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Abstract: Reliable precipitation data are highly necessary for geoscience research in the Third Pole (TP) 20 

region but still lacking, due to the complex terrain and high spatial variability of precipitation here. 21 

Accordingly, this study produces a long-term (1979-2020) high-resolution (1/30°) precipitation dataset 22 

(TPHiPr) for the TP by merging the atmospheric simulation-based ERA5_CNN with gauge observations 23 

from more than 9000 rain gauges, using the Climatology Aided Interpolation and Random Forest 24 

methods. Validation shows that the TPHiPr is generally unbiased and has a root mean square error of 4.5 25 

mm day-1, a correlation of 0.84 and a critical success index of 0.67 with respect to all independent rain 26 

gauges in the TP, demonstrating that this dataset is remarkably better than the widely-used global/quasi-27 

global datasets, including the fifth-generation atmospheric reanalysis of the European Centre for 28 

Medium-Range Weather Forecasts (ERA5), the final run version 6 of the Integrated Multi-satellitE 29 

Retrievals for Global Precipitation Measurement (IMERG) and the Multi-Source Weighted-Ensemble 30 

Precipitation version 2 (MSWEP V2). Moreover, the TPHiPr can better detect precipitation extremes 31 

compared with the three widely-used datasets. Overall, this study provides a new precipitation dataset 32 

with high accuracy for the TP, which may have broad applications in meteorological, hydrological and 33 

ecological studies. The produced dataset can be accessed via 34 

https://doi.org/10.11888/Atmos.tpdc.272763 (Yang and Jiang, 2022). 35 
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1. Introduction 38 

The Third Pole (TP) region is one of the most complex-terrain regions with high elevations and 39 

heterogeneous land surfaces, and strong water and energy exchanges between land surface and 40 

atmosphere exists in this region (Chen et al., 2021). Moreover, it is the source of many large Asian rivers, 41 

providing abundant water resources and hydropower within and beyond this region (Yao et al., 2022). 42 

Meanwhile, the TP suffers from frequent natural hazards (e.g. flash floods, debris flows, landslides), 43 

especially in the periphery of the TP (Cui and Jia, 2015). Reliable gridded precipitation data is essential 44 

for understanding of hydrological processes, planning of water resources and prevention of natural 45 

hazards in the TP (Gao et al., 2021; Wang et al., 2018). 46 

At present, quasi-global and regional precipitation datasets, including gauge-based products, satellite-47 

based products and reanalysis products, have played an important role over the TP. These datasets include 48 

the Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation 49 

(APHRODITE; Yatagai et al., 2012), the Integrated Multi-satellitE Retrievals for Global Precipitation 50 

Measurement (IMERG; Huffman et al., 2019), the TRMM Multisatellite Precipitation Analysis (TMPA; 51 

Huffman et al., 2007), the China Meteorological Forcing Dataset (CMFD; He et al., 2020), the fifth 52 

generation ECMWF atmospheric reanalysis (ERA5; Hersbach et al., 2020), the High Asia Refined 53 

analysis (HAR; Maussion et al., 2014) and its version 2 (HAR V2; X. Wang et al., 2020), et al. Among 54 

these products, gauge-based products may have large errors in the TP, since they are mostly interpolated 55 

based on sparse gauge observations. Satellite or satellite-gauge combined products are most widely used 56 

in the TP. However, they are proved to misrepresent solid precipitation and orographic precipitation, and 57 

show large uncertainties in winter and in the western and southeastern TP (Gao et al., 2020; Lu and Yong, 58 

2018; Xu et al., 2017). Atmospheric simulation with fine spatial resolution can give reasonable 59 

atmospheric water transport and precipitation spatial variability in complex terrain (Curio et al., 2015; 60 

Maussion et al., 2014; Norris et al., 2017; Ouyang et al., 2021; Sugimoto et al., 2021; Wang et al., 2020b; 61 

Zhou et al., 2021), moreover, it is skillful in estimating solid precipitation (Lundquist et al., 2019; 62 

Maussion et al., 2014). However, currently atmospheric simulation-based datasets consistently 63 

overestimate precipitation amount in the TP (Gao et al., 2015; Wang et al., 2020b; Zhou et al., 2021). As 64 

a result, substantial differences exist among these datasets in the TP in terms of both amount and spatial 65 
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variability of precipitation (D. Li et al., 2020; Lu and Yong, 2018; Tan et al., 2020; Wang and Zeng, 2012; 66 

You et al., 2012). In addition, these datasets typically have a horizontal resolution coarser than 10 km, 67 

which is insufficient to represent the fine-scale precipitation variability and cannot be applied locally.  68 

Errors in precipitation products hinder the correct understanding of water cycle processes in the TP. For 69 

example, Immerzeel et al. (2015) found that the simulated runoff in the upper Indus using APHRODITE 70 

is much smaller than the observations and further confirmed that APHRODITE severely underestimates 71 

precipitation amount in this region. Savéan et al. (2015) pointed out that precipitation from rain gauges 72 

with poor spatial representativeness leads to irrational runoff component simulations in the central 73 

