

1 **Integrated ecohydrological hydrometric and stable water isotope data**
2 **of a drought-sensitive mixed land use lowland catchment**

3
4 **Doerthe Tetzlaff^{1,2}, Aaron Smith¹, Lukas Kleine^{1,2}, David Dubbert¹, Jonas Freymueller¹**
5 **Hauke Daempfing¹ and Chris Soulsby³**

6 ¹IGB Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin, Berlin, Germany

7 ²Humboldt University Berlin, Berlin, Germany

8 ³Northern Rivers Institute, School of Geosciences, University of Aberdeen, UK

9
10 **Corresponding author:**

11 Doerthe Tetzlaff; doerthe.tetzlaff@igb-berlin.de

12
13
14 **Abstract**

15 Data from long-term experimental catchments are the foundation of hydrological sciences and
16 are crucial to benchmark process understanding, observe trends and natural cycles, and are
17 prerequisites for testing predictive models. Integrated data sets which capture all compartments
18 of our landscapes are particularly important in times of land use and climate change. Here, we
19 present ecohydrological data measured at multiple spatial scales which allows differentiation of
20 “blue” water fluxes (which maintain streamflow generation and groundwater recharge) and
21 “green” water fluxes (which sustain vegetation growth). There are two particular unique aspects
22 to this data set : a) we measured water stable isotopes in the different landscape compartments
23 (that is in precipitation, surface water, soil, ground- and plant water); and b) we conducted this
24 monitoring during the extreme drought of 2018 in Central Europe. Stable water isotopes are so
25 useful in hydrology as they provide “fingerprints” of the pathways water took when moving
26 through a catchment. Thus, isotopes allow to evaluate the dynamic relationships between water
27 storage changes and fluxes, which is fundamental to understanding how catchments respond to
28 hydroclimate perturbations or abrupt land use conversion. Second, as we provide the data until
29 2020 one can also investigate recovery of water stores and fluxes after extreme droughts. Last
30 but not least: lowland headwaters are often understudied systems despite them providing
31 important ecosystem services such as groundwater and drinking water provision and
32 management for forestry and agriculture. All data presented in this paper are available from the
33 IGB open data repository FRED with detailed metadata (<https://doi.org/10.18728/igb-fred-813.1>;
34 Tetzlaff et al., 2023).

35

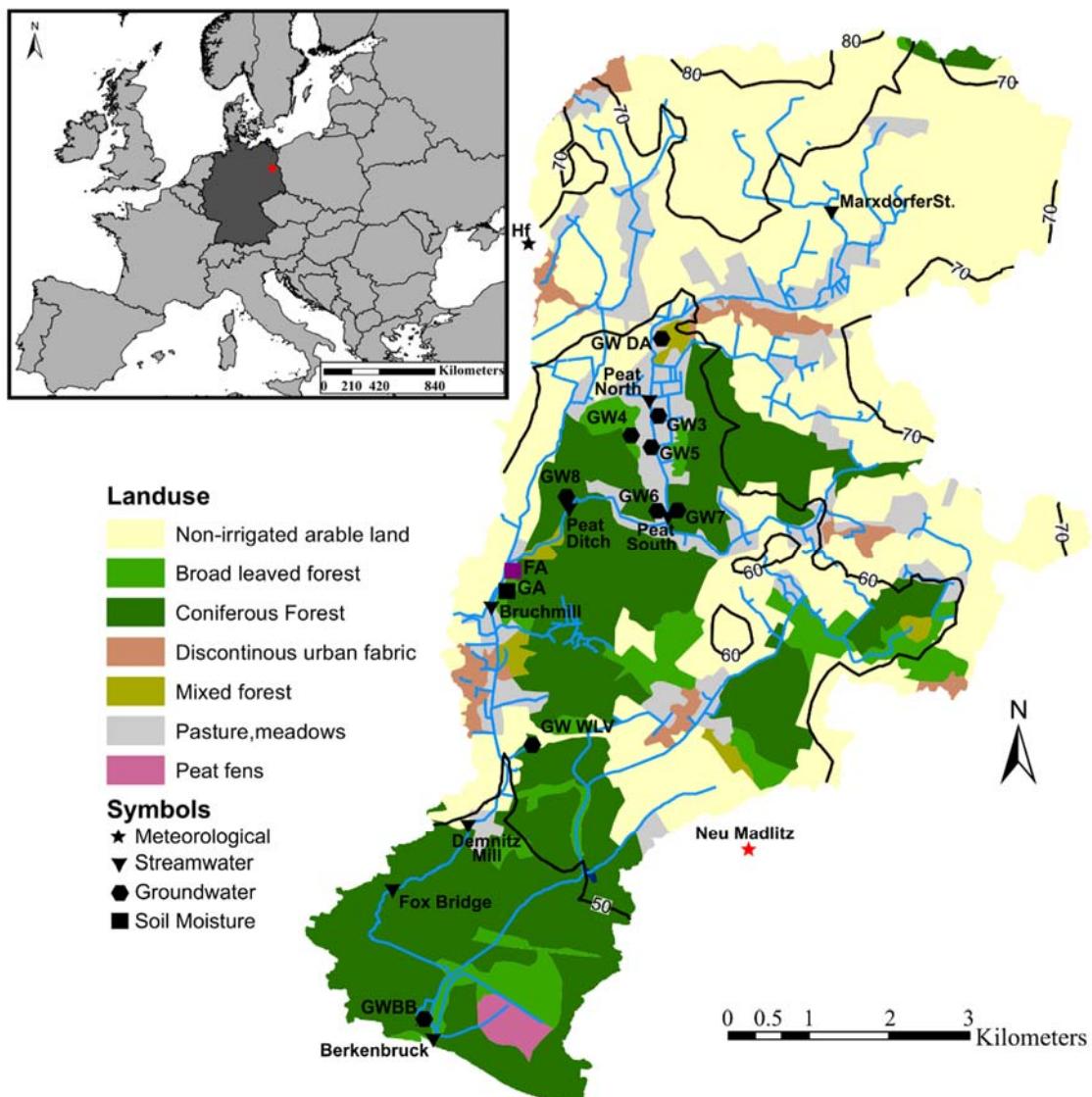
36 **1. Introduction**

37

38 Progress in scientific hydrology and provision of an evidence base for sustainable land and water
39 management are only possible due to detailed, long-term observational data collected from
40 experimental watersheds (Hewlett et al., 1969; Robinson et al., 2013). Such experimental
41 “outdoor laboratories” are invaluable scientific resources given the complexity of increasing
42 pressures on water supplies (e.g. Cosgrove and Loucks, 2015), land use change (Neill et al.,
43 2021) and the uncertain effects and non-stationarity of projected climate change (Milly et al.,
44 2015).

45 Ecohydrology adopts an interdisciplinary approach to investigate links between the structure and
46 function of ecological systems and the partitioning, flux and storage of fresh water (Guswa et al.,
47 2020). Recent advances in monitoring and modeling have created manifold opportunities to
48 address urgent ecohydrological questions on the importance of links between processes across
49 the critical zone (CZ) - the dynamic, life-sustaining near-surface of the terrestrial earth that
50 extends between the top of vegetation canopies, through the soil and into groundwater (Grant &
51 Dietrich, 2017). Within the CZ concept, vegetation plays a central and dynamic role in partitioning
52 incoming precipitation into “blue water” fluxes (streamflow generation and groundwater recharge)
53 and “green water” fluxes which maintain vegetation growth (Evaristo et al., 2015).

54 To enhance ecohydrological process understanding in catchment systems, robust, multi-scale
55 integrated data sets are required (Tetzlaff et al., 2021). In this regard, water stable isotopes and
56 other tracers can help identify sources and pathways of water in the landscape and across the
57 CZ to elucidate how different land use affects water partitioning between green and blue water
58 fluxes (Dubbert and Werner, 2019; Tetzlaff et al., 2015). Importantly, water stable isotopes have
59 enhanced the characterization of the celerity of hydrological fluxes in different CZ compartments,
60 as well as quantifying the velocity of water particles and associated mixing relationships in the
61 subsurface (Benettin et al., 2015; Birkel et al., 2011). Evaluating the dynamic relationships
62 between water storage changes and fluxes is fundamental to understanding how catchments
63 respond to hydroclimate perturbations, such as anomalous dry or wet periods, or abrupt land use
64 conversion. This provides a more nuanced and integrated understanding of how key
65 ecohydrological couplings may be at risk during long-term changes in blue and green water
66 partitioning resulting from climate and land use change (Orth and Destouni, 2018). Such
67 integrated understanding is important in the context of projected increases in air temperature,
68 aridity, and in precipitation patterns, which may cause more variability in water availability
69 threatening the sustainability of important ecosystem services (Okruszko et al., 2011). As an
70 increase in drought frequency and severity is expected across Europe as the 21st century
71 progresses, the development of effective and evidence-based amelioration measures to underpin
72 sustainable and integrated land and water management policies for changing climatic conditions
73 is urgently needed (Samaniego et al., 2018).


