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Abstract. Land Surface Temperature (LST) and Surface Net Radiation (SNR) are vital inputs for many land surface and
hydrological models. However, current remote sensing datasets of these variables come mostly at coarse resolutions. Although
high-resolution LST and SNR retrievals are available, they have large gaps due to cloud-cover that hinder their use as input
in models. Here, we present a downscaled and continuous daily LST and SNR product across Europe for 2018-2019. The
LST product is based on all-sky LST retrievals from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard
the geostationary Meteosat Second Generation (MSG) satellite, and clear-sky LST retrievals from the Sea and Land Surface
Temperature Radiometer (SLSTR) onboard the polar-orbiting Sentinel 3 satellites. The product combines the medium spatial
(approx. 5-7 km) but high temporal (30 minute) resolution, gap-free data from MSG, with the low temporal (2-3 days) but
high spatial (1 km) resolution of the Sentinel 3 LST retrievals. The resulting 1 km and daily LST dataset is based on an hourly
merging of both datasets through bias-correction and Kalman Filter assimilation. Longwave outgoing radiation is computed
from the merged LST product in combination with MSG-based emissivity data. Shortwave outgoing radiation is computed from
the incoming shortwave radiation from MSG and downscaled albedos using 1 km PROBA-V data. MSG incoming shortwave
and longwave radiation and the outgoing radiation components at 1 km spatial resolution are used together to compute the final
daily SNR dataset in a consistent manner. Validation results indicate an improvement of the reet-mean squared error by ca. 8%
with-a—substanttal-7% with an increase in spatial detail compared to the original MSG product. The resulting pan-European
LST and SNR dataset can be used for hydrological modelling and as input to models dedicated to estimating evaporation and

surface turbulent heat fluxes and will be regularly updated in the future.
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1 Introduction

The Earth radiation budget describes how the Earth gains energy from the sun (shortwave radiation), and loses energy back to
space through its reflection and the emission of thermal (longwave) radiation (Dewitte and Clerbaux, 2017; Kato et al., 2018).
Due to the geometry of the Earth orbit around the Sun, the yearly average net radiation at the bottom-of-atmosphere, namely the
Surface Net Radiation (SNR), is positive at the equator and decreases towards the poles. This geographical energy imbalance
is the main driver of the global atmospheric and oceanic circulation, which transports this energy surplus from the equator
towards the poles (Dewitte and Clerbaux, 2017; Kato et al., 2018). SNR is thus a key driver in explaining the distribution of
different climate regions and ecosystems on Earth (Koppen and Geiger, 1936), and it dominates the dynamics of biospheric
and hydrological processes (Chapin et al., 2002). For this reason, SNR is used as forcing variable in many land surface models,
hydrological models and satellite-based retrieval algorithms to estimate (e.g.) evaporation, runoff, soil moisture or surface heat
fluxes.

The top-of-atmosphere radiation components can be derived directly from satellites. However, dynamic atmospheric (e.g.,
cloud and aerosol optical depth) and land (e.g. emissivity, LST, albedo or biomass) properties make it more challenging to
obtain radiation estimates at the bottom-of-atmosphere, which are much more relevant to the above-mentioned biospheric and
hydrological processes. As it is transmitted through the atmosphere, incoming shortwave radiation is scattered and absorbed by
aerosols, gases and clouds, changing the temperature of the atmosphere and its emission of longwave radiation in all directions.
The radiation reaching the surface is partly reflected depending on land cover and surface conditions and again interacts with the
atmosphere/clouds once reflected. According to Stephens et al. (2012), on average 12% of the radiation reaching the surface is
reflected back into the atmosphere; this is known as the surface planetary albedo. Then, part of the incoming radiation absorbed
at the land surface is emitted towards the atmosphere as longwave radiation, as described by the Stefan—Boltzmann law. The
modelling of these atmospheric and surface processes is required to obtain SNR — i.e. the balance between shortwave and
longwave incoming and outgoing radiation at the surface — and it makes satellite-based SNR retrievals indirect and uncertain
(Kato et al., 2018).

Over the past decades, numerous satellites/instruments have been launched to enable the monitoring of the radiation budget.
Examples of programmes exploiting these observations to produce long-term global reliable estimates of the individual SNR
components (i.e. shortwave and longwave, and both incoming and outgoing) are the International Satellite Cloud Climatology
Project (ISCCP, Young et al. (2018)) and the Clouds and the Earth’s Radiant Energy System (CERES) project (Wielicki
et al., 1996). A comparison between the CERES product and radiation estimates from global reanalyses is given by Jia et al.
(2018). Nenetheless:-both-Both satellite-based and reanalysis SNR products are mostly provided at a coarse (ca. 0.25°) spatial
resolution. This makes them suitable for global analysis or as input in global land surface models, but insufficient for most
regional-scale studies. Nonetheless, a few studies have already attempted to produce SNR data at higher spatial resolutions.
For instance, Verma et al. (2016) proposed a method to yield a global 5 km SNR product at 8-day resolution by combining
high-resolution variables derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua satellite (including

clear-sky land surface temperature (LST), emissivity, aerosol optical depth and albedo) and a radiative transfer model. As an
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alternative, to achieve a similar-spatial-but-much higher temporal resolutions (e-g—sub-dailyer-daily)-) at the expense of spatial

resolution, observations from geostationary satellites can be used. The Satellite Applications Facility (LSAF) programme uses
observations from the SEVIRI instrument onboard the Meteosat Second Generation (MSG) satellite to produce a dataset at a
spatial resolution of ca. 5-7 km (Trigo et al., 2011). Nenetheless;-these-These resolutions appear still insufficient for regional
water and agricultural management assessments in heterogeneous landscapes.

