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Abstract. Surface Net Radiation (SNR) is a vital input for many land surface and hydrological models. However, current remote

sensing datasets of SNR come mostly at coarse resolutions or have large gaps due to cloud-cover that hinder their use as input in

models. Here, we present a downscaled and continuous daily SNR product across Europe for 2018–2019. Longwave outgoing

radiation is computed from a merged land surface temperature (LST) product in combination with Meteosat Second Generation

emissivity data. The merged LST product is based on all-sky LST retrievals from the Spinning Enhanced Visible and InfraRed5

Imager (SEVIRI) onboard the geostationary Meteosat Second Generation (MSG) satellite, and clear-sky LST retrievals from

the Sea and Land Surface Temperature Radiometer (SLSTR) onboard the polar-orbiting Sentinel 3A satellite. This approach

makes use of the medium spatial (approx. 5–7 km) but high temporal (30 minute) resolution, gap-free data from MSG, with

the low temporal (2–3 days) but high spatial (1 km) resolution of the Sentinel 3 LST retrievals. The resulting 1 km and daily

LST dataset is based on an hourly merging of both datasets through bias-correction and Kalman Filter assimilation. Shortwave10

outgoing radiation is computed from the incoming shortwave radiation from MSG and downscaled albedo using 1 km PROBA-

V data. MSG incoming shortwave and longwave radiation and the outgoing radiation components at 1 km spatial resolution

are used together to compute the final daily SNR dataset in a consistent manner. Validation results indicate an improvement

of the mean squared error by ca. 7% with an increase in spatial detail compared to the original MSG product. The resulting

pan-European SNR dataset, as well as the merged LST product, can be used for hydrological modelling and as input to models15

dedicated to estimating evaporation and surface turbulent heat fluxes and will be regularly updated in the future. The datsets

can be downloaded from https://doi.org/10.5281/zenodo.8332222 (Rains, 2023a) and https://doi.org/10.5281/zenodo.8332128

(Rains, 2023b).
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1 Introduction20

The Earth radiation budget describes how the Earth gains energy from the sun (shortwave radiation), and loses energy back

to space through its reflection and the emission of thermal (longwave) radiation (Dewitte and Clerbaux, 2017; Kato et al.,

2018). Due to the geometry of the Earth’s orbit around the Sun, the yearly average net radiation at the bottom-of-atmosphere,

namely the Surface Net Radiation (SNR), is positive at the equator and decreases towards the poles. This geographical energy

imbalance is the main driver of the global atmospheric and oceanic circulation, which transports this energy surplus from25

the equator towards the poles (Dewitte and Clerbaux, 2017; Kato et al., 2018). SNR is thus a key driver in explaining the

distribution of different climate regions and ecosystems on Earth (Köppen and Geiger, 1936), and it dominates the dynamics

of biospheric and hydrological processes (Chapin et al., 2002). For this reason, SNR is used as forcing variable in many land

surface models, hydrological models and satellite-based retrieval algorithms to estimate (e.g.) evaporation, runoff, soil moisture

or surface heat fluxes.30

The top-of-atmosphere radiation components can be derived directly from satellites. However, dynamic atmospheric (e.g.,

cloud and aerosol optical depth) and land (e.g. emissivity, LST, albedo or biomass) properties make it more challenging to

obtain radiation estimates at the bottom-of-atmosphere, which are much more relevant to the above-mentioned biospheric and

hydrological processes. As it is transmitted through the atmosphere, incoming shortwave radiation is scattered and absorbed by

aerosols, gases and clouds, changing the temperature of the atmosphere and its emission of longwave radiation in all directions.35

The radiation reaching the surface is partly reflected depending on land cover and surface conditions and again interacts with the

atmosphere/clouds once reflected. According to Stephens et al. (2012), on average 12% of the radiation reaching the surface is

reflected back into the atmosphere; this is known as the surface planetary albedo. Then, part of the incoming radiation absorbed

at the land surface is emitted towards the atmosphere as longwave radiation, as described by the Stefan–Boltzmann law. The

modelling of these atmospheric and surface processes is required to obtain SNR – i.e. the balance between shortwave and40

longwave incoming and outgoing radiation at the surface – and it makes satellite-based SNR retrievals indirect and uncertain

(Kato et al., 2018).

Over the past decades, numerous satellites/instruments have been launched to enable the monitoring of the radiation budget.

Examples of programmes exploiting these observations to produce long-term global reliable estimates of the individual SNR

components (i.e. shortwave and longwave, and both incoming and outgoing) are the International Satellite Cloud Climatology45

Project (ISCCP, Young et al. (2018)) and the Clouds and the Earth’s Radiant Energy System (CERES) project (Wielicki et al.,

1996). A comparison between the CERES product and radiation estimates from global reanalyses is given by Jia et al. (2018).

Both satellite-based and reanalysis SNR products are mostly provided at a coarse (ca. 0.25◦) spatial resolution. This makes

them suitable for global analysis or as input in global land surface models, but insufficient for most regional-scale studies. A few

studies have already attempted to produce SNR data at higher spatial resolutions. For instance, Verma et al. (2016) proposed50

a method to yield a global 5 km SNR product at 8-day resolution by combining high-resolution variables derived from the

Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua satellite (including clear-sky LST, emissivity, aerosol optical

depth and albedo) and a radiative transfer model with ancillary datasets from reanalysis. Also with a resolution of 5 km, Jiang
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et al. (2016, 2018) developed the GLASS daily daytime net radiation product based on Multivariate Adaptive Regression

Splines, combining incoming shortwave radiation, albedo and NDVI with further meteorological ancillary variables, such as55

wind speed, surface pressure and air temperature. Meanwhile Jiang et al. (2023) developed a methodology, based on Landsat

data and ancillary datasets, using Machine Learning to produce daily net radiation at 30 m resolution. As an alternative to such

methods, which are based on data from polar-orbiting satellites, to achieve a much higher temporal resolutions (sub-daily) at

the expense of spatial resolution, observations from geostationary satellites can be used. The Satellite Applications Facility

(LSAF) programme uses observations from the SEVIRI instrument onboard the Meteosat Second Generation (MSG) satellite60

to produce a SNR dataset at a spatial resolution of ca. 5–7 km (Trigo et al., 2011). These resolutions however appear still

insufficient for regional water and agricultural management assessments in heterogeneous landscapes.

In this study, we present a 1 km SNR, and LST, dataset for Europe using MSG and polar orbiting observations. It is based

on combining operationally available hourly incoming shortwave/longwave radiation retrievals from the above-mentioned

LSAF programme at moderate (5–7 km) spatial resolution with hourly LSAF LST estimates as well as higher resolution65

(1 km) albedo retrievals from PROBA-V and LST from Sentinel 3 (Donlon et al., 2012). The novelty of this study lies in

systematically exploiting the advantages, and mitigating the disadvantages, in terms of spatial and temporal resolution of

available observations, which are well validated, in a physical and consistent manner based on the surface energy balance,

and assembling a net radiation dataset from the individual incoming and outgoing radiation components. This includes the

development of a 1 km gap-free LST product for downscaling outgoing longwave radiation. All-sky estimates are particular70

important for LST as cloud cover severely restricts the availability of clear-sky retrievals and it is temporally highly variable.

This is underpinned by a number of previous studies which have focused on producing all-sky LST estimates, see e.g. Xu

and Cheng (2021) and Jia et al. (2023), the latter also exploiting observations from geostationary and polar-orbiting products.