74 Consequently, integrated ecohydrological and stable isotope data sets targeted at understanding
75 the effects of different types of environmental change have outstanding potential, not least
76 because interdisciplinary environmental research tends to give unanticipated insights (Burt,
77 1994). Such integrated data streams allow identification and quantification of the linkages
78 between rainfall, soil moisture, groundwater and runoff generation, facilitating deeper
79 understanding of flood and drought risk in different types of landscapes and under different land
80 use management (Huntingford et al., 2014).

81 Water resources in the extensive, glacially formed, lowland landscape of northern Europe,
82 including the North German Plain sustain food production (Gutzler et al., 2015; Barkmann et al.,
83 2017) and water supplies to large cities like Berlin. Interestingly, such lowland catchments are still
84 relatively understudied compared to more upland headwater landscapes with stronger
85 topographic controls on drainage of surface and subsurface water (Devito et al., 2005). In low
86 elevation catchments across the North German Plain, streams are usually groundwater-
87 dominated, but the temporal and spatial heterogeneities in the hydrological functioning of these
88 catchments are still not fully understood (Boulton and Hancock, 2006). For example, there is still
89 a limited evidence base for quantifying how drought affects groundwater recharge and stream
90 flow generation in lowland areas in Central Europe, including the cessation of flow during the
91 summer (Germer et al., 2011).

92 To help address these knowledge gaps, here, we present a comprehensive set of ecohydrological
93 hydrometric and stable water isotope data of two years for the Demnitzer Mill Creek catchment,
94 Northeast Germany. The data set is unique in its integrative characteristics; that the different
95 compartments of the CZ were sampled across a mesoscale catchment in terms of their isotopic
96 signature and supporting ecohydrological data. By coincidence, these first two years, of what will
97 be a long-term study, captured the changing impacts of a prolonged drought period (2018-2020)
98 with a strong negative rainfall anomaly that became the most severe regional drought so far in
99 the 21st century (Kleine et al., 2021a). The data allow the effects of droughts (and their
100 persistence) on water storage, fluxes and age dynamics in the CZ to be investigated (Smith et al.,
101 2022). Our objective here is to provide this high spatio-temporal resolution ecohydrological
102 dataset to improve understanding of the storages and flow pathways of both blue and green water
103 across processes at the larger catchment scale in lowland catchments. We are continuing these
104 observations to assess long-term climatic trends at this drought sensitive region of Northeast
105 Germany, which is characterized by high water losses due to evapotranspiration and poor water
106 retention in the widespread sandy soils (Smith et al., 2021). Further, these data can potentially be
107 used to understand the hydrologic functioning of other drought sensitive regions beyond northeast
108 Germany.

109
110

111 2. Site description
112
113
114

115
116 **Figure 1: The Demnitzer Mill Creek catchment and its location within Europe and**
117 **Germany. Measurement types are indicated in the legend, with red indicating no isotope**
118 **measurements, black and purple indicating isotope measurements, and purple**
119 **additionally indicating sap flow and sap isotope measurements. Meteorological**
120 **measurements at Neu Madlitz were conducted by the German Weather service (DWD**
121 **Deutscher Wetterdienst).**
122
123

124 **Table 1** - Overview of the properties of the Demnitzer Millcreek catchment at the catchment
 125 outlet. Overview includes physiological characteristics, landuse, and geology.

Area (km2)	66.39	Topographic Relief (m)	50.23
Runoff Ratio	0.10	Mean Slope (%)	1.98
Landuse (%)		Geology (%)	
Mixed Forest	1.0	Base moraine	35.5
Conifer Forest	29.2	End moraine	2.3
Broadleaf Forest	6.0	Deposits of glacial valleys	6.9
Peat	0.7	Peat Fen	5.9
Pasture	10.2	Periglacial/fluvial deposits	16.3
Agricultural/arable land	50.4	Glacial/fluvial deposits	31.1
Urban	2.5	Sandy peat fen	2.0

126
 127 The data presented here were monitored in the Demnitzer Millcreek catchment (DMC) located in
 128 NE Germany (52°23'N, 14°15'E; Figure 1). The DMC is a lowland drought-sensitive area south
 129 east of Berlin, the German capital, and situated in the North German Plain. The region has high
 130 socio-economic significance through the provision of numerous ecosystem services; including
 131 food security, timber production, groundwater recharge and river flow generation which sustains
 132 drinking water supplies for Berlin (Kleine et al., 2021a). The original motivation behind establishing
 133 DMC as an observatory in 1990 was to investigate the impact of agricultural pollutants on surface
 134 water quality (Gelbrecht et al., 2000, 2005).

135 The hydroclimate is temperate with warm, humid summers (Kottek et al., 2006). Mean annual
 136 precipitation and air temperature are 567 mm yr⁻¹ and 9.6°C, respectively (DWD, 2020, for 2006-
 137 2015). Seasonal contrasts are characterized by higher summer precipitation, mainly from high
 138 intensity, convective events; and slightly lower precipitation during frequent, frontal rainfall events
 139 in winter. The landscape was shaped by the last glaciation (Weichselian); soils are predominantly
 140 sandy and formed on glacial and fluvial deposits (Kleine et al., 2021b). The catchment is
 141 dominated by groundwater and likely had little surface runoff before human intervention.
 142 Previously, numerous peat fens and freshwater lakes in hollows existed, but these were drained
 143 during a long history of anthropogenic management (Nützmann et al., 2011). Land use is currently
 144 dominated by farming and forestry (Kleine et al., 2020; Smith et al., 2020c). The catchment is also
 145 relatively sparsely populated, and has recently experienced recolonization of beaver (Smith et al.,
 146 2020a), wolf (Vogel, 2014) and even sporadic sighting of elk (Martin, 2014).

147 Maintenance of crucial ecosystem services in the landscape is dependent on sufficient seasonal
 148 precipitation input to sustain adequate soil moisture levels in the rooting zone to support crop and
 149 tree growth (Drastig et al., 2011); and acceptable groundwater recharge to sustain groundwater-
 150 surface water exchanges. However, high water losses due to evapotranspiration (~ 90 % of total
 151 precipitation), particularly from forested areas and poor water retention in the widespread sandy
 152 soils (Smith et al., 2021), result in catchment drought sensitivity (Kleine et al., 2020). Further,
 153 increased flow disconnections and fragmentation of the stream network occurs during droughts
 154 (Kleine et al., 2021a; Smith et al., 2021).

155

156 **3. Data and instrumentation overview**

157 **3.1 Instrumentation overview**

158 A fully automatic weather station (AWS) was installed and has been operated in Hasenfelde (Hf,
159 Figure 1) since April 2018, including net radiation, air temperature, relative humidity, precipitation
160 and ground heat flux every 15-minutes. Weekly cumulative precipitation was additionally collected
161 at four locations nested from north to south in the catchment: Marxdorfer St., Demnitz Mill,
162 Bruchmill, and Berkenbruck (Figure 1&2) from July 2018 to April 2020. Throughfall was collected
163 under the canopy at Forest A at five locations (Forest A1-5) within a 10 m square fenced area.
164 Throughfall was collected using standard rain gauges (Rain gauge kit, S. Brannan & Sons, Cleator
165 Moor, UK; <https://doi.org/10.18728/igb-fred-813.1>)

166 Soil moisture and temperature profiles were established at Forest A (FA) and Grass A (GA) in
167 June 2018 with 18 sensors per site (SMT-100, Umwelt-Geräte-Technik GmbH, Müncheberg,
168 Germany). The sensors were distributed equally at soil depths of 20, 60, and 100cm at each site
169 (i.e. three sensors per depth), measuring every 15-minutes (<https://doi.org/10.18728/igb-fred-813.1>).

