
RC1:

The manuscript has improved, but I still have some concerns.

In response to my comment #3, the authors suggest that FLUXNET measurements do have errors.
Therefore, I would suggest adding information about the observational instrumentation, such as the
sensors and their accuracy. I also suggested adding a description of the sources of error in the field
data.

We  have  added  a  section  describing  the  measurement  technique  and  to-be-expected
uncertainties, see Line 164-171:

While the in situ measurements are considered as ground-truth, it is necessary to mention that they
have their own sources of uncertainties. Incoming shortwave and longwave radiation are measured
by pyranometers and pyrgeometers. Accuracy targets for the BSRN network measurements (from
2004) are for example 2% or 5 W m−2 for incoming shortwave radiation and 2% or 3 W m−2 for
incoming longwave radiation. Target uncertainties for outgoing shortwave and longwave radiation
are 3% and 2% (or 3 W m−2) respectively (McArthur, 2004). For the measurement of the outgoing
radiation  components  the  pyranometer/pyrgeometer  is  installed  facing  downwards.  The  target
uncertainties are in line with the achievable accuracy of the pyranometer/pyrgeometer instruments
although they might not be met under some conditions, e.g. incorrect installation at an angle or
snow cover. The instruments should be calibrated every 2 years (Walter-Shea et al., 2019).

In addition, the authors stated that ‘using as many stations as possible benefits the validation, also in
areas where the spatial heterogeneity is large’. However, the use of in situ data from regions with
large spatial heterogeneity may lead to inaccurate or erroneous validation results.

We thank the reviewer for this comment and understand the concern. The high variability
expected  in  heterogeneous  landscapes  in  the  end  determines  the  need  for  more  in  situ
measurements within the satellite footprint to be able to reduce representativeness errors and
make the validation of 1 km data more meaningful. Ideally, we would have many validation
sites  in every heterogeneous pixel  to  capture the entire footprint.  As unfortunately this  is
currently not possible, we argue that using as many sites as possible, at least to some extent,
alleviates the issue as in theory the representativeness errors will average out the more  in situ
data across the domain is used. While this approach is not perfect, restricting the validation to
homogeneous pixels would further reduce the limited amount of  in situ data and make the
validation less meaningful.

We rephrased L434–435 as:

Unfortunately, we cannot solve this issue but argue that using as many stations as possible benefits
the validation, particularly     within     pixels   where the spatial heterogeneity is very large. 



RC2:

The manuscript has been further improved but is still not satisfactory. There are several issues in the
revised manuscript. Authors can consider to further improve this manuscript if they can clearly
proof the quality and novelty of their datasets. Issues I can find as follows.

1. “1 km” in the title is not proper since the first word is usually not number. Move “1 km” to the
middle of the title or use “One-kilometer” may be better.

We thank the reviewer for this comment and agree.  We have changed the title to  “High-
resolution  (1-km)  all-sky  net  radiation  over  Europe  enabled  by  the  merging  of  land  surface
temperature retrievals from geostationary and polar-orbiting satellites.”

2. If I remember correctly, the links on the published datasets should also be shown in the abstract.

Thank you, we have added the links to the abstract (L17-18).

3.  Lines 349-369.  As the LST data is  not  the main output  of  this  study,  it  is  not  necessary to
compare it with other existing LST datasets. In my previous comment, “I suggest authors highlight
the novelty of their dataset by comparing with existing datasets”. It is meaningful to compare SNR
datasets  instead  of  LST  datasets.  Besides,  the  current  comparisons  of  LST  datasets  are
unsatisfactory as the advantages and drawbacks of these LST datasets are still not clear to us.

We thank the reviewer for this comment and agree. Important other studies were listed but an
evaluation in terms of potential advantages or drawbacks was not included. We have added
this now for the LST dataset and have also expanded the comparison for SNR datasets (L359–
424):