Himalaya. Jiang et al. (2022) demonstrated that currently widely-used satellite-based precipitation 74 

products cannot close the basin-scale water budget in the eastern edge of the TP. Some other studies also 75 

demonstrated the high uncertainties in current precipitation products for simulations of snow cover (Gao 76 

et al., 2020), soil moisture (Yang et al., 2020) and river discharge (Alazzy et al., 2017).  77 

Merging multiple precipitation products is widely conducted to mitigate precipitation uncertainties 78 

(Hong et al., 2021; Ma et al., 2022; Shen et al., 2014). Ma et al. (2018) used a dynamic Bayesian model 79 

to merge multiple satellite precipitation products in the TP and showed that the merged precipitation has 80 

higher accuracy than the raw satellite data; Li et al. (2021) produced a high-accuracy precipitation dataset 81 

for the southern TP by merging three satellite-based precipitation datasets with high-density rain gauge 82 

data. Wang et al. (2020a) developed a long-term precipitation dataset for the Yarlung Tsangpo River basin 83 

by merging data from satellite, reanalysis and rain gauges. Although encouraging progresses have been 84 

made, there are still some limitations. First, these works either corrected gridded precipitation with data 85 

from sparse rain gauge networks or were conducted in sub-regions of the TP. Second, most works have 86 

merged satellite products with rain gauge data, while both the two sources of precipitation perform poorly 87 

in reflecting heterogeneous precipitation in the complex-terrain TP. Therefore, substantial improvements 88 

are still needed for producing high-accuracy precipitation data in the TP.  89 

Therefore, the main goal of this study is to produce a long-term high-resolution precipitation dataset with 90 

high accuracy for the TP, by merging unprecedented high-density rain gauge data with high-resolution 91 

atmospheric simulation-based precipitation. The atmospheric simulation-based precipitation is selected 92 

as the background field, mainly due to its advanced skill in giving the spatial variability of precipitation 93 
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in complex terrain and estimating solid precipitation, which is especially important in high mountains 94 

and the western TP. 95 

2. Data  96 

2.1 Rain gauge data 97 

Rain gauge data used in this study are obtained from several sources, including the China Meteorological 98 

Administration (CMA), the Ministry of Water Resources of China (MWR), the Department of Hydrology 99 

and Meteorology of Nepal (DHM), the Global Historical Climatology Network (GHCN; Menne et al., 100 

2012), and some other field observation networks (Chen et al., 2014, 2015; Luo, 2018; Wei and Wang, 101 

2019; Wang, 2021; Yang, 2018; Yang et al., 2017; Zhang, 2018; Zhao, 2018; Zhao et al., 2017). These 102 

networks provide either daily or sub-daily records. In addition, our group has set up more than 80 rain 103 

gauges over the TP since 2017, deployed in the Yadong Valley, the south slope of Gangdise Range, the 104 

eastern edge of the TP, the surroundings of the Namco Lake and the Inner TP. Observations from this 105 

network are also used in this study. 106 

 107 

Figure 1: (a) Topography of the Third Pole region. (b) Spatial distribution of rain gauges used in this 108 

study. The blue line denotes the 2500 m contour of elevation, which is obtained from Zhang (2019). 109 
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A series of quality control procedures are applied to the rain gauge data following the method of Hamada 110 

et al. (2011), including outlier check, repetition check, and spatial consistency check. Detailed judgment 111 

criteria for each check can refer to Hamada et al. (2011). In addition, for each rain gauge, data records 112 

for a certain year less than 60 days are removed since they are likely to suffer from a technical broken. 113 

After the quality control, data from 9798 rain gauges are eventually selected for precipitation merging 114 

and these data have temporal coverages ranging from a few months to more than 40 years. Figure 1 115 

shows the spatial distribution of these rain gauges. 116 

Rain gauge observations usually suffer from measurement errors, including wind-induced undercatch, 117 

wet loss and evaporation loss. This especially happens in the TP where the wind is strong and solid 118 

precipitation accounts for a large proportion of the total precipitation. Therefore, the measurement errors 119 

are corrected in this study. For gauges where observed wind speed and air temperature are provided, the 120 

empirical relationships provided by Ye et al. (2007) and Ma et al. (2015) are used to correct the 121 

measurements. For gauges without wind speed and air temperature observations, the Random Forest (RF) 122 

model is used to correct precipitation. This is achieved with the following steps: first, the RF model is 123 

trained at above-corrected gauges, using wind speed and air temperature from ERA5 and original 124 

observed daily precipitation as model input and the corrected precipitation as the target; then, the trained 125 

model is applied to gauges without wind speed and air temperature observations to estimate corrected 126 

precipitation, using wind speed and air temperature from ERA5. 127 

2.2 Gridded precipitation dataset 128 

The background precipitation dataset used in this study is called ERA5_CNN, which was produced by 129 

the downscaling method presented in our previous work (Jiang et al., 2021). This dataset is an 130 

atmospheric simulation-based dataset, derived from combing a short-term high-resolution WRF 131 

simulation (Zhou et al., 2021) with ERA5 reanalysis. More specifically, a two-year high-resolution WRF 132 

simulation is firstly obtained and used for training a convolutional neural network (CNN)-based 133 

downscaling model. Then, the trained model is used to downscale the long-term ERA5 precipitation to 134 

generate the ERA5_CNN. The ERA5_CNN has a high horizontal resolution of 1/30° and daily temporal 135 

resolution, covering the period from 1979 to 2020. Our previous evaluations showed that the 136 

ERA5_CNN can give fine-scale spatial variability of precipitation in the complex-terrain TP and has high 137 

https://doi.org/10.5194/essd-2022-299
Preprint. Discussion started: 15 September 2022
c© Author(s) 2022. CC BY 4.0 License.



