
Response to Reviewer Comments for GOBAI-O2: temporally and spatially 

resolved fields of ocean interior dissolved oxygen over nearly two decades 
 

The authors thank the two reviewers for their insightful comments on this manuscript. Below we 

have included detailed responses (in bold) to each of the reviewers’ comments, which no doubt 

have improved both the GOBAI-O2 data product and its accompanying description in this 

submitted manuscript. A revised version of the manuscript and a version with tracked changes 

will accompany this document. References to line numbers in this document refer to the revised 

manuscript, rather than the original submitted version. 

 

Sincerely, 

Jonathan D. Sharp and coauthors 

 

Reviewer 1 – Hernan Garcia 
 

General Comments 

 

This is an interesting paper using a novel approach to quantify global ocean O2 content seasonal 

to decadal-scale (S2D) variability and trends. The authors use AI and ML in an effort to resolve 

global and regional ocean S2D O2 variability and trends. The authors combine/aggregate 

contemporary ship-based Winkler-based O2 data used in GLODAP and sensor-based O2 data 

from BCG-ARGO. 

 

The authors indicate that the spatial and temporal heterogeneity coverage of the observational O2 

data that they chose to use might not be representativeness of S2D variability and trends. They 

argue that because GOBAI-O2 has no data gaps in time and space (gridded fields), it is more 

representative of real O2 ocean S2D variability and trends than the observations themselves. The 

authors also suggest that GOBAI-O2 represents the global ocean O2 mean than other gridding 

mapping methods (i.e., WOA18-O2). 

 

My concern is that the authors do not quantify (metrics) why GOBAI-O2 is more representative 

or has greater ability/skill to represent the real ocean O2 mean and S2D variability than the 

observations they chose to use. What if they had used much additional QC observed O2 profile 

data coverage from other sources? The paper would benefit from using an objective metric 

comparison approach. For example, comparing GOBAI-O2’s to other mapping methods using 

the same starting baseline O2 data. 

 

We thank the reviewer for this suggestion. We now emphasize objective metrics that 

compare model oxygen fields reconstructed via the GOBAI-O2 procedure to (1) fully 

resolved model fields and (2) subsampled model grid cells that correspond to the real-world 

distribution of available observations. This addition to the manuscript is discussed in more 

detail below. 

 

Still, we do not claim that the GOBAI-O2 mapping strategy is superior to other methods of 

objective interpolation or regression-based gap-filling, either in terms of representing 

seasonal to decadal variability in [O2] or global ocean mean [O2]. That assessment would 



require an extensive intercomparison exercise that is outside the scope of this manuscript. 

We very much support that kind of exercise. So to aid with any future intercomparison 

study, we now include the original and vertically interpolated data on which GOBAI-O2 is 

based in our supplemental material (Appendix C; https://doi.org/10.5281/zenodo.7747237). 

 

The authors compare GOBAI-O2 to WOA2018-O2 as well as to selected GLODAP sections. I 

would be surprised to not see differences between these data products. For example, WOA2018-

O2 mean climatology is based on a much larger pool of QCed winkler O2 measurements 

collected over 50 years (1965-2017; about 0.9 million profiles) than the QCed Winkler+BCG-

ARGO O2 used by GOBAI-O2 (2004-2021). The authors could also compare GOBAI-O2 to the 

GLODAPv2 gridded O2 fields. In the end, these comparisons do not resolve GOBAI-O2’s 

ability (metrics) to represent variability and trends better than observations and/or other mapping 

methods. 

 

We agree that differences are expected when comparing GOBAI-O2 with gridded 

climatologies that are centered around different time periods or discrete hydrographic 

sections that represent point measurements in space and time. These expectations are now 

more comprehensively addressed in the text (lines 577–580, 597–600). Additionally, we 

have added a figure (Figure 10) to compare GOBAI-O2 to the GLODAPv2 gridded fields. 

 

These comparisons to gridded fields of [O2] are merely intended to place GOBAI-O2 in the 

context of other commonly used products, not to indicate anything about its representation 

of [O2] variability, trends, or global means. Indeed, the annual climatological field provided 

by GLODAP cannot be used to assess seasonal variability in [O2], and nether the monthly 

climatological fields provided by WOA18 nor the annual climatological field provided by 

GLODAP can be used to assess trends or interannual variability in [O2]. Still, we have 

added to Figure 6 the hemispheric climatological cycles from WOA18, corresponding 

closely to the depth levels from GOBAI-O2, to address a comparison of seasonal variability. 