1 km albedo, for the computation of outgoing shortwave radiation, is equally calculated by combining polar and geostationary

observations. The merged hourly SNR and LST data is for robustness resampled to daily time steps. The coarse-scale (5–75

7 km) all-sky LST estimates provided through the LSAF programme have only recently been released and the methodology

here aims at exploiting these new data in an optimal manner. To our understanding, a systematic combination of these polar

and geostationary retrievals with the overall goal of calculating a consistent high-resolution SNR product has not yet been

undertaken. We argue that this approach based on the surface energy balance is the most consistent and, in theory, should yield

the most accurate results.80

The here presented published data is especially meant as a high-resolution forcing dataset for models which require SNR,

such as The Global Land Evaporation Amsterdam Model (GLEAM). Such models can also benefit from high-resolution all-sky

LST data making the intermediate merged LST product equally useful. In principle, the methodology can be extended to regions

where the same variables are available from other geostationary and polar-orbiting satellites. The data and method are presented

in detail in sections 2 and 3. All input and derived radiation components are validated against in situ measurements sites located85

across the study domain (section 4) and the SNR dataset is compared to ERA5-Land (Muñoz-Sabater et al., 2021). Finally, a dis-

cussion, in respect to similar studies, and concluding remarks are given in sections 5 and 6. The daily SNR and LST datasets are

available for scientific use under https://doi.org/10.5281/zenodo.8332222 / https://doi.org/10.5281/zenodo.8332128 as netcdf
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files (RNETdaily_lon_lat.nc and LSTdaily_lon_lat.nc), see Rains (2023a) and Rains (2023b). The spatial domain covered is

-11.5 to 26.5 longitude and 35 to 71 latitude. The initial dataset is available for the years 2018–2019.90

2 Data

Table 1 provides a general overview of the satellite data products used in this study. Shortwave and longwave incoming radi-

ation components, SWin and LWin, as well as emissivity ε, albedo α and LST are provided by LSAF (lsa-saf.eumetsat.int)

and are based on observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument onboard the

Meteosat Second Generation (MSG) geostationary satellite. These MSG products are provided with a 30-minute sampling,95

but to reduce data volumes we base our methodology on hourly data. The spatial resolution across the European domain is

approximately 5–7 km depending on latitude. In addition, 1 km LST retrievals from the Sea and Land Surface Temperature

Radiometer (SLSTR) instrument onboard Sentinel 3 as well as 1 km albedo retrievals from PROBA-V are used to compute the

high-resolution LST dataset and outgoing radiation components. For the purpose of validation, we use radiation measurements

from sites distributed across Europe belonging to different international networks. A more detailed description of the satellite100

retrievals and in situ data used in the study is provided in the following subsections. Note as well that ERA5-Land (Muñoz-

Sabater et al., 2021) is also used in section 4 for comparison purposes.

Variable Satellite Orbit Temporal Spatial Coverage

SWin MSG geostationary hourly 5–7 km all-sky, clear-sky+model

LWin MSG geostationary hourly 5–7 km all-sky, clear-sky+model

LST MSG geostationary hourly 5-7 km all-sky, clear-sky+model

LST Sentinel 3A polar 2–3 days 1 km clear-sky

ε MSG geostationary daily 5–7 km clear-sky composite

α MSG geostationary daily 5–7 km clear-sky composite

α PROBA-V polar 10-daily 1 km clear-sky composite

Table 1. Overview of satellite based products used in the study with their respective temporal and spatial resolution as well as their coverage,

i.e. clear-sky vs. all-sky.

2.1 Incoming shortwave/longwave radiation

We use hourly data from the LSAF programme, part of the distributed Applications Ground Segment SAF network serving as105

the European organisation for the Exploitation of Meteorological Satellites (EUMETSAT). The data are based on observations

provided by SEVIRI onboard MSG, acquired at 12 spectral channels with 3 km resolution at nadir (1 km for the high-resolution

visible channel) (Trigo et al., 2011). A detailed description of the LSAF methodology on deriving SWin and its validation is
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given by Carrer et al. (2019a) and Carrer et al. (2019b). Details on the estimation and evaluation of LWin are given by Trigo

et al. (2010) and Carrer et al. (2012).110

2.2 LST

The LSAF all-sky LST product based on the SEVIRI instrument onboard the geostationary Meteosat Second Generation

(MSG, Martins et al. (2019)) is a combination of the clear-sky MSG level 2 product, MSLT (LSA-001), based on a Generalised

Split-Window (GSW) algorithm (Trigo et al., 2008a), and output from an energy balance algorithm which is also used for

the production of the MSG 30-minute evaporation (MET-v2, LSA-311) dataset (Ghilain, 2016). The energy balance algorithm115

incorporates other LSAF SEVIRI-based products such as shortwave and longwave radiation fluxes, land surface albedo or veg-

etation, soil moisture based on the assimilation of scatterometer observations provided by the Hydrology SAF (H-SAF), and

near surface meteorological information obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF)

operational forecasts (Ghilain et al., 2020). Within the model, each pixel is composed of different tiles representing a particular

surface type based on the ECOCLIMAP-II database (Faroux et al., 2013). Pixel values are computed from the weighted average120

of the four most dominant tiles. The advantage of using geostationary satellites is the high temporal resolution, allowing for

the characterisation of the LST diurnal cycle. An assessment of the accuracy of the LST is given by Martins et al. (2019). The

product comes with gridded uncertainty estimates, which are used in the LST merging procedure.

Higher-resolution, clear-sky LST estimates are obtained from Sentinel 3. The Sentinel 3 mission consists of two polar-125

orbiting satellites (Sentinel 3A/B) launched on February 16, 2016, and April 25, 2018 (Ghent et al., 2017; Zheng et al.,

2019; Nie et al., 2021), both carrying the Sea and Land Surface Temperature Radiometer (SLSTR) instrument. They have

a revisit time of 2–3 days. The instrument has nine channels, three of them covering the visible and near-infrared (VNIR)

part of the spectrum, three the shortwave infrared (SWIR), and the remaining three the middle-infrared (MIR and TIR, Nie

et al. (2021)). For this study, we use the Climate Change Initiative (CCI) LST product provided at a spatial resolution of 0.01130

degrees (https://climate.esa.int/en/odp//project/land-surface-temperature). Included in the product is the exact overpass time

and as for the LSAF LST from MSG the total estimated uncertainty for each retrieval, necessary for the merging of the polar

and geostationary LST data. For this initial study focusing on 2018–2019 only Sentinel 3A data was used. Sentinel 3B was

launched in April 2018 and flown in tandem with Sentinel 3A from June to October of the same year after which it was moved

to its nominal orbit (Clerc et al., 2020). The approximate local overpass time of Sentinel 3A and Sentinel 3B thereafter is the135

same (ca. 10:30 am/pm) with the precise time varying and taken into account in the merging methodology (see section 3.3).

2.3 Surface emissivity

Land surface ε is required, in conjunction with LST, to calculate LWout. Approaches to retrieve ε can be broadly separated into

methods where LST and ε are jointly retrieved or where ε is retrieved in isolation. The latter was initially used within the LSAF

programme, and relied on spectral data for the various land covers based on spectral libraries, and dynamic land cover fractions140

(Peres and DaCamara, 2005). To overcome difficulties linked to performing the retrieval of LST and ε separately under certain
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conditions, e.g. in semiarid regions, LST and ε are now simultaneously retrieved by the LSAF programme including for the

products we use in this study (Trigo et al., 2008b).