7 

 

spatial correlations with rain gauge data. However, the ERA5_CNN generally overestimates precipitation 138 

in the TP, which is inherited from atmospheric simulation (Jiang et al., 2021). Therefore, its accuracy 139 

needs to be further improved by merging it with high-density gauge observations. 140 

For comparison, three typically widely-used precipitation datasets, including ERA5 reanalysis, satellite-141 

based IMERG and the Multi-Source Weighted-Ensemble Precipitation version 2 (MSWEP V2; Beck et 142 

al., 2019), are also utilized in this study. The ERA5 is the latest generation reanalysis of the European 143 

Centre for Medium-Range Weather Forecasts (ECMWF), which provides 0.25° precipitation data at 1-144 

hour intervals. IMERG is a satellite precipitation dataset retrieving from the combination of both 145 

microwave and infrared observations and is currently the most widely-used in the world, with a horizontal 146 

resolution of 0.1° and the highest temporal resolution of half an hour. The IMERG Final Run V6 147 

(hereafter IMERG), which has been corrected with monthly rain gauge data, is used in this study. The 148 

MSWEP V2 with a horizontal resolution of 0.1° is a merged dataset that has combined multiple satellite, 149 

gauge, and reanalysis precipitation datasets. Moreover, it is corrected with observed discharge from many 150 

catchments worldwide.  151 

3. Methods 152 

3.1 Merging algorithm 153 

3.1.1 General flowchart 154 

This study merges the ERA5_CNN precipitation with high-density rain gauge data based on the idea of 155 

the Climatology Aided Interpolation (CAI; Willmott and Robeson, 1995), in which the anomalies/ratios 156 

of meteorological variables are interpolated and then added/multiplied to the climatology, instead of 157 

directly interpolating the meteorological variables. The CAI method has been widely applied for gridding 158 

precipitation and shown good performance (Contractor et al., 2020; Schamm et al., 2014; Xie et al., 2007). 159 

Figure 2 shows the flowchart for merging ERA5_CNN and rain gauge data. Three main parts are involved 160 

in the merging procedure, including the construction of monthly precipitation climatology, monthly 161 

precipitation and daily precipitation. Details are listed below. 162 
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 163 

Figure 2: General flowchart of the merging algorithm. The static variables include the elevation, the 164 

standard deviation of elevation and the identifier of the clusters with different precipitation characteristics. 165 

The subscript ‘o’ represents ‘observation’, ‘e’ represents ‘ERA5_CNN’, ‘g’ represents ‘gridded’, ‘c’ 166 

represents ‘climatology’, ‘m’ represents ‘monthly’ and ‘d’ represents ‘daily’. 167 

(1) Construction of monthly precipitation climatology. 168 

Since the length of the data records varies from gauge to gauge, it is undesirable to obtain monthly 169 

climatology fields via directly interpolating the observed multi-year average monthly precipitation. 170 

Therefore, we first construct monthly precipitation climatology at gauge locations based on the monthly 171 

precipitation climatology of ERA5_CNN, using the following formula: 172 

𝑃𝑐𝑜 = 𝑃𝑐𝑒 ×
𝑃𝑐𝑜1

𝑃𝑐𝑒1
,                                                                   (1) 173 

where Pco is the constructed monthly precipitation climatology at gauge locations, Pce is the monthly 174 

precipitation climatology of ERA5_CNN averaged over 1979-2020, Pco1 is the monthly precipitation of 175 
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rain gauge averaged over the observing period, which varies from gauge to gauge, and Pce1 is the monthly 176 

precipitation of ERA5_CNN averaged over the same observing period at the collocated grids.  177 

The precipitation climatology fields for the 12 months are then constructed by interpolating the monthly 178 

climatology at gauge locations using a Random Forest (RF; Breiman, 2001) and Kriging-based method, 179 

in which the climatology of ERA5_CNN is taken as an auxiliary and will be introduced in section 3.1.2. 180 