 

Finally, it would be useful if scientists could independently reproduce the GOBAI-O2 results. 

Are the authors planning on openly sharing the exact data (obs and model) and algorithms used? 

 

We have now included in Appendix C of the supplemental material (1) the observational 

dataset, both at native resolution and vertically interpolated to standard depth levels 

(https://doi.org/10.5281/zenodo.7747237), and (1) the regional models used to construct 

GOBAI-O2 from RG09 temperature and salinity fields (Roemmich and Gilson, 2009) as 

well as spatiotemporal information (https://doi.org/10.5281/zenodo.7747308). 

 

Specific line comments and suggestions for consideration 

 

For simplicity, I sometimes use “model” to refer to GOBAI-O2 

 

38. What is the quantifiable metric for indicating that GOBAI-O2 provides a better 

representation of the real global and/or regional deoxygenation variability and trends than could 

be estimated from the observations themselves? Please clarify. 

 

https://doi.org/10.5281/zenodo.7747237
https://doi.org/10.5281/zenodo.7747237
https://doi.org/10.5281/zenodo.7747308


In the revised manuscript, we more clearly highlight quantifiable metrics to indicate the 

ability of GOBAI-O2 to represent seasonal to decadal oxygen variability. These metrics are 

derived from fully resolved oxygen fields from the GFDL-ESM4 model (Dunne et al., 2020), 

oxygen fields from GOBAI-O2-ESM4 (a reconstruction of GFDL-ESM4 oxygen fields using 

the approach of GOBAI-O2), and subsampled GFDL-ESM4 grid cells within which 

historical observations are available. We calculate global weighted means (μ) of grid-cell 

level [O2] means, seasonal cycle amplitudes, long-term trends, and interannual variabilities. 

We also calculate differences (Δ) between the fully resolved GFDL-ESM4 means versus 

GOBAI-O2-ESM4 and versus the subsampled GFDL-ESM4 grid cells where observations 

exist. These metrics are provided below and in Table 3 in the revised manuscript. 

 

 
Depth Interval 

(dbar) 

GFDL-ESM4 GOBAI-O2-ESM4 
Subsampled 

GFDL-ESM4 

μ μ Δ μ Δ 

Mean [O2] 

(μmol kg−1) 

0-200 214.02 214.18 −0.17 230.21 −16.19 

200-1000 154.83 155.18 −0.35 173.62 −18.79 

0-2000 155.59 155.75 −0.16 169.58 −13.99 

Seasonal Cycle 

Amplitude 

(μmol kg−1) 

0-200 12.04 10.16 1.88 12.05 −0.01 

200-1000 3.37 2.11 1.27 5.94 −2.57 

0-2000 2.60 1.87 0.73 3.89 −1.29 

Long-term Trend 

(μmol kg−1 dec.−1) 

0-200 −0.30 −0.26 −0.04 6.58 −6.88 

200-1000 −0.48 −0.23 −0.25 3.97 −4.46 

0-2000 −0.38 −0.18 −0.20 6.05 −6.43 

Interannual 

Variability 

(μmol kg−1) 

0-200 0.22 0.22 0.00 9.05 −8.83 

200-1000 0.29 0.18 0.11 10.59 −10.30 

0-2000 0.22 0.12 0.10 10.43 −10.21 

 

The agreement between these metrics for GOBAI-O2-ESM4 and GFDL-ESM4 indicate 

that the GOBAI-O2 mapping procedure provides a good representation of the seasonal to 

decadal variability in [O2], and the large differences between the subsampled GFDL-ESM4 

grid cells and GFDL-ESM4 indicate that observations alone are not enough to quantify this 

variability, and that some mapping/interpolation is necessary. 

 

However, as mentioned above, it is not our intention to contend that GOBAI-O2 provides a 

better representation of the real global and/or regional deoxygenation variability than 

could be estimated from applying an alternative mapping technique to the available 

observations. This conclusion would require an extensive analysis across mapping 

techniques (as indicated by the reviewer). For example, the objective interpolation strategy 

employed by the producers of the World Ocean Atlas might capture variability with 

similar success, but a comparison to evaluate that possibility is outside the scope of this 

dataset description paper. We have now included our raw and vertically interpolated 

datasets (https://doi.org/10.5281/zenodo.7747237) in the supplemental material (Appendix 

C) so that interested data product producers can evaluate other mapping strategies with 

the same dataset used in the development of GOBAI-O2. 

