemical data products (e.g., 

Landschützer et al., 2014; Gregor and Gruber, 2021; Keppler et al., 2020; under review), we combine uncertainty from three 

separate sources — measurement, gridding, and algorithm — to estimate uncertainty in GOBAI-O2 (section 3.2.4). 

 

Measurement uncertainty (𝑢([𝑂2])𝑚𝑒𝑎𝑠.) is attributable to the [O2] observations themselves. For this quantity, gridded [O2] 260 

from GOBAI-O2 is multiplied by 1.5%, which is between the nominal value for the consistency of the GLODAPv2.2022 cruise 

dataset — stated to be 1%  (Lauvset et al., 2022) — and the approximate accuracy of BGC Argo float observations — estimated 

as about 3 μmol kg–1 (Johnson et al., 2017; Maurer et al., 2021), which is close to 2% of average ocean [O2]. We recognize, 

however, that even 2% is a rather optimistic estimate for the accuracy of float [O2] sensors, especially when crossing large 

vertical gradients (Bittig and Körtzinger, 2017; Bittig et al., 2018a). On a related note, no temporal lag corrections were applied 265 

to our float [O2] dataset (Bittig et al., 2014; Bittig and Körtzinger, 2017).  

 

Gridding uncertainty (𝑢([𝑂2])𝑔𝑟𝑖𝑑.) is attributable to using a single [O2] value to represent a four-dimensional box that is 

coarser in time and space than the resolution of many processes that influence [O2]. We estimate gridding uncertainty by (1) 

binning the combined GLODAP and Argo observational dataset to grid cells equal in size to the RG09 grid cells; (2) calculating 270 

the standard deviation among the observations in cells with more than ten observations (Fig. A6); (3) fitting a multivariate 

polynomial regression relating those standard deviations to depth, potential density anomaly, and bottom depth; and (4) 

https://doi.org/10.25921/z72m-yz67
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applying that regression to the RG09 grid to compute an estimated standard deviations (i.e., gridding uncertainty) in each grid 

cell. 

 275 

Algorithm uncertainty (𝑢([𝑂2])𝑎𝑙𝑔.) is attributable to the ML algorithms that estimate [O2] on the RG09 grid. We estimate 

algorithm uncertainty using the four-dimensional field of absolute differences between [O2] from GFDL-ESM4 model output 

versus GOBAI-O2-ESM4, determined from the GFDL-ESM4 algorithm evaluation exercise described in section 2.3. 

 

The three uncertainty sources were combined in quadrature (assuming independence) to calculate a combined uncertainty 280 

estimate for each gridded [O2] value in GOBAI-O2 (𝑢([𝑂2])𝑡𝑜𝑡.): 

 

𝑢([𝑂2])𝑡𝑜𝑡. = √𝑢([𝑂2])𝑚𝑒𝑎𝑠.
2 + 𝑢([𝑂2])𝑔𝑟𝑖𝑑.

2 + 𝑢([𝑂2])𝑎𝑙𝑔.
2  (1) 

3 Results and Discussion 

3.1 Algorithm evaluation 285 

The evaluation exercises indicated that the ML algorithms trained on the combined GLODAP and Argo observational dataset 

were effective in their ability to estimate [O2] and reconstruct seasonal to decadal variability in the global oxygen inventory. 

Mean offsets (Δ[O2] = [O2]obs/mod − [O2]est) and root mean squared differences (RMSDs) between [O2] from direct 

measurements ([O2]obs) or GFDL-ESM4 output ([O2]mod) and [O2] estimated from ML algorithms ([O2]est) were determined as 

an assessment of the ability of the algorithms to estimate [O2] at a grid-cell level (Table 2; Fig. 2; Tables B2– B4). Mean Δ[O2] 290 

and RMSD determined using [O2]est from the ESPER-Mixed model (Carter et al., 2021) — an average of predictions from a 

neural network and moving window multiple linear regression trained on GLODAPv2.2020 data — were also determined as 

a point of comparison for the observational data-based validation test (Table 2; Fig. A7; Table B4). In the case of the GFDL-

ESM4-based validation test, metrics to summarize means, amplitudes, trends, and variability in integrated mean [O2] values 

were determined to demonstrate the ability of the GOBAI-O2 method to capture seasonal to decadal scale variability in oxygen 295 

at the global scale (Table 3; Fig. 3). The results of each evaluation exercise are discussed in more detail in the following 

sections. 

3.1.1 Test with withheld observational data 

Estimates of [O2] using ENSData-Eval algorithms tracked closely with [O2]obs and showed no strong systematic biases with [O2]est 

or depth (Fig. 2a and 2b), though variability in Δ[O2] was greatest from just below the surface to about 500 dbars. Mean offsets 300 

were between −2.0 and 0.2 μmol kg–1 for the seven regions, with a global average of −0.6 μmol kg–1; RMSDs were between 

7.3 and 9.1 μmol kg–1 for the seven regions, with a global average of 8.6 μmol kg–1 (Table 2). The slightly negative global 
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average offset suggests somewhat higher estimated than measured [O2] values, and the lowest RMSDs from the ENSData-Eval 

algorithms were found in the southern section of the Southern Ocean (Table 2 and Fig. 2c). However, this evaluation exercise 

is influenced by the incomplete subset of data (20%) used to test the ENSData-Eval algorithms. A cross-fold validation (i.e., 305 

repeating this exercise with five separate 20% chunks of data withheld from algorithm training) was prohibitively 

computationally expensive. Therefore, the associated Δ[O2] and RMSD values alone are not as instructive as a comparison to 

the Δ[O2] and RMSD values obtained from the ESPER-Mixed model (Table 2). 

 

Table 2. Regional and global error statistics (mean Δ[O2] and RMSD) for evaluation exercises using the ensemble average 310 

(ENSData-Eval) of FNNData-Eval and RFRData-Eval algorithms trained on a subset of data from the combined GLODAP and Argo 

observational dataset and tested with a separate subset of withheld data, or the ensemble average (ENSESM4-Eval) of FNNESM4-

Eval and RFRESM4-Eval algorithms trained on a subset of output from GFDL-ESM4 (corresponding to locations of available Argo 

and GLODAP data) and tested using the full field of GDFL-ESM4 output. Error statistics calculated using the ESPER-Mixed 

model are also shown for comparison to the data-based test. The numbers of data points used in the training and assessment of 315 

each algorithm are shown.  

Basin 

Evaluation Exercise with Observational Data Evaluation Exercise with GFDL-ESM4 Output 

Training Data 

Points 

Assessment 

Data Points 

ENSData-Eval ESPER-Mixed 

Training Data 

Points 

Assessment 

Data Points 

ENSESM4-Eval 

Mean Δ[O2] 

(mol kg−1) 

RMSD 

(mol kg−1) 

Mean Δ[O2] 

(mol kg−1) 

RMSD 

(mol kg−1) 

Mean Δ[O2] 

(mol kg−1) 

RMSD 

(mol kg−1) 

Atl. 553,272 131,488 −1.2 8.4 −3.1 11.1 179,322 28,235,064 −0.7 9.0 

Pac. 1,692,647 533,165 −0.1 9.1 −3.9 13.8 522,834 69,369,456 −0.1 7.5 

Ind. 365,977 50,906 −1.6 7.8 −2.5 10.2 85,748 20,736,144 0.3 6.9 

Arc. 919,361 93,191 0.2 8.4 −1.4 11.3 281,684 11,547,744 −0.1 4.2 

Med. 202,690 45,749 −2.0 7.8 −3.5 13.2 32,110 1,096,680 1.0 5.5 

N. Sou. 2,125,988 573,925 −0.9 8.3 −2.9 10.6 752,856 67,626,624 −0.1 4.3 

S. Sou. 1,399,346 374,952 −0.3 7.3 −2.4 10.9 515,502 31,412,472 0.0 3.3 

Global 7,259,281 1,803,376 −0.6 8.6 −3.1 12.1 2,370,056 230,024,184 −0.1 6.6 

 

Estimates of [O2] using ESPER-Mixed (Fig. A7) showed average offsets between −3.9 and −1.4 μmol kg–1 for the seven 

regions (with a global average of −3.1 μmol kg–1) and RMSDs between 10.2 and 13.8 μmol kg–1 for the seven basins (with a 

global average of 12.1 μmol kg–1) (Table 2). Again, the negative global average offset suggests higher estimated than measured 320 

[O2] values. Compared to ESPER-Mixed (Carter et al., 2021), the ENSData-Eval algorithms performed better, both in terms of 

Δ[O2] and RMSD in each individual region and overall. This result is likely a reflection of the fact that ENSData-Eval algorithms 

were trained with more varied data than the ESPER-Mixed model (Argo and GLODAP compared to just GLODAP), and that 

the withheld data for which estimates were made also comprised more varied data (both Argo and GLODAP as well). 