(2) Construction of gridded monthly precipitation 181 

In this study, the ratios of monthly precipitation to its climatology are adopted for constructing monthly 182 

precipitation fields. There are four steps for constructing monthly precipitation fields. First, the ratios of 183 

observed monthly precipitation (Pmo) to the precipitation climatology (Pco) are calculated at gauge 184 

locations; second, the ratios (Pmo/Pco) are gridded using the RF method; third, the gridded ratios (Rmg) are 185 

multiplied by the gridded monthly precipitation climatology (Pcg) obtained in step (1) to construct the 186 

first guess of gridded monthly precipitation fields (Pm1); finally, the residuals of the first guess against 187 

gauge observations are gridded using the Kriging method and added to the first guess to construct the 188 

final monthly precipitation fields (Pm). 189 

(3) Construction of gridded daily precipitation 190 

The procedures for constructing daily precipitation fields are similar to monthly precipitation, with only 191 

two differences. First, the ratios are daily precipitation to monthly climatology (Pdo/Pco and Pde/Pce) in 192 

this part. Second, the daily precipitation fields after residual correction (Pd2) are further adjusted to ensure 193 

that the sum of the daily precipitation amount in a month is equal to the corresponding monthly 194 

precipitation amount obtained in step (2), given that monthly precipitation fields are more reliable due to 195 

their less spatial variability than daily fields (He et al., 2020). 196 

In the above procedures, gridding multiple variables, including the monthly climatology, the ratios of 197 

monthly/daily precipitation to monthly climatology and the monthly/daily residuals, is achieved based 198 

on the RF and Ordinary Kriging, which will be introduced in section 3.1.2. 199 

3.1.2 Gridding method 200 

Gridding monthly precipitation climatology and precipitation ratio is the key for merging ERA5_CNN 201 

and rain gauge data. The main gridding method used in this study is the RF model, which is an ensemble 202 
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machine learning model based on the decision tree algorithm and can learn the complex non-linear 203 

relationships between multiple covariates and the target variable. The RF is easy to implement and has 204 

robust prediction accuracy, thus making it a widely-used method for the correction and downscaling of 205 

meteorological variables (Baez-Villanueva et al., 2020; He et al., 2016; Sekulić et al., 2021; Zhang et al., 206 

2021). The general formulation for griding precipitation at multiple timescales with the RF can be 207 

expressed as follow: 208 

{
𝑃𝑐𝑔 = 𝑓1(𝑥𝑐,1, 𝑥𝑐,2, … , 𝑥𝑐,𝑛) + 𝜀1,               𝑓𝑜𝑟 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦

𝑃 = 𝑃𝑐𝑔 × 𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛) + 𝜀2,                   𝑓𝑜𝑟 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑎𝑛𝑑 𝑑𝑎𝑖𝑙𝑦 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛
,           (2) 209 

where Pcg is the monthly precipitation climatology, P is the monthly or daily precipitation, f1(•) and f2(•) 210 

are the non-linear regressive relationship built with the RF model, xc,i and xi are the covariates used to 211 

predict the precipitation climatology or the ratio of monthly/daily precipitation to the climatology, and ε212 

1 and ε2 are the residuals of the estimated precipitation.  213 

Multiple covariates are used to build the RF model. For gridding monthly precipitation climatology, the 214 

target for training the RF model is the monthly precipitation climatology at the gauge locations, and the 215 

inputs are monthly precipitation climatology from ERA5_CNN at nine grids around the target location, 216 

longitude, latitude, elevation and standard deviation of elevation around the target location. In addition, 217 

the study area is divided into 25 clusters according to the monthly variation of precipitation and the 218 

identifier for the cluster is also input into the RF model. For griding the ratio of monthly/daily 219 

precipitation to monthly climatology, the training target is the observed ratio of monthly/daily 220 

precipitation to monthly climatology, and the inputs are the same as those for griding precipitation 221 

climatology except that the ratios of monthly/daily precipitation to monthly climatology are input to the 222 

model rather than monthly climatology. Model training performs for each month, i.e. samples from all 223 

gauges and all years in a month are gathered together and used for model training. 224 

As shown in Eq. (2), there are residuals (ε1 and ε2) between the precipitation estimates from the RF 225 

model and the gauge observations. Therefore, we first calculate the differences between the gauge 226 

observations and the precipitation estimates from RF at each gauge. Then, the Ordinary Kriging is used 227 

to interpolate the differences. Finally, the difference field is added to the precipitation estimates from RF 228 

to obtain the final estimates of precipitation.  229 
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3.2 Evaluation metrics 230 

Several metrics are used for validating the merged precipitation, including relative bias (Rbias), root 231 

mean square error (RMSE), correlation coefficient (CC), probability of detection (POD), false alarm ratio 232 

(FAR) and critical success index (CSI). The formulas and perfect values for these metrics are listed in 233 

Table 1. 234 

Table 1 The error metrics used in this study 235 

Metrics Formula Perfect value 

Relative bias 𝑅𝑏𝑖𝑎𝑠 =
∑ (𝑀𝑖 − 𝑂𝑖)𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 0 

Root mean square error 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑀𝑖 − 𝑂𝑖)