In this study, we present a 1 km LST and SNR dataset for Europe using MSG and polar orbiting observations. It is based
on combining operationally available hourly incoming shortwave/longwave radiation retrievals from the above-mentioned
LSAF programme at moderate (5—7 km) spatial resolution with hourly eutgei
geostationary-observations-LSAF LST estimates as well as higher resolution (1 km) albedo observations from PROBA-V and
LST from Sentinel 3 (Donlon et al., 2012). The i

—novelty of this study lies in
systematically exploiting the advantages, and mitigating the disadvantages, in terms of spatial and temporal resolution of
available observations, which are well validated, in a physical and consistent manner and assembling a net radiation dataset
based on the individual incoming and outgoing radiation components. This includes the development of a I km gap-free LST
product for downscaling outgoing longwave radiation and the use of | km albedo for downscaled outgoing shortwave radiation.
The merged hourly SNR and LST data is for robustness resampled to daily time steps to serve as input to hydrological/land
surface models or for other direct analysis. The data-methodology can be extended to other regions where geostationary-based

retrievals are available, and adapted to work with other high-resolution polar-orbiting satellite data.
The data and method are presented in detail in sections 2 and 3. All input and derived radiation components are validated

against in situ measurements sites located across the study domain (section 4) and the SNR datset is compared to ERAS5-Land
2?2, Finally, a discussion and concluding remarks is given in section 5. The daily SNR and LST datasets are available for
scientific use under https://doi.org/10.5281/zenodo.7008066 / https://doi.org/10.5281/zenodo.7026612 as netcdf files (RNET-
daily_lon_lat.nc and LSTdaily_lon_lat.nc), see Rains (2022a) and Rains (2022b). The spatial domain covered is -11.5 to 26.5

longitude and 35 to 71 latitude. The initial datset is available for the years 2018-2019.

2 Data

Table 1 provides a general overview of the satellite data products used in this study. Shortwave and longwave incoming radi-
ation components, SW;,, and LW;,,, as well as emissivity ¢, albedo « and LST are provided by LSAF (Isa-saf.eumetsat.int)
and are based on observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument onboard the
Meteosat Second Generation (MSG) geostationary satellite. These MSG products are provided with a 30-minute sampling,
but to reduce data volumes we base our methodology on hourly data. The spatial resolution across the European domain is
approximately 5—7 km depending on latitude. In addition, 1 km LST retrievals from the Sea and Land Surface Temperature
Radiometer (SLSTR) instrument onboard Sentinel 3 as well as 1 km albedo retrievals from PROBA-V are used to compute the

high-resolution LST dataset and outgoing radiation components. For the purpose of validation, we use radiation measurements
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from sites distributed across Europe belonging to different international networks. A more detailed description of the satellite

retrievals and in situ data used in the study is provided in the following subsections. Note as well that ERA5-Land ?? is also

used in section 4 for comparison purposes.

Variable Satellite Orbit ‘ Temporal ‘ Spatial ‘ Coverage
SW.n MSG geostationary hourly 5-7km | all-sky, clear-sky+model
LW;, MSG geostationary hourly 5-7 km | all-sky, clear-sky+model
LST MSG geostationary hourly 5-7km | all-sky, clear-sky+model
LST Sentinel 3A polar 2-3 days 1 km clear-sky
€ MSG geostationary daily 5-7 km clear-sky composite
e} MSG geostationary daily 5-7 km clear-sky composite
PROBA-V polar 10-daily 1 km clear-sky composite

Table 1. Overview of satellite based products used in the study with their respective temporal and spatial resolution as well as their coverage,

i.e. clear-sky vs. all-sky.

2.1 Incoming shortwave/longwave radiation

We use hourly data from the LSAF programme, part of the distributed Applications Ground Segment SAF network serving as
the European organisation for the Exploitation of Meteorological Satellites (EUMETSAT). The data are based on observations
provided by SEVIRI onboard MSG, acquired at 12 spectral channels with 3 km resolution at nadir (1 km for the high-resolution
visible channel) (Trigo et al., 2011). A detailed description of the LSAF methodology on deriving SW;,, and its validation is
given by Carrer et al. (2019a) and Carrer et al. (2019b). Details on the estimation and evaluation of LW;,, are given by Trigo

et al. (2010) and Carrer et al. (2012).
22 LST

The LSAF all-sky LST product based on the SEVIRI instrument onboard the geostationary Meteosat Second Generation
(MSG, Martins et al. (2019)) is a combination of the clear-sky MSG level 2 product, MSLT (LSA-001), based on a Gener-
alised Split-Window (GSW) algorithm (Trigo et al., 2008a), and output from an energy balance algorithm which is also used
for the estimation of MSG 30-minute evaporation (MET-v2, LSA-311) dataset (Ghilain, 2016). The energy balance algorithm
incorporates other LSAF SEVIRI-based products such as shortwave and longwave radiation fluxes, land surface albedo or veg-
etation, soil moisture based on the assimilation of scatterometer observations provided by the Hydrology SAF (H-SAF), and
near surface meteorological information obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF)

operational forecasts (Ghilain et al., 2020). Within the model, each pixel is composed of different tiles representing a particular
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surface type based on the ECOCLIMAP-II database (Faroux et al., 2013). Pixel values are computed from the weighted average
of the four most dominant tiles. The advantage of using geostationary satellites is the high temporal resolution, allowing for
the characterisation of the LST diurnal cycle. An assessment of the accuracy of the LST is given by Martins et al. (2019). The

product comes with gridded uncertainty estimates, which are used in the LST merging procedure.