171 Sap flow measurements were established in 12 trees at Forest A including Scots Pine (*Pinus*
172 *sylvestris*), European Oak (*Quercus robur*), common hazel (*Corylus avellana*), and Red Oak
173 (*Quercus rubra*). Measurements were conducted using 2-4 radially installed thermal dissipation-
174 based sap flow sensors (TDP probes, Dynamix Inc., Houston, TX, USA). Sap flow measurements
175 were recorded every 15 minutes (<https://doi.org/10.18728/igb-fred-813.1>). Sensors were installed
176 at approximately 1.3 m above ground. The tree diameter was also measured at this height (DBH;
177 mean: 76 cm; SD: 35 cm). All sensors consisted of two thermometers installed in the sapwood in
178 4 cm vertical distance from each other and were shielded from external sources of temperature
179 change (e.g. radiation). The upper thermometer was heated and differences in temperature were
180 collected hourly with a CR1000 data logger (Campbell Scientific, USA). The temperature
181 difference was used to calculate flux velocity and combined with the sapwood area to calculate a
182 flux rate. Conditions of zero transpiration were determined from daily maximum temperature
183 differences. The resulting flux rate per unit sapwood area was adjusted to the plot using a ratio of
184 sapwood area to forest area that was established with ten trees. More details can be found in
185 Kleine et al., (2020).

186 Stream water level was established at four locations within the catchment; Peat North, Bruchmill,
187 Demnitz Mill, and Berkenbruck (<https://doi.org/10.18728/igb-fred-813.1>). Water level
188 measurements were established by IGB Leibniz Institute of Freshwater Ecology and Inland
189 Fisheries and recorded with divers at Peat North, Demnitz Mill, and at Bruchmill ((Micro 10m and
190 Baro divers, Van Essen Instruments). The divers utilized at each site include an internal
191 atmospheric pressure correction. Water level measurements began at Demnitz Mill in 1986, and
192 in January and June 2018 for Peat North and Bruchmill, respectively. Water level has been
193 recorded since 1982 at Berkenbruck using pressure transducers and was established and

194 collected by the Landesamt fur Umwelt. Channel stability at Demnitz Mill and Berkenbruck has
195 permitted rating curve development to translate water level measurements to discharge.
196 Groundwater level divers were installed at five locations throughout the catchment in 2001 (GW3,
197 GW4, GW5, GW7, and GW8) (Figure 1&2). Groundwater level at each site was measured every
198 four hours with an AquiLite ATP-10 diver (AquiTronic Umweltmeßtechnik GmbH, Kirchheim/Teck,
199 Germany) with internal correction for atmospheric pressure ([https://doi.org/10.18728/igb-fred-
200 813.1](https://doi.org/10.18728/igb-fred-813.1)).

201
202 **3.2 Isotope sampling overview**
203 A modified autosampler (ISCO 3700, Teledyne Isco, Lincoln, USA) was installed nearby the AWS
204 to collect daily samples of precipitation for water stable isotope analysis. Daily stream water
205 samples for stable water isotope analysis were collected at Bruchmill from an autosampler (ISCO
206 3700, Teledyne Isco, Lincoln, USA), which was established in December 2018
207 (<https://doi.org/10.18728/igb-fred-813.1>). Manual sampling from different locations and different
208 water cycle / landscape compartments supplemented the autosamplers installed for precipitation
209 at Hasenfelde and for stream water at Bruchmill. Samples were taken from the weekly cumulative
210 precipitation and throughfall (Forest A) for each location (Figure 2). Further, monthly samples of
211 soil water were taken at 6 depths (2.5, 7.5, 15, 30, 60, 90 cm) in triplicate for Forest A and Grass
212 A. This was complemented by synoptic, spatially distributed sampling of the upper 30cm in 2019.
213 Samples were placed in a sterile zip-lock bag (CB400-420siZ, Weber Packaging GmbH,
214 Güglingen, Germany) and analyzed using the direct water vapour equilibrium method (Wassenaar
215 et al., 2008). Weekly grab samples of stream water were taken at all nested stream water
216 locations (eight locations; Fig 1.). Groundwater isotopes were sampled at six groundwater wells
217 (GW3, GW8, GW DA, GW6, GW WLV, GW BB). Vegetation isotopic sampling was conducted by
218 taking twig samples from different vegetation in Forest A and samples of the non-green stem of
219 the grass at site Grass A. Vegetation samples were stored at -20°C after sampling until analysis.
220 Reference for all isotope samples is <https://doi.org/10.18728/igb-fred-813.1>.

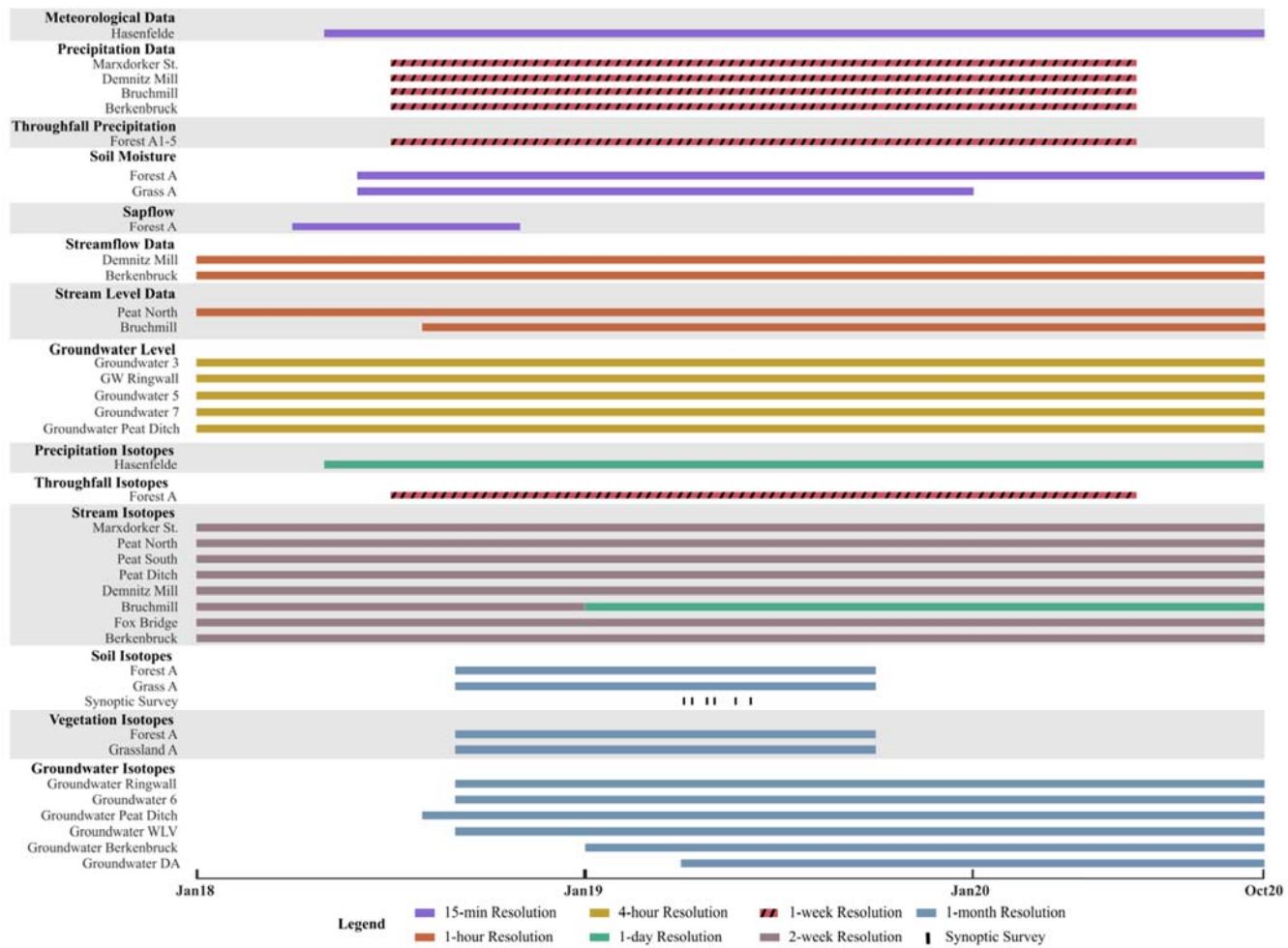
221 A layer of paraffin was added to the bottom of all autosampler containers to prevent evaporation
222 and fractionation from collected water. Autosamplers are emptied each week. Collected weekly
223 precipitation, throughfall, stream water, and groundwater were sealed and refrigerated until
224 isotopic analysis (usually within one week).