2

𝑛

𝑖=1

 0 

Correlation coefficient 
𝐶𝐶 =

∑ (𝑀𝑖 − 𝑀)(𝑂𝑖 − 𝑂)𝑛
𝑖=1

√∑ (𝑀𝑖 − 𝑀)2𝑛
𝑖=1

√∑ (𝑂𝑖 − 𝑂)2𝑛
𝑖=1

 
1 

Probability of detection   𝑃𝑂𝐷 =
𝐻

𝐻 + 𝑀𝑀
 1 

False alarm ratio 𝐹𝐴𝑅 =
𝐹

𝐻 + 𝐹
 0 

Critical success index 𝐶𝑆𝐼 =
1

𝑃𝑂𝐷−1 + (1 − 𝐹𝐴𝑅)−1 − 1
 1 

where n is the number of days, Mi and Oi are the merged and observed precipitation at a specific day, 236 

respectively, 𝑀 and 𝑂 are the mean values of merged and observed precipitation, respectively. H is the 237 

days when both merged data and observation have precipitation. MM is the days when only observation 238 

has detected precipitation. F is the days when only merged data has detected precipitation. For calculating 239 

POD, FAR and CSI, a threshold of 0.1mm day-1 is adopted for distinguishing precipitation and non-240 

precipitation day. 241 

4. Results 242 

4.1 Validation of the merging algorithm 243 

4.1.1 Merging effect on precipitation amount and spatial pattern 244 

The spatial patterns of average annual precipitation from ERA5_CNN and the merged data (TPHiPr) 245 

during 1979-2020 are shown in Fig. 3a and b. It can be found that ERA5_CNN and TPHiPr have similar 246 
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spatial patterns of precipitation in the TP. Both have large precipitation amounts in the southeast of the 247 

TP and along the Himalayas, while having small precipitation amounts in the Qaidam Basin, the Tarim 248 

Basin and the Inner TP. The similar spatial patterns of ERA5_CNN and TPHiPr demonstrate that the 249 

merging algorithm generally retains the spatial characteristics of precipitation from ERA5_CNN. 250 

 251 

Figure 3: Spatial patterns of the annual average precipitation from (a) ERA5_CNN and (b) the merged 252 

data (TPHiPr), as well as (c) the relative difference between them. The precipitation is averaged over the 253 

period from 1979 to 2020. The relative difference is calculated by subtracting ERA5_CNN from TPHiPr, 254 

and then dividing by ERA5_CNN. 255 

The relative difference between ERA5_CNN and TPHiPr is also calculated and shown in Fig. 3c. 256 

Generally, by merged with rain gauge data, the precipitation amount is reduced in the TP. The 257 

precipitation amount averaged over the study area decreases from 696.4 mm year-1 of ERA5_CNN to 258 

600.9 mm year-1 of TPHiPr. This corresponds to previous works that have demonstrated the 259 

overestimation in the atmospheric simulation-based precipitation datasets (Gao et al., 2015; Jiang et al., 260 

2021; Wang et al., 2020b; Zhou et al., 2021). Spatially, the precipitation decrease is evident (up to 20%) 261 

in the central and eastern TP, the western Himalayas, the Karakoram and the Tarim Basin, while 262 

precipitation amount increases in the Qaidam Basin and its north, the southwest of the TP and the eastern 263 
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Kunlun. 264 

4.1.2 Validation with independent gauge data 265 

In this study, about 10% of the total rain gauges are randomly excluded for independent validation of 266 

TPHiPr, and several metrics against rain gauge data are calculated for ERA5_CNN and TPHiPr at these 267 

rain gauges based on daily precipitation. 268 

Figure 4 compares the boxplot of these metrics for ERA5_CNN and TPHiPr. TPHiPr has remarkably 269 

better performance than the ERA5_CNN. In terms of the Rbias, ERA5_CNN generally overestimates 270 

precipitation in the TP, with the median Rbias value for all these rain gauges of 16.6%. In comparison, 271 

the overestimation is largely reduced in TPHiPr, which has a median value of 0.5%. Also, TPHiPr shows 272 

smaller RMSE values (with a median value of 4.5 mm day-1) than the ERA5_CNN (with a median value 273 

of 8.6 mm day-1). Regarding CC, ERA5_CNN has values between 0.40 and 0.60 at most rain gauges (the 274 

median value is 0.53), while they are generally larger than 0.70 for TPHiPr with a median value of 0.84, 275 

indicating that precipitation from the TPHiPr has highly consistent temporal variations with rain gauge 276 

data. In addition, it can be seen that the Rbias (Fig. 4a) and RMSE (Fig. 4b) for TPHiPr are less divergent 277 

than those for ERA5_CNN, implying that TPHiPr has more spatially homogeneous accuracy than 278 

ERA5_CNN. 279 

 280 

Figure 4: Comparison of error metrics for ERA5_CNN and TPHiPr at 966 independent rain gauges. The 281 

box represents the distribution of the metrics for all the independent rain gauges in the TP. 282 
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 283 

Figure 5: Spatial distribution of error metrics differences between ERA5_CNN and TPHiPr. The 284 

differences are calculated by subtracting the metrics of ERA5_CNN from those of TPHiPr. 285 

Figure 5 shows the differences in the three metrics between ERA5_CNN and the TPHiPr at each rain 286 

gauge. After the merging, the rain gauges with better Rbias, RMSE and CC account for 68%, 97% and 287 

96% of the total validation rain gauges, respectively. More than 50% of the rain gauges have RMSE 288 

reductions larger than 3.0 mm day-1 and about 67% of the rain gauges have CC improved by more than 289 