Higher-resolution, clear-sky LST estimates are obtained from Sentinel 3. The Sentinel 3 mission consists of two polar-
orbiting satellites (Sentinel 3A/B) launched on February 16, 2016, and April 25, 2018 (Ghent et al., 2017; Zheng et al.,
2019; Nie et al., 2021), both carrying the Sea and Land Surface Temperature Radiometer (SLSTR) instrument. They have
a revisit time of 2-3 days. The instrument has nine channels, three of them covering the visible and near-infrared (VNIR)
part of the spectrum, three the shortwave infrared (SWIR), and the remaining three the middle-infrared (MIR and TIR, Nie
et al. (2021)). For this study, we use the Climate Change Initiative (CCI) LST product provided at a spatial resolution of 0.01
degrees (https://climate.esa.int/en/odp//project/land-surface-temperature). Included in the product is the exact overpass time

and as for the LSAF LST from MSG the total estimated uncertainty for each retrieval, necessary for the merging of the polar
and geostationary LST data. For the-initial-daity- SNR-produet(this initial study focusing on 2018-2019 }-we-only-useretrievals
from-only Sentinel 3A and-not-data was used. Sentinel 3B was launched in April 2018 and flown in tandem with Sentinel 3A
from June to October of the same year after which it was moved to its nominal orbit (Clerc et al., 2020). The approximate local
overpass time of Sentinel 3A and Sentinel 3B thereafter is the same (ca. 10:30 am/B-pm) with the precise time varying and
taken into account in the merging methodology (see section 3.3).

2.3 Surface emissivity

Land surface ¢ is required, in conjunction with LST, to calculate LW,,;. Approaches to retrieve € can be broadly separated into
methods where LST and ¢ are jointly retrieved or where ¢ is retrieved in isolation. The latter was initially used within the LSAF
programme, and relied on spectral data for the various land covers based on spectral libraries, and dynamic land cover fractions
(Peres and DaCamara, 2005). To overcome difficulties linked to performing the retrieval of LST and € separately under certain
conditions, e.g. in semiarid regions, LST and € are now simultaneously retrieved by the LSAF programme including for the

products we use in this study (Trigo et al., 2008b).
2.4 Albedo

The LSAF « product based on the MSG SEVIRI instrument is produced following three steps: (1) an atmospheric correction
of top-of-atmosphere measurements to obtain reflectances, (2) a daily inversion of a semi-empirical model of the bidirectional
reflectance distribution function, and then the consideration of all inversions within a temporal window to reduce the impact
of outliers and reduce data gaps, and (3) the angular integration for each channel and the spectral integration (Geiger et al.,
2008; Carrer et al., 2018). The product thus describes the hemispherical broadband «.. As a second hemispherical broadband
« product, we use 1 km retrievals based on ProbaV and distributed through the Copernicus Global Land Service (CGLS). The

retrieval follows the same methodology as for the LSAF « product using observations from the MSG satellite.
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2.5 In situ measurements

For the validation of the merged hourly/daily SNR dataset and the individual radiation components we use radiation measure-
ments taken at 46-a total of 73 sites distributed across Europe for the 2-year study period (2018-2019). Measurements are
obtained from the Baseline Surface Radiation Network (BSRN) (Driemel et al., 2018), the European Fluxes Database Clus-
ter (http://www.europe-fluxdata.eu, EFDC), the Integrated Carbon Observation System (ICOS) (Heiskanen et al., 2021), the
FLUXNET-CH4 network (Delwiche et al., 2021), and SAPFLUX (Poyatos et al., 2021). Table A, see appendix A, provides

a comprehensive list of the in-sites used for this study. For a number of sites all radiation components are available (54

while for others only a subset is available. The Table includes the station ID, name, geographic coordinates and IGBP land
cover class as well as which radiation components are available for validation. The following land cover classes are covered:
Cropland (CRO), closed shrublands (CSH), deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), grassland
(GRA), mixed forest (MF), open shrublands (OSH), savanna (SAV), urban (URB), wetland (WET) and woody savanna (WSA).

3 Methodology

3.1 SNR calculation

SNR is computed using the radiation balance equation (1).

SNR = (SWin + LW;,) — (SWout + LWous) (1)

where SW;, is hourly incoming shortwave radiation (W m~2) and LW;,, is hourly incoming longwave radiation (W m~2),
both from LSAF (see section 2). SW,,; and LW,,,; are hourly outgoing shortwave and outgoing longwave radiation (W m~?2),

respectively, calculated as:

SWout = SWip, * ()

LWy =exox LST* + (1 — &)« LW;, 3)

with o being the Stefan—Boltzmann constant (i.e. 5.67 x 10-8 W m~2 K—%). Both SW,,,; and LW,,,; are to a large degree
controlled by land surface properties and processes, i.e. SW,+ by a (equation 2), and LW, by € and LST (equation 3). LST,
in particular, dictates the magnitude and variability of LW, over different spatial and temporal scales. Note that the term

(1 —¢) * LW, accounts for longwave reflection (Maes and Steppe, 2012).

The focus here is on the improvement of the spatial resolution of the LSAF SW,,,; and LW,,,; by using gap-free all-sky

1 km o and LST in equations 2 and 3, respectively. The details of these datasets are given in section 3.2 and 3.3. The rationale



170

175

180

185

190

195

is based on the assumption that SW,,,, and LW,,,, especially on the daily scale which we aggregate to, are spatially more
heterogeneous than the incoming components. Therefore, by using higher-resolution « and LST, the final SNR dataset can

better capture the variability induced by landscape features and conditions.
3.2 Bias correction of albedo

To obtain a spatially and temporally gap-free o dataset at 1 km resolution, we bias-correct the daily o from LSAF towards
the retrievals from ProbaV using the mean of the temporally overlapping retrievals for 2018-2019. Remaining gaps are filled
through linearly interpolating/extrapolating based on the nearest data points in the temporal domain. Prior to the bias correction,
the a products are regridded using nearest-neighbour interpolation to a common 0.01° grid. Since both sets of « are based on
the same methodology, we assume that the bias can be largely attributed to the difference in spatial resolution, but also the

MSG product integrating multiple observations per day, and possibly to the differences in the channels (ProbaV and SEVIRI }

response-funetionsresponse functions).