225 All liquid water samples (isotopes in precipitation P_{iso} , in throughfall THR_{iso} , in streamwater Q_{iso} ,
226 in groundwater GW_{iso}) were filtered (0.2 μ m, cellulose acetate, Lab Logistics Group GmbH,
227 Meckenheim, Germany) and cooled before being analyzed using Cavity Ring-Down
228 Spectroscopy (CRDS, L2130-i, Picarro, Inc., CA, USA). Additionally, the CRDS was used for the
229 analysis of soil water extracted via the direct liquid water equilibrium method. Vegetation samples
230 were extracted in January 2020 using the cryogenic extraction method given in Dubbert et al.
231 (2013, 2014) and analyzed with the CRDS. For all CRDS analysis, we used four standards for a
232 linear correction function and standards of the International Atomic Energy Agency (IAEA) for

233 calibration. After quality-checking and averaging multiple analyses for each sample, the results
234 were expressed in δ -notation with Vienna Standard Mean Ocean Water (VSMOW). Analytical
235 precision was 0.05 ‰ standard deviation (SD) for $\delta^{18}\text{O}$ and 0.14 ‰ SD for δD . To screen for
236 interference from organics, the ChemCorrect Software (Picarro, Inc.) was applied and
237 contaminated samples discarded. Liquid samples were injected six times and the first three
238 injections discarded.

239
240

241 **Table 2 – Overview of site locations in DMC, including site name, coordinates, data**
 242 **collected, start and end dates, and resolution. N/A indicates not applicable, P is**
 243 **precipitation, GW is groundwater level, THR is throughfall, Ts is soil temperature, va is**
 244 **wind speed/direction, Ta is air temperature, Pa is air pressure, RH is relative humidity,**
 245 **NR is net radiation, Sap is sap flow, and subscript iso indicates isotopic sampling. AWS**
 246 **indicates measurements of P, va, Ta, Pa, RH, and NR**


Site Name	ID	Location (UTM 33N)		Data Type	Installation/Start Date	Discontinued/End Date	Resolution		
		Latitude	Longitude				Temporal	Spatial	
Marxdo rfer St.	Marxdo rfer St.	5810076	449773	P	Jul 9, 2018	Jun 2, 2020	Weekly	N/A	
				P _{iso}					
				Q _{iso}	Jan 10, 2018	N/A			
				T _s	Aug 16, 2019	Jul 11, 2020	15-min	5cm	
Hasenf elde	Hf	5809705	446068	P	Mar 17, 2018	N/A	15-min	2m	
				P _{iso}	Jul 12, 2018		Daily	N/A	
				V _a	Mar 17, 2018		15-min	2m	
				T _a					
				P _a					
				RH					
				NR					
				T _s	Aug 16, 2019	Jul 11, 2020		5cm	
Ground water DA	GW DA	5808335	447527	GW _{iso}	Apr 16, 2019	N/A	Monthly	N/A	
Peat North	PN	5807703	447474	Q _{iso}	Jan 10, 2018		Weekly		
Ground water 3	GW3	5807499	447582	GW	Jan 10, 2001		4-hour		
Ground water Ringwa II	GW4	5807247	447233	GW	Feb 22, 2001		4-hour		
Ground water 5				GW _{iso}	Sep 11, 2018		Monthly		
Peat Ditch	Peat Ditch	5806364	446487	Q _{iso}	Mar 21, 2018		4-hour		
Ground water Peat Ditch	GW8	5806320	446488	GW	Jan 10, 2001		Weekly		
Ground water 7				GW _{iso}	Aug 15, 2018		4-hour		
Ground water 6	GW6	5806274	447678	GW _{iso}	Sep 11, 2018		Monthly		
Peat South	Peat South	5806262	447712	Q _{iso}	Jan 10, 2018	N/A	4-hour	N/A	
Forest A	FA			T _s	Aug 16, 2019	Jul 11, 2020	Monthly	5cm	
				Sap	Apr 21, 2018	Nov 1, 2018	15-min	12 Trees	
				SM	Jun 15, 2018	N/A		6 sites, 20, 60, 100cm depths	

				SM _{iso}	Oct 18, 2018	Jul 16, 2019	Monthly	N/A	
				THR	Jul 11, 2018	May 19, 2020	Weekly	5 sites	
				THR _{iso}					
				T _s	Jun 15, 2018	N/A	15-min	6 sites, 20, 60, 100cm depths	
Grass A	GA	5805125	445495	SM	Jun 15, 2018	Jan 7, 2020	15-min	6 sites, 20, 60, 100cm depths	
				SM _{iso}	Oct 18, 2018	Jul 16, 2019	Monthly	N/A	
				T _s	Jun 15, 2018	Jan 7, 2020	15-min	6 sites, 20, 60, 100cm depths	
Bruchm ill	Bruchm ill	5805088	445459	P	Jul 9, 2018	Jun 2, 2020	Weekly	N/A	
				P _{iso}					
				Q _{iso}	Jan 10, 2018 (weekly) Dec 28, 2018 (daily)	Dec 28, 2018 (weekly)	Weekly / Daily		
Ground water WLV	GW WLV	5803322	445982	GW _{iso}	Sep 20, 2018	N/A	Monthly		
Demnit z Mill	Demnit z Mill	5802298	445188	P	Jul 9, 2018	Jun 2, 2020	Weekly		
				P _{iso}					
				Q	Feb 22, 2011	N/A	4-hour		
				Q _{iso}	Jan 10, 2018		Weekly		
Fox Bridge	Fox Bridge	5801469	444189	Q _{iso}	Jan 10, 2018	N/A	Weekly	N/A	
Ground water Berken bruck	GW BB	5799862	444611	GW _{iso}	Jan 21, 2019		Monthly		
Berken bruck	Berken bruck	5799604	444737	P	Jul 9, 2018	Jun 2, 2020	Weekly		
				P _{iso}					
				Q	Nov 1, 1982	N/A	Daily		
				Q _{iso}	Jan 10, 2018		Weekly		
				T _s	Aug 16, 2019	Jul 11, 2020	15-min	5cm	