Importantly, when estimates were made for just the GLODAP dataset, the ENSData-Eval algorithms still performed better than 325 

ESPER-Mixed (Table B4), suggesting that the seasonally-resolved float data supply important information to the relationships 

established during algorithm training. 
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Figure 2. (a,b,d,e) Two-dimensional histograms showing offsets between measured versus estimated oxygen (Δ[O2] = [O2]obs 330 

− [O2]est) for (a,b) withheld observational data and (d,e) modeled versus estimated oxygen (Δ[O2] = [O2]mod − [O2]est) for GFDL-

ESM4 model output as a function of (a,d) [O2]est and (b,e) depth in the water column. Offsets are binned into cells that are 2.5 

μmol kg–1 tall in terms of Δ[O2] and (a,d) 5 μmol kg–1 wide in terms of [O2]est or equivalent in width to (b) the interpolated 

depth levels of the data or (e) the vertical resolution of GFDL-ESM4 grid cells. The frequency of offsets that fall into a given 

bin is shown on a logarithmic scale, de-emphasizing the significant clustering around Δ[O2] = 0 in favor of showing the few 335 

outliers. (c,f) Absolute Δ[O2] values averaged over depth and time for 1° latitude by 1° longitude grid cells in the global ocean 

for (c) withheld observational data and (f) GFDL-ESM4 model output. 

 

3.1.2 Test with GFDL-ESM4 output 

As introduced in section 2.3, we refer to the four-dimensional field of [O2]est values calculated by applying ENSESM4-Eval 340 

algorithms to GFDL-ESM4 output as GOBAI-O2-ESM4. [O2]est values from GOBAI-O2-ESM4 tracked closely with [O2]mod 

and showed no significant systematic biases with [O2] or depth (Fig. 2d and 2e). Similar to the data-based test, variability in 

Δ[O2] was greatest from just below the surface to about 500 meters. Average offsets were between −0.7 and 1.0 μmol kg–1 for 

the seven regions (with a global average of −0.1 μmol kg–1) and RMSDs were between 3.3 and 9.0 μmol kg–1 for the seven 

basins (with a global average of 6.6 μmol kg–1) (Table 2). The near-zero global average offset suggests that [O2]est values from 345 

GOBAI-O2-ESM4 matched well with values from GFDL-ESM4 output. The lowest RMSDs were found in the Southern Ocean 

and Arctic regions (Table 2; Fig. 2f), likely because these regions have significant amounts of available training data (Figure 

1). 
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 350 

Figure 3. (a,d) Two-dimensional histograms showing grid cell level (a) climatological seasonal amplitudes in monthly mean 

[O2] (weighted means according to the size of each depth interval) from 0 to 200 dbars and (d) trends in annual mean [O2] 

from 200 to 1000 dbars between GFDL-ESM4 and GOBAI-O2-ESM4. (b,e) Pearson’s correlation coefficients between GFDL-

ESM4 and GOBAI-O2-ESM4 for (b) monthly mean [O2] from 0 to 200 dbars, showing coherence between the surface seasonal 

cycles, and (e) annual mean [O2] from 200 to 1000 dbars, showing coherence between the subsurface trends. (c,f) Absolute 355 

difference between GFDL-ESM4 and GOBAI-O2-ESM4 for (c) climatological seasonal amplitudes in monthly mean [O2] 

from 0 to 200 dbars and (f) trends in annual mean [O2] from 200 to 1000 dbars. (e,f) Stippling indicates grid cells in which the 

GFDL-ESM4 trend is not significantly different from zero. 

 

In addition to direct comparisons of [O2] values, GOBAI-O2-ESM4 effectively captured decadal scale and seasonal variability 360 

in [O2] at the grid-cell level in the GFDL-ESM4 model environment (Fig. 3; Fig. A8–A10; Table 3). The average Pearson’s 

correlation coefficient between gridded monthly mean [O2] integrated from 0 to 200 dbars from GFDL-ESM4 output versus 

GOBAI-O2-ESM4 was 0.92 ± 0.19 (Fig. 3b), and the seasonal amplitudes differed in magnitude (GFDL-ESM4 minus GOBAI-

O2-ESM4) by 1.9 ± 3.8 μmol kg–1 (Fig. 3c). The average Pearson’s correlation coefficient between gridded annual mean [O2] 

integrated from 200 to 1000 dbars from GFDL-ESM4 output versus GOBAI-O2-ESM4 was 0.67 ± 0.36 (Fig. 3e), and the 365 

trends differed in magnitude (GFDL-ESM4 minus GOBAI-O2-ESM4) by −0.3 ± 2.0 μmol kg–1 dec–1 (Fig. 3f). 

 

When considered on the global scale, mean values, seasonal cycle amplitudes, long-term trends, and interannual variabilities 

in [O2] matched well between GFDL-ESM4 output and GOBAI-O2-ESM4 (Table 3). In almost every case, agreement was far 

better than it was when simply considering GFDL-ESM4 grid cells for which observations are available over this time period, 370 

with no spatiotemporal interpolation. For example, the trend in monthly mean [O2] integrated from 0 to 2000 dbars was −0.38 

μmol kg–1 dec–1 for GFDL-ESM4 output versus −0.31 μmol kg–1 dec–1 for GOBAI-O2-ESM4 (Fig. A11). On the other hand, 
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grid cells where observations are available actually indicated an increase in monthly mean [O2] integrated from 0 to 2000 dbars 

of 6.0 μmol kg–1 dec–1 over this time period when no spatiotemporal interpolation is applied. 

 375 

Table 3. Statistics representing the mean values, seasonal cycle amplitudes, long-term trends, and interannual variabilities of 

[O2] from the GFDL-ESM4 model, a reconstruction of [O2] fields from GFDL-ESM4 using the approach of GOBAI-O2 

(GOBAI-O2-ESM4), and subsampled grid cells from GFDL-ESM4 where and when real observations are available. Global 

weighted means (μ) of grid-cell level values are shown, along with differences (Δ) between the fully resolved GFDL-ESM4 

means versus GOBAI-O2-ESM4 and versus the subsampled GFDL-ESM4 grid cells. 380 

Metric 
Depth Interval 

(dbar) 

GFDL-ESM4 GOBAI-O2-ESM4 Subsampled GFDL-ESM4 

μ μ Δ μ Δ 

Mean [O2] 

(μmol kg−1) 

0−200 214.02 214.18 −0.17 230.21 −16.19 

200−1000 154.83 155.18 −0.35 173.62 −18.79 

0−2000 155.59 155.75 −0.16 169.58 −13.99 

Seasonal Cycle 

Amplitude 

(μmol kg−1) 

0−200 12.04 10.16 1.88 12.05 −0.01 

200−1000 3.37 2.11 1.27 5.94 −2.57 

0−2000 2.60 1.87 0.73 3.89 −1.29 

Long−term Trend 

(μmol kg−1 dec.−1) 

0−200 −0.30 −0.26 −0.04 6.58 −6.88 

200−1000 −0.48 −0.23 −0.25 3.97 −4.46 

0−2000 −0.38 −0.18 −0.20 6.05 −6.43 

Interannual Variability 

(μmol kg−1) 

0−200 0.22 0.22 0.00 9.05 −8.83 

200−1000 0.29 0.18 0.11 10.59 −10.30 

0−2000 0.22 0.12 0.10 10.43 −10.21 

 

Whether the internal variability in GFDL-ESM4 is truly representative of the ocean or is biased in one or more dimensions, 

the success of GOBAI-O2-ESM4 in this evaluation exercise demonstrates an ability for the ML algorithms employed here to 

capture that variability with the current distribution of available [O2] observations as training data. This bodes well for the 

ability of GOBAI-O2, which is trained on actual observational data, to represent decadal scale and seasonal variability in global 385 

ocean oxygen in the real world. However, the GFDL-ESM4 output has undergone substantial spatial and temporal averaging 

and has no observational uncertainties, and thus the assessed skill can be thought of as an upper limit of the reconstruction 

skill achievable with the currently available observations. 