3.3 Merging of LST

The merging of the hourly LSAF LST (5-7 km) and Sentinel 3 LST (1 km) relies on the assumption that the diurnal cycle
of LSAF is reliable in relative terms, whereas the Sentinel 3 LST can be trusted in absolute terms. This approach allows
us to benefit from the high temporal resolution of the geostationary data and the high spatial resolution of the Sentinel 3
the merged gap-free LST product with Sentinel-3 resolution. After regridding the LSAF observations, using nearest-neighbour

interpolation, to the 0.01° grid of Sentinel 3 observations, we follow a stepwise approach:

1. Temporal normalisation of Sentinel 3 daytime/nighttime observations te-the-full-on the hour.
The Sentinel 3 LST is available every ~2—3 days both during daytime (~10 am local time) and nighttime (~10 pm local
time), conditioned on the presence of clear-skies. However, because of slightly differing overpass times from day to day
we first normalise the Sentinel 3 daytime/nighttime observations individually to the-full-heur-on the hour (e.g. 10:00 for
daytime), using information from the diurnal cycle described by the hourly LSAF observations of the same day. For that,
at each given-grid cell, we eompute-the-mean-convert the on the hour daytime and nighttime overpass time a-UFE)-of
the Sentinel 3 observations separately-and-round-these-to-the-futt-hourfrom local time to UTC. Then, when a Sentinel

3 daytime or nighttime observation is acquired, e.g. prior to that mean UTC daytime or nighttime overpass hour ¢, the
observation is corrected through linear interpolation using the LSAF LST retrievals at ¢ and the previous hour ¢ — 1 on

that day:
Sentinel3LST, . = Sentinel3LST + At x (LSAFLST, — LSAFLST; 1)
with At being the difference between the full-on the hour mean nighttime/daytime overpass time ¢ and the exact overpass

time of the specific Sentinel 3 observation on that day. We do not perform the linear interpolation if LSAFLST;_;
and/or LS AF LST; are not clear-sky observations, i.e. the pixel is covered by cloud, and in that case, we disregard the
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Sentinel 3 observation. This is based on the assumption that the diurnal cycle will be less accurate when mixing clear-
sky/all-sky estimates or fully-only relying on modelled all-sky estimates. Sentinel 3 observations with a A¢ of more than

45 minutes (i.e. At>0.75) are equally excluded to reduce errors from the linear interpolation.

. Bias-correction of daytime/aightimenighttime LSAF observations towards the normalised, high spatial resolution, Sen-

tinel 3 daytime/nighttime observations.

The previously individually normalised Sentinel 3 observations Sentinel3LST,,, are used as the basis to bias-correct
the geostationary observations at the same mean ful-on the hour overpass time ¢ (daytime and nighttime separately) per
grid cell using the means based on overlapping Sentinel3LST,, and LSAF LST; observations for the entire 2018-
2019 record.

. Bias-correction of the full-entire hourly geostationary LSAF LST time series per grid cell by assuming that the bias

corrected for in the previous steps applies to the subsequent hourly observations too.

We use-the bias-eorreetion-apply the bias that was applied to the geostationary daytime observations at the mean Sentinel
3 overpass time to all hours of the same day after the mean Sentinel 3 overpass time and until the mean Sentinel 3
nighttime overpass time. Then-We apply the nighttime eerreetion-bias correction for the hourly observations until next

daytime overpass timeete.

. Assimilation of the normalised Sentinel 3 observations Sentinel3LST,,,, from Step 1 into the bias-corrected hourly

geostationary LSAF LST time series from Step 3.
At a given pixel and point in time when both LSAFLST and Sentinel3LST,,, are available, the bias-corrected
geostationary LST (LS AF LST) is updated. This is done taking into account the uncertainty of both sets of observations

using a Kalman Filter:

LSAFLST,=LSAFLST + K(LSAFLST — Sentinel3LST,,)

where LSAF LST, is the updated LST at the hour ¢ and K is the Kalman gain with the range [0, 1], computed as:
K=PHY"(HPHT + R) -1

with P being the uncertainty of the geostationary observation LSAFLST and R the uncertainty of the Sentinel 3
observation at time step ¢. Both uncertainties are available for each individual pixel and time-step. H, the observation
operator, is 1 as there is no difference between model and observation space. Normally, the update in a Kalman Filter is
propagated over time through a dynamic model. Here, there is no such prognostic model to predict LST, thus we correct

all subsequent hourly LSAF LST observations by the same amount until the next Sentinel 3 observation is available.