 

https://doi.org/10.5281/zenodo.7747237


63. “have substantially improved the accuracy and reproducibility of optode-based [O2] 

measurements on Argo floats. In the absence of a reference (i.e., a true known value, a 

community-adopted certified reference material, or science community consensus reference 

data), it is difficult to assess the “accuracy” of O2 field measurements (winkler and sensor based 

data). Suggestion: “have substantially reduced the uncertainty (or increased the precision?) and 

reproducibility of optode-based [O2] measurements on Argo floats” 

 

Agreed, the suggested change has been made (lines 67–68). 

 

82. GLODAP measurements were largely collected during summer and spaced several years 

apart. Is the model output biased towards the more abundant ARGO O2 data coverage (Fig 1)? 

 

The process of training algorithms to represent the relationships between dissolved oxygen 

and physical, temporal, and spatial information is intended to minimize biases toward 

seasons and regions with more abundant data coverage. BGC Argo data can provide 

valuable information about seasonal biogeochemical cycles to complement synoptic 

snapshots from hydrographic cruises that occur mostly during the summer. Conversely, 

the vast synoptic scale information from GLODAP hydrographic sections can help fill gaps 

in space between BGC Argo float profiles. 

 

Still, to ensure each profile from a given dataset (ship and float) is assigned equal weight in 

model training, the algorithms used to produce GOBAI-O2 are now based on vertically 

interpolated data, rather than data provided at their native vertical resolutions (lines 126–

132). 

 

Combining O2 data measured by Winkler and sensor based is not as straightforward as merging 

them together. Did the authors conduct preliminary QC checks on the BCG-ARGO O2 for 

internal data consistency with co-located discrete GLODAP data? 

 

Preliminary checks of quality-controlled BGC Argo data vs. GLODAP data are now 

highlighted in a supplementary figure (Figure D1 and below) that displays a comparison 

between co-located measurements from the two datasets. This figure displays binned 

GLODAP data (x-axis) as it relates to binned float data (y-axis). Bin sizes were 1° latitude × 

1° longitude × monthly × RG09 depth levels (n = 58). The global small global median bias 

(−1.25 μmol kg−1) between the two datasets was mitigated (reduced to 0.34 μmol kg−1) by 

fitting the differences (Δ[O2]) to a linear least squares model as a function of float [O2], and 

adding that [O2]-dependent correction back on to the float [O2] measurements. 

 

The root mean squared error in [O2] (±10.1 μmol kg−1) compares favorably to similar 

analyses: Johnson et al. (2017) report a standard deviation of ±8 μmol kg−1 for float [O2] 

measurements compared to Winkler titrations at the time of float deployment and ±12 

μmol kg−1 for float [O2] measurements compared to matchups from the GLODAP dataset, 

and Maurer et al. (2021) report a standard deviation of ±6.3 μmol kg−1 for float [O2] 

measurements compared to Winkler titrations at the time of float deployment. 

 



 
 

226. What is the uncertainty in deoxygenation content variability as a function of time (assumed 

constant)? 

 

Whereas this section (2.5) describes estimates for [O2] uncertainty at the grid cell level, we 

utilize the comparison between GOBAI-O2-ESM4 and GFDL-ESM4 to evaluate 

uncertainty in global average [O2] and oxygen content within different depth intervals. 

This is now alluded to in lines 243–244. These global uncertainty estimates are used when 

calculating uncertainty in oxygen content trends over time (Appendix E), which are 

reported in section 3.2.3. 

 

270. Table 2 has no units. I assume O2 in umol/kg 

 

Yes, that’s correct. Units have been added to this table. 

 

Fig 2a,b. These figures suggest an envelope of Δ[O2] roughly +- 10-20 umol/kg for relatively 

higher freq. Is the GOBAI-O2 total uncertainty adequate to resolve decadal-scale deoxygenation 

trends? In section 3.2.3 Interannual oxygen variability, the authors indicate a relatively small 

global decadal trend of −1.15 ± 0.26 μmol/kg/decade. Global deoxygenation trends range 

between 0.6% for models to 2% for observations (Fig 2 in Grégoire et al. 2021; 

https://doi.org/10.3389/fmars.2021.724913). 

 

At the regional or 1° × 1° grid cell level, care should certainly be taken when interpreting 

trends, due to the level of uncertainty demonstrated in Figure 2. At the global scale, the 

metrics in Table 3 and comparison between GFDL-ESM4 and GOBAI-O2-ESM4 in Figure 

A11 indicate that GOBAI-O2 can resolve decadal-scale deoxygenation trends on the global 

scale with a good degree of confidence. Estimated uncertainty in global deoxygenation 

trends now takes into account uncertainty estimates in global average [O2] and oxygen 

inventory (Appendix E). 