 

The results of the exercise with GFDL-ESM4 model output are critical for evaluating the uncertainty of gridded oxygen values 390 

in GOBAI-O2 (section 3.2.4). Further, the spatial distribution of Δ[O2] (Fig. 2f) and the comparisons of reconstructed to 

modeled decadal trends and seasonal variability (Fig. 3b, 3c, 3e, 3f) can help inform our observing efforts (e.g., future cruise 

planning and BGC Argo float deployments). For example, large Δ[O2] values in the eastern tropical Pacific and eastern tropical 

Atlantic, coupled with some negative correlations in annual mean [O2] and differences in annual trends and seasonal 

amplitudes, suggest more observations will be required for GOBAI-O2 (or likely any gap-filled [O2] data product) to fully 395 

capture variability in that region. 
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3.2 GOBAI-O2 product 

3.2.1 Spatial oxygen distribution 

The full GOBAI-O2 product is available at https://doi.org/10.25921/z72m-yz67 (Sharp et al., 2023; last access: 19 Mar. 2023). 

Vertical–meridional sections of oxygen (Figs. 4 and 5) show that surface oxygen concentrations are generally high, as these 400 

waters tend to be near equilibrium with the atmosphere. This is particularly true at high latitudes where cold, dense waters 

have a high capacity for dissolved oxygen. Southern Ocean surface waters, however, are generally undersaturated with respect 

to oxygen (Fig. A12), consistent with observations from previous studies that suggest this undersaturation is the result of O2-

depleted thermocline water upwelling into the mixed layer (Chierici et al., 2004; Reuer et al., 2007; Jonsson et al., 2013) 

making the Southern Ocean on average an oxygen sink (Gruber et al., 2001; Bushinsky et al., 2017). This phenomenon can 405 

also be observed in the equatorial Pacific (Fig. A12). Undersaturation in high-latitude regions that are ice-covered during parts 

of the year can also be the result of limited air sea gas exchange when sea ice is present. 

 

 

Figure 4. Long-term mean [O2] from GOBAI-O2 at (a) 300 dbars and from the surface to 2000 dbars in the (b) Pacific, (c) 410 

Indian, and (d) Atlantic Oceans. White dashed lines in panel a show the locations of the sections in panels b–d. White contour 

lines in panels b–d are potential isopycnals (kg m−3). 

 

https://doi.org/10.25921/z72m-yz67
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Figure 5. Long-term mean [O2] from GOBAI-O2 at (a) σθ = 27 kg m−3 and from σθ = 24 to 27.5 kg m−3 in the (b) Pacific, (c) 415 

Indian, and (d) Atlantic Oceans. White dashed lines in panel a show the locations of the sections in panels b–d. White contour 

lines in panels b–d are constant isobars (dbars). 

 

Isobaric maps, isopycnal maps, and vertical–meridional sections with pressure and density vertical coordinates (Figs. 4 and 5) 

also reveal the [O2] signatures of distinct subsurface water masses. In each basin, well-ventilated subtropical mode waters can 420 

be identified by relatively high [O2] at mid-latitudes on the 300 dbar surface (Fig. 4a) and along dips in isopycnals plotted 

against pressure and latitude (Fig. 4b–d) or along sloping isobars plotted against density and latitude (Fig. 5b–d) within the 

upper ~500 dbars. Beneath the southern mode waters in each basin, Antarctic Intermediate Water that originates in the Southern 

Ocean with a relatively high [O2] signal is prevalent. Beneath northern mode waters in the Pacific and Indian basins, 

respectively, relatively old and oxygen-poor North Pacific Intermediate Water (NPIW) and Red Sea Overflow Water (RSOW) 425 

can be observed (Talley et al., 2011). Beneath northern mode waters in the Atlantic, intermediate waters are younger and more 

highly oxygenated. Near the equator, subsurface oxygen minima are visible in each basin; this is a result of organic matter 

export from high production in the surface ocean that fuels strong subsurface respiration and relatively poor ventilation (old 

waters) in this region. Finally, the signatures of higher oxygen deep or bottom waters can be observed near the bottom or at 

high latitudes in each vertical–meridional section. 430 
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Oxygen concentrations at 300 dbars (Fig. 4a) are highest in the North Atlantic and Southern Oceans — where highly 

oxygenated, newly formed deep and intermediate waters are formed — and lowest in the North and Equatorial Pacific Ocean 

and the North Indian Ocean — where the oxygen content of subsurface waters has been greatly reduced by heterotrophic 

respiration over time. The same can be said for [O2] on the 27.0 kg m−3 σθ surface (Fig. 5a). Oxygen concentrations are 435 

extremely low in the deep, high-density North Pacific Ocean (Figs. 4b and 5b) and North Indian Ocean (Figs. 4c and 5c)  due 

to the accumulated effects of oxygen-depleting respiration over the long lifespans of those water masses (i.e., long time since 

gas exchange with the atmosphere). 

 

 440 

Figure 6. Climatological seasonal cycles of [O2] anomalies (monthly [O2] minus long-term mean [O2]) integrated globally 

over three pressure intervals: 0–100, 100–600, and 600–2000 dbars. The black dotted line shows climatological temperature 

anomaly integrated globally over the 0–100 dbar interval. Shading indicates the standard deviation of the climatological 

seasonal cycle from 2004 to 2022. The dashed lines show climatological seasonal cycles of [O2] anomalies from WOA18 over 

similar depth intervals to GOBAI-O2: 0–100, 100–600, and 600–1500 meters. 445 

 

3.2.2 Climatological seasonal oxygen cycles 

Seasonal cycles in [O2] reflect a balance among physical and biological processes (Wang et al., 2022). Climatological 

hemispheric mean [O2] integrated over three pressure intervals from GOBAI-O2 (Fig. 6) reveals that the magnitude of the [O2] 

seasonal cycle is greatest near the surface and decreases with depth. The amplitude of the [O2] seasonal cycle in a near-surface 450 

interval (0–100 dbars) is about 10.8 μmol kg–1 in the Northern Hemisphere and 8.9 μmol kg–1 in the Southern Hemisphere. 
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Maximum [O2] in this depth interval (April/May in the Northern Hemisphere and October/November in the Southern 

Hemisphere) lags about two months behind the temperature minimum, suggesting an interaction between a thermally driven 

increase in oxygen solubility and biologically driven oxygen production. Minimum [O2] in the near-surface interval (October 

in the Northern Hemisphere and March/April in the Southern Hemisphere) is more coincident with the temperature maximum, 455 

indicating primary control by a thermally driven decrease in oxygen solubility. The amplitude of the [O2] seasonal cycle is 

about 2.3 μmol kg–1 in the Northern Hemisphere and 2.6 μmol kg–1 in the Southern Hemisphere in an intermediate interval 

(100–600 dbars), and about 0.2 μmol kg–1 in the Northern Hemisphere and 0.1 μmol kg–1 in the Southern Hemisphere in a 

deep interval (600–2000 dbars). The timing of maximum [O2] values is similar between the near-surface interval and 

intermediate interval in both hemispheres, indicating the well-mixed nature of the ocean in winter and early spring when [O2] 460 

is high. On the other hand, minimum [O2] in the intermediate interval lags behind that in the near-surface interval in both 

hemispheres, possibly reflecting higher stratification in the upper ocean when temperatures are warmer and/or the 

remineralization of sinking organic matter after summer production. Further analysis of climatological [O2] cycles from 