0.2. Moreover, obvious improvements can be found at many east rain gauges. In the western region, 290 

improvements can also be found at many rain gauges in the high elevations, while the metrics change 291 

little at some rain gauges outside the 2500 m contour.  292 

In summary, by merged with rain gauge data, the accuracy of ERA5_CNN is well improved in the TP, 293 

especially in regions where high-density rain gauges are located. 294 

4.2 Comparison with other datasets 295 

We also compare the merged precipitation data with other widely-used precipitation products. The 296 

comparison focuses mainly on three aspects: the amount and spatial patterns of precipitation, the error 297 

metrics against rain gauge data and the ability to reproduce precipitation extremes.  298 

https://doi.org/10.5194/essd-2022-299
Preprint. Discussion started: 15 September 2022
c© Author(s) 2022. CC BY 4.0 License.



15 

 

4.2.1 Precipitation amount and spatial patterns 299 

Figure 6 compares the average annual precipitation amount from multiple datasets in the Third Pole 300 

region (above 2500 m contour) for 2008-2020. Among the four datasets, ERA5 has the largest 301 

precipitation amount of 810.8 mm year-1, followed by TPHiPr (640.1 mm year-1) and MSWEP V2 (501.5 302 

mm year-1), and IMERG has the smallest precipitation amount of 424.7 mm year-1. 303 

 304 

Figure 6: Average annual precipitation of the four datasets for the TP (above 2500 m contour) during 305 

2008-2017. 306 

Figure 7 shows spatial patterns of the average annual and seasonal precipitation during 2008-2020 from 307 

the four precipitation datasets. Generally, the average annual precipitation (Fig. 7a-7d) from all the four 308 

datasets decreases from the southeast to the northwest because the monsoon has brought abundant water 309 

vapor to the southeastern region of the study area while its impact is reduced in the northwest. In addition, 310 

high mountains along the Himalayas block the northward moisture and result in large precipitation 311 

amounts in this region, which is revealed by all these datasets. As shown in Fig. 7, precipitation from 312 

IMERG and MSWEP V2 varies more smoothly in space than that from TPHiPr and ERA5. Moreover, 313 

compared with ERA5, TPHiPr presents more details related to local topography. For example, the dry 314 

belt in the northern slope of the central Himalayas (around 90°E, 29°N), which was proved in the results 315 

of Wang et al. (2019), is more evident in TPHiPr than in ERA5. Besides, TPHiPr shows greater spatial 316 

variability of precipitation than ERA5 in the Hengduan Mountains where the topography is much 317 

complex with many large mountain ranges and valleys. 318 
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 319 

Figure 7: Spatial patterns of average (a-d) annual and (e-t) seasonal precipitation from ERA5 (first 320 

column), IMERG (second column), MSWEP V2 (third column) and TPHiPr (fourth column). The 321 

precipitation is averaged over the period from 2008 to 2020. MAM: March to May; JJA: June to August; 322 

SON: September to November; DJF: December to February. 323 

With respect to the seasonal variations of precipitation, affected by the monsoon climate, most parts of 324 

the TP have large precipitation in summer but small precipitation in winter. In the westerly-dominant 325 

western TP, the precipitation is large in spring and winter but small in summer. All these datasets can 326 

generally capture the seasonal cycles of precipitation in the TP. In summer (Fig. 7i-l), the differences 327 

between these datasets mainly occur in the Inner TP, where TPHiPr and ERA5 show larger precipitation 328 

than the IMERG and MSWEP V2. In spring (Fig. 7e-h) and winter (Fig. 7q-t), apparent differences 329 

between these datasets are shown in the Karakoram and the western Himalayas. TPHiPr and ERA5 yield 330 

large precipitation amounts in these regions, while the precipitation amount from IMERG and MSWEP 331 

V2 is relatively small. This is likely because solid precipitation accounts for a large part of the total 332 

precipitation in these regions and the model-based ERA5 and TPHiPr are more skillful in estimating 333 

solid precipitation than the IMERG and MSWEP V2, which has also been pointed out in the work of D. 334 

Li et al. (2020). 335 

4.2.2 Comparison of error metrics 336 
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The performance of the three widely-used global/quasi-global datasets is evaluated using the rain gauge 337 

data used for independent validation in section 4.1.2 and compared with that of TPHiPr in this study. 338 

Note that the evaluation in this section span a shorter period from 2008 to 2020 considering the 339 

availability of the IMERG data. 340 

Figure 8 compares the boxplots of the Rbias, RMSE and CC of the four datasets. In terms of the Rbias 341 

(Fig. 8a and the first column in Fig. 9), ERA5 overestimates precipitation at most rain gauges in the TP 342 

with a median value of 16.9%. The other three datasets generally have small relative biases and the 343 

median values for IMERG, MSWEP V2 and TPHiPr are -0.7%, -0.4% and -0.2%, respectively. For 344 

RMSE (Fig. 8b and the second column in Fig. 9), the three global/quasi-global datasets have similar 345 