 

Fig 2c, f. Coastal and other oceanic regions have high seasonal to interannual variability. Why 

are Δ[O2] so small near coasts when compared to the subtropics/tropics? 

https://doi.org/10.3389/fmars.2021.724913


 

Though some coastal regions have relatively low Δ[O2], others are quite high (e.g., 

southeast Pacific in 2c, eastern Atlantic in 2f, and western Indian in 2f). These high-Δ[O2] 

regions will often coincide with regions of high underlying interannual variability (panel j 

in Figures A8–A10). Nevertheless, some coastal areas do show relatively low Δ[O2]. Here 

are two potential explanations for the apparently low Δ[O2] values along some coastlines: 

 

(1) Observational density is often relatively high along coasts, for example in the northwest 

Pacific, northeast Pacific, and northwest Atlantic (see Figure 1). In coastal areas where 

observational density is low (western equatorial Indian, eastern equatorial Atlantic), Δ[O2] 

values (Figure 2) and total uncertainty values (Figure 8d) are very high. 

 

(2) The GFDL-ESM4 model on which algorithm uncertainty (Figure 8c) is based may not 

be sufficiently capturing the true variability in dissolved oxygen along coasts. In this case, 

the GOBAI-O2 algorithms will have an easier time trying to reconstruct the ESM4 

variability than real-world variability. This is a potential deficiency of our uncertainty 

estimation procedure. 

 

336. “demonstrates an ability”; ability is a subjective term. Is this ability quantifiable? 

 

The metrics reported in Table 3 quantify the ability of GOBAI-O2-ESM4 to capture 

seasonal to decadal scale variability in [O2]. 

 

337-338: ”This bodes well for the ability of GOBAI-O2, which is trained on actual observational 

data, to represent decadal scale and seasonal variability in global ocean oxygen in the real world” 

What quantifiable metric is being used to indicate that GOBAI-O2 represents the decadal scale 

and seasonal variability in global ocean oxygen in the real world? 

 

There really is no way to directly quantify the ability of GOBAI-O2 to represent [O2] 

variability on a global scale in the real world. We display statistics in Tables 2 and B2 to 

demonstrate the ability of GOBAI-O2 algorithms to predict [O2] observations not included 

in model training, and to indicate their improved performance over previously developed 

seawater property estimation algorithms with the same predictor data (Carter et al., 2021; 

Table 2 and B4). We also display statistics in Tables 2 and B3 to demonstrate the ability of 

GOBAI-O2 algorithms to predict simulated [O2]. And, as discussed earlier, the metrics that 

are now highlighted in Table 3 indicate the ability of GOBAI-O2 to represent decadal and 

seasonal [O2] variability on a global scale in a simulated world. These exercises collectively 

provide our best approximation for how GOBAI-O2 performs in the real world. 

 

As stated earlier, a large fraction of the ARGO O2 obs were collected in the S. Hemisphere (Fig 

2c) and measurements in GLODAP were mostly collected in summer. Global and regional 

seasonal variability would arguably be difficult to quantify with certainty with a limited 

observational coverage as used in this case. 

 

I note that in line 345, the authors write ““For example, large Δ[O2] values in the eastern tropical 

Pacific and Atlantic, coupled with negative correlations in annual mean [O2] and large 



differences in annual trends and seasonal amplitudes, suggest more observations will be required 

for GOBAI-O2 to capture variability in that region” 

 

We agree with the reviewer that regions and time periods with limited data coverage are 

the most difficult to reconstruct with the current distribution of observations. However, 

Figure 3 indicates that most basin-scale surface and subsurface variability is represented 

well by the GOBAI-O2 algorithms. Further, Table 3 and Figure A11 indicate that global 

variability can be reconstructed well, and far more effectively than with observations alone.  

 

355. I note that in ice-covered regions, there is also little air-sea gas exchange and limited 

biologically-mediated O2 production adding to undersaturation; particularly in the S. Ocean. 

 

We thank the reviewer for this note; a sentence has been added to acknowledge the effect of 

sea ice on air-sea gas exchange in ice-covered regions (lines 406–407). 

 

380. “Oxygen concentrations are extremely low in the deep, high-density North Pacific Ocean 

and North Indian Ocean due to the ages of those water masses' Rather than age specifically, what 

matters is the net balance of sources and sinks (i.e., air-sea exchange, ventilation/mixing, O2 

respiration, redox chemistry). 