GOBAI-O2 can provide insight into the physical and biological factors that control surface and subsurface oxygen on regional 

and global scales. 465 

3.2.3 Interannual oxygen variability 

Deoxygenation is evident in GOBAI-O2 over the past two decades, coincident with ocean warming (Fig. 7; Table B5). The 

spatially weighted rate of deoxygenation in the upper two kilometers globally (along with a 90% confidence interval) is −1.06 

± 0.20 μmol kg–1 dec.–1 (−0.71 ± 0.13 % dec.–1). The rate of deoxygenation in GOBAI-O2 varies over depth, with a near-surface 

interval (0–100 dbars) displaying a trend in [O2] of −1.00 ± 0.51 μmol kg–1 dec.–1 (−0.45 ± 0.23 % dec.–1), an intermediate 470 

interval (100–600 dbars) −1.09 ± 0.34 μmol kg–1 dec.–1 (−0.68 ± 0.21 % dec.–1), and a deep interval (600–2000 dbars) −1.06 

± 0.36 μmol kg–1 dec.–1 (−0.75 ± 0.26 % dec.–1). Interannual variability is greatest in the near-surface interval: when the multi-

year trends and seasonal cycles are removed, the standard deviation of annual global mean [O2] anomalies is 0.53 μmol kg–1 

in the near-surface interval compared to 0.21 μmol kg–1 in the intermediate interval and 0.11 μmol kg–1 in the deep interval. 

Trends and uncertainties were determined by fitting linear least squares models to spatially weighted monthly mean [O2] and 475 

monthly oxygen inventories integrated over the specified depth intervals, with uncertainties in monthly values determined by 

comparing GOBAI-O2-ESM4 to GFDL-ESM4; more information on this is provided in Appendix E. 

 

Ocean warming has a direct effect on oxygen concentrations by lowering the solubility of O2 in ocean water (Garcia and 

Gordon, 1992). Solubility changes explain about 62% of deoxygenation in the near-surface ocean interval (0–100 dbars), 26% 480 

in the intermediate ocean interval (100–600 dbars), and 15% in the deep ocean interval (600–2000 dbars) (Fig. 7c and 7f). The 

remaining deoxygenation must then be caused by indirect consequences of ocean warming (such as increased ocean 

stratification hence decreased subsurface ventilation) or other processes, including changes to oxygen utilization and ocean 

ventilation variability (Oschlies et al., 2018), the magnitudes of which this analysis does not attempt to deconvolve. The RG09 
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temperature and salinity fields are constructed such that they relax toward the climatological means during periods of low data 485 

density. For this reason, temperature is biased somewhat high (Figs. 7b and 7e) and therefore O2 solubility biased somewhat 

low (Figs. 7c and 7f) toward the beginning of the time series when fewer observations are available. This artifact may influence 

GOBAI-O2 (Figs. 7a and 7d) since it was constructed using the RG09 temperature and salinity fields; however, its influence 

is partially mitigated because temporal information included in the training and application of the GOBAI-O2 algorithms allows 

for the trend inherent to the underlying oxygen data to be retained. 490 

 

 

Figure 7. (a,b,c) Annual mean (a) [O2] anomalies from GOBAI-O2, (b) temperature anomalies from RG09, and (c) [O2]sat. 

anomalies calculated from RG09 temperature and salinity fields, each integrated globally over three pressure intervals: 0–100, 

100–600, and 600–2000 dbars. (a) Shading represents uncertainty determined as the average difference between mean [O2] 495 

from GOBAI-O2-ESM4 versus GFDL-ESM4 in each interval. (d,e,f) Hovmöller diagrams showing annual mean (d) [O2] 

anomalies from GOBAI-O2, (e) temperature anomalies from RG09, and (f) [O2]sat. anomalies calculated from RG09 

temperature and salinity fields, each over depth in decibars from 2004 to 2022. Anomalies in each parameter are calculated as 

annual mean values minus the long-term mean either (a–c) integrated over a depth interval or (d–f) on a given depth level. 

 500 

GOBAI-O2 trends can be viewed in the context of other recent analyses that explore long term changes in ocean oxygen. From 

the surface to 1000 dbars, the GOBAI-O2 trend of −0.72 ± 0.13 % dec.–1 from 2004–2022 is comparable to that assessed by 

Bindoff et al. (2019) of −0.48 ± 0.35 % dec.–1 from 1970–2010 (surface to 1000 meters), which takes into account estimates 

from Helm et al. (2011) (−0.44 ± 0.14 % dec.–1), Schmidtko et al. (2017) (−0.34 ± 0.35 % dec.–1), and Ito et al. (2017) (−0.68 

± 0.33 % dec.–1). In the surface interval (0–100 dbars), the GOBAI-O2 trend of −0.45 ± 0.23 % dec.–1 is larger than, though 505 

within uncertainties of, the Bindoff et al. (2019) assessment of −0.28 ± 0.24 % dec.–1; in the intermediate interval (100–600 
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dbars) the GOBAI-O2 trend of −0.68 ± 0.21 % dec.–1 is also larger than, though again comparable to, the Bindoff et al. (2019) 

assessment of −0.52 ± 0.36 % dec.–1. While these comparisons represent different periods of time such that one should not 

expect perfect agreement, we find the consistency encouraging. The somewhat more negative GOBAI-O2 trends compared to 

previous estimates also suggest a possible acceleration on ocean deoxygenation over the last decade or so, which would be 510 

consistent with expectations (Kwiatkowski et al., 2020). Further, close agreement between GOBAI-O2 and other observation-

based studies provides additional support for the notion that current ESMs, which exhibit weaker deoxygenation trends, may 

not fully capture the sensitivities of physical and biological processes leading to deoxygenation (Oschlies et al., 2017; 2018; 

Stramma and Schmidtko, 2021). This comparison not only places the GOBAI-O2 trends in a longer term context but suggests 

that the enhanced observations and analysis result in a reduced trend uncertainty despite the comparatively-shorter 19-year 515 

record (± 0.13 % dec.–1) versus the longer but more sparse 40-year record available to Bindoff et al. (± 0.35 % dec.–1; 2019). 

 

Finally, the trends presented here represent both natural and potentially anthropogenic variability over the interval between 

2004 and 2022, as well as uncertainties in the algorithm predictions (see section 3.2.4). As such, these trends should not be 

interpreted to be driven exclusively by ocean warming and other associated impacts of anthropogenic climate change. This is 520 

especially true of the regional trends. The period of time examined is relatively short and the domain is not inclusive of the 

entire global ocean. Accordingly, decadal-scale variability in ocean ventilation, interior circulation, and biological oxygen 

utilization may exert significant influence over these trends. 

3.2.4 Uncertainty 

GOBAI-O2 uncertainty fields, which were estimated as described in section 2.5, can be used to assess confidence in multi-year 525 

trends and seasonal cycles of [O2], both on a global and regional scale. Time-averaged uncertainty fields at 150 dbar (Fig. 8) 

suggest that the largest contributor overall is the algorithm uncertainty. Algorithm uncertainty is also the most geographically 

variable. Averaged globally over space and time, 𝑢([𝑂2])𝑚𝑒𝑎𝑠. was equal to 2.3 μmol kg–1 (2.8 μmol kg–1 on the 150 dbar 

level), 𝑢([𝑂2])𝑔𝑟𝑖𝑑. was equal to 2.9 μmol kg–1 (5.3 μmol kg–1 on the 150 dbar level), and 𝑢([𝑂2])𝑎𝑙𝑔. was equal to 3.8 μmol 

kg–1 (6.2 μmol kg–1 on the 150 dbar level). Combined, 𝑢([𝑂2])𝑡𝑜𝑡. (Eq. 1) was equal to 6.0 μmol kg–1 (9.6 μmol kg–1 on the 530 

150 dbar level), which can be compared to the global average RMSD of 8.6 μmol kg–1 determined independently by 

withholding data from algorithm training (Table 2, Fig 2a-2c). 

