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Abstract. Accurate and spatially explicit information on crop yield over large areas is paramount for ensuring global food 

security and guiding policy-making. However, most public datasets are coarse resolution in both space and time. Here, we 

used data-driven models to develop a 4-km dataset of global wheat yield (GlobalWheatYield4km) from 1982 to 2020. First, 

we proposed a phenology-based approach to map spatial distribution. Then we determined the optimal grid-scale yield 15 

estimation model by comparing the performance of two data-driven models (i.e., Random Forest (RF) and Long Short-Term 

Memory (LSTM)), with publicly available data (i.e., satellite and climatic data from the Google Earth Engine (GEE) platform, 

soil properties, and subnational statistics covering ~11000 political units). The results showed that GlobalWheatYield4km 

captured 82% of yield variations with RMSE of 619.8 kg/ha. In addition, our dataset had a higher accuracy (R2 ~0.73) as 

compared with Spatial Production Allocation Model (R2 ~ 0.49) across all regions and years. The GlobalWheatYield4km 20 

dataset will play important roles in modelling crop system and assessing climate impact over larger areas ((DOI of the 

referenced dataset: https://doi.org/10.6084/m9.figshare.10025006; Luo et al., 2022b). 

1 Introduction 

Approximately 800 million people worldwide suffered from undernourishment in 2020 (FAO, 2021). Sustainable 

Development Goal (SDG) 2 is dedicated to eradicating hunger and all forms of malnutrition by 2030 and achieving food 25 

security (UN, 2017). However, the goal of eliminating hunger will remain elusive even by 2050 due to climate variability or 

extreme weather events and global crises such as the COVID-19 pandemic and the current Russia–Ukraine war (IFPRI, 2022). 

Climate change is projected to force an additional 72 million people to face hunger risks in 2050, and the COVID-19 pandemic 

perhaps has added 83-132 million more undernourished people in 2020 (FAO, 2020; IFPRI, 2022). In these contexts, global 

food production needs to increase by at least 70% to feed the unprecedented population growth up to 10 billion by 2050 (Sulser 30 

et al., 2021; van Dijk et al., 2021). To better inform a series of agricultural resource allocation and food security decisions, 
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timely and accurate information on crop yield at global scale is of paramount significance (Folberth et al., 2020; Lobell et al., 

2009; Ray et al., 2015; Rötter et al., 2018). 

Process-based crop models and statistical methods are the main ways to predict crop yield (Balaghi et al., 2008; Bussay et al., 

2015; Feng et al., 2021; Franch et al., 2015; Jin et al., 2017; Zhao et al., 2020). Process-based crop models can 35 

dynamically simulate crop development, growth and grain formation processes (Chen et al., 2022; Huang et al., 2019; Ines et 

al., 2013; Luo et al., 2021; Zhuo et al., 2021). Despite utilizing a range of fundamental mechanisms of physiological processes, 

crop models highly require substantial data inputs and intensive computations (Burke and Lobell, 2017). In addition, statistical 

models often relate crop yields to diverse predictor variables (e.g., vegetation indices and climatic variables) and calibrate the 

empirical relationships based on measurements (Kern et al., 2018). The main advantages of statistical models are their 40 

simplicity and less dependence on calibration data; however, they are particularly vulnerable to co-linearity problems and 

noise of inputs (Lobell and Burke, 2010). Fortunately, machine learning (ML) approaches provide innovative alternatives to 

statistical models and can address the nonlinear relationships between the predictor variables and crop yield, which have 

demonstrated their superior performance in many applications (Cai et al., 2019; Cao et al., 2021; Li et al., 2021; Jin et al., 

2018). For instance, Kang et al. (2020) compared the performances of a set of statistical and ML methods and indicated that 45 

all ML models achieved better accuracy in predicting county-level maize yield. Emerging breakthroughs in algorithms such 

as deep learning (DL) approaches have accomplished more accurate crop yield estimation (Jeong et al., 2022; Zhang et al., 

2021). For example, the long short-term memory (LSTM) model adopts a recurrent neural network structure that can recognize 

sequential information for long time periods and capture sophisticated nonlinear relationships, showing superior performance 

over ML models in yield prediction (Jiang et al., 2019; Tian et al., 2021).  50 

Previous studies using ML and DL methods focused on very limited areas rather than global scales. It is well recognized that 

a global spatially explicit crop yield dataset has important implications for large-scale agricultural system modelling and 

climate change impact assessments. Although there are a few efforts to fill such data gaps, they still have some limitations. 