 

Yes, good point. That clarification has been added (lines 435–438). 

 

Fig 5. Is GOBAI-O2 trained using isobars (depth) and isopycnals independently? 

 

GOBAI-O2 is trained using both depth and potential density as predictor variables. 

Sensitivity testing indicated that the best error statistics were obtained when both were 

included as predictors. 

 

Fig 7. Are the model O2 values de-seasoned before depth integration by layers (i.e., subtracting 

the climatological monthly mean O2 in addition to the long-term mean)? If not, why not? 

 

Values displayed in Figure 7 are anomalies of annual means from the long-term mean. 

Taking the annual means leads to a cleaner presentation and obviates the need to explicitly 

de-seasonalize the monthly values before calculating anomalies from the long-term mean. 

The same figure using de-seasonalized monthly anomalies rather than annual anomalies is 

shown below, and now as Figure A13 in the revised manuscript. De-seasonalized monthly 

values are indeed used for the calculations of trends and interannual variabilities given in 

Section 3.2.3, according to Appendix E. 

 



 
 

 

412: Suggest changing “The spatially weighted rate of deoxygenation in..” to “The spatially 

weighted decadal rate of deoxygenation in..” 

 

We have opted to keep this sentence as is because dec.−1 is given in the units of the rate. 

 

Fig 7d shows that the temperature anomalies below about 500 m are relatively smaller prior to 

about 2015 than in later years. On the other hand, fig 7e shows relatively high (absolute value) 

O2 anomalies before and after about 2015 and at all depths and reflected in fig 7a. Is the 

implication that this is due to mean changes in ventilation to deeper depths? 

 

Oxygen anomalies at depth that are relatively larger than temperature (and therefore O2 

saturation) anomalies may reflect the importance on non-thermal drivers to deoxygenation, 

such as circulation/ventilation changes as the reviewer suggests, or changes in subsurface 

oxygen demand. This implication is discussed in lines 481–484. 

 

443. The deoxygenation trends (discussed in 3.2.3 Interannual oxygen variability) seem to be in 

the 0.5-0.9% range. These trends are in agreement with AR5 model trend estimates (about 0.6%, 

Bopp et al., 2013). Schmidtko et al. (2017) indicated a global ocean deoxygenation trend of 

about 2% (See Fig 2 in Grégoire et al. 2021; https://doi.org/10.3389/fmars.2021.724913). Please 

address this apparent discrepancy. 

 

We report our trends in this section as μmol kg−1 or % per decade., whereas the values 

shown in Figure 2 of Grégoire et al. (2021) (0.6% and 2%) represent a 50-year period 

(1960–2010), so the Bopp et al. (2013) trend is about 0.12% per decade and Schmidtko et 

al. (2017) trend is about 0.4% per decade. 

 

Therefore, the GOBAI-O2 trend (~0.7% per decade) is actually larger in magnitude than 

both of those results. This may reflect an expected acceleration in deoxygenation over the 



more recent period (2004–2022), interannual variability aliasing into the trend over a 

relatively short period of time, or a fundamental difference in the way GOBAI-O2 

represents global [O2] relative to previous observational studies. 

 

We compare GOBAI-O2 trends with Schmidtko et al. (2017) and others — Helm et al. 

(2011) and Ito et al. (2017), nicely compiled by Bindoff et al. (2019) — in lines 501–511. In 

addition, we have added a sentence to address relatively lower deoxygenation trends from 

Earth system models (lines 511–513). 

 

455. Why do the authors attribute all model (algorithm) variability to natural and/or 

anthropogenic variability? As shown in Fig 8, model uncertainty is not insignificant. 

 

We now indicate that uncertainties from algorithm predictions can also contribute 

variability to the gridded fields (line 519). 

 

460. Averaged globally, total uncertainty is 6 umol/kg (line 466). Visual inspection of Fig 8 

suggests oceanic regions with total uncertainty values approximately > 10-20 umol/kg.These 

appear to be due to regional differences in the skill of the algorithm (line 485). Given these 

regional uncertainties, what would the magnitude of error bars be in Fig 7 for O2 (net anomalies 

of < 3 umol/kg)? 

 

Uncertainty shading has been added to Figure 7. This uncertainty represents the standard 

deviation among differences between monthly mean [O2] from GFDL-ESM4 versus 

GOBAI-O2-ESM4 (section 3.1.2) in the relevant depth level. These uncertainties have also 

been incorporated into the analysis of trend uncertainties that are reported in section 3.2.3 

(Appendix E). 