 

Measurement uncertainty provides an estimate of confidence in an [O2] value assigned to a water sample by direct 

measurement; gridding uncertainty provides an estimate of confidence that the [O2] value provided for a four-dimensional grid 535 

cell might represent [O2] at any point in time and space within that grid cell; and algorithm uncertainty provides an estimate 

of confidence that the predicted [O2] value for a given grid cell is appropriate as the average value for that grid cell. Algorithm 

uncertainty in particular depends upon the distribution of data available to train the ML algorithms and the ability of the trained 

algorithms to represent underlying variability in the system. On the depth level shown in Fig 8. (150 dbar), the underlying 
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variability is relatively high in [O2] minimum zones (e.g., near the equator and on the eastern boundaries of ocean basins), 540 

hence the elevated algorithm (and total) uncertainties in those regions. Here, algorithm uncertainty was assessed via the 

exercise with synthetic data from GFDL-ESM4 (see sections 2.3 and 3.1.2). 

 

 

Figure 8. Long-term means of the uncertainty contributors to GOBAI-O2 at 150 dbar, including (a) measurement uncertainty, 545 

(b) gridding uncertainty, (c) algorithm uncertainty, and (d) total uncertainty. 

 

Algorithm uncertainty should in general decrease as the spatiotemporal coverage of available training data increases. 

Regionally, algorithm uncertainty depends upon the degree to which the underlying variability of the system is captured by 

the available training observations and the ability of the ML algorithms to reconstruct that variability from concurrent 550 

measurements of other seawater properties. The fact that algorithm uncertainty is the largest uncertainty contributor in GOBAI-

O2 suggests that limitations in the ML algorithms used to fill spatiotemporal gaps in [O2] outweigh limitations related to 

measurement quality and averaging data to four-dimensional bins. Comparing the Δ[O2] map in Fig. 2f or the algorithm 

uncertainty map in Fig. 8c to the data distribution map in Fig. 1 or Fig. A1 suggests that sparse sampling is primarily to blame 

for these limitations: high uncertainties tend to occur where observations are limited. Detailed analysis of GFDL-ESM4 water 555 

mass characteristics in the California Current System has also revealed that high uncertainties occur where water masses with 

similar physical characteristics but different oxygen signatures mix, underscoring that the measurement of additional 

biogeochemical parameters can supplement the physical/spatiotemporal-based [O2] estimates presented here. Overall, the 
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dominance of algorithm uncertainty is consistent with uncertainty analysis conducted for gap-filling methods applied to other 

ocean biogeochemical variables (e.g., Landschützer et al., 2014; Gregor and Gruber, 2020). For this reason, continued 560 

expansion of oxygen observations in undersampled regions will be critical to reduce uncertainty in our gap filling, and 

ultimately our understanding, of global subsurface oxygen distributions and variability. 

 

 

Figure 9. The difference between climatological mean [O2] from WOA18 and long-term mean [O2] from GOBAI-O2 (Δ[O2] 565 

= [O2]WOA − [O2]GOBAI) at (a) 300 meters and from the surface to 1500 dbars in the (b) Pacific, (c) Indian, and (d) Atlantic 

Oceans. 

 

Global mean depth profiles of uncertainty contributors (Fig. A14) emphasize the general attenuation of uncertainty away from 

the surface, with subsurface maxima of algorithm uncertainty and total uncertainty at 200 dbars. These maxima correspond to 570 

depths at which vertical gradients in [O2] are relatively high (see Fig. 4). Here, small variations in the depths of density surfaces 

can influence [O2] on a given depth level; this variability is challenging to capture, even with potential density as a predictor 

variable in the ML models (see Table 1). 

3.2.5 Comparison to other gridded products 
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The long-term mean field of [O2] from GOBAI-O2 was compared to the corresponding mean field of [O2] from the WOA18 575 

monthly climatology (Fig. 9) and climatological field of [O2] from the GLODAPv2.2016 mapped product (Fig. 10). On 

average, GOBAI-O2 oxygen concentration is 9.8 μmol kg–1 lower than WOA18 and 1.1 μmol kg–1 lower than GLODAP. This 

can be partly explained by the fact that GOBAI-O2 is centered on the year 2012, whereas WOA18 takes into account [O2] 

observations dating back to 1965, observations in GLODAPv2.2016 are centered around 2002 (Lauvset et al., 2016), and 

global deoxygenation has occurred in recent decades (Bindoff et al., 2019). Spatially, the largest differences occur within and 580 

especially near the boundaries of oxygen minimum zones (eastern tropical Pacific, eastern Atlantic coastal zones, and northern 

Indian), along σ ≈ 27.5 kg m-3 in the Southern Ocean, and along σ ≈ 26.75 kg m-3 in the North Pacific. It is difficult to determine 

whether these differences are functions of data availability (ship data for WOA18 and GLODAP versus ship and float data for 

GOBAI-O2), representative time period, or mapping method (objective interpolation for WOA18 and GLODAP versus 

machine learning algorithms for GOBAI-O2). A future intercomparison exercise between mapping methods using an identical 585 

starting dataset could be helpful in diagnosing these differences among gridded products. 

 

 

Figure 10. The difference between 2002-centered mean [O2] from the GLODAPv2.2016 mapped product and long-term mean 

[O2] from GOBAI-O2 (Δ[O2] = [O2]GLODAP − [O2]GOBAI) at (a) 300 meters and from the surface to 1500 dbars in the (b) Pacific, 590 

(c) Indian, and (d) Atlantic Oceans. 
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3.2.6 Comparison to synoptic in situ measurements 

GOBAI-O2 was compared to direct observations from repeat hydrography cruises, including meridional transects across the 

Atlantic (A16 in 2013 and A20 in 2021), Pacific (P16 in 2005), and Indian (I08 and I09 in 2016) Oceans, as well as a zonal 595 

transect across the Pacific Ocean (P02 in 2012). This exercise assessed how well monthly [O2] estimates from GOBAI-O2 

were able to represent high-quality [O2] measurements at distinct points in time and space. Due to fundamental differences 

between gridded estimates and point observations, we don’t expect every matchup to be perfect. However, we would hope to 

see general coherence in mean values across large-scale ocean sections and to see a pattern of differences that make sense 

given our a priori expectations. 600 

 

 

Figure 11. Section plots displaying comparisons between discrete observations of [O2] from repeat hydrography cruises and 

[O2] extracted from corresponding grid cells in GOBAI-O2. Thick lines in each panel represent mixed layer depth calculated 

as the depth at which potential density anomaly increased to 0.03 kg m−3 greater than potential density anomaly at 10 dbars. 605 

Thin lines are contours representing increments of 50 μmol kg–1 in [O2]. 

 

For the cruise datasets examined, GOBAI-O2 estimates matched fairly well with discrete measurements in the mixed layer and 

below ~1000 dbars (Fig. 11). In intermediate depths, however, large differences occasionally occur. These large differences 
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tended to cluster around areas with strong vertical gradients in [O2] (thin contours in Fig. 11 represent increments of 50 μmol 610 

in [O2]). Comparison of Fig. 11 to Fig. A15 gives confidence to our uncertainty evaluation: larger differences between discrete 

measurements and GOBAI-O2 occur where 𝑢([𝑂2])𝑡𝑜𝑡. is large. Median biases, mean biases, and RMSDs between direct 

observations and GOBAI-O2 are given in Table B6. 