Some nore details about the LST merging and the Kalman filtering step are given in appendix F.
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4 Analysis and validation
4.1 Incoming radiation fluxes

Comprehensive validation studies in literature against pyranometer measurements show the high accuracy of the LSAF radia-
tion products; see e.g. Carrer et al. (2019b) or Lopes et al. (2022). A validation of the LSAF SW,,, data by Roerink et al. (2012)
against the CarboEurope flux tower network shows a very high accuracy, corroborated by comparing the satellite product with
available radiation estimates from about 300 operational weather stations. Our own validation of both the LSAF SW;, and
LW, products shows a similar good performance, with Pearson’s correlation coefficients consistently above 0.9. Figure 1 (top
panels) show the correlation coefficients for all in situ sites in Europe for the 2018-2019 period. They are generally higher for
SW;,, than for LW;,. In terms of the root-mean-squared error (RMSE), SW,,, and LW;,, perform similarly across all sites.
Few stations with a considerably worse match between observations and in sifu data are located in Belgium for SW;,,, and

around the Alps for LW;,,. It is fair to consider that the temporal variability of cloud cover determines to a large extent the
variability of ST;,, and LW;,,. This is also the main information provided by satellite data (clouds and cloud optical depth via

top-of-atmosphere reflectances). So the generally high R values for both STW,,, and LW, corroborate that satellite products
follow reasonably well the in situ time-series. LIV;,, estimates require screen variables (LW

is more indirectly linked with

top-of-atmosphere observations than SWi, ). which are derived from Numerical Weather Prediction models. Therefore it is not
surprising that R and RMSE are not as good as those for SW,. The accuracy of screen variables may also explain the worse
performances of LWy in the Alps. Although some orographic corrections are performed, the uncertainty is likely larger in
mountainous regions. Figure 2 shows both ST;,, and LW, for two example sites, namely BE-Dor and IT-Lsn.
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Figure 1. Validation of SW;,, and LW;,, from LSAF across Europe for 2018-2019 in terms of Pearson’s correlation coefficient (R, top

panels) and root mean squared error (RMSE, lower panels).

10
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Figure 2. Daily averages of SW;,, and LW,,, from LSAF and ground truth for two stations BE-Dor and IT-LSN.

Additional seasonal validation statistics for the incoming radiation components are given in the appendix (see boxplots

in Figures Bl and B3). In summary, for SWiy, R is consistently high throughout the year albeit with a higher spread of
values for the individual seasons (given that the overall seasonal amplitude has a lesser impact). The Root-Mean-Squared-Error
(RMSE) varies slightly from season to season with the highest values in summer (April/May/June and July/August/September).
This coincides with generally much higher radiation values during these months. In terms of Mean-Square-Percentage-Error
(MSPE) the error is highest in the winter months. A slight bias of 5 WW/m? is observed throughout the year although it is less
pronounced during winter and spring. Validation metrics for different land cover types are also given (Figures B2 and B4) with
the ESA CCl land cover product (Defourny et al., 2023) being used as its spatial resolution (300m) is more consistent with the
spatial resolution of the here developed data products than the land cover information provided by the FLUXNET sites. For
LWy (Figures B2 and B4), R again shows a higher spread for the individual seasons than for the entire study period. RMSE
is highest in spring. In terms of land cover, all land cover types show high values for R whereas For RMSE, RMSPE and bias
the flooded/brakish/water areas clearly show degraded performance (B4).

4.2 Land surface temperature

Extensive validation of the LSAF and Sentinel 3 LST products has already been performed(see-belew). Both have an average
accuracy below 1.5 K, although it varies across space and time. Our goal is to combine their individual strengths in terms of
spatial and temporal resolution to obtain an enhanced representation of landscape heterogeneity. For an in-depth quantitative
validation of the Sentinel 3 LST product we refer to Pérez-Planells et al. (2021). The LSAF LST products were validated
by Trigo et al. (2008a), Gottsche et al. (2013), Gottsche et al. (2016), Martins et al. (2019) and Trigo et al. (2021). Here

the validation against in situ data is carried out not directly on LST but on LW,,,; — see section 3.3, This is based on LST

validation data being limited and a validation using LIV ,,; ground truth measurements thus being much more comprehensive.
Furthermore, the developed LST product primarily serves the purpose of enabling a spatially downscaled LIW,,,; product for

11



270  the final calculation of SNR.

Figure 3 shows a comparison between the mean annual LST for 2018-2019 fer-two-regions-inEurope-accordingto-either
the ESAFLST-or-the-final-from LSAF and the merged LSAF/Sentinel 3 LST for two regions in Europe. The downscaled LST

product shows significantly more spatial detail, especially in heterogeneous or topographic complex areas such as the Central

275 System in Madrid (top row) or the Rhine Valley and its surrounding mountainous areas (bottom row). Instead of the 2018-2019
LST average, Figure 4 shows the original LSAF LST and the downscaled LST product for 30th June 2048-as-an-example-day

2018. This day was chosen for no particular reason and is representative for other dates.
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Figure 3. Mean LSAF LST (left) and merged LSAF/Sentinel 3 LST (right) for 2018-2019, showing a part of the Iberian Peninsula (top) and

the southern Rhine Valley (bottom).
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Figure 4. LSAF LST (left) and merged LSAF/Sentinel 3 LST (right) for 30th June 2018, showing the centre of the Iberian Peninsula (top)

and the southern Rhine Valley (bottom).

4.3 Land surface albedo

Figure 5 shows the 2018-2019 mean albedo from LSAF and from the downscaled albedo product across parts of the Rhine

valley, as well as the values for a single day, analogous to the LST figures 3—4. The effect of the downscaling in enhancing the

spatial detail of the LSAF albedo retrievals based on PROBA-V retrievals is evident; see (e.g.) the distinct areas of low albedo

surrounding the Rhine valley covered by forests and the higher albedo areas within the valley.
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Figure 5. Mean albedo from LSAF (top left) and the downscaled dataset (top right) for 2018-2019, as well as the retrievals for the 30th June
2018 for LSAF (bottom left) and the downscaled albedo product (bottom right). Maps-The maps depict the southern Rhine valley with the

river flowing from South to North through the centre of the landscape shown and then to the North-West.