 

Fig 8 has no units (umol/kg?). I am surprised to see relatively low uncertainty values along 

coasts and WBCs where O2 seasonal variability is nominally large and obscures interannual and 

longer time-scale variability. Why is the algorithm uncertainty largest near the eastern tropical 

Pacific and Atlantic? 

 

Thanks for pointing this out. Units of μmol kg−1 are now included on this figure. Panels are 

also now labelled a–d. Two potential explanations for the apparently low uncertainties 

along some coasts are provided in a previous response. Also, keep in mind that Figure 8 

displays uncertainties on the 150 dbar pressure level, and so it is not representative of the 

integrated uncertainty over the entire depth range. 

 

Fig 9. Differences are not unexpected. GOBAI-O2 (2004-2021; Winkler+ARGO O2 sensor) uses 

a smaller spatial and temporal data coverage than WOA18-O2 (1960-2017; Winkler only). I 

would argue that an objective comparison would be to compare GOBAI-O2 and other mapping 

methods including the gridded fields of GLODAP and WOA18-O2. 

 

Agreed. However, as we’ve indicated above, a comparison between various mapping 

methods is outside the scope of this manuscript. We have compared GOBAI_O2 to the 

gridded fields of GLODAP and WOA18, but it should be noted that the monthly, time-



varying fields of GOBAI-O2 are fundamentally different than the climatological monthly 

(WOA18-O2) and annual (GLODAP) averages of the other two products. 

 

It is interesting to see that WOA18-O2 minus GOBAI-O2 largest differences seem to follow 

isopycnals in the N and S. Pacific (F9b) and in the S. Atlantic (F9e). Is this a real feature or an 

artifact? Comparing GLODAPv2 gridded fields minus GOBAI-O2 would be useful. 

 

These anomalies are largely consistent in the GOBAI-O2 to GLODAP gridded dataset 

comparison, now shown in Figure 10. As the reviewer has mentioned, it is difficult to 

determine whether these features are functions of data availability (ship data for WOA18 

and GLODAP versus ship and float data for GOBAI-O2), time period (1960–2017 for 

WOA18, centered on 2002 for GLODAP, and 2004–2022 for GOBAI-O2), or mapping 

method (objective interpolation for WOA18 and GLODAP versus machine learning 

algorithms for GOBAI-O2). This challenge has now been emphasized in lines 582–586. We 

wholeheartedly agree with the reviewer that a comprehensive comparison between 

mapping methods with consistent datasets will be an important future step to diagnose the 

origins of differences between resulting gridded fields. 

 

510. The authors compare GOBAI-O2 to WOA18-O2; with GOBAI-O2 being about 10 μmol/kg 

lower than WOA18-O2. GLODAP includes a gridded mean O2 climatology. The authors should 

also compare GOBAI-O2 to the GLODAP gridded fields. Are the authors indicating that 

GOBAI-O2 provides a more accurate representation of the global ocean long-term O2 mean than 

WOA18-O2 and/or other data products? Please elaborate. The GOBAI-O2 global mean total 

uncertainty as a function of depth is about 4-10 umol/kg (Fig A10). Suggest adding some form of 

error bars at each depth in Fig A10 (i.e., std, serror, other). 

 

We have added a new figure (Figure 10) comparing the long-term mean of GOBAI-O2 to 

the GLODAP gridded product. We are not suggesting that GOBAI-O2 provides a better or 

worse representation of global ocean long-term mean oxygen than GLODAP or any other 

commonly used data product. GOBAI-O2 adds value in that it is unique compared to other 

available products in terms of its temporal resolution and coverage; nevertheless, we feel it 

is important to compare what can be compared between the available products. 

 

Error shading representing spatial variability in uncertainty estimates has been added to 

what is now Figure A14, calculated as the standard deviation on each depth level of the 

mean uncertainties over time for each grid cell. 

 

511. WOA18-O2 uses O2 data starting in 1965; not 1955. 

 

Thanks for pointing this out. The change has been made (line 579). 