Examples of other gap-free LST datsets which have recently been developed are given by Shiff et
al. (2021), Xu and Cheng (2021), Jia et al. (2022) or Wu et al. (2023). The approach taken by Shiff
et al. (2021) was to merge clear-sky 1 km MODIS LST with 0.2 degree modelled air temperature
provided by the National Center for Environmental Prediction (NCEP) from the Coupled Forecast
System Model version 2 (CFSv2) system. This was done by extracting the underlying seasonal
behaviour  from both input  datasets  by Temporal  Fourier  Analysis  and subsequently adding the
CSFv2 anomalies to the MODIS climatology on days where no clear-sky MODIS LST observation
is available. Xu and Cheng (2021) demonstrated a multi-step approach based on infrared Advanced
Microwave Scanning Radiometer 2 (AMSR2) brightness temperatures,  MODIS LST as well  as
MODIS based ancillary datasets and elevation data. First, land surface temperature is retrieved from
all the above datasets at 0.1 degree spatial resolution. This LST dataset is then downscaled from 0.1
degree resolution to 0.01 degree resolution by using the elevation data and MODIS NDVI. Clear-
sky MODIS LST data and the retrieved all-sky LST data are then bias corrected allowing for the
temporal gap-filling of the clear-sky LST retrievals. Finally, the 0.1 degree LST retrievals based on
AMSR2 are assimilated into the merged 0.01 degree LST dataset by applying a multiresolution
Kalman filtering approach. Jia et al. (2022) have produced all-sky diurnal, hourly LST estimates at
2 km spatial resolution based on the surface energy balance. The three step approach is based on
constructing a spatiotemporal dynamic model of LST from ERA-5 in which clear-sky LST from the
Advanced Baseline Imager (ABI) are assimilated. As a final step the gap-free LST record is updated
by superimposing diurnal cloud effects using satellite radiation products. Wu et al.  (2023) have
tested an approach to produce very high-resolution, 100m gap-free LST, from a single Landsat-8
acquisition by training a Random Forest algorithm with the Landsat derived LST and ancillary
variables,  e.g.  land  cover,  population  density  and  elevation.  The  LST  merging  methodology



presented in this paper shares some of the elements of the above mentioned studies, i.e. primarily
the bias-correction of the coarse-scale LSAF LST observations towards Sentinel 3 (see section 3.3),
as well as a Kalman Filtering approach. An in-depth validation and quantitative inter-comparison of
the above mentioned products was not the aim of this study presented here. We argue however, that
on a theoretical basis, the here proposed methodology has some advantages. Most of the above
mentioned approaches rely on input data with a coarser spatial resolution. Shiff et al. (2021) and Jia
et  al.  (2022)  for  instance  use  air  temperature  data  at  a  0.2  degree  resolution  or  ERA-5  with
approximately 31 km spatial resolution. Both these datasets are also model output, albeit from data
assimilation systems taking a multitude of observations into account. The coarsest spatial resolution
of the input datasets used in the here presented methodology are the LSAF geostationary retrievals
with a pixel size of ca. 5-7 km, depending on latitude. While especially the LSAF all-sky retrievals
also are based on modelling, and require ancillary information, they are optimised for the retrieval
of the single target variable at high accuracy. They are also available hourly, whereas e.g. ERA-5 is
provided  3-hourly  or  Landsat-8,  used  by  Wu et  al.  (2023),  is  only  available  every  few days,
depending on cloud cover. Furthermore, our approach does not rely on using ancillary variables
which are not directly linked to the physical processes to statistically downscale the input products,
as is for example done in Wu et al. (2023) by using population density. One of the drawbacks of the
here presented methodology is the lack of a dynamic temporal model which is able to propagate
assimilation updates, provided by the 1 km LST retrievals from Sentinel-3, over time, which has
been achieved by Jia et al. (2022). Here we thus apply the same update from when a Sentinel-3
observation is available to the subsequent time steps until  the next observation is available. An
additional drawback is that e.g. ERA-5 and NCEP are globally available datasets and the use of
MODIS LST retrievals allows for the production of long time series. In contrast, LSAF is limited to
North Africa and Europe and Sentinel-3 was only launched in 2016. The approach can however be
transferred to other  regions by substituting LSAF with other  geostationary retrievals  and using
MODIS instead or in addition to Sentinel-3 to allow for an extension of the time series.

In terms of the calculation of the daily all-sky surface net radiation dataset, we argue that the
approach taken is the most straightforward as it is based on the underlying physical principles of
the individual radiation components. This is in contrast to studies presenting methods to produce
net radiation at a similar temporal and spatial resolution which exploit statistical relationships
between some well observed components, e.g. incoming radiation components from satellite, and
ancillary information, e.g. land cover or NDVI, or modelled variables. Xu et al. (2022) for example
train a convolutional neural network using net radiation from a selection of in-situ measurements,
MERRA-2 reanalysis and AVHRR top of atmosphere (TOA) data. Jiang et al. (2023) presented two
algorithms based on a Random Forest to downscale the GLASS net radiation product, either by
exploiting the relationship between net  radiation and shortwave radiation as  well  as  ancillary
information,  including  from  from  ground  measurements,  or  by  linking  net  radiation  to  TOA
observations from the Landsat satellites and ancillary information.
The GLASS algorithm itself  is  based on the  Multivariate  Adaptive  Regression Splines  (MARS)
model,  trained  with  remotely  sensed  incoming  radiation,  NDVI  and  albedo  as  well  as  mostly
MERRA-2 meteorological variables (Jiang et al., 2016). While such downscaling methodologies
can work very well, and we need to note that no quantitative comparison is here performed, they
rely on training a model which establishes a statistical relationship between the different input
variables. These data driven approaches are very sensitive to the training data and e.g. the spatial
or temporal domain for which such a model is established. Hence, a globally trained model might
not capture locally specific conditions or provide accurate output for time periods not considered
for  the  training.  With  in-situ  training  data  often  the  limiting  factor,  established  statistical
relationships might also be only valid for these specific sites and avoiding model over-fitting can be
very challenging. It can thus be beneficial if in-situ measurements are solely used for the validation
of  a  methodology  rather  than  the  development  itself.  Another  methodology  to  produce  hourly