247

248

249

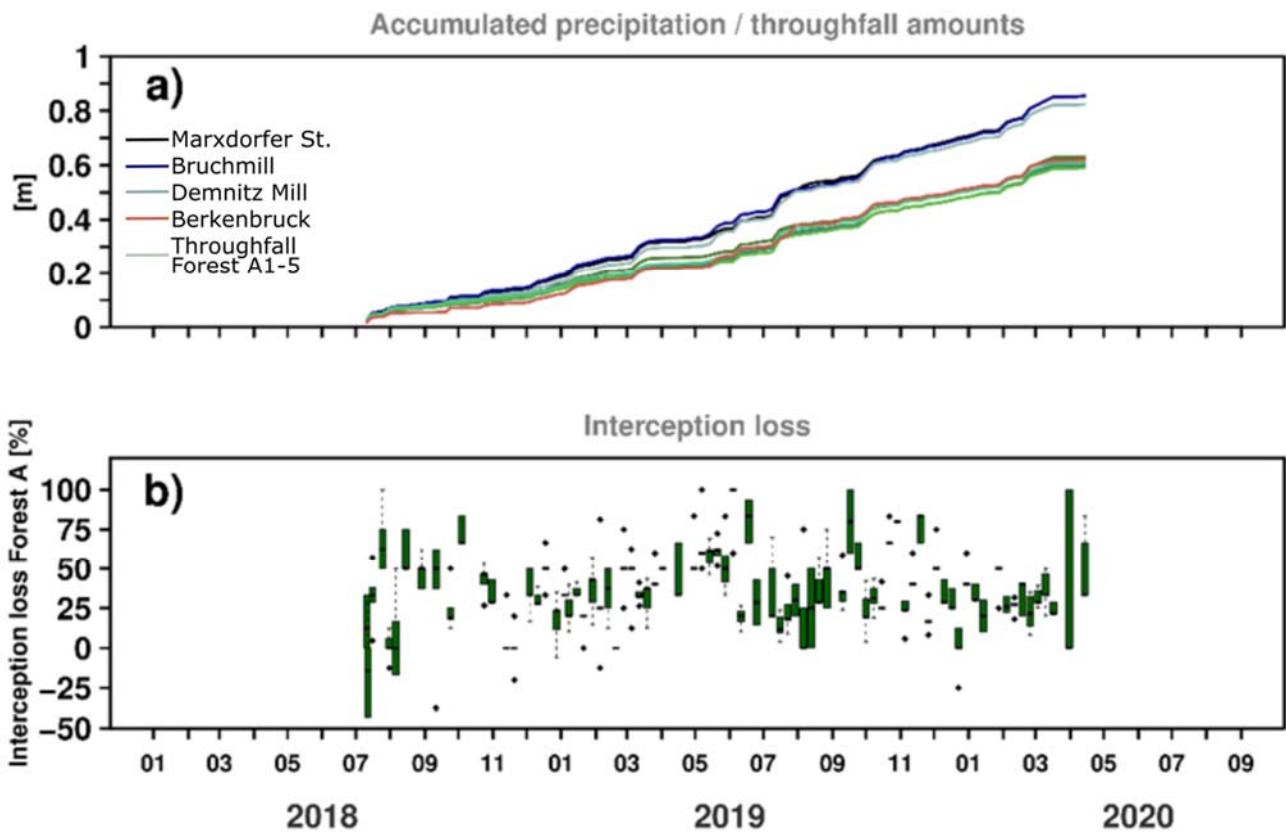
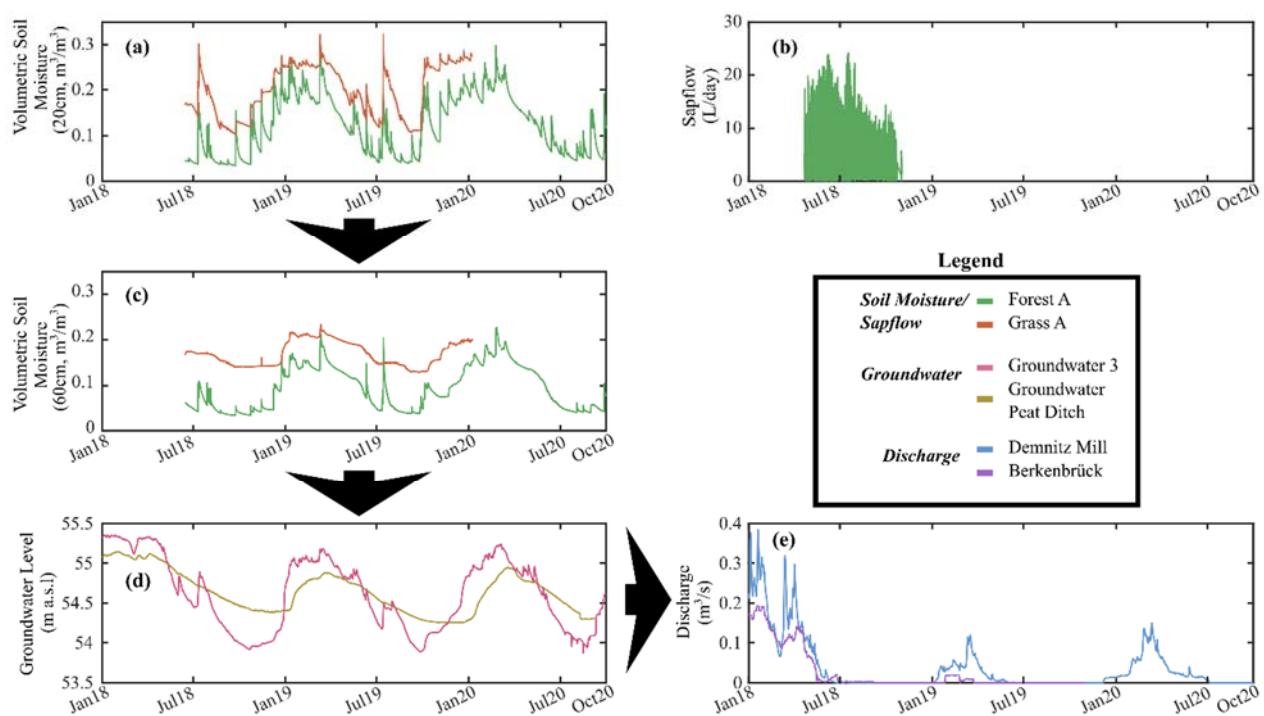

250
251
252
253
254

Figure 2: Measurement period for each parameter at each site and temporal resolution (colour code) of the measurements within the Demnitzer Millcreek Catchment including meteorological, soil, vegetation, stream, and groundwater hydrological and isotope data sets.

255 **4. Precipitation and throughfall data**

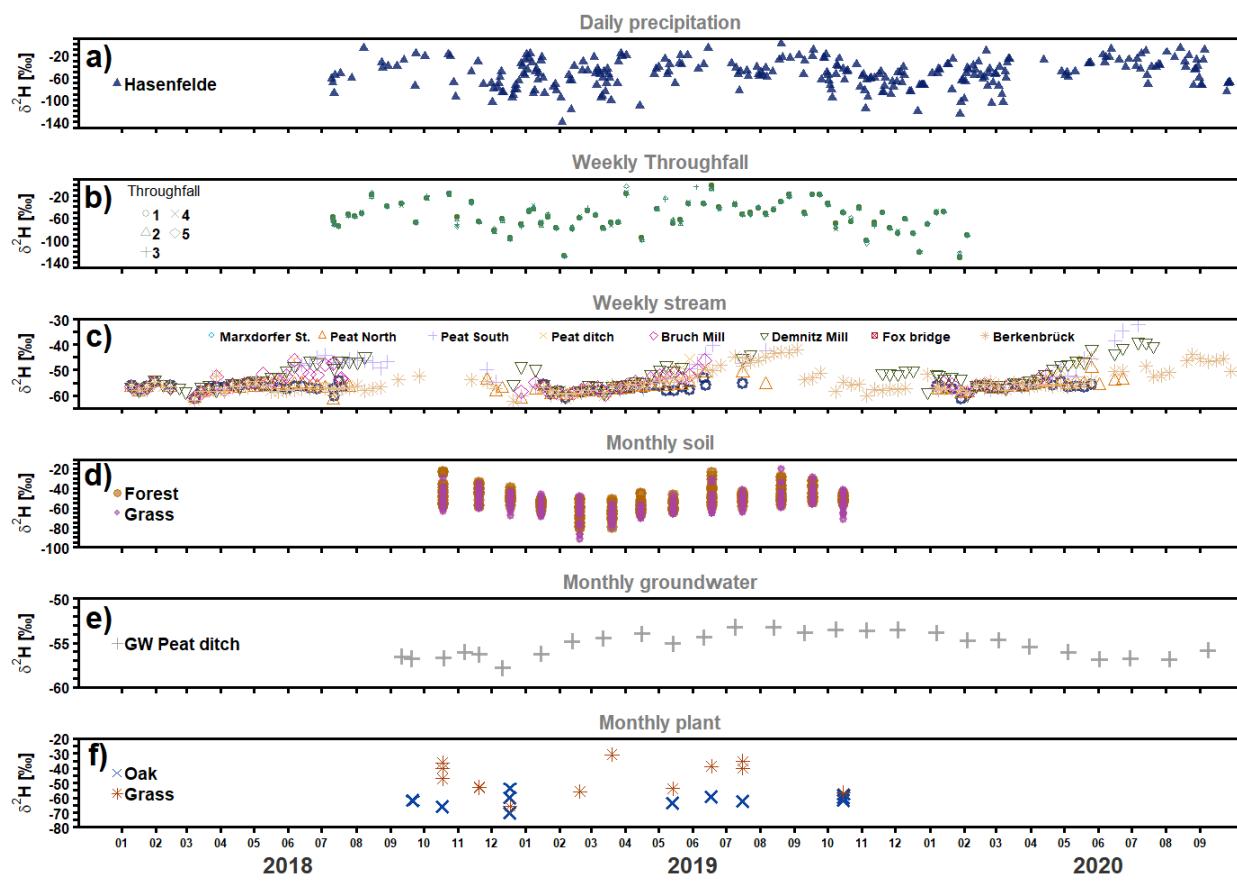
256

257 Monitoring for precipitation commenced in the 2018 summer drought when low rainfall inputs
258 continued through the following winter (Figure 3a). Large rainfall events (>20 mm/d) were
259 relatively rare and mostly summer convectional storms. Even by summer 2020, most months had
260 below average rainfall. Throughfall at the Forest A site typically was 70-90 % of incident rainfall,
261 with higher interception losses in low intensity summer storms and lowest in winter or high
262 intensity summer storms. Heterogeneity in throughfall was marked (Figure 3b), emphasizing the
263 importance of the forest canopy in redistributing net rainfall to the forest floor.