RMSE in the TP, with the median value of 7.4 mm day-1 for ERA5, 7.1 mm day-1 for IMERG and 6.4 346 

mm day-1 for MSWEP V2, while the RMSE for TPHiPr has a median value of 4.5 mm day-1, which is 347 

remarkably smaller than those of the other three datasets. Particularly, the correlations between the 348 

precipitation from TPHiPr and rain gauge data are remarkably larger than those of the other three datasets 349 

(Fig. 8c and the third column in Fig. 9). The values of CC for ERA5 are between 0.30 and 0.60 at most 350 

gauges, with a median value of 0.55. The IMERG and MSWEP V2 have higher correlations with rain 351 

gauge data and both of them have a median value of 0.64. By contrast, PHiPr has a CC value larger than 352 

0.70 at about 80% of the total rain gauges, resulting in a median value for all gauges of 0.84. 353 

 354 

Figure 8: Comparison of (a) Rbias, (b) RMSE and (c) CC for ERA5, IMERG, MSWEP V2 and TPHiPr. 355 

The box represents the distribution of the metrics for all the independent rain gauges in the TP. 356 
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 357 

Figure 9: Spatial distribution of Rbias (first column), RMSE (second column) and CC (third column) 358 

for (a-c) ERA5, (d-f) IMERG, (g-i) MSWEP V2 and (j-l) TPHiPr. The metrics are calculated at daily 359 

scale. 360 

This study also calculates the POD, FAR and CSI for the four datasets to compare their performance in 361 

detecting precipitation occurrence. In this section, a threshold of 0.1 mm day-1 is used to distinguish rain 362 

and no-rain days. Figure 10 compares the boxplots of these metrics for ERA5, IMERG, MSWEP V2 and 363 

TPHiPr, and the spatial distributions for these metrics are shown in Fig. 11. Among the four datasets, the 364 

ERA5 and MSWEP V2 have high values of POD (both have a median value of 0.97). However, it can be 365 

seen from Fig. 10b and Fig. 11 that they also have large FAR values. This is mainly because both ERA5 366 

and MSWEP V2 have data sources from atmospheric reanalysis, which tends to overestimate 367 

precipitation frequency in the TP (Hu and Yuan, 2021). In contrast, IMERG, mainly based on satellite 368 

estimates, has lower values of POD and FAR. With respect to TPHiPr, Fig. 10 shows that it has relatively 369 

high POD values (the median value is 0.93) and the lowest FAR (the median value is 0.29). As a result, 370 

TPHiPr gains the highest CSI values among the four datasets, with a median value of 0.67, while all the 371 

other datasets have a median CSI value of about 0.55. 372 
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 373 

Figure 10: Similar to Fig. 8 but for (a) POD, (b) FAR and (c) CSI. These metrics are calculated using a 374 

threshold of 0.1 mm day-1. 375 

 376 

Figure 11: Similar to Fig. 9 but for POD (first column), FAR (second column) and CSI (third column). 377 

In summary, the comparison of these error metrics shows that TPHiPr generally has better performance 378 

than the widely-used reanalysis data (ERA5), satellite-based data (IMERG) and multiple-sources merged 379 

data (MSWEP V2). In addition, it should be noted that some validation data from CMA, DHM and 380 

GHCN have been used to produce the IMERG and MSWEP V2. Therefore, if these data are removed 381 
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from the validation, more evident superiority of TPHiPr is expected compared with IMERG and MSWEP 382 

V2. 383 

4.2.3 Comparison of precipitation extremes 384 

Extreme precipitation is the leading cause of many water-related disasters. Therefore, this study also 385 

evaluates the performance of TPHiPr to reproduce extreme precipitation. Following some previous works 386 

(Katsanos et al., 2016; Li et al., 2022; Lockhoff et al., 2014), the 90th percentile of daily precipitation on 387 

wet days is set as the threshold for extreme precipitation in this study. Due to discontinuous temporal 388 

coverages of gauge observations, this study only evaluates the extreme precipitation of these datasets at 389 

136 rain gauges with at least 2-year precipitation records and covering a complete seasonal cycle. 390 

Figure 12 compares the detection skill of these precipitation datasets for extreme precipitation. Compared 391 

with the detection skill for all precipitation events (Fig. 10), the detection skill of all the four datasets for 392 

extreme precipitation is obviously reduced, with lower POD and CSI but higher FAR. Nevertheless, 393 

TPHiPr performs the best among these datasets. The median values of POD, FAR and CSI for TPHiPr 394 

are 0.39, 0.42 and 0.28, respectively, which is better than those of the other three datasets. 395 

The 90th percentile (R90p) of daily precipitation on wet days, the average intensity (R90p_INT) and the 396 

frequency (R90p_FRQ) of precipitation greater than R90p are also calculated for each dataset and 397 

compared with those of rain gauge data. Figure 13 shows that all these datasets underestimate the 398 

intensity but overestimate the frequency of extreme precipitation. TPHiPr has worse performance than 399 

IMERG, however, it performs better than the ERA5 and MSWEP V2.   400 

 401 

Figure 12: Similar to Fig. 10, but for extreme precipitation. The 90th percentile of observed daily 402 

precipitation at each rain gauge is taken as the threshold for calculating these metrics. 403 
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 404 