4 Conclusions 

GOBAI-O2 is a major step toward the fulfilment of the primary goal set out by Gruber et al. (2010):  “to determine, on a global-615 

scale, seasonal to decadal time-scale variations in dissolved oxygen concentrations throughout the upper ocean”. Quantifying 

these variations is important for documenting ocean deoxygenation, determining global net primary productivity and carbon 

export, and facilitating studies of the oceanic uptake of anthropogenic CO2. In addition, insights into ocean biogeochemical 

dynamics, when observations are unavailable, often come from ocean models, and GOBAI-O2 can bring value to modelling 

studies by providing fields of [O2] to be used for boundary conditions and model initialization. GOBAI-O2 can also be useful 620 

as a dynamic reference check in data-sparse regions for new, sensor-based [O2] measurements that would otherwise be 

compared to a static monthly climatology like WOA18. This all being said, the uncertainty analysis conducted here confirms 

that GOBAI-O2 remains limited, primarily by sparse sampling. The most consequential action to improve GOBAI-O2 fields 

over the next decade will be the continued deployment of Argo floats with oxygen optodes — emphasizing the importance of 

bolstering the biogeochemical Argo array  and expanding the international OneArgo network into high latitudes, the deep 625 

ocean, and marginal seas (Roemmich et al., 2019; 2021; Schofield et al., 2022) — and the continued collection of discrete 

dissolved oxygen observations, primarily through the international GO-SHIP program, both for use in the mapping and for 

calibration/validation of the Argo oxygen data.. 

 

Besides the collection of more observations, additional actions can be taken to improve GOBAI-O2 fields. For one, more 630 

predictor variables and ML algorithms can be tested. Different processes dominate [O2] variability in different regions (Keeling 

et al., 2010; Oschlies et al., 2018; Garcia-Soto et al., 2021), and certain predictor variables will be better suited for capturing 

these processes. Also, ML algorithms adapt to data sparseness and modes of variability in different ways (Ritter et al., 2017; 

Gregor et al., 2019), so estimates in a given region that are worse using one algorithm may be better using another. Therefore, 

regionally-tuned predictors and more diverse ensembles of ML algorithms should lead to increased confidence in estimates of 635 

ocean interior [O2]. 

 

Another action that could result in improved fidelity of GOBAI-O2 fields is the use of predictor variable fields with higher 

spatial and temporal resolution across sharp biogeochemical gradients. Ocean profiles of temperature and salinity tend to be 

relatively smooth, so a depth resolution on the order of tens of meters in the upper ocean increasing to hundreds of meters at 640 

depth is sufficient for gridded products. Biogeochemical parameters like oxygen, on the other hand, tend to be characterized 
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by profiles with sharp gradients and with distinct minima and maxima in the water column (Sarmiento and Gruber, 2006). 

These minima and maxima can occur very near the surface or hundreds of meters below it. For this reason, comparisons of 

GOBAI-O2 to direct measurements of [O2] can be uniquely problematic in the ~100–1000 dbar range when sharp gradients 

are present (Fig. 11). Biogeochemical gradients over horizontal space and time can also be sharp, especially in highly dynamic 645 

coastal zones and in the surface ocean where the residence time of oxygen is often less than a month (Luz and Barkan, 2000). 

Recent work from Lyman and Johnson (2023) uses Argo observations coupled with machine learning to provide well-resolved 

(7-day × ¼° grid) ocean heat content maps, and continued development toward maps of temperature and salinity could be 

helpful for overcoming the issue of resolving sharp biogeochemical gradients. Alternatively, [O2] estimates could be made 

using temperature and salinity observations at their original resolution, then mapped onto four-dimensional grids that are 650 

uniquely suited in their spatial resolution for biogeochemical parameters. A necessary consideration of the latter option would 

be computing resources: applying complex ML algorithms to temperature and salinity measurements from Argo floats at their 

original resolution may prove to be impractical. 

 

Finally, observations from additional platforms could be incorporated into approaches like this one to map [O2] in the global 655 

ocean. Ocean gliders and moored profilers have long been equipped with oxygen optodes. These platforms collect data at 

unique spatiotemporal scales and could add predictive information for [O2] that is not provided by Argo float observations or 

discrete shipboard measurements. To facilitate the incorporation of new data streams into the development of gridded data 

products, accessible databases should be created and maintained (Testor et al., 2019; Grégoire et al., 2021). 

 660 

The method used to develop GOBAI-O2 can be applied in a similar way to other ocean chemical parameters. In addition to 

dissolved oxygen, the BGC Argo program has deployed floats with sensors for measuring dissolved nitrate, pH, chlorophyll-

a, particle backscatter, and downwelling irradiance. Machine learning methods have been used to develop four-dimensional 

fields of optical properties, i.e. chlorophyll-a and particle backscatter (Sauzède et al., 2015; 2016), and continued refinement 

of those fields is ongoing (Sauzède et al., 2021). Chemical properties, i.e. nitrate and pH, that exhibit distributions more similar 665 

to [O2] are good candidates for adoption into the GOBAI mapping approach. Together with property estimation algorithms for 

TA (Bittig et al., 2018b; Carter et al., 2021), a mapped ocean interior pH product could be used to resolve the entire ocean 

carbonate system in four dimensions in near real time. 

 

Ultimately, global changes to the amount of dissolved oxygen in ocean waters will have profound effects on the metabolism 670 

of marine organisms (Pörtner and Farrell, 2008; Sampaio et al., 2021) and the cycling of biogeochemically important elements 

(Gruber, 2004; Berman-Frank et al., 2008). Whereas ocean models agree that the ocean’s oxygen inventory has been declining 

and will continue to decline, disagreement remains as to regional patterns of this deoxygenation. Direct observations are critical 

for the confirmation or contradiction of model trends. With this work we have turned to autonomous and discrete observations, 

with the assistance of machine learning algorithms, to bridge the model–observational gap. We produce and analyze a multi-675 
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year gridded product of ocean dissolved oxygen called GOBAI-O2, independently confirming a phenomenon that has been 

demonstrated previously: the ocean is losing dissolved oxygen at a rapid rate (0.71  0.13 % dec.−1 in the upper two kilometers 

according to GOBAI-O2). In addition, we provide this valuable observation-based product for community use. GOBAI-O2 can 

be turned to as a reference for [O2] observations and model boundary conditions, compared to new and existing observational 

and model-based reconstructions of ocean deoxygenation, and used for critical analyses of seasonal to decadal and regional to 680 

global oxygen variability. 
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5 Appendices 

 

Appendix A. Supplemental Figures 685 

 

 

 

Figure A1. The number of profiles (either ship-based or Argo float-based) from the combined dataset used to train machine 

learning algorithms to produce GOBAI-O2 that are contained within each 1° × 1° box in the global ocean.  690 
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Figure A2. Annual mean in situ temperature (top) and salinity (bottom) from RG09 (2004–2022) at 20 dbars.  
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 695 

Figure A3. Annual mean in situ temperature (top), salinity (middle), and dissolved oxygen concentration (bottom) from 

GFDL-ESM4 (2004–2021) at 20 meters.  
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Figure A4. A schematic for the random forest regressions (RFRs) and feed-forward neural networks (FNNs). A random subset 700 

of the predictors is used for each tree in the RFR, and a randomly chosen predictor is used for each node split. The two hidden 

layers (H1 and H2) in each of the three FNNs have 10 and 20, 15 and 15, and 20 and 10 nodes. Each machine learning algorithm 

is trained with input data and [O2] observations, then used to predict [O2] from new input data.  
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 705 

Figure A5. The spatial distribution of profile data used to (a) train and (b) test RFRData-Eval and FNNData-Eval algorithms.  
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Figure A6. A comparison between the number of observations binned within a four-dimensional grid cell and the standard 

deviation in [O2] among those observations. The horizontal black line shows the mean standard deviation (5.21 μmol kg–1). 710 
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Figure A7. For withheld Argo and GLODAP data, two-dimensional histograms showing offsets between measured and 

ESPER-Mixed-calculated oxygen (Δ[O2] = [O2]meas – [O2]ESPER) as a function of (a) [O2]ESPER and (b) pressure in the water 715 

column. Offsets are binned into cells that are 2.5 μmol kg–1 tall in terms of Δ[O2] and 5 μmol kg–1 wide in terms of (a) [O2]ESPER 

or (b) equivalent in width to the interpolated depth levels of the data. (c) Absolute Δ[O2] values averaged over depth and time 

for 1° latitude by 1° longitude grid cells in the global ocean.  
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 720 

Figure A8. Integrated from 0 to 200 dbars: (a,b) long-term mean [O2], (d,e) seasonal [O2] amplitudes, (g,h) trends in [O2], and 

(j,k) interannual variability in [O2] for (a,d,g,j) GFDL-ESM4 and (b,e,h,k) GOBAI-O2-ESM4, along with (c,f,i,l) the difference 

between the two. 
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 725 

 

Figure A9. Integrated from 200 to 1000 dbars: (a,b) long-term mean [O2], (d,e) seasonal [O2] amplitudes, (g,h) trends in [O2], 

and (j,k) interannual variability in [O2] for (a,d,g,j) GFDL-ESM4 and (b,e,h,k) GOBAI-O2-ESM4, along with (c,f,i,l) the 

difference between the two. 