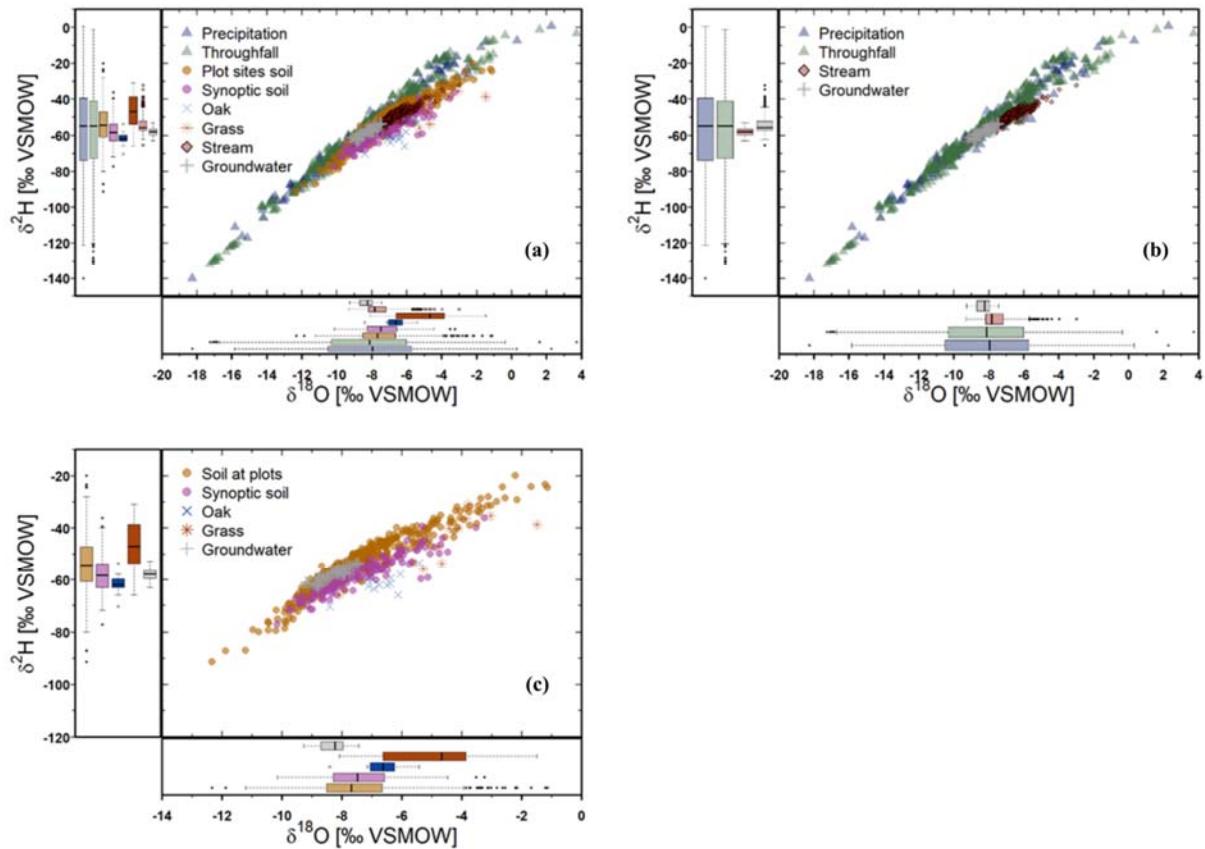


264

265 **Figure 3: (a) Cumulative precipitation and throughfall at multiple locations throughout**
266 **the catchment. Throughfall was collected weekly at Forest A with (b) five samplers (1-5)**
267 **distributed throughout the 10m square fenced region. Precipitation at Bruchmill (nearby)**
268 **was used as to calculate weekly interception loss.**


269 **5. Catchment hydrological data**

270 Rainfall fluxes mostly drove short term soil moisture variations (Figure 4a, c); which were more
 271 responsive in the upper soil layers (at 20 cm) than deeper layers. There was higher variability in
 272 volumetric soil moisture under forested land cover, where soils are sandier, more structured and
 273 effective rainfall is lower due to interception losses. Seasonality in evapotranspiration (usefully
 274 indexed by sapflow in Figure 4b) modulated the effects of rainfall on soil moisture storage.
 275 Seasonal soil moisture dynamics also governed groundwater recharge and variation in
 276 groundwater levels, which had an annual range of ~1.5 m at well G3 and ~1m at the peat ditch
 277 well (Figure 4d). Despite clear winter recharge and spring drawdown in each well, peak winter
 278 and summer levels were lower in 2019 and still in 2020 despite a slight recovery compared to
 279 2018 indicating the cumulative “memory effects” of the drought. This was also evident in the
 280 stream hydrograph with very low discharge peaks in 2019 and 2020, which also had prolonged
 281 periods where flow ceased in the summer, particularly at Berkenbrück. Thus, winter soil moisture
 282 replenishment was insufficient to match long-term groundwater recharge. These different
 283 correlations underline the added value of simultaneous data from long-term study sites on
 284 transpiration, soil water, groundwater and stream flow as droughts develop (Smith et al., 2022).
 285



286
 287
 288 **Figure 4: (a) Shallow soil moisture, (b) sapflow, (c) deep soil moisture, (d) groundwater**
 289 **levels and (e) discharge within the Demnitzer Millcreek catchment. Arrows show**
 290 **connections between layers and fluxes. *Groundwater 3 is within the wetland and**
 291 **Groundwater Peat Ditch is outside the wetland (near Forest A and Grass A, Fig. 1).**

292 **6. Stable water isotopes**
293 Stable water isotope signatures in precipitation showed high day-to-day variability superimposed
294 on strong seasonality; with more depleted values in winter and more enriched values in summer
295 (Fig 5a). Interestingly, weekly throughfall signatures were very similar to the (weekly and daily)
296 precipitation signal showing no strong signs of evaporative fractionation during canopy storage
297 (Fig 5b). This likely reflects the high intensity nature of most summer rainfall, which affords limited
298 opportunity for canopy evaporation. Streamwater signatures at all nested sites showed similar
299 seasonality but much more damping in the signal (Fig. 5c). Groundwater was most damped, and
300 similar in composition to streamflow during winter (Fig 5d). In summer, sites downstream of
301 Marxdorfer Strasse showed evidence of evaporative fractionation from either the channel network
302 or riparian soils and plotted below the meteoric water line before stream flow ceased. Monthly soil
303 water samples showed higher variability in isotopic composition under forest than under grass,
304 mainly reflecting soil characteristics with more retentive, loamy and wetter soils at the grassland
305 site buffering the effects of rainfall inputs. At both sites, seasonal variation in isotopic composition
306 tracked precipitation, though in deeper soil, the isotopic signal was more damped. Vegetation
307 samples from the oaks showed higher variation than from grass.
308

311 **Figure 5: Time series of deuterium ($\delta^2\text{H}$) in (a) precipitation, (b) throughfall (Forest A), (c)
312 stream water, (d) soil water, (e) groundwater and (f) plant samples at various locations in
313 the catchment.**

316

317 **Figure 6: Dual isotope space ($\delta^2\text{H}$ - $\delta^{18}\text{O}$) plots for (a) all measured isotopic datasets, (b)**
 318 **precipitation, throughfall, stream, and groundwater, and (c) soil (multiple depths),**
 319 **synoptic soil survey (upper 30cm), vegetation, and groundwater.**

320

321 Differences in the isotope dynamics of different critical zone compartments are shown in dual
 322 isotope space in Figure 6a. The damping of precipitation in groundwater and streamflow is
 323 apparent, as is the fractionation of more enriched summer stream flow samples (Figure 6b). The
 324 role of the soil in partitioning water is apparent from the overlap between deeper soil horizons and
 325 groundwater which were both more weighted to winter precipitation – when recharge is greatest
 326 (Fig 6c). Xylem water in oaks and grass tended to show the effects of fractionation, which was
 327 most marked in the oaks and may point to different soil water sources of root uptake.