Figure 13: Comparison of (a) R90p, (b) R90p_INT and (c) R90p_FRQ for rain gauge data (OBS), ERA5, 405 

IMERG, MSWEP V2 and TPHiPr. R90p represents the 90th percentile of daily precipitation for each 406 

dataset. R90p_INT represents the average precipitation intensity of daily precipitation larger than R90p. 407 

R90p_FRQ represents the frequency of daily precipitation larger than R90p. 408 

In summary, although the TPHiPr underestimates the intensity but overestimates the frequency of 409 

extreme precipitation, it has better performance than the other three datasets in detecting the occurrence 410 

of extreme precipitation. 411 

5. Limitations 412 

The above analysis shows that the TPHiPr produced in this study generally has high accuracy in the TP 413 

and is superior to the most widely-used global/quasi-global precipitation datasets. However, there are 414 

still some limitations in TPHiPr that need to be clarified. 415 

As shown in Fig. 5, by merged with the rain gauge data, the accuracy of the gridded data is generally 416 

improved, but the improvements vary greatly in space. In the eastern TP, the improvement is evident, 417 

however, the accuracy at some western rain gauges outside the 2500 m contour changes little and even 418 

gets worse. This highlights the importance of high-density rain gauge data for precipitation merging, as 419 

demonstrated in many previous works that rain gauge density greatly impacts the accuracy of the 420 

produced dataset (Berndt et al., 2014; Girons et al., 2015; Xie et al., 2007). Therefore, the TPHiPr may 421 

still have large uncertainties in the west of the TP and regions where rain gauges are sparse. 422 
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 423 

Figure 14: Comparison of the probability density function by (a) precipitation frequency and (b) amount 424 

for rain gauge data and the four datasets. The x axis is in log space. 425 

Besides, previous studies have reported that the atmospheric simulation-based datasets generally 426 

overestimate the precipitation frequency (Hu and Yuan, 2021; P. Li et al., 2020). Therefore, we investigate 427 

the probability distribution function (PDF) of both precipitation frequency and amount in TPHiPr with 428 

respect to different precipitation intensities. As shown in Fig. 14, the TPHiPr largely overestimates the 429 

frequency of light precipitation (less than 5 mm day-1), but the overestimation is smaller than that in 430 

ERA5 and MSWEP V2. In addition, we can find from Fig. 14b that the TPHiPr overestimates the amount 431 

of light to moderate precipitation but underestimates the amount of heavy precipitation, and the same is 432 

also found in ERA5 and MSWEP V2.  433 

6. Conclusion 434 

This study collects more than 9000 rain gauges over and around the Third Pole (TP) region from multiple 435 

sources. Then, the following steps are applied for merging the high-density gauge observations and the 436 

atmospheric simulation-based ERA5_CNN: first, the monthly precipitation climatology at gauge 437 

locations is obtained by correcting the climatology of ERA5_CNN with rain gauge data and the monthly 438 
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climatology at gauge locations is interpolated using a Random Forest based method; second, the ratios 439 

of observed monthly/daily precipitation to the climatology at gauge locations is interpolated for each 440 

month/day using the RF-based method; third, the monthly/daily precipitation fields are obtained by 441 

multiplying the interpolated monthly climatology by the interpolated monthly/daily ratios; finally, the 442 

daily precipitation fields are further adjusted using the monthly precipitation. Eventually, a long-term 443 

(1979-2020) high-resolution (1/30°) precipitation dataset (TPHiPr) is produced for the TP. 444 

We compare the performance of the merged TPHiPr with the original ERA5_CNN data and three widely-445 

used precipitation datasets, including the atmospheric simulation-based ERA5, the satellite-based 446 

IMERG and the MSWEP V2 merged from multiple sources. Results show that the TPHiPr retains the 447 

general spatial patterns of precipitation from ERA5_CNN but has a reduced wet bias in the TP, resulting 448 

in better error metrics than ERA5_CNN at most validation gauges. Meanwhile, the TPHiPr performs 449 

better than the three widely-used precipitation datasets in the TP, with respect to errors in both 450 

precipitation amount and detection skill. Validation with independent gauges shows that the TPHiPr has 451 

a negligible bias, low RMSE (4.5 mm day-1), high correlation (0.84) and high detection skill (CSI=0.67). 452 

In addition, the TPHiPr is more skillful than the three datasets in detecting extreme precipitation events, 453 

although it overestimates the frequency but underestimates the intensity of extreme precipitation. 454 

In summary, a new high-accuracy precipitation dataset is produced for the data-sparse TP, which can be 455 

used for land surface modeling, water resource management, water-related disasters assessment, climate 456 

change research, et al. This dataset is expected to deepen our understanding of land surface processes 457 

and water cycles in the TP. Nevertheless, further efforts (e.g. setting up more rain gauges in remote 458 

regions and developing more skillful merging methods) are still needed for obtaining higher-accuracy 459 

precipitation datasets for the TP, as clarified in section 5, the produced data may still have large 460 

uncertainties in data-sparse regions and cannot reproduce the observed frequency and intensity of 461 

precipitation well.  462 
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