2.4 Albedo

The LSAF α product based on the MSG SEVIRI instrument is produced following three steps: (1) an atmospheric correction145

of top-of-atmosphere measurements to obtain reflectances, (2) a daily inversion of a semi-empirical model of the bidirectional

reflectance distribution function, and then the consideration of all inversions within a temporal window to reduce the impact

of outliers and reduce data gaps, and (3) the angular integration for each channel and the spectral integration (Geiger et al.,

2008; Carrer et al., 2018). The product thus describes the hemispherical broadband α. As a second hemispherical broadband

α product, we use 1 km retrievals based on ProbaV and distributed through the Copernicus Global Land Service (CGLS). The150

retrieval follows the same methodology as for the LSAF α product.

2.5 In situ measurements

For the validation of the merged daily SNR dataset and the individual radiation components we use radiation measure-

ments taken at a total of 73 sites distributed across Europe for the 2-year study period (2018–2019). Measurements are

obtained from the Baseline Surface Radiation Network (BSRN) (Driemel et al., 2018), the European Fluxes Database Clus-155

ter (http://www.europe-fluxdata.eu, EFDC), the Integrated Carbon Observation System (ICOS) (Heiskanen et al., 2021), the

FLUXNET-CH4 network (Delwiche et al., 2021), and SAPFLUX (Poyatos et al., 2021). Table A, see appendix A, provides

a comprehensive list of the in-sites used for this study. For a number of sites all radiation components are available (54)

while for others only a subset is available. The Table includes the station ID, name, geographic coordinates and IGBP land

cover class as well as which radiation components are available for validation. The following land cover classes are covered:160

Cropland (CRO), closed shrublands (CSH), deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), grassland

(GRA), mixed forest (MF), open shrublands (OSH), savanna (SAV), urban (URB), wetland (WET) and woody savanna (WSA).

While the in situ measurements are considered as ground-truth, it is necessary to mention that they have their own sources of

uncertainties. Incoming shortwave and longwave radiation are measured by pyranometers and pyrgeometers. Accuracy targets165

for the BSRN network measurements (from 2004) are for example 2% or 5 W m−2 for incoming shortwave radiation and

2% or 3 W m−2 for incoming longwave radiation. Target uncertainties for outgoing shortwave and longwave radiation are

3% and 2% (or 3 W m−2) respectively (McArthur, 2004). For the measurement of the outgoing radiation components the

pyranometer/pyrgeometer is installed facing downwards. The target uncertainties are in line with the achievable accuracy of

the pyranometer/pyrgeometer instruments although they might not be met under some conditions, e.g. incorrect installation at170

an angle or snow cover. The instruments should be calibrated, e.g. every 2 years (Walter-Shea et al., 2019).
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3 Methodology

3.1 SNR calculation

SNR is computed using the radiation balance equation (1).

SNR= (SWin +LWin)− (SWout +LWout) (1)175

where SWin is hourly incoming shortwave radiation (W m−2) and LWin is hourly incoming longwave radiation (W m−2),

both from LSAF (see section 2). SWout and LWout are hourly outgoing shortwave and outgoing longwave radiation (W m−2),

respectively, calculated as:

SWout = SWin ∗α (2)

180

LWout = ε ∗σ ∗LST 4 +(1− ε) ∗LWin (3)

with σ being the Stefan–Boltzmann constant (i.e. 5.67 x 10−8 W m−2 K−4). Both SWout and LWout are to a large degree

controlled by land surface properties and processes, i.e. SWout by α (equation 2), and LWout by ε and LST (equation 3). LST,

in particular, dictates the magnitude and variability of LWout over different spatial and temporal scales. Note that the term

(1− ε) ∗LWin accounts for longwave reflection (Maes and Steppe, 2012).185

The focus here is on the improvement of the spatial resolution of the LSAF SWout and LWout by using gap-free all-sky

1 km α and LST in equations 2 and 3, respectively. The details of these datasets are given in section 3.2 and 3.3. The rationale

is based on the assumption that SWout and LWout, especially on the daily scale which we aggregate to, are spatially more

heterogeneous than the incoming components. Therefore, by using higher-resolution α and LST , the final SNR dataset can190

better capture the variability induced by landscape features and conditions.

3.2 Bias correction of albedo

To obtain a spatially and temporally gap-free α dataset at 1 km resolution, we bias-correct the daily α from LSAF towards

the retrievals from ProbaV using the mean of the temporally overlapping retrievals for 2018–2019. Remaining gaps are filled

through linearly interpolating/extrapolating based on the nearest data points in the temporal domain. Prior to the bias correction,195

the α products are regridded using nearest-neighbour interpolation to a common 0.01◦ grid. Since both sets of α are based on

the same methodology, we assume that the bias can be largely attributed to the difference in spatial resolution, but also the

MSG product integrating multiple observations per day, and possibly to the differences in the channels (ProbaV and SEVIRI

response functions).
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3.3 Merging of LST200

The merging of the hourly LSAF LST (5–7 km) and Sentinel 3 LST (1 km) relies on the assumption that the diurnal cycle

of LSAF is reliable in relative terms, whereas the Sentinel 3 LST can be trusted in absolute terms. This approach allows

us to benefit from the high temporal resolution of the geostationary data and the high spatial resolution of the Sentinel 3

observations. The all-sky LSAF product, which contains modelled LST when cloud cover prevents the direct retrieval, enables

the merged gap-free LST product with Sentinel-3 resolution. After regridding the LSAF observations, using nearest-neighbour205

interpolation, to the 0.01◦ grid of Sentinel 3 observations, we follow a stepwise approach:

1. Temporal normalisation of Sentinel 3 daytime/nighttime observations on the hour.

The Sentinel 3 LST is available every ~2–3 days both during daytime (~10 am local time) and nighttime (~10 pm local

time), conditioned on the presence of clear-skies. However, because of slightly differing overpass times from day to day

we first normalise the Sentinel 3 daytime/nighttime observations individually to on the hour (e.g. 10:00 for daytime),210

using information from the diurnal cycle described by the hourly LSAF observations of the same day. For that, at each

grid cell, we convert the on the hour daytime and nighttime overpass time of the Sentinel 3 observations from local time

to UTC. Then, when a Sentinel 3 daytime or nighttime observation is acquired, e.g. prior to that mean UTC daytime or

nighttime overpass hour t, the observation is corrected through linear interpolation using the LSAF LST retrievals at t

and the previous hour t− 1 on that day:215

Sentinel3LSTnor = Sentinel3LST +∆t ∗ (LSAFLSTt −LSAFLSTt−1)

with ∆t being the difference between the on the hour mean nighttime/daytime overpass time t and the exact overpass

time of the specific Sentinel 3 observation on that day. We do not perform the linear interpolation if LSAFLSTt−1

and/or LSAFLSTt are not clear-sky observations, i.e. the pixel is covered by cloud, and in that case, we disregard the

Sentinel 3 observation. This is based on the assumption that the diurnal cycle will be less accurate when mixing clear-220

sky/all-sky estimates or only relying on modelled all-sky estimates. Sentinel 3 observations with a ∆t of more than 45

minutes (i.e. ∆t>0.75) are equally excluded to reduce errors from the linear interpolation.