328 **7. Data availability**
329 All data presented in this paper are available from the IGB open data repository FRED with
330 detailed metadata (<https://doi.org/10.18728/igb-fred-813.1>; Tetzlaff et al., 2023) and contact
331 information for any further questions. There is a readme section per each dataset. We also
332 included a digital elevation model, shapefile of the catchment boundary and the station locations.
333

334 **8. Summary**
335 The integrated data set presented in this paper is unique because: (1) it captures complicated
336 ecohydrological dynamics over two years during an exceptional drought (in 2018/2019) in Central
337 Europe; (2) the different compartments of the critical zone were monitored through stable water
338 isotope data and complimentary ecohydrological data for contrasting land use and (3) multi-scale,
339 nested catchment time series were derived. In total data from 49 time series / data sets are
340 available. The data are quality controlled. We included meteorological data and precipitation and
341 throughfall amount. Catchment response data include stream discharge at the catchment outlet
342 and another nested site, and stream level data at two further sites; soil moisture from multiple
343 depths at two locations (two different landuses), groundwater level data at five locations and
344 sapflow measurements from one forest location. Stable water isotope data include precipitation
345 water, throughfall, streamwater at eight sites, soil water isotopes from two sites plus spatially
346 distributed samples of upper soils, vegetation samples at two locations and groundwater at six
347 locations. Data continue to be collected and updated data sets will be published based on
348 available resources.
349 As such, these data provide an excellent, integrated ecohydrological perspective on the drought
350 response of a lowland agricultural landscape. Such data are of course important in their own right,
351 but are equally invaluable for challenging environmental models as constraints on internal model
352 function that can be used to increase confidence in the use of models in projecting the impacts of
353 future change. Integrated data like the ones summarised here are also important for a range of
354 scientific questions that are growing in importance as the effects of climate change become more
355 apparent. These include understanding how do droughts develop and propagate through
356 components of hydrological systems and compartments of the critical zone? What are the effects
357 of land cover on this propagation and how does it affect water cycling in vegetation? How long
358 does recovery of different system components take once rainfall anomalies become positive?
359 How resilient are different critical zone compartments or entire landscapes against climate
360 extremes such as droughts? Hopefully, this data set will be used by scientists to increase
361 understanding on critical issues such as what are the water footprints of alternative land uses and
362 how can these be reduced whilst maintaining societal needs. This will help to contribute to the
363 development of more sustainable and resilient land and water management policies that will be
364 needed in the face of increased longevity and frequency of droughts.
365

366 **Author contributions:** AS and LK prepared the data sets. Datasets were collected by LK and
367 JF. Isotope data were analysed by DD. DT, CS, AS prepared the manuscript with contributions
368 from all co-authors.

369

370 **Competing interests:** The authors declare that they have no conflict of interest.

371

372 **Disclaimer:** any reference to specific equipment types or manufacturers is for informational
373 purposes and does not represent product endorsement. IGB is an equal opportunity provider.

374

375 **Acknowledgements:**

376 We acknowledge the BMBF (funding code 033W034A) which supported the stable isotope
377 laboratory at IGB. Funding for DT was also received through the Einstein Research Unit
378 "Climate and Water under Change" from the Einstein Foundation Berlin and Berlin University
379 Alliance (grant no. ERU-2020- 609). We also thank colleagues from the Finck Foundation
380 (www.finck-stiftung.org) Benedict Boesel and Max Kuester for the trustful collaboration, for
381 providing access to the study sites

382

383 **References:**

384

385 Barkmann, T., Siebert, R., & Lange, A. (2017). Land-use experts' perception of regional climate
386 change: An empirical analysis from the North German Plain. *Climatic Change*, 144(2), 287–
387 301. <https://doi.org/10.1007/s10584-017-2041-x>

388 Benettin, P., Bailey, S. W., Campbell, J. L., Green, M. B., Rinaldo, A., Likens, G. E., McGuire, K.
389 J., & Botter, G. (2015). Linking water age and solute dynamics in streamflow at the Hubbard
390 Brook Experimental Forest, NH, USA. *Water Resources Research*, 51(11), 9256–9272.
391 <https://doi.org/10.1002/2015WR017552>

392 Birkel, C., Tetzlaff, D., Dunn, S. M., & Soulsby, C. (2011). Using lumped conceptual rainfall–
393 runoff models to simulate daily isotope variability with fractionation in a nested mesoscale
394 catchment. *Advances in Water Resources*, 34(3), 383–394.
395 <https://doi.org/10.1016/j.advwatres.2010.12.006>

396 Boulton, A. J., Hancock, P. J., Boulton, A. J., & Hancock, P. J. (2006). Rivers as groundwater-
397 dependent ecosystems: A review of degrees of dependency, riverine processes and
398 management implications. *Australian Journal of Botany*, 54(2), 133–144.
399 <https://doi.org/10.1071/BT05074>

400 Burt, T. P. (1994). Long-term study of the natural environment—Perceptive science or mindless
401 monitoring? *Progress in Physical Geography: Earth and Environment*, 18(4), 475–496.
402 <https://doi.org/10.1177/030913339401800401>

403 Cosgrove, W. J., & Loucks, D. P. (2015). Water management: Current and future challenges
404 and research directions. *Water Resources Research*, 51(6), 4823–4839.
405 <https://doi.org/10.1002/2014WR016869>

406 Devito, K., Creed, I., Gan, T., Mendoza, C., Petrone, R., Silins, U., & Smerdon, B. (2005). A
407 framework for broad-scale classification of hydrologic response units on the Boreal Plain: Is
408 topography the last thing to consider? *Hydrological Processes*, 19(8), 1705–1714.
409 <https://doi.org/10.1002/hyp.5881>

410 Drastig, K., Prochnow, A., Baumecker, M., Berg, W., & Brunsch, R. (2011). Agricultural Water
411 Management in Brandenburg. *DIE ERDE – Journal of the Geographical Society of Berlin*,
412 142(1–2), 119–140.

413 Dubbert, M., & Werner, C. (2019). Water fluxes mediated by vegetation: Emerging isotopic
414 insights at the soil and atmosphere interfaces. *New Phytologist*, 221(4), 1754–1763.
415 <https://doi.org/10.1111/nph.15547>

416 Evaristo, J., Jasechko, S., & McDonnell, J. J. (2015). Global separation of plant transpiration
417 from groundwater and streamflow. *Nature*, 525(7567), 91–94.
418 <https://doi.org/10.1038/nature14983>

419 Gelbrecht, J., Driescher, E., & Exner, H. J. (2000). Long-term investigations on nutrient input
420 from catchment of the brook Demnitzer Mühlenfließ and restoration measures to reduce
421 nonpoint pollution. In *Berichte des IGB* (Vol. 10, pp. 151–160). Institute Freshwater Ecology
422 and Inland Fisheries. <http://www.mendeley.com/documents/?uuid=e2bdb786-9532-4313-9dfb-17bc6f2c8e76>

423 Gelbrecht, J., Lengsfeld, H., Pöthig, R., & Opitz, D. (2005). Temporal and spatial variation of
424 phosphorus input, retention and loss in a small catchment of NE Germany. *Journal of
425 Hydrology*, 304(1), 151–165. <https://doi.org/10.1016/j.jhydrol.2004.07.028>

426 Germer, S., Kaiser, K., Bens, O., & Hüttl, R. F. (2011). Water Balance Changes and Responses
427 of Ecosystems and Society in the Berlin-Brandenburg Region – a Review. *DIE ERDE –
428 Journal of the Geographical Society of Berlin*, 142(1–2), 65–95.