4.4 Outgoing radiation fluxes

SWt estimates, resulting from combining LSAF SW;,, with either LSAF « or with the downscaled « dataset, are validated
against in situ data. Likewise, LW, using either LSAF LST or the downscaled LST product, are also compared against in
situ data. This validation therefore shows to what extent the downscaling of SW,,; and LW,,,; in combination with emissivity

data from LSAF influences the accuracy, and not only spatial detail, as shown in sections 4.2 and 4.3.

average, both RMSE for SW,,; and LW,,,; are lower when compared to using data from LSAF only, with a mean of +3-9-17.1
W/m? vs. +5:3-17.8 W/m? for SWy, and 9:5-11.4 W/m? vs 10-11.04 W/m? for LW yt). ForLWo35-from-63-sites

hew-an-improvement-whereasfor-SWoronly 38-out-of 78-sitesshow-an-improvement—Figure 6 shows the RMSE-spatially
for ESAF-(left)-and-distribution of the RMSE across the available sites for the 2018-2019 period for SWo,; and LW, The
absolute values for the RMSE of LSAF as well as the difference to the downscaled products (rightjare included.
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Figure 6. Validation of SWo,,: (top) and LW, (bottom) in terms of RMSE. Based on LSAF only (left) and the difference to the downscaled

products on the right; blue colours on the right panels indicate a better performance of the downscaled products.

Figure 7 shows R, MSE, MSPE and bias for LSAF and the downscaled product across the different CCI land cover types.
295 For R, both SW,,,; and LW, show a lower performance for the water related land cover types (see also incoming radiation
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validation). For MSE the same is true only for ST, and here tree covered areas show a slight positive bias whereas the over
land cover types are on average negatively biased. For LW ,,; the bias seems less pronounced and the land cover median values
are generally above or close to 0.
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Figure 7. Validation of SW,,; (top) and LWy, (bottom) radiation in terms of R, RMSE, RMSPE and bias for LSAF only and the
downscaled product across different land cover types.

For a complete picture, the validation metrics are also calculated seasonally (see Figure C1 in annex). Seasonal patterns

300 are most pronounced for RMSPE for SW oy, which is significantly higher during the winter months. One explanation is that
the calculation relies on accurate albedo values but their retrieval is especially challenging in winter due to cloud cover. Valid
albedo values are linearly interpolated to fill in the data gaps and especially snow cover will have a significant impact. High
errors for SWo, in snow cover conditions can thus be expected.
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4.5 Surface net radiation

The-Finally, the downscaled SNR dataset, resulting from the hourly SW;,, and LW;,, as well as the downscaled hourly SW,,,,;
and LW,,;, is validated against the available in sifu data at daily time scales. On average, the downscaled product has a

RMSE of 2+:6-22.53 W/m? vs 22:623.5 W/m? for the MSG only product. Erom-the-available-52-in-situ-sites38-show-an

MPFrOVeren A tormao of DANQL T g a haw—the—-d oo RMSE 4 aQq a 1o sth-the—re howh-<pa

inFigure 8- Figure 8 shows the distribution of RMSE values across the study domain. A time series for a single example site
Figure 10 shows the SNR validation for the different CCI land cover types for a LSAF only based SNR as well as the
downscaled product. The Figure also includes performance metrics for the ERAS-Land product ?? which were included to

ive some context. R is generally high for all products (ca. 0.95) for all sites with the exception of sites with land cover affected

by water. There ERAS5-Land outperforms the LSAF and downscaled SNR product in terms of R, likely due to a sub-optimal

treatment of these areas in the processing of the input products. In terms of MSE ERA5-Land again outperforms the other

roducts for water affected land cover. However, for the other land cover classes the LSAF SNR and downscaled products

erform better with the downscaled dataset showing the lowest values. In terms of bias, ERAS-Land performs best with the

downscaled data performing between ERAS and the LSAF only SNR.
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Figure 8. Validation of SNR in terms of RMSE using LSAF only (left) and the difference to the downscaled product on the right; blue colors
on the right map indicate a better performance of the downscaled product.
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Figure 9. Daily averages of downscaled, LSAF SNR and ground truth for site IT-Lsn.
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Figure 10. Validation of SNR for different CCI land cover types in terms of R, RMSE, RMSPE and bias.

For the SNR products we also ¢ out a seasonal analysis. The results of this are shown in terms-of RMSE-using ESAFE
320 enby-Figure DI and Figure D2 in boxplot form (see annex). Table E1 and Table E2 list all performance metrics for the entire

study period as well as seasonally. For the entire 2018-2019 period, R is very similar for both datasets with R=0.93 for the

downscaled product and R=0.92 for ERA5-Land. In comparison to ERA5-Land, the downscaled product has a RMSE of 22.53
vs 25.7 W2. The average bias is lower for ERAS-Land, with -1.56 vs -6.83 TV 2.
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The downscaled product shows a better performance for the summer period AMJ and JAS (R=0.91 and 0.93 vs 0.83 and
86) and the same is true in terms of RMSE (27.58 and 22.18 W2 vs 34.79, 29.37 WW?2). The seasonal bias is lower for the

0.86) and the same is true in terms of RMSE (27.58 and 22.18 W= vs 34.79, 29.37 W7). The seasonal bias is lower for the
downscaled product..