 

513. “... the World Ocean Atlas has been demonstrated to overestimate [O2] in suboxic zones 

(Bianchi et al., 2012)”. Bianchi et al. indicated deviations of about 6 umol/kg in suboxic areas 

when compared to discrete O2 data profiles in GLODAP (Key et al. 2004). It is not unexpected 

that a mean O2 climatology spanning 1955-2004 would not exactly represent selected discrete 

O2 values. Similarly, I would not expect that other mapping techniques such as GLODAP O2 



gridded fields exactly match all the discrete O2 data/profiles at any given depth/grid location.The 

same reasoning applies to GOBAI-O2. For example, Fig 10 shows O2 > 15 umol/kg differences 

between GOBAI-O2 and O2 values from GLODAP transects in the top 1 km. 

 

Since mapped products like GOBAI-O2 are not expected to exactly represent discrete 

profiles, as indicated by the reviewer and shown in now Figure 11, we have removed the 

comment regarding overestimation of suboxic zone [O2] by WOA18 as a potential 

explanation for disagreement between GOBAI-O2 and WOA18. 

 

GOBAI-O2 uncertainties seem larger than open-ocean O2 observing systems. GOOS Panel-

Biogeochemistry-01-EOV-Oxygen Essential Ocean Variables (EOV) version 2.0 (August, 2017) 

provides uncertainty estimates (ARGO O2: ±2 umol/kg; Bottle Winkler ±0.5 μmol/kg). The 

figures are improving over time. 

 

Indeed, measurement uncertainty is just a part of the uncertainty estimate for GOBAI-O2. 

Therefore, our estimated uncertainties — including those from spatiotemporal gridding 

and algorithm-based estimates — are larger than the estimates from BGC Argo floats or 

Winkler titrations. 

 

https://www.goosocean.org/index.php?option=com_oe&task=viewDocumentRecord&docID=17

473  

 

https://oceanexpert.org/downloadFile/35904  

 
 

Reviewer 2 – Anonymous 
 

General comments: 

 

The objective of the manuscript is to present the GOBAI-O2 tool, a 4D gridded product of O2 

concentrations in the global ocean. It is based on machine learning algorithms trained on 

observations from BGC-ARGO and GO-SHIP in 7 regions and applied to temperature and 

salinity fields constructed from the Argo network. This product allows a fairly fine prediction of 

O2 concentrations from 2004-2021 on 58 vertical levels with a spatial resolution of 1°x1° 

allowing an analysis of spatial variability, seasonal cycles and decadal trends in O2. 

 

The article is well constructed and written. The authors clearly present the methodology, and the 

prediction uncertainties. The authors indicate that GOBAI-O2 provides homogeneous O2 

coverage improving O2 observations where spatial and temporal gaps are present in some 

regions. 

 

The authors mention at the end the limitations of the product but they do not specify the added 

value of GOBAI-O2 compared to the existing observation networks. For example, it would be 

interesting to compare the GOBAI-O2 contribution vs. the ARGO-O2 network (with and without 

GO-SHIP). What is the real contribution of GOBAI-O2 ? 

 

https://www.goosocean.org/index.php?option=com_oe&task=viewDocumentRecord&docID=17473
https://www.goosocean.org/index.php?option=com_oe&task=viewDocumentRecord&docID=17473
https://oceanexpert.org/downloadFile/35904


Compared to the network of Argo floats with oxygen sensors or the plethora of ship-based 

oxygen measurements contained in the GLODAP database (and others), the contribution of 

GOBAI-O2 is that it leverages those two datasets along with the Core Argo network to fill 

spatiotemporal gaps in the available observations. So GOBAI-O2 is fundamentally different 

from and a value-added extension of the observational networks alone. 

 

The contribution of the BGC Argo network compared to just GO-SHIP (GLODAP) 

measurements can be observed in Table B4: the [O2]-estimation algorithms used to create 

GOBAI-O2 outperform ESPER algorithms (which are trained on GLODAP data alone) at 

estimating ship-based oxygen observations. This highlights the added value of seasonally-

resolved [O2] data from Argo floats. Repeating the GFDL-ESM4 subsampling exercise 

outlined in this manuscript with simulated observations from BGC-Argo-only or 

GLODAP-only could further emphasize the impact of using both networks to create 

GOBAI-O2, rather than one or the other. 