429 Grant, G. E., & Dietrich, W. E. (2017). The frontier beneath our feet. *Water Resources
430 Research*, 53(4), 2605–2609. <https://doi.org/10.1002/2017WR020835>

431 Guswa, A. J., Tetzlaff, D., Selker, J. S., Carlyle-Moses, D. E., Boyer, E. W., Bruen, M., Cayuela,
432 C., Creed, I. F., van de Giesen, N., Grasso, D., Hannah, D. M., Hudson, J. E., Hudson, S. A.,
433 Iida, S., Jackson, R. B., Katul, G. G., Kumagai, T., Llorens, P., Lopes Ribeiro, F., ... Levia, D.
434 F. (2020). Advancing ecohydrology in the 21st century: A convergence of opportunities.
435 *Ecohydrology*, 13(4), e2208. <https://doi.org/10.1002/eco.2208>

436 Gutzler, C., Helming, K., Balla, D., Dannowski, R., Deumlich, D., Glemnitz, M., Knierim, A.,
437 Mirschel, W., Nendel, C., Paul, C., Sieber, S., Stachow, U., Starick, A., Wieland, R., Wurbs,
438 A., & Zander, P. (2015). Agricultural land use changes – a scenario-based sustainability
439 impact assessment for Brandenburg, Germany. *Ecological Indicators*, 48, 505–517.
440 <https://doi.org/10.1016/j.ecolind.2014.09.004>

441 Hewlett, J. D., Lull, H. W., & Reinhart, K. G. (1969). In Defense of Experimental Watersheds.
442 *Water Resources Research*, 5(1), 306–316. <https://doi.org/10.1029/WR005i001p00306>

443 Huntingford, C., Marsh, T., Scaife, A. A., Kendon, E. J., Hannaford, J., Kay, A. L., Lockwood,
444 M., Prudhomme, C., Reynard, N. S., Parry, S., Lowe, J. A., Screen, J. A., Ward, H. C.,
445 Roberts, M., Stott, P. A., Bell, V. A., Bailey, M., Jenkins, A., Legg, T., ... Allen, M. R. (2014).
446 Potential influences on the United Kingdom's floods of winter 2013/14. *Nature Climate
447 Change*, 4(9), 769–777. <https://doi.org/10.1038/nclimate2314>

448 Kleine, L., Tetzlaff, D., Smith, A., Wang, H., & Soulsby, C. (2020). Using water stable isotopes
449 to understand evaporation, moisture stress, and re-wetting in catchment forest and grassland
450 soils of the summer drought of 2018. *Hydrology and Earth System Sciences*, 24(7), 3737–
451 3752. <https://doi.org/10.5194/hess-24-3737-2020>

452 Kleine, L., Tetzlaff, D., Smith, A., Goldhammer, T., & Soulsby, C. (2021a). Using isotopes to
453 understand landscape-scale connectivity in a groundwater-dominated, lowland catchment
454 under drought conditions. *Hydrological Processes*, 35(5), e14197.
455 <https://doi.org/10.1002/hyp.14197>

456 Kleine L, Tetzlaff D, Smith A, Dubbert M, Soulsby C. (2021b) Modelling ecohydrological
457 feedbacks in forest and grassland plots under a prolonged drought anomaly in central
458 Europe 2018-2020. *Hydrological Processes*, <https://doi.org/10.1002/hyp.14325>

460 Kottke, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-
461 Geiger Climate Classification Updated. *Meteorologische Zeitschrift*, 15, 259–263.
462 <https://doi.org/10.1127/0941-2948/2006/0130>

463 Martin, I. (2014). Zum Vorkommen von Elchen (Alces alces) in Brandenburg. *Nationalpark-
464 Jahrbuch Unteres Odertal*, 11, 73–78.

465 Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier,
466 D. P., Stouffer, R. J., Dettinger, M. D., & Krysanova, V. (2015). On Critiques of “Stationarity is
467 Dead: Whither Water Management?” *Water Resources Research*, 51(9), 7785–7789.
468 <https://doi.org/10.1002/2015WR017408>

469 Neill AJ, Birkel C, Maneta MP, Tetzlaff D, Soulsby C. (2021) Structural changes to forests
470 during regeneration affect water flux partitioning, water ages and hydrological connectivity:
471 Insights from tracer-aided ecohydrological modeling. *Hydrology and Earth System Sciences
472 (HESS)*. <https://hess.copernicus.org/articles/25/4861/2021/>

473 Nützmann, G., Wolter, C., Venohr, M., & Pusch, M. (2011). Historical Patterns of Anthropogenic
474 Impacts on Freshwaters in the Berlin-Brandenburg Region. *DIE ERDE – Journal of the
475 Geographical Society of Berlin*, 142(1–2), 41–64.

476 Okruszko, T., Duel, H., Acreman, M., Grygoruk, M., Flörke, M., & Schneider, C. (2011). Broad-
477 scale ecosystem services of European wetlands—Overview of the current situation and
478 future perspectives under different climate and water management scenarios. *Hydrological
479 Sciences Journal*, 56(8), 1501–1517. <https://doi.org/10.1080/02626667.2011.631188>

480 Orth, R., & Destouni, G. (2018). Drought reduces blue-water fluxes more strongly than green-
481 water fluxes in Europe. *Nature Communications*, 9(1), 3602. [https://doi.org/10.1038/s41467-018-06013-7](https://doi.org/10.1038/s41467-
482 018-06013-7)

483 Robinson, M., J. C. Rodda, and J. V. Sutcliffe (2013), Long-term environmental monitoring in
484 the UK: Origins and achievements of the Plynlimon catchment study, *Trans. Inst. Br. Geogr.*,
485 38, 451–463, doi:10.1111/j.1475-5661.2012.00534

486 Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink, M., Sheffield,
487 J., Wood, E. F., & Marx, A. (2018). Anthropogenic warming exacerbates European soil
488 moisture droughts. *Nature Climate Change*, 8(5), 421–426. [https://doi.org/10.1038/s41558-018-0138-5](https://doi.org/10.1038/s41558-
489 018-0138-5)

490 Smith, A., Tetzlaff, D., Gelbrecht, J., Kleine, L., & Soulsby, C. (2020). Riparian wetland
491 rehabilitation and beaver re-colonization impacts on hydrological processes and water quality
492 in a lowland agricultural catchment. *Science of The Total Environment*, 699, 134302.
493 <https://doi.org/10.1016/j.scitotenv.2019.134302>

494 Smith, A., Tetzlaff, D., Kleine, L., Maneta, M. P., & Soulsby, C. (2020). Isotope-aided modelling
495 of ecohydrologic fluxes and water ages under mixed land use in Central Europe: The 2018
496 drought and its recovery. *Hydrological Processes*, 34(16), 3406–3425.
497 <https://doi.org/10.1002/hyp.13838>

498 Smith, A., Tetzlaff, D., Kleine, L., Maneta, M., & Soulsby, C. (2021). Quantifying the effects of
499 land use and model scale on water partitioning and water ages using tracer-aided
500 ecohydrological models. *Hydrology and Earth System Sciences*, 25(4), 2239–2259.
501 <https://doi.org/10.5194/hess-25-2239-2021>

502 Smith AA, Tetzlaff D, Maneta M, Soulsby C. (2022) Critical zone response times and water age
503 relationships under variable catchment wetness states: insights using a tracer-aided
504 ecohydrological model. *Water Resources Research*, <https://doi.org/10.1029/2021WR030584>

505 Tetzlaff, D., Buttle, J., Carey, S. K., van Huijgevoort, M. H. J., Laudon, H., McNamara, J. P.,
506 Mitchell, C. P. J., Spence, C., Gabor, R. S., & Soulsby, C. (2015). A preliminary assessment
507 of water partitioning and ecohydrological coupling in northern headwaters using stable
508 isotopes and conceptual runoff models. *Hydrological Processes*, 29(25), 5153–5173.
509 <https://doi.org/10.1002/hyp.10515>

510 Tetzlaff, D., Buttle, J., Carey, S. K., Kohn, M. J., Laudon, H., McNamara, J. P., Smith, A.,
511 Sprenger, M., & Soulsby, C. (2021). Stable isotopes of water reveal differences in plant – soil
512 water relationships across northern environments. *Hydrological Processes*, 35(1), e14023.
513 <https://doi.org/10.1002/hyp.14023>

514 Tetzlaff D, Smith A, Kleine L, Dubbert D, Freymueller J, Soulsby C. (2023) An integrated
515 ecohydrological hydrometric and stable water isotope data set of a drought-sensitive mixed
516 land use lowland catchment. <https://doi.org/10.18728/igb-fred-813.1>.

517 Vogel, C. (2014). Der Wolf in Brandenburg – Leben mit einem Rückkehrer. *Nationalpark-*
518 *Jahrbuch Unteres Odertal*, 11, 54–58.