2. Bias-correction of daytime/nighttime LSAF observations towards the normalised, high spatial resolution, Sentinel 3 day-

time/nighttime observations.

The previously individually normalised Sentinel 3 observations Sentinel3LSTnor are used as the basis to bias-correct225

the geostationary observations at the same mean on the hour overpass time t (daytime and nighttime separately) per grid

cell using the means based on overlapping Sentinel3LSTnor and LSAFLSTt observations for the entire 2018–2019

record.

3. Bias-correction of the entire hourly geostationary LSAFLST time series per grid cell by assuming that the bias cor-230

rected for in the previous steps applies to the subsequent hourly observations too.

We apply the bias that was applied to the geostationary daytime observations at the mean Sentinel 3 overpass time to all
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hours of the same day after the mean Sentinel 3 overpass time and until the mean Sentinel 3 nighttime overpass time.

We apply the nighttime bias correction for the hourly observations until next daytime overpass time.

235

4. Assimilation of the normalised Sentinel 3 observations Sentinel3LSTnor from Step 1 into the bias-corrected hourly

geostationary LSAF LST time series from Step 3.

At a given pixel and point in time when both LSAFLST and Sentinel3LSTnor are available, the bias-corrected

geostationary LST (LSAFLST ) is updated. This is done taking into account the uncertainty of both sets of observations

using a Kalman Filter:240

LSAFLSTa = LSAFLST +K(LSAFLST −Sentinel3LSTnor)

where LSAFLSTa is the updated LST at the hour t and K is the Kalman gain with the range [0, 1], computed as:

K = PHT (HPHT +R)− 1

with P being the uncertainty of the geostationary observation LSAFLST and R the uncertainty of the Sentinel 3

observation at time step t. Both uncertainties are available for each individual pixel and time-step. H , the observation245

operator, is 1 as there is no difference between model and observation space. Normally, the update in a Kalman Filter is

propagated over time through a dynamic model. Here, there is no such prognostic model to predict LST, thus we correct

all subsequent hourly LSAFLST observations by the same amount until the next Sentinel 3 observation is available.

Some more details about the LST merging and the Kalman filtering step are given in appendix F.

4 Analysis and validation250

4.1 Incoming radiation fluxes

Comprehensive validation studies in literature against pyranometer measurements show the high accuracy of the LSAF radia-

tion products; see e.g. Carrer et al. (2019b) or Lopes et al. (2022). A validation of the LSAF SWin data by Roerink et al. (2012)

against the CarboEurope flux tower network shows a very high accuracy, corroborated by comparing the satellite product with

available radiation estimates from about 300 operational weather stations. Our own validation of both the LSAF SWin and255

LWin products shows a similar good performance, with Pearson’s correlation coefficients consistently above 0.9. Figure 1 (top

panels) show the correlation coefficients for all in situ sites in Europe for the 2018–2019 period. They are generally higher for

SWin than for LWin. In terms of the root-mean-squared error (RMSE), SWin and LWin perform similarly across all sites.

Few stations with a considerably worse match between observations and in situ data are located in Belgium for SWin, and

around the Alps for LWin. It is fair to consider that the temporal variability of cloud cover determines to a large extent the260

variability of SWin and LWin. This is also the main information provided by satellite data (clouds and cloud optical depth via

top-of-atmosphere reflectances). So the generally high R values for both SWin and LWin corroborate that satellite products

follow reasonably well the in situ time-series. LWin estimates require screen variables (LWin is more indirectly linked with
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top-of-atmosphere observations than SWin), which are derived from Numerical Weather Prediction models. Therefore it is

not surprising that R and RMSE are not as good as those for SWin. The accuracy of screen variables may also explain the265

worse performances of LWin in the Alps due to the very high spatial heterogeneity. Although some orographic corrections

are performed, the uncertainty is generally likely larger in mountainous regions. Since the availability of in-situ measurements

is already fairly limited, we argue that carrying out the validation also in challenging terrain benefits the overall accuracy

assessment. Figure 2 shows both SWin and LWin for two example sites, namely BE-Dor and IT-Lsn.

Figure 1. Validation of SWin and LWin from LSAF across Europe for 2018–2019 in terms of Pearson’s correlation coefficient (R, top

panels) and root mean squared error (RMSE, lower panels).
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Figure 2. Daily averages of SWin and LWin from LSAF and ground truth for two stations BE-Dor and IT-LSN.

Additional seasonal validation statistics for the incoming radiation components are given in the appendix (see boxplots270

in Figures B1 and B3). In summary, for SWin, R is consistently high throughout the year albeit with a higher spread of

values for the individual seasons (given that the overall seasonal amplitude has a lesser impact). The Root-Mean-Squared-Error

(RMSE) varies slightly from season to season with the highest values in summer (April/May/June and July/August/September).

This coincides with generally much higher radiation values during these months. In terms of Mean-Square-Percentage-Error

(MSPE) the error is highest in the winter months. A slight bias of 5 W/m2 is observed throughout the year although it is less275

pronounced during winter and spring. Validation metrics for different land cover types are also given (Figures B2 and B4) with

the ESA CCI land cover product (Defourny et al., 2023) being used as its spatial resolution (300m) is more consistent with the

spatial resolution of the here developed data products than the land cover information provided by the FLUXNET sites. For

LWin (Figures B2 and B4), R again shows a higher spread for the individual seasons than for the entire study period. RMSE

is highest in spring. In terms of land cover, all land cover types show high values for R whereas For RMSE, RMSPE and bias280

the flooded/brakish/water areas clearly show degraded performance (B4).

4.2 Land surface temperature

Extensive validation of the LSAF and Sentinel 3 LST products has already been performed. Both have an average accuracy

below 1.5 K, although it varies across space and time. Our goal is to combine their individual strengths in terms of spatial and

temporal resolution to obtain an enhanced representation of landscape heterogeneity. For an in-depth quantitative validation of285

the Sentinel 3 LST product we refer to Pérez-Planells et al. (2021). The LSAF LST products were validated by Trigo et al.

(2008a), Göttsche et al. (2013), Göttsche et al. (2016), Martins et al. (2019) and Trigo et al. (2021). Here the validation against

in situ data is carried out not directly on LST but on LWout – see section 3.3. This is based on LST validation data being limited

and a validation using LWout ground truth measurements thus being much more comprehensive. Furthermore, the developed

LST product primarily serves the purpose of enabling a spatially downscaled LWout product for the final calculation of SNR.290
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Figure 3 shows a comparison between the mean annual LST for 2018–2019 from LSAF and the merged LSAF/Sentinel 3

LST for two regions in Europe. The downscaled LST product shows significantly more spatial detail, especially in heteroge-

neous or topographic complex areas such as the Central System in Madrid (top row) or the Rhine Valley and its surrounding

mountainous areas (bottom row). Instead of the 2018–2019 LST average, Figure 4 shows the original LSAF LST and the295

downscaled LST product for 30th June 2018. This day was chosen for no particular reason and is representative for other dates.

Figure 3. Mean LSAF LST (left) and merged LSAF/Sentinel 3 LST (right) for 2018–2019, showing a part of the Iberian Peninsula (top) and

the southern Rhine Valley (bottom).
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Figure 4. LSAF LST (left) and merged LSAF/Sentinel 3 LST (right) for 30th June 2018, showing the centre of the Iberian Peninsula (top)

and the southern Rhine Valley (bottom).