 730 
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Figure A10. Integrated from 0 to 2000 dbars: (a,b) long-term mean [O2], (d,e) seasonal [O2] amplitudes, (g,h) trends in [O2], 

and (j,k) interannual variability in [O2] for (a,d,g,j) GFDL-ESM4 and (b,e,h,k) GOBAI-O2-ESM4, along with (c,f,i,l) the 735 

difference between the two. 
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 740 

Figure A11. Monthly area-weighted mean [O2] integrated globally from 0 to 2000 dbars from GFDL-ESM4 (blue) and 

GOBAI-O2-ESM4 (orange).  
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Figure A12. Long-term mean percent oxygen saturation on the uppermost pressure level in GOBAI-O2.  745 
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Figure A13. Monthly mean de-seasonalized (a) [O2] anomalies from GOBAI-O2, (b) temperature anomalies from RG09, and 

(c) [O2]sat. anomalies calculated from RG09 temperature and salinity fields, each integrated globally over three pressure 

intervals: 0–100, 100–600, and 600–2000 dbars. (a) Shading represents uncertainty determined as the average difference 750 

between mean [O2] from GOBAI-O2-ESM4 versus GFDL-ESM4 in each interval. Hovmöller diagrams showing monthly mean 

de-seasonalized (d) [O2] anomalies from GOBAI-O2, (e) temperature anomalies from RG09, and (f) [O2]sat. anomalies 

calculated from RG09 temperature and salinity fields, each over depth in decibars from 2004 to 2022. Anomalies in each 

parameter are calculated as monthly mean values with a seasonal cycle removed and minus the long-term mean either (a–c) 

integrated over a depth interval or (d–f) on a given depth level. 755 
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Figure A14. Global mean depth profiles of uncertainty contributors to GOBAI-O2, including (a) measurement uncertainty, 

(b) gridding uncertainty, (c) algorithm uncertainty, and (d) total uncertainty. The shaded region represents variability in 760 

space, and is calculated as the standard deviation on each depth level of the mean uncertainties over time for each grid cell. 
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Figure A15. Section plots displaying total uncertainty estimates from GOBAI-O2 that correspond to discrete measurements of 765 

[O2] from repeat hydrography cruises, to be compared to Δ[O2] values in Fig. 11. 

  



43 

 

Appendix B. Supplemental Tables 

 

Table B1. Boundaries for the seven large ocean regions used to fit machine learning algorithms. 770 

Basin Polygon Vertices: [Longitude,Latitude; …] 

Atl. [−60,0; −79,9.4; −81,8.4,−100,22;−100,45;−6,45;−6,35;4,15;25,0;22,−35;−68,−35;−60,0] 

Pac.* 
[104,0;104,70;181,70;181,0;181,−35;145,−35;131,−30;131,0;104,0] 

[−180,0;−180,70;−150,70;−150,67;−120,67;−100,22; −81,8.4; −79,9.4;−60,0;−68,−35;−180,−35;−180,0] 

Ind. [22,−35;25,10;38,35;104,35;104,0;131,0;131,−30;116,−35;22,−35] 

Arc. [−180,64;−180,90;181,90;181,67;90,67;0,50;0,40;−6,40;−6,35;−90,35;−120,64;−180,64] 

Med. [−6.5,40;0,40;0,45;20,47;38,35;34,30;−5,30;−6.5,40] 

N. Sou. [−180,−60;−180,−25;181,−25;181,−60;−180,−60] 

S. Sou. [−180,−90;−180,−50;181,−50;181,−90;−180,−90] 

*Two sets of boundaries are given for the Pacific to accommodate crossing the international date line. 

 

 

Table B2. Error statistics (mean Δ[O2] and RMSD) for tests using RFR and FNN algorithms trained on a subset of Argo and 

GLODAP data and tested with a separate subset of withheld data. Also shown are error statistics corresponding to the ensemble 775 

average (ENS) of the estimates from both algorithms. 

Basin 

Evaluation Exercise with Observational Data 

Training 

Data Points 

Assessment 

Data Points 

RFRData-Eval FNNData-Eval ENSData-Eval 

Mean Δ[O2] 

(mol kg−1) 

RMSD 

(mol kg−1) 

Mean Δ[O2] 

(mol kg−1) 

RMSD 

(mol kg−1) 

Mean Δ[O2] 

(mol kg−1) 

RMSD 

(mol kg−1) 

Atl. 553,272 131,488 −1.2 8.7 −1.2 8.7 −1.2 8.4 

Pac. 1,692,647 533,165 −0.2 9.2 −0.1 10.1 −0.1 9.1 

Ind. 365,977 50,906 −2.1 8.8 −1.1 7.3 −1.6 7.8 

Arc. 919,361 93,191 0.4 8.4 −0.1 9.0 0.2 8.4 

Med. 202,690 45,749 −1.8 7.7 −2.2 8.7 −2.0 7.8 

N. Sou. 2,125,988 573,925 −0.9 8.8 −1.0 8.3 −0.9 8.3 

S. Sou. 1,399,346 374,952 −0.3 7.4 −0.3 7.6 −0.3 7.3 

All 7,259,281 1,803,376 −0.7 8.8 −0.6 9.0 −0.6 8.6 
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Table B3. Error statistics (mean Δ[O2] and RMSD) for tests using RFR and FNN algorithms trained on a subset of output from 

GFDL-ESM4 (corresponding to locations of available Argo and GLODAP data) and tested using a separate subset of withheld 780 

output from GDFL-ESM4. Also shown are error statistics corresponding to the ensemble average (ENS) of the estimates from 

both algorithms. 

Basin 

Evaluation Exercise with GFDL-ESM4 Output 

Training 

Data Points 

Assessment 

Data Points 

RFRESM4-Eval FNNESM4-Eval ENSESM4-Eval 

Mean Δ[O2] 

(mol kg−1) 

RMSD 

(mol kg−1) 

Mean Δ[O2] 

(mol kg−1) 

RMSD 

(mol kg−1) 

Mean Δ[O2] 

(mol kg−1) 

RMSD 

(mol kg−1) 

Atl. 179,322 28,235,064 −1.9 12.1 0.4 9.5 −0.7 9.0 

Pac. 522,834 69,369,456 0.2 7.4 −0.4 8.9 −0.1 7.5 

Ind. 85,748 20,736,144 0.7 8.7 −0.2 7.4 0.3 6.9 

Arc. 281,684 11,547,744 0.1 4.2 −0.3 4.8 −0.1 4.2 

Med. 32,110 1,096,680 0.8 4.8 1.3 7.5 1.0 5.5 

N. Sou. 752,856 67,626,624 0.0 4.3 −0.1 4.9 −0.1 4.3 

S. Sou. 515,502 31,412,472 0.1 3.3 −0.1 3.6 0.0 3.3 

All 2,370,056 230,024,184 −0.1 7.5 −0.1 7.5 −0.1 6.6 

 

 

Table B4. Error statistics (mean Δ[O2] and RMSD) for tests using RFR and FNN algorithms trained on a subset of Argo and 785 

GLODAP data and tested with all available GLODAP data. Also shown are error statistics corresponding to the ensemble 

average (ENS) of the estimates from both algorithms and corresponding to the ESPER-Mixed model (Carter et al., 2021). 