Figure 11 shows as an example the SNR for the downscaled product and ERAS-Land for the 30th of June over an area of
western Europe. The increase in spatial resolution and therefore landscape details is clearly visible. The downscaled dataset
both shows higher and lower values than ERAS-Land as it is able to resolve finer land surface features due to the high-resolution
merged LST and Albedo inputs.
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Figure 11. Net radiation from ERAS5-Land (left) and the differenee-to-the-downscaled produet-on-the-dataset (right;-blue-colors-on-theright
map-indieate-) for 30th June 2018. The shown maps depict a better-performance-large part of western Europe covering France, Germany
and Italy. For the dewnseated-preduetvisualisation data gaps around lakes and shorelines due to the relatively coarser resolution of the LSAF
inputs have been filled through bilinear interpolation and a | km water mask has been applied.

5 Conclusions

Both surface net radiation and land surface temperature are key input variables for many land surface and hydrological models.
With increased efforts to simulate land surface processes at higher spatial resolution, the lack of high-resolution gap-free SNR
and LST datasets is an issue. Heterogeneity is then primarily driven by land surface properties for which high-resolution
datasets are more frequently available (e.g. soil texture, vegetation phenology).

Here—-Here we presented a methodology to combine the advantages of geestationary—{requent geostationary LST and
radiation observations, enhanced with modelled data when cloud cover inhibits the direct retrieval, with observations at-high
temporal-resolution—with-observations-from polar-orbiting satellites at high spatial resolution;—resulting-in-a-. The resulting
gap-free all-sky LST and net radiation dataset for 2018-2019 across Europe —Based-on-an-operational-data-input-stream;-the
method-can-be-easily-updated-uses operationally available input datasets which opens up the possibility to update the data on
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a close to near-real time basis. While the input datasets already show a very high accuracy, mederate-improvementsin RMSE
were-some improvements are achieved in addition to a substantial increase in spatial heterogeneity and representativeness.

carried out indirectly based on LW, measurements. This served the purpose of the study to ultimately create a SNR dataset.
A number of gap-free LST datsets have been developed, see e.g. Shiff et al. (2021), Jia et al. (2022) or Wu et al. (2023), an
in-depth validation and comparison of such products was however not the aim of this study. Future enhancements in the source
products would directly lead to improvements in future releases of the downscaled datasets. While the developed methodology
of merging two different sets of LST retrievals includes the bias correction of LSAF towards Sentinel 3 (see section 3.3), the
use of Sentinel 3 SLSTR emissivity maps when computing the outgoing longwave radiation LW,,,; should also be considered
in future product updates. In addition, the presented results are based on the use of LST retrievals from the Sentinel 3A satellite
and data from Sentinel 3B will-should be incorporated in future-updatesfthe future. For consistency, the use of Sentinel-3 based
albedo instead of PROBA-V will-should also be explored.

A limitation in the downscaling methodology is that in the assimilation step, performed after the bias correction of LSAF
LST towards Sentinel-3, while-bias-correction-and-product-speeific-uncertainties-are-employed;-there is no dynamic model to
propagate the updates from the Sentinel 3 LST assimilation at the daytime or nighttime overpass time to the subsequent hours.
To paliate this issue, we apply-applied equivalent updates to the subsequent hourly LSAF observations, separately for temporal
daytime/nighttime windows. Alternative approaches — such as the attenuation of the assimilation impact over time — could
be explored in the future based on a more in-depth analysis of the diurnal cycle. Given that the hourly products are however

mainly used to generate daily aggregates, the effect might be less important than at finer temporal resolutions. Furthermore, the

downscaling of the LST products mainly relies on the bias correction with the assimilation step only affecting a subset of days

with the effect further deminished when composing the final surface net radiation dataset from the four individual radiation
components. While the validation presented concentrated on daily aggregates, the availability of hourly LST and radiation

products does make it possible to resolve the diurnal cycle, which can be a requirement for certain models. Fhe-final-downsealed

6 Data availability

The daily SNR and LST datasets for 2018-2019 are available for scientific use under https://doi.org/10.5281/zenodo.7008066
/ https://doi.org/10.5281/zenodo.7026612 as netcdf files (RNETdaily_lon_lat.nc and LSTdaily_lon_lat.nc), see Rains (2022a)
and Rains (2022b). The spatial domain covered by the product is -11.5 to 26.5 longitude and 35 to 71 latitude.
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Appendix A: In-situ sites
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Appendix B: Incoming radiation fluxes
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Figure B1. Validation of LSAF SW;  in terms of R, RMSE, RMSPE and bias for the entire period as well as seasonally.
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Figure B2. Validation of LSAF LW, in terms of R, MSE, MSPE and bias for the entire period as well as seasonally.
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Figure B3. Validation of LSAF SW;

in terms of R, RMSE, RMSPE and bias for different land cover types.
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Figure B4. Validation of LSAF LW,

in terms of R, MSE, MSEP and bias for different land cover types.
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375 Appendix C: Outgoing radiation fluxes
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Figure C1. Validation of SWoy 7 in terms of R, RMSE, RMSPE and bias using LSAF only (R1) and the the downscaled product (R2) for
the entire period as well as seasonally.
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Figure C2. Validation of LWy, in terms of R, MSE, MSPE and bias using LSAF only (R1) and the the downscaled product (R2) for the
entire period as well as seasonally.
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Appendix D: Net radiation
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Validation of SNR in terms of R, RMSE, RMSPE and bias using LSAF onl
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bias for different land cover types.

Validation of ERA5-Land and downscaled net radiation product against in-situ measurements in terms of R, RMSE, RMSEP and
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Appendix E: Overall validation statistics

R MSE MSPE bias
~ A~ ~~
SWin 0.97 876 7.59 -7.65
Ao~ A ~~ A A
LWin 0.93 420 0.06 -6.99
A A ~~ ~~ AR
SW out LSAF 0.87 317 7.99 -4.55
A~~~ ~A AN A
SW out RADLST 0.87 293 6.93 -5.5
A A AN~ A ~A A~ A
LW out LSAF 0.97 132 0.029 2.36
LW out RADLST 0.97 122 0.028 0.81
RNET LSAF 0.93 551 17 -9.06
AAARIAA AR A ~ AR~
RNET RADLST 0 93 515 15.89 -6.11
AN A A A~
ERAS 093 93 654 ]() 04 189 89

Table El. Performance metrics for radlatlon components for the 2018-2019 study period.