4.3 Land surface albedo

Figure 5 shows the 2018–2019 mean albedo from LSAF and from the downscaled albedo product across parts of the Rhine

valley, as well as the values for a single day, analogous to the LST figures 3–4. The effect of the downscaling in enhancing the

spatial detail of the LSAF albedo retrievals based on PROBA-V retrievals is evident; see (e.g.) the distinct areas of low albedo300

surrounding the Rhine valley covered by forests and the higher albedo areas within the valley.
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Figure 5. Mean albedo from LSAF (top left) and the downscaled dataset (top right) for 2018–2019, as well as the retrievals for the 30th June

2018 for LSAF (bottom left) and the downscaled albedo product (bottom right). The maps depict the southern Rhine valley with the river

flowing from South to North through the centre of the landscape shown and then to the North-West.

4.4 Outgoing radiation fluxes

SWout estimates, resulting from combining LSAF SWin with either LSAF α or with the downscaled α dataset, are validated

against in situ data. Likewise, LWout, using either LSAF LST or the downscaled LST product, are also compared against in

situ data. This validation therefore shows to what extent the downscaling of SWout and LWout in combination with emissivity305

data from LSAF influences the accuracy, and not only spatial detail, as shown in sections 4.2 and 4.3.

On average, both RMSE for SWout and LWout are lower when compared to using data from LSAF only, with a mean of

17.1 W/m2 vs. 17.8 W/m2 for SWout, and 11.4 W/m2 vs 11.04 W/m2 for LWout). Figure 6 shows the distribution of the

RMSE across the available sites for the 2018–2019 period for SWout and LWout. The absolute values for the RMSE of LSAF

as well as the difference to the downscaled products are included.310
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Figure 6. Validation of SWout (top) and LWout (bottom) in terms of RMSE. Based on LSAF only (left) and the difference to the downscaled

products on the right; blue colours on the right panels indicate a better performance of the downscaled products.

Figure 7 shows R, MSE, MSPE and bias for LSAF and the downscaled product across the different CCI land cover types.

For R, both SWout and LWout show a lower performance for the water related land cover types (see also incoming radiation

validation). For MSE the same is true only for SWout and here tree covered areas show a slight positive bias whereas the over

15



land cover types are on average negatively biased. For LWout the bias seems less pronounced and the land cover median values

are generally above or close to 0.315

Figure 7. Validation of SWout (top) and LWout (bottom) radiation in terms of R, RMSE, RMSPE and bias for LSAF only and the down-

scaled product across different land cover types.

For a complete picture, the validation metrics are also calculated seasonally (see Figure C1 in annex). Seasonal patterns

are most pronounced for RMSPE for SWout, which is significantly higher during the winter months. One explanation is that

the calculation relies on accurate albedo values but their retrieval is especially challenging in winter due to cloud cover. Valid

albedo values are linearly interpolated to fill in the data gaps and especially snow cover will have a significant impact. High

errors for SWout in snow cover conditions can thus be expected.320
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4.5 Surface net radiation

Finally, the downscaled SNR dataset, resulting from the hourly SWin and LWin as well as the downscaled hourly SWout and

LWout, is validated against the available in situ data at daily time scales. On average, the downscaled product has a RMSE

of 22.53 W/m2 vs 23.5 W/m2 for the MSG only product. Figure 9 shows the distribution of RMSE values across the study

domain. A time series for a single example site is shown in Figure 10. We also analyse how the downscaled SNR product325

performs under cloudy and clear-sky conditions. Clear-sky conditions were assumed for the daily SNR product when more

than 12 hours of LSAF clear-sky LST observations were available. Figure 8 shows that for clear-sky conditions both R and the

bias are improved when compared to cloudy conditions. The RMSE is slightly higher for clear-sky conditions, likely linked to

seasonality as clear-sky conditions are more common during summer where also the SNR values are higher.

Figure 8. Validation of SNR for cloudy and clear-sky days in terms of R, RMSE and bias.

Figure 11 shows the SNR validation for the different CCI land cover types for a LSAF only based SNR as well as the330

downscaled product. The Figure also includes performance metrics for the ERA5-Land product (Muñoz-Sabater et al., 2021)

which were included to give some context. R is generally high for all products (ca. 0.95) for all sites with the exception of

sites with land cover affected by water. There ERA5-Land outperforms the LSAF and downscaled SNR product in terms of

R, likely due to a sub-optimal treatment of these areas in the processing of the input products. In terms of MSE ERA5-Land

again outperforms the other products for water affected land cover. However, for the other land cover classes the LSAF SNR335

and downscaled products perform better with the downscaled dataset showing the lowest values. In terms of bias, ERA5-Land

performs best with the downscaled data performing between ERA5-Land and the LSAF only SNR.
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Figure 9. Validation of SNR in terms of RMSE using LSAF only (left) and the difference to the downscaled product on the right; blue colors

on the right map indicate a better performance of the downscaled product.

Figure 10. Daily averages of downscaled, LSAF SNR and ground truth for site IT-Lsn.
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Figure 11. Validation of SNR for different CCI land cover types in terms of R, MSE, MSPE and bias.

For the SNR products we also carry out a seasonal analysis. The results of this are shown in Figure D1 and Figure D2 in

boxplot form (see annex). Table E1 and Table E2 list all performance metrics for the entire study period as well as seasonally.

For the entire 2018–2019 period, R is very similar for both datasets with R=0.93 for the downscaled product and R=0.92 for340

ERA5-Land. In comparison to ERA5-Land, the downscaled product has a RMSE of 22.53 vs 25.7 W 2. The average bias is

lower for ERA5-Land, with -1.56 vs -6.83 W 2.

The downscaled product shows a better performance for the summer period AMJ and JAS (R=0.91 and 0.93 vs 0.83 and

0.86) and the same is true in terms of RMSE (27.58 and 22.18 W 2 vs 34.79, 29.37 W 2). The seasonal bias is lower for the345

downscaled product.

Figure 12 shows as an example the SNR for the downscaled product and ERA5-Land for the 30th of June over an area of

western Europe. The increase in spatial resolution and therefore landscape details is clearly visible. The downscaled dataset

both shows higher and lower values than ERA5-Land as it is able to resolve finer land surface features due to the high-resolution

merged LST and Albedo inputs.350
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Figure 12. SNR from ERA5-Land (left) and the downscaled dataset (right) for 30th June 2018. The shown maps depict a large part of

western Europe covering France, Germany and Italy. Data gaps around lakes and shorelines due to the relatively coarser resolution of the

LSAF inputs have been filled through bilinear interpolation and a 1 km water mask has been applied.

5 Discussion

The methodology described and validated above to produce gap-free all-sky SNR at 1 km resolution relies on producing gap-

free 1 km SWout and LWout estimates. The methodology to produce SWout, namely by means of bias-correction, is relatively

straightforward. The more complex multi-stage approach taken for the all-sky LST estimates, required to compute LWout, is

discussed in some more detail here with regards to similar studies. Some further remarks on other available SNR products, and355

the comparison of the here created SNR product to ERA5-Land, as well as the validation of the individual radiation compo-

nents, follow.