 

In BGC-ARGO, few O2 data have been qualified properly and adjusted in delayed mode even if 

a strong global efforts is and will done by the different GDAC. In this context, the authors do not 

precise how many O2 profiles from Argo network exists and how many have been used for the 

training ? What is the ratio total vs. qualified ? Probably the efforts will lead to more usable 

ARGO O2 profiles and thus contribute significantly to the overall O2 content coverage. In this 

case it will be interesting to know the added value of GOBAI-O2 predictions (metric comparison 

of the two approaches) 

 

For the development of GOBAI-O2, we only use Argo profiles that have undergone delayed 

mode quality control (DMQC) and have quality flags of 1 (good), 2 (probably good), or 8 

(interpolated/extrapolated) for pressure, temperature, salinity, and [O2] (lines 119–121). Of 

the over 265,000 [O2] profiles from 1,780 floats that were in the BGC Argo database at the 

time data were recovered (03 Mar. 2023), 133,488 profiles from 972 floats had undergone 

some degree of DMQC, and 128,562 profiles from 907 floats had some data points that met 

the required quality flags. This discrepancy between total Argo O2 profiles and those that 

have been quality controlled emphasizes the potential for GOBAI-O2 to be improved in a 

future iteration; even if no new observations are collected, the Argo-based training dataset 

can significantly increase in size with more resources directed toward quality control. 

 

Another use of GOBAI-O2 not mentioned by the authors would be the use of GOBAI-O2 

predictions to generate quality time series in areas poorly covered by reference data (long time 

series) which would allow for a finer qualification of O2 measurements from different platforms 

and often sensitive to drift over time. This product would be much better than the fields from 

WOA2018. 

 

We thank the reviewer for this suggestion. A new sentence describing this use case has been 

added to the conclusions section (lines 620–622): “GOBAI-O2 can also be useful as a 

dynamic reference check in data-sparse regions for new, sensor-based [O2] measurements 

that would otherwise be compared to a static monthly climatology like WOA18.” 

 



Also GOBAI-O2 has been trained from the Winkler O2 data of GO-SHIP but it would have been 

interesting to start from the O2 profiles from the ship's CTD and adjusted via the Winkler data. 

The vertical resolution would then be significantly improved. What are the limitations? Access to 

adjusted O2 profiles? If so, the document should mention and alert to this crucial point. It is now 

becoming essential to follow the FAIR data principles for all platforms. 

 

We mainly chose to use discrete Winkler [O2] data from GLODAP for two reasons: 

 

(1) this dataset is extensively quality-controlled, ensuring a reliable set of measurements is 

going into the GOBAI-O2 algorithm training, and 

 

(2) the vertical resolution of GOBAI-O2 is on the order of tens to hundreds of meters, so the 

very fine vertical resolution offered by ship CTD data would make algorithm training 

prohibitively computationally expensive without adding much information to the final 

product. 

 

These points are detailed in lines 105–109 of the revised manuscript. 

 

The authors also mention the lack of other platforms to improve predictions, but this concerns in 

particular fixed moorings, which would be a plus in certain regions to increase the temporal 

resolution of observations (from minutes to months) over the entire water column, but only if a 

mooring array is available, otherwise a fixed point will not be significant and will not bring 

much. Also, the contribution of gliders sections will be relevant if we are interested in coast-open 

sea exchanges because most of the gliders are deployed in these specific sub-regions and their 

integration in the learning methods will not necessarily bring much. 

 

We agree that information from fixed moorings and/or gliders could bring substantial 

benefits to GOBAI-O2. However, data from these sources are not as well curated and 

quality controlled as data from discrete ship measurements and Argo floats. Also, the high 

temporal (moorings) and spatial (glider) resolutions of the raw datasets would a 

computational burden in the training of GOBAI-O2 algorithms. The institution of a 

database like GO2DAT (Grégoire et al., 2021) would be extremely helpful in bringing these 

new data sources into a product like GOBAI-O2. 

 

Specific comments: 

 

a diagram explaining the principle of FNN and RFR would help readers understand the different 

algorithms used in this paper 

 

This diagram has been added as Figure A4 and is referenced in line 191. 

 

Table 2: Units of O2 is missing 

 

Thank you, the units have been added to this table. 

 



Figure 7: The O2 anomaly over depth (panel D) is close to zero between 2010-2015. Why? This 

is because GOBAI-O2 is centered on the year 2012? In this case, explain why it is centered on 

2012. 

 

The caption for Figure 7 has been modified to more clearly describe how anomalies shown 

in this figure are calculated: “Anomalies in each parameter are calculated as annual mean 

values minus the long-term mean either (a–c) integrated over a depth interval or (d–f) on a 

given depth level”. 

 

Figure 8: Units of O2 is missing. O2 uncertainties are higher near the equator and subtropical 

zones. Explain why 

 

Units have been added to the colorbar label and text has been added to explain the high 

algorithm uncertainties in certain regions (lines 537–541).  
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