RQI MSE QI MSPE QI bias Q1 RQ2 MSE Q2 MSPE Q2 bias Q2 RQ3 MSE Q3 MSPE Q3 bias Q3 RQ4 MSE Q4 MSPE Q4 bias Q4
[ BB AR AL B B3R BT S LER AR AL L BB RGBT,
SWin 0.96 535 6.66 -6.88 0.95 1320 1.09 -122 0.94 1431 191 -8.02 0.95 399 597 -4.92
AL L 2 228 LB e 2 ~L R AR 2 ~A S e R 2L s
LWin 0.89 598 0.08 -15 0.88 361 0.05 -2.39 093 228 0.03 1.05 0.87 433 0.06 -9.29
P R 2R oy 2 X ESS 2 e 22 pesA L A R R SN
SW out LSAF 0.84 588 115 -9.14 0.87 490 1.99 -3.26 0.89 148 4.63 272 038 129 336 -4.01
LLIULEE. X 2R L oo A ~R NN X 2 S A ~R X o~
SW out RADLST 0.82 562 9.25 -9.66 0.87 441 1.66 -5.07 0.89 121 3.87 -4.23 078 124 322 -4.32
LSOV, 2 2L R AN RoAY ~R NN X ~~ 2 TN N R R R
LW out LSAF 092 114 0.029 0.87 0.94 170 0.03 431 092 145 0.02 5.94 095 9 0.02 0.27
PA G S R 2 REA A ~R R L 2 R Pl R R 2 oS A
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EAVCGLS v SR A _E2L 8 2 ~ 2 2 2 L 2 AR b+ ~L B8
RNET LSAF 0.84 527 21 -11.87 091 860 111 -10.55 093 503 1.96 417 0.77 336 22.24 -7.82
RNET RADLST 084 481 20 -9.39 091 800 114 6.6 093 477 203 -0.76 0.8 316 19.79 -5.51
EGCIP S =8 £ D R 2R =L L R A AR 2
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N 2 v 2 2L 2 ESV- 8

Table E2. Seasonal erformance metrics for radlatlon components.

Appendix F: Downscaling of LSAF LST with Sentinel 3 LST

Fhe-For the downscaling/merging of the LSAF with Sentinel 3 based LST retrievals described in section 3.3 isshown-in-more
detatl-some more detail is given here. Figure F1 shows as an example the mean Sentinel 3 LST and the-its bias towards LSAF
observations for daytime (10am. BF€local time) observations. Across the domain the bias is neither systematically negative
nor positive, again-highlighting-the-similarities-highlighting the generally high agreement between LSAF and Sentinel 3 obser-
vations, and it is more linked to geographic featuresand-specific-areas—The-bias-is-corrected-for per-pixel-(afteradjustingeach
is calculated against is thus a composite from different acquisition times. The Sentinel 3 observation-to-the-observations are
normalised to the one the hour Sentinel 3 mean overpass time reunded-to-the-fult-hourusing-the-diurnal-informationfromthe
hourly LSAF data)-allowing for the subsequent assimilation-step-per pixel to enable a more correct match-up between Sentinel
difference between the full hour before and after the exact overpass time of each Sentinel 3 observation. The bias correction is
period. A seasonal bias correction should be considered in the future.
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Figure F1. Mean LST of Sentinel 3 daytime (+6amca. HFE10am) observations (left) and bias towards LSAF observations (right).

During-the-assimilation-step-the-After the full bias correction of the hourly LSAF data the normalised Sentinel 3 observations
respective uncertainties of both Sentinel 3 and LSAF LST retrievals for each pixel/timestep are therefore taken into account.
Figure F2 shows as an example for a single day seme-assimilation-diagnosties;such-as-the-the assimilation diagnostics. The top
row shows the the Sentinel 3 observations-themselvesLST retrieval (left), the uncertainty map of the Sentinel 3 observations
{top-observation (middle) and the uncertainty of the LSAF observations (tep-right). The Kalman Gain (bottom left) is based on

the two uncertainties and a value of 1 would fully trust the Sentinel 3 observation, whereas 0 would result in no assimilation

update. The difference, i.e. innovation, between the Sentinel 3 observation and LSAF LST, is shown in the lower middle. The

increment, the actual update, is the innovation multiplied by the Kalman Gain and is shown in the bottom right.
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Figure F2. Sentinel 3 LST retrievals (top left), uncertainty of Sentinel 3 LST retrievals (top middle), uncertainty of LSAF LST retrievals

(top right) and Kalman Gain (bottom left), innovations (bottom middle), increments (bottom right).

Figure F3 shows the 2018-2019 mean assimilation diagnostics for the daytime Sentinel 3 assimilation. The innovation +-e-
the-difference-between-the-Sentinel 3-EST-observations-and-the ESAFEST(left) is fairly close to zero showing that the bias

correction results in ebservations-being-the Sentinel 3 observations being on average spread evenly around the background
estimate;+e—SAF-bias corrected LSAF time series as intended. The mean increment (middle), the actual correction ap-

plied to the LSAF estimates, shows the-same-similar spatial patterns. The mean Kalman Gain shows-to-what-extent-either-the
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Figure F3. Mean Innovation (left), increments (middle) and Kalman Gain (right) for daytime Sentinel 3 LST assimilation.
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