Examples of other gap-free LST datsets which have recently been developed are given by Shiff et al. (2021), Xu and Cheng

(2021), Jia et al. (2022) or Wu et al. (2023). The approach taken by Shiff et al. (2021) was to merge clear-sky 1 km MODIS LST360

with 0.2 degree modelled air temperature provided by the National Center for Environmental Prediction (NCEP) from the Cou-

pled Forecast System Model version 2 (CFSv2) system. This was done by extracting the underlying seasonal behaviour from

both input datasets by Temporal Fourier Analysis and subsequently adding the CSFv2 anomalies to the MODIS climatology

on days where no clear-sky MODIS LST observation is available. Xu and Cheng (2021) demonstrated a multi-step approach

based on infrared Advanced Microwave Scanning Radiometer 2 (AMSR2) brightness temperatures, MODIS LST as well as365

MODIS based ancillary datasets and elevation data. First, land surface temperature is retrieved from all the above datasets at

0.1 degree spatial resolution. This LST dataset is then downscaled from 0.1 degree resolution to 0.01 degree resolution by using

the elevation data and MODIS NDVI. Clear-sky MODIS LST data and the retrieved all-sky LST data are then bias corrected
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allowing for the temporal gap-filling of the clear-sky LST retrievals. Finally, the 0.1 degree LST retrievals based on AMSR2 are

assimilated into the merged 0.01 degree LST dataset by applying a multiresolution Kalman filtering approach. Jia et al. (2022)370

have produced all-sky diurnal, hourly LST estimates at 2 km spatial resolution based on the surface energy balance. The three

step approach is based on constructing a spatiotemporal dynamic model of LST from ERA-5 in which clear-sky LST from the

Advanced Baseline Imager (ABI) are assimilated. As a final step the gap-free LST record is updated by superimposing diurnal

cloud effects using satellite radiation products. Wu et al. (2023) have tested an approach to produce very high-resolution, 100m

gap-free LST, from a single Landsat-8 acquisition by training a Random Forest algorithm with the Landsat derived LST and375

ancillary variables, e.g. land cover, population density and elevation. The LST merging methodology presented in this paper

shares some of the elements of the above mentioned studies, i.e. primarily the bias-correction of the coarse-scale LSAF LST

observations towards Sentinel 3 (see section 3.3), as well as a Kalman Filtering approach. An in-depth validation and quanti-

tative inter-comparison of the above mentioned products was not the aim of this study presented here. We argue however, that

on a theoretical basis, the here proposed methodology has some advantages. Most of the above mentioned approaches rely on380

input data with a coarser spatial resolution. Shiff et al. (2021) and Jia et al. (2022) for instance use air temperature data at a

0.2 degree resolution or ERA-5 with approximately 31 km spatial resolution. Both these datasets are also model output, albeit

from data assimilation systems taking a multitude of observations into account. The coarsest spatial resolution of the input

datasets used in the here presented methodology are the LSAF geostationary retrievals with a pixel size of ca. 5-7 km, depend-

ing on latitude. While especially the LSAF all-sky retrievals also are based on modelling, and require ancillary information,385

they are optimised for the retrieval of the single target variable at high accuracy. They are also available hourly, like ERA-5,

whereas e.g. Landsat-8, used by Wu et al. (2023), is only available every few days, depending on cloud cover. Furthermore,

our approach does not rely on using ancillary variables which are not directly linked to the physical processes to statistically

downscale the input products, as is for example done in Wu et al. (2023) by using population density. One of the drawbacks

of the here presented methodology is the lack of a dynamic temporal model which is able to propagate assimilation updates,390

provided by the 1 km LST retrievals from Sentinel-3, over time, which has been achieved by Jia et al. (2022). Here we thus

apply the same update from when a Sentinel-3 observation is available to the subsequent time steps until the next Sentinel-3

observation is available. An additional drawback is that e.g. ERA-5 and NCEP are globally available datasets and the use of

MODIS LST retrievals allows for the production of long time series. In contrast, LSAF is limited to North Africa and Europe

and Sentinel-3 was only launched in 2016. The approach can however be transferred to other regions by substituting LSAF395

with other geostationary retrievals and using MODIS instead or in addition to Sentinel-3 to allow for an extension of the time

series.

In terms of the calculation of the daily all-sky surface net radiation dataset, we argue that the approach taken is the most

straightforward as it is based on the underlying physical principles of the individual radiation components. This is in contrast400

to studies presenting methods to produce net radiation at a similar temporal and spatial resolution which exploit statistical

relationships between some well observed components, e.g. incoming radiation components from satellite, and ancillary in-

formation, e.g. land cover or NDVI, or modelled variables. Xu et al. (2022) for example train a convolutional neural network
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using net radiation from a selection of in-situ measurements, MERRA-2 reanalysis and AVHRR top of atmosphere (TOA) data.

Jiang et al. (2023) presented two algorithms based on a Random Forest to downscale the GLASS net radiation product, either405

by exploiting the relationship between net radiation and shortwave radiation as well as ancillary information, including from

ground measurements, or by linking net radiation to TOA observations from the Landsat satellites and ancillary information.

The GLASS algorithm itself is based on the Multivariate Adaptive Regression Splines (MARS) model, trained with remotely

sensed incoming radiation, NDVI and albedo as well as mostly MERRA-2 meteorological variables (Jiang et al., 2016). While

such downscaling methodologies can work very well, and we need to note that no quantitative comparison is here performed,410

they rely on training a model which establishes a statistical relationship between the different input variables. These data driven

approaches are very sensitive to the training data and e.g. the spatial or temporal domain for which such a model is established.

Hence, a globally trained model might not capture locally specific conditions or provide accurate output for time periods not

considered for the training. With in-situ training data often the limiting factor, established statistical relationships might also

be only valid for these specific sites and avoiding model over-fitting can be very challenging. It can thus be beneficial if in-situ415

measurements are solely used for the validation of a methodology rather than the development itself. Another methodology to

produce hourly surface solar radiation at 5 km spatial resolution was developed by Tang et al. (2016). In the two step approach

hourly cloud parameters are estimated with a neural network by combining cloud products from MODIS with high temporal-

resolution top-of-the-atmosphere (TOA) radiance data from the geostationary Multifunctional Transport Satellite (MTSAT).

Subsequently the cloud information and other auxiliary information is combined in a radiative transfer model to retrieve the420

surface net radiation. Conceptually, although estimating surface radiation primarily based on cloud properties, is is similar to

the here presented approach in exploiting the advantages of geostationary and polar-orbiting satellite measurements and being

more physically based. An overview of some further approaches to produce surface net radiation products are also given by

Tang et al. (2016).

We need to state that in this paper we make no accuracy comparisons between the different approaches mentioned above.425

Also, in terms of ancillary variables, this study indirectly relies on these through the use of the chosen input products. The

retrieval of LST for instance, especially in cloudy conditions, relies on modelled processes requiring information such as

vegetation phenology. In terms of the validation of the produced SNR product and the individual radiation components, we

also acknowledge that the in-situ measurements have an error (difference to the ’truth’ at the local scale that they sample), but

that the pixel-to-local representativeness error, i.e. the difference between the pixel truth that we aim for, and the local truth430

at the smaller tower footprint, is much larger. Unfortunately, we cannot solve this issue but argue that using as many stations

as possible benefits the validation, particularly within pixels where the spatial heterogeneity is very large. Finally, by relying

on input products directly representing components of the surface radiation balance, any future enhancements in the source

products should directly lead to improvements in future releases of the 1km SNR dataset.
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6 Conclusions435

Surface net radiation is a key input variables for many land surface and hydrological models. With increased efforts to simulate

land surface processes at higher spatial resolution, the lack of high-resolution gap-free SNR is an issue. Heterogeneity of model

output is then primarily driven by land surface properties for which high-resolution datasets are more frequently available (e.g.

soil texture, vegetation phenology). In this paper we presented a methodology to systematically combine the advantages of

frequent geostationary LST and radiation observations, enhanced with modelled data when cloud cover inhibits the direct440

retrieval, with LST and albedo retrievals from polar-orbiting satellites at high spatial resolution. The resulting gap-free net

radiation dataset, as well as the intermediate all-sky LST dataset, for 2018–2019 across Europe uses operationally available

input datasets which opens up the possibility to update the data on a close to near-real time basis. Based on the surface en-

ergy balance, and optimising each radiation component individually using input datasets with already a high accuracy, some

improvements are achieved in addition to a substantial increase in spatial heterogeneity and representativeness.445

While a gap-free LST datset was developed within this study, the validation of the dataset was carried out indirectly based

on LWout measurements. This served the purpose of the study to ultimately create a SNR dataset.