Basin 

Evaluation Exercise with Observational Data (Tested with GLODAP Data Only) 

Training Data 

Points 

Assessment 

Data Points 

RFRData-Eval FNNData-Eval ENSData-Eval ESPER-Mixed 

Mean Δ[O2] 

(mol kg−1) 

RMSD 

(mol kg−1) 

Mean Δ[O2] 

(mol kg−1) 

RMSD 

(mol kg−1) 

Mean Δ[O2] 

(mol kg−1) 

RMSD 

(mol kg−1) 

Mean Δ[O2] 

(mol kg−1) 

RMSD 

(mol kg−1) 

Atl. 553,272 180,374 0.4 4.9 0.6 8.9 0.5 6.4 0.1 11.3 

Pac. 1,692,647 495,035 0.7 6.3 1.2 9.5 1.0 7.3 −0.3 11.0 

Ind. 365,977 42,460 0.5 3.9 1.0 7.2 0.7 5.2 −1.3 9.2 

Arc. 919,361 227,905 0.1 4.4 0.2 8.6 0.2 6.0 1.2 11.0 

Med. 202,690 60 −2.0 5.3 2.4 8.5 0.2 5.8 −5.5 7.7 

N. Sou. 2,125,988 174,368 0.3 5.4 0.4 7.5 0.4 6.1 −0.7 8.4 

S. Sou. 1,399,346 141,065 −0.1 5.1 −0.5 8.0 −0.3 6.1 −0.3 9.5 

All 7,259,281 1,261,267 0.4 5.6 0.7 8.9 0.6 6.8 0.0 10.7 

 

 

  790 
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Table B5. Estimated decadal trends and uncertainties in [O2] (μmol kg−1 dec.−1) and oxygen inventory (% dec.−1) in different 

depth intervals of GOBAI-O2. Uncertainties are determined according to the procedure in Appendix E, both using the 

autocorrelation of residuals to the linear least squares model (Autocov.) and by incorporating estimated uncertainty in global 

mean GOBAI-O2 fields (u(ESM4)). The value used to represent uncertainty on each trend (larger value) is in bold. 

Depth Interval  

[O2] Trend 

(μmol kg−1 dec.−1) 

Trend Uncertainty (μmol kg−1 dec.−1) O2 Inventory 

Trend (% dec.−1) 

Trend Uncertainty (% dec.−1) 

Autocov. u(ESM4) Autocov. u(ESM4) 

0 – 100 dbar −1.00 0.51 0.42 −0.45 0.23 0.19 

100 – 600 dbar −1.09 0.34 0.33 −0.68 0.21 0.21 

600 – 2000 dbar −1.06 0.23 0.36 −0.75 0.16 0.26 

0 – 1000 dbar −1.12 0.15 0.21 −0.72 0.09 0.13 

0 – 2000 dbar −1.06 0.08 0.20 −0.71 0.06 0.13 

 795 

Table B6. Summary error statistics between direct observations from repeat hydrography cruises and GOBAI-O2 and WOA18. 

Cruise 
GOBAI-O2 WOA18 

Mean Δ[O2] RMSD Mean Δ[O2] RMSD 

A16 (2013) −0.3 9.3 0.2 12.0 

P16 (2005) 0.1 14.7 0.2 14.5 

P02 (2012) −1.0 9.8 −0.4 12.9 

I08/I09 (2016) −2.3 10.9 −1.1 13.0 

A20 (2021) −7.3 22.9 −2.2 21.4 

  



46 

 

Appendix C. Supplemental Datasets 

1. The original and vertically interpolated observational datasets from the BGC Argo and GLODAP databases that are used 

to develop GOBAI-O2 can be found at https://doi.org/10.5281/zenodo.7747237 (Sharp, 2023a). 800 

2. The algorithms trained on vertically interpolated observational data that were applied to predictor variables to produce 

GOBAI-O2 can be found at https://doi.org/10.5281/zenodo.7747308 (Sharp, 2023b). 

  

https://doi.org/10.5281/zenodo.7747237
https://doi.org/10.5281/zenodo.7747308
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Appendix D. Float Data Adjustments 

A negative median bias (−1.25 μmol kg−1) in float [O2] measurements compared to co-located ship [O2] measurements (below 805 

300 dbars only to avoid the impact of high frequency variability near the surface) was adjusted by fitting the differences (Δ[O2]) 

to a linear least squares model as a function of float [O2], and adding that [O2]-dependent adjustment back on to the float [O2] 

measurements. The Δ[O2] values as a function of float [O2] before (a) and after (b) this adjustment are shown in the Figure 

D1. This resulted in a reduced median Δ[O2] of 0.34 μmol kg−1. 

 810 

 

 

 

Figure D1. Unadjusted (a) and adjusted (b) matchups between BGC Argo [O2] measurements (y-axis) versus GLODAP [O2] 

measurements (x-axis). The adjustment procedure doesn’t mitigate the scatter between the matchups, but does reduce the 815 

median error.  
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Appendix E. Determination of Trends 

Trends and associated uncertainties in GOBAI-O2 were determined via the following procedure: 

1. Spatially weighted monthly mean [O2] values for the entire GOBAI-O2 domain or within specified depth intervals 

were calculated from gridded [O2], using relative grid cell volumes as weights. 820 

2. A linear least squares model with a trend, intercept, and annual (12-month) and semi-annual (6-month) periods was 

fit to monthly mean [O2] values. The monthly trend from the least squares model was multiplied by 120 to obtain a 

decadal trend of weighted mean [O2]. 

3. Uncertainty on the decadal trends were assessed in two different ways, and the largest of the two uncertainty estimates 

taken for each analyzed depth interval, indicating that either (a) uncertainty in the linear least squares model or (b) 825 

uncertainty in the GOBAI-O2 fields was driving uncertainty in the trend. The two methods were as follows: 

a. Using the autocovariance of residuals from the linear least squares model: 

i. The standard error on the trend was calculated from the covariance matrix of the linear least squares 

model. 

ii. The autocovariance of the residuals from the least squares model was examined to compute the e-830 

folding timescale, and the effective degrees of freedom were obtained by dividing the number of 

monthly mean [O2] values by the e-folding timescale. 

iii. The standard error on the trend was scaled by the effective degrees of freedom, multiplied by 2 to 

obtain a 90% confidence interval, and multiplied by 120 to obtain an uncertainty on the decadal 

trend of weighted mean [O2]. 835 

b. By incorporating estimated uncertainty in global mean GOBAI-O2 fields: 

i. Uncertainties in monthly mean [O2] values were determined as standard deviations of monthly 

differences between GOBAI-O2-ESM4 and GFDL-ESM4 (section 3.1.2). 

ii. These uncertainties were used to compute a weight matrix for the linear least squares fit. 

iii. The standard error on the trend was scaled by the effective degrees of freedom, multiplied by 2 to 840 

obtain a 90% confidence interval, and multiplied by 120 to obtain an uncertainty on the decadal 

trend of weighted mean [O2]. 

4. The process was repeated for oxygen inventories for the entire GOBAI-O2 domain or within each specified depth 

interval; inventories were determined from gridded [O2], volumes of each grid cell, and densities of each grid cell. 

  845 
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6 Data availability 

GOBAI-O2 is available as a NetCDF file at https://doi.org/10.25921/z72m-yz67 (Sharp et al., 2023; last access: 19 Mar. 2023). 

GLODAPv2 is updated annually and is available at www.glodap.info. GFDL-ESM4 model output can be accessed via the 

World Climate Research Programme database (https://esgf-node.llnl.gov/projects/cmip6/). Data from the 2018 World Ocean 

Atlas can be accessed through NOAA NCEI (https://www.ncei.noaa.gov/products/world-ocean-atlas). The OneArgo-Mat 850 

toolbox used to download Argo float data is available at https://doi.org/10.5281/zenodo.6588041; the toolbox acquires data 

from two global data assembly centers: Coriolis (ftp://ftp.ifremer.fr/ifremer/argo) and US-GODAE 

(ftp://usgodae.org/pub/outgoing/argo). The Roemmich and Gilson (2009) Argo-based temperature and salinity product is 

available at https://sio-argo.ucsd.edu/RG_Climatology.html. 
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