surface solar radiation at 5 km spatial resolution was developed by Tang et al., 2016. In the two
step approach hourly cloud parameters are estimated with a neural network by combining cloud
products from MODIS with high temporal-resolution top-of-the-atmosphere (TOA) radiance data
from  the  geostationary  Multifunctional  Transport  Satellite  (MTSAT).  Subsequently  the  cloud
information and other auxiliary information is combined in a radiative transfer model to retrieve
the surface net radiation. Conceptually, although estimating surface radiation primarily based on
cloud properties,  is  is  similar  to  the  here  presented  approach in  exploiting  the  advantages  of
geostationary  and  polar-orbiting  satellite  measurements  and  being  more  physically  based.  An
overview of some further approaches to produce surface net radiation products are also given by
Tang et al., 2016.

We  have  also  compared  the  SNR  dataset  to  the  state-of-the-art  ERA5-Land  reanalysis
product, see Figure 11 and 12 and Lines 330-350:

Figure 11 shows the SNR validation for the different CCI land cover types for a LSAF only based
SNR as well  as the downscaled product.  The Figure also includes performance metrics for the
ERA5-Land product (Muñoz-Sabater et al., 2021) which were included to give some context. R is
generally high for all products (ca. 0.95) for all sites with the exception of sites with land cover
affected by water. There ERA5-Land outperforms the LSAF and downscaled SNR product in terms
of R, likely due to a sub-optimal treatment of these areas in the processing of the input products. In
terms of  MSE ERA5-Land again outperforms the other products for water affected land cover.
However, for the other land cover classes the LSAF SNR and downscaled products perform better
with the downscaled dataset showing the lowest values. In terms of bias, ERA5-Land performs best
with the downscaled data performing between ERA5 and the LSAF only SNR. Figure 11. Validation
of SNR for different CCI land cover types in terms of R, RMSE, RMSPE and bias.
For the SNR products we also carry out a seasonal analysis. The results of this are shown in Figure
D1 and Figure D2 in boxplot form (see annex). Table E1 and Table E2 list all performance metrics
for the entire study period as well as seasonally. For the entire 2018–2019 period, R is very similar
for  both  datasets  with  R=0.93  for  the  downscaled  product  and  R=0.92  for  ERA5-Land.  In
comparison to ERA5-Land, the downscaled product has a RMSE of 22.53 vs 25.7 W 2. The average
bias is lower for ERA5-Land, with -1.56 vs -6.83 W 2.
The downscaled product shows a better performance for the summer period AMJ and JAS (R=0.91
and 0.93 vs 0.83 and 0.86) and the same is true in terms of RMSE (27.58 and 22.18 W 2 vs 34.79,
29.37 W 2). The seasonal bias is lower for the downscaled product. Figure 12 shows as an example
the SNR for the downscaled product and ERA5-Land for the 30th of June over an area of western
Europe. The increase in spatial resolution and therefore landscape details is clearly visible. The
downscaled dataset both shows higher and lower values than ERA5-Land as it is able to resolve
finer land surface features due to the high-resolution merged LST and Albedo inputs.

4. Lines 371-390. The comparisons of methods is not satisfactory as the advantages of the proposed
method is not persuasive enough.

We have highlighted some points which we think are an important advantage of the proposed
methodology. See reviewer point 3 above where we describe the amendments to the discussion
section, both for the LST and SNR dataset. There we also refer to the quantitative comparison
of the SNR product to ERA5-Land.



5. Figure 11. Cannot find RMSE and RMSPE in this figure, but they occur in the title. The legend
of the third subfigure may be not correct. Similar issues may exist in other figures.

Thank you, this has been corrected and the manuscript has been proof-read.