Conceptually, one of the advantages of the here developed LST merging methodology within the overall scope of produc-

ing net radiation, is its reliance on one of the LST input products being provided by LSAF, thus making the approach more450

consistent as the incoming radiation components are also LSAF products. The use of Sentinel 3 SLSTR emissivity maps when

computing the outgoing longwave radiation LWout should be considered in future product updates to make the methodology

even more consistent. In addition, the presented results are based on the use of LST retrievals from the Sentinel 3A satellite

and data from Sentinel 3B should be incorporated in the future. Also, the use of Sentinel-3 based albedo instead of PROBA-V

should be explored. A limitation in the downscaling methodology is that in the assimilation step, performed after the bias455

correction of LSAF LST towards Sentinel-3, there is no dynamic model to propagate the updates from the Sentinel 3 LST

assimilation at the daytime or nighttime overpass time to the subsequent hours. To paliate this issue, we applied equivalent up-

dates to the subsequent hourly LSAF observations, separately for temporal daytime/nighttime windows. Alternative approaches

– such as the attenuation of the assimilation impact over time – could be explored based on a more in-depth analysis of the

diurnal cycle. While the validation presented concentrated on daily aggregates, the availability of hourly LST and radiation460

products does make it possible to resolve the diurnal cycle, which can be a requirement for certain models.

In principle the approach developed within this study can be extended to other areas where there are both geostationary

and polar-orbiting observations, not necessarily the ones used for this study. The here presented dataset shall be updated in

the future as we consider it to be an ideal input dataset for high-resolution land surface applications, e.g. for the Global Land465

Evaporation Amsterdam Model (Martens et al., 2017).
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7 Data availability

The daily SNR and LST datasets for 2018–2019 are available for scientific use under https://doi.org/10.5281/zenodo.8332222

/ https://doi.org/10.5281/zenodo.8332128 as netcdf files (RNETdaily_lon_lat.nc and LSTdaily_lon_lat.nc), see Rains (2023a)

and Rains (2023b). The spatial domain covered by the product is -11.5 to 26.5 longitude and 35 to 71 latitude.470

Appendix A: In-situ sites

ID name lon lat IGBP SW_in LW_in SW_out LW_out

BE-Dor Dorinne 4.968 50.312 GRA x x x x

BE-Lcr Lochristi 3.850 51.112 DBF x x x x

BE-Lon Lonzee 4.746 50.552 CRO x x x x

BE-Maa Maasmechelen 5.632 50.980 CSH x x x x

BE-Vie Vielsalm 5.998 50.305 MF x x x x

CH-Aws Alp Weissenstein 9.790 46.583 GRA x x

CH-Cha Chamau 8.410 47.210 GRA x x x x

CH-Dav Davos 9.856 46.815 ENF x x x x

CH-Fru Früebüel 8.538 47.116 GRA x x

CH-Lae Laegern 8.364 47.478 MF x x

CH-Oe2 Oensingen 7.734 47.286 CRO x x

CZ-Lnz Lanzhot 16.946 48.682 MF x x x x

CZ-RAJ Rajec 16.697 49.444 ENF x x x x

CZ-Stn Stitna 17.970 49.036 DBF x x x x

CZ-Wet Trebon 14.770 49.025 WET x x x x

DE-Akm Anklam 13.683 53.866 WET x x x x

DE-Dgw Dagowsee 13.054 53.151 WET x x x x

DE-Geb Gebesee 10.915 51.100 CRO x x x x

DE-Gri Grillenburg 13.513 50.950 GRA x x x x

DE-Hai Hainich 10.452 51.079 DBF x x x x

DE-HoH Hohes Holz 11.219 52.085 DBF x x x x

DE-Hte Huetelmoor 12.176 54.210 WET x

DE-Hzd Hetzdorf 13.490 50.964 DBF x x x x

DE-Kli Klingenberg 13.522 50.893 CRO x x x x

DE-Obe Oberbärenburg 13.721 50.787 ENF x x x x

DE-RuR Rollesbroich 6.304 50.622 GRA x x x x

DE-RuS Selhausen Juelich 6.447 50.866 CRO x x x x

DE-Tha Tharandt 13.565 50.963 ENF x x x x
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DE-Zrk Zarnekow 12.889 53.876 WET x x x x

DK-Sor Soroe 11.645 55.486 DBF x x x x

ES-Abr Albuera -6.786 38.702 SAV x x x x

ES-Cnd Conde -3.228 37.915 WSA x x x x

ES-LM1 Majadas del Tietar North -5.779 39.943 SAV x x x x

ES-LM2 Majadas del Tietar South -5.776 39.935 SAV x x x x

FI-Hyy Hyytiala 24.295 61.847 ENF x x x x

FI-Kmp Kumpula 24.961 60.203 URB x x x x

FI-Kvr Kuivajarvi 24.280 61.847 WAT x x x x

FI-Let Lettosuo 23.960 60.642 ENF x x x x

FI-Sii Siikaneva 24.193 61.833 WET x x x x

FI-Var Varrio 29.610 67.755 ENF x

FR-Aur Aurade 1.106 43.550 CRO x x x x

FR-Bil Bilos -0.956 44.494 ENF x x x x

FR-EM2 Estrees-Mons A28 3.021 49.872 CRO x x

FR-FBn Font-Blanche 5.679 43.241 MF x x x x

FR-Fon Fontainebleau 2.780 48.476 DBF x x x x

FR-Gri Grignon 1.952 48.844 CRO x x x x

FR-Hes Hesse 7.065 48.674 DBF x x x x

FR-LGt La Guette 2.284 47.323 WET x x x x

FR-Mej Mejusseaume -1.796 48.118 GRA x x x x

FR-Pue Puechabon 3.596 43.741 EBF x x x x

IT-BCi Borgo Cioffi 14.957 40.524 CRO x x x x

IT-Cp2 Castelporziano2 12.357 41.704 EBF x x x

IT-Lsn Lison 12.750 45.740 OSH x x x x

IT-MtM Muntatschinig Meadow 10.580 46.687 GRA x x x x

IT-Ren Renon 11.434 46.587 ENF x x

IT-SR2 San Rossore 2 10.291 43.732 ENF x x x x

IT-Tor Torgnon 7.578 45.844 GRA x x x x

RU-Fy2 Fyodorovskoye 32.902 56.448 ENF x x x x

RU-Fyo Fyodorovskoye 32.922 56.462 ENF x x x x

SE-Deg Degero 19.557 64.182 WET x x x x

SE-Htm Hyltemossa 13.419 56.098 ENF x x x x

SE-Lnn Lanna 13.102 58.341 CRO x

SE-Nor Norunda 17.480 60.086 ENF x x x x

SE-Svb Svartberget 19.775 64.256 ENF x x x x

bud Budapest-Lorinc 19.182 47.429 x x x x

cab Cabauw 4.927 51.971 x x x x
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car Carpentras 5.030 44.050 x x

cnr Cener -1.601 42.816 x x

lin Lindenberg 14.122 52.210 x x

pal Palaiseau 2.208 48.713 x x

pay Payerne 6.944 46.815 x x x x

son Sonnblick 12.958 47.054 x x

tor Toravere 26.462 58.264 x x x x

Appendix B: Incoming radiation fluxes

Figure B1. Validation of LSAF SWin in terms of R, RMSE, RMSPE and bias for the entire period as well as seasonally.
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Figure B2. Validation of LSAF LWin in terms of R, RMSE, RMSPE and bias for the entire period as well as seasonally.

Figure B3. Validation of LSAF SWin in terms of R, RMSE, RMSPE and bias for different land cover types.
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Figure B4. Validation of LSAF LWin in terms of R, RMSE, RMSEP and bias for different land cover types.

Appendix C: Outgoing radiation fluxes

Figure C1. Validation of SWout in terms of R, RMSE, RMSPE and bias using LSAF only (R1) and the downscaled product (R2) for the

entire period as well as seasonally.
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Figure C2. Validation of LWout in terms of R, RMSE, RMSPE and bias using LSAF only (R1) and the the downscaled product (R2) for the

entire period as well as seasonally.

Appendix D: Net radiation

Figure D1. Validation of SNR in terms of R, RMSE, RMSPE and bias using LSAF only (R1) and the downscaled product (R2) for the entire

period as well as seasonally.
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Figure D2. Validation of ERA5-Land and downscaled net radiation product against in-situ measurements in terms of R, RMSE, RMSEP and

bias for different land cover types.

Appendix E: Overall validation statistics475

R MSE MSPE bias

SWin 0.97 876 7.59 -7.65

LWin 0.93 420 0.06 -6.99

SWout LSAF 0.87 317 7.99 -4.55

SWout RADLST 0.87 293 6.93 -5.5

LWout LSAF 0.97 132 0.029 2.36

LWout RADLST 0.97 122 0.028 0.81

RNET LSAF 0.93 551 17 -9.06

RNET RADLST 0.93 515 15.89 -6.11

ERA5 0.93 654 10.04 -1.89

Table E1. Performance metrics for radiation components for the 2018–2019 study period.

R Q1 MSE Q1 MSPE Q1 bias Q1 R Q2 MSE Q2 MSPE Q2 bias Q2 R Q3 MSE Q3 MSPE Q3 bias Q3 R Q4 MSE Q4 MSPE Q4 bias Q4

SWin 0.96 535 6.66 -6.88 0.95 1320 1.09 -12.2 0.94 1431 1.91 -8.02 0.95 399 5.97 -4.92

LWin 0.89 598 0.08 -15 0.88 361 0.05 -2.39 0.93 228 0.03 1.05 0.87 433 0.06 -9.29

SWout LSAF 0.84 588 11.5 -9.14 0.87 490 1.99 -3.26 0.89 148 4.63 -2.72 0.8 129 3.36 -4.01

SWout RADLST 0.82 562 9.25 -9.66 0.87 441 1.66 -5.07 0.89 121 3.87 -4.23 0.78 124 3.22 -4.32

LWout LSAF 0.92 114 0.029 0.87 0.94 170 0.03 4.31 0.92 145 0.02 5.94 0.95 96 0.02 0.27

LWout RADLST 0.93 101 0.028 -0.83 0.95 163 0.03 2.87 0.93 134 0.02 4.6 0.96 90 0.02 -1.36

RNET LSAF 0.84 527 21 -11.87 0.91 860 1.11 -10.55 0.93 503 1.96 -4.17 0.77 336 22.24 -7.82

RNET RADLST 0.84 481 20 -9.39 0.91 800 1.14 -6.6 0.93 477 2.03 -0.76 0.8 316 19.79 -5.51

ERA5 0.84 407 10.49 47 0.83 1187 1.07 -61 0.86 844 2.43 -50 0.82 274 13.86 53.46

Table E2. Seasonal performance metrics for radiation components.

30



Appendix F: Downscaling of LSAF LST with Sentinel 3 LST

For the downscaling/merging of the LSAF with Sentinel 3 based LST retrievals described in section 3.3 some more detail is

given here. Figure F1 shows as an example the mean Sentinel 3 LST and its bias towards LSAF observations for daytime

(10am. local time) observations. Across the domain the bias is neither systematically negative nor positive, highlighting the

generally high agreement between LSAF and Sentinel 3 observations, and it is more linked to geographic features. The UTC480

time of the underlying Sentinel 3 data is different for each pixel/day across the domain and the LSAF data the bias is calculated

against is thus a composite from different acquisition times. The Sentinel 3 observations are normalised to the one the hour

Sentinel 3 mean overpass time per pixel to enable a more correct match-up between Sentinel 3 and LSAF (as the LSAF data

is representative for on the hour). This is done through linear interpolation using the LSAF LST difference between the full

hour before and after the exact overpass time of each Sentinel 3 observation. The bias correction is then performed between485

LSAF LST and the normalised Sentinel 3 observations for each pixel individually for the entire study period. A seasonal bias

correction should be considered in the future.

Figure F1. Mean LST of Sentinel 3 daytime (ca. 10am) observations (left) and bias towards LSAF observations (right).

After the full bias correction of the hourly LSAF data the normalised Sentinel 3 observations are assimilated into this time

series for each pixel. The respective uncertainties of both Sentinel 3 and LSAF LST retrievals for each pixel/timestep are490

therefore taken into account. Figure F2 shows as an example for a single day the assimilation diagnostics. The top row shows

the Sentinel 3 LST retrieval (left), the uncertainty map of the Sentinel 3 observation (middle) and the uncertainty of the LSAF

observations (right). The Kalman Gain (bottom left) is based on the two uncertainties and a value of 1 would fully trust the

Sentinel 3 observation, whereas 0 would result in no assimilation update. The difference, i.e. innovation, between the Sentinel

3 observation and LSAF LST, is shown in the lower middle. The increment, the actual update, is the innovation multiplied by495

the Kalman Gain and is shown in the bottom right.
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Figure F2. Sentinel 3 LST retrievals (top left), uncertainty of Sentinel 3 LST retrievals (top middle), uncertainty of LSAF LST retrievals

(top right) and Kalman Gain (bottom left), innovations (bottom middle), increments (bottom right).

Figure F3 shows the 2018–2019 mean assimilation diagnostics for the daytime Sentinel 3 assimilation. The innovation (left)

is fairly close to zero showing that the bias correction results in the Sentinel 3 observations being on average spread evenly

around the bias corrected LSAF time series as intended. The mean increment (middle), the actual correction applied to the

LSAF estimates, shows similar spatial patterns. The mean Kalman Gain is shown on the right.500
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Figure F3. Mean Innovation (left), increments (middle) and Kalman Gain (right) for daytime Sentinel 3 LST assimilation.
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