For example, a global dataset, with 10-km harvested area and yield datasets, was firstly generated for 175 crops circa 2000 

(Monfreda et al., 2008), followed by the Global Agro-ecological Zones (GAEZ) datasets in 2000 and 2010 (Fischer et al., 55 

2012), Spatial Production Allocation Model (SPAM) with 5-arcmin grid for three years (2000, 2005 and 2010) (You et al., 

2014) and the latest data by Grogan et al. (2022) at 5-minute resolution for 2015. However, these four public data products 

only cover 1~3 years, which hamper related studies on investigating the long-term impacts of climate change on yields (Tao 

et al., 2006, 2009). Iizumi et al. (2020) developed a global dataset of historical yields (GDHY) for major crops at a spatial 

resolution of 0.5° by integrating agricultural statistics and remote sensing. GDHY covers a longer period, but its spatial 60 

resolution is relatively coarse. Moreover, these yield datasets above were established based on crop distribution maps generated 

by downscaling method rather than accurate satellite-derived maps, which might result in misestimated yield and inaccurate 

assessments of climate change impacts (Luo et al., 2022a). Therefore, there is an urgent need to acquire the global gridded 

yield dataset with a higher resolution and a longer time span based on the accurate spatial distribution of harvesting areas. 
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In this study, by integrating multi-source data (e.g., remote sensing, climate, soil data and census statistics) and data-driven 65 

methods, we aim to 1) propose a phenology-based method to obtain the spatial distribution of wheat across the globe; 2) 

compare the performance of two ML and DL models in predicting gridded yields; 3) choose the optimal models to generate 

global wheat yield datasets. The resultant dataset with 4-km spatial resolution will benefit to investigate spatiotemporal patterns 

of crop production, assess climate change impacts and modelling crop growth processes over large spatial extents (Luo et al., 

2022b). 70 

2 Data and methods 

2.1 Study area 

The study area contains 54 countries across the globe, covering ~92% of the total harvested areas and ~93% of the productions 

(FAOSTAT, 2020) (Fig. 1). These countries possess abundant subnational-level statistics, with diverse climatic conditions and 

cropping systems. Winter wheat dominates the majority (>75%) of the total wheat harvested areas while spring wheat covers 75 

<25% (primarily in Northern Hemisphere high latitude areas such as the United States, Russian Federation and Canada) (Ren 

et al., 2019; USDA, 1994). 

 

Figure 1: The spatial distribution of spring and winter wheat across the study areas covering 54 countries globally. 

 80 

2.2 Data 

2.2.1 Remote sensing data 

We acquired the global daily 0.05° Normalized Difference Vegetation Index (NDVI) data during 1981-2021 derived from the 

Advanced Very High-Resolution Radiometer (AVHRR) sensor on the Google Earth Engine (GEE) platform (https:// 
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developers.google.com/earth-engine/datasets/). The main strength of AVHRR NDVI lies in its longest time coverage which 85 

can be used to derive predictors for yield prediction (Vermote et al., 2014). In addition, the 8 d composite Global Land Surface 

Satellite (GLASS) Leaf Area Index (LAI) at 1-km spatial resolution and Global Food Security-support Analysis Data (GFSAD) 

1 km Crop Mask product (GFSAD1KCM) were used to map spatial distributions of wheat. GLASS LAI was retrieved using 

general regression neural networks with multiple inputs (http://glass-product.bnu.edu.cn/?pid=3&c=1), with the specific 

advantages of being spatiotemporally continuous without gaps and having higher accuracy than other datasets (Xiao et al., 90 

2014, 2016). GFSAD1KCM provides global cropland extent for the nominal year 2010 and is produced based on four inputs 

with the highest accuracy of 85% (Teluguntla et al., 2016). Moreover, the annual dataset of 1 km wheat harvested area (named 

ChinaCropArea1km) in China during 2000-2015 were used (Luo et al., 2020). 

2.2.2 Wheat harvested area and yield 

We collected subnational-level census statistics on harvested area (unit: ha), production (unit: ton), and yield (unit: kg/ha) from 95 

~11000 administrative units for the 54 countries, with the longest time coverage spanning from 1981-2020. Yield is 

calculated as production divided by harvested area. Overall, 97% of statistical data came from administrative unit level 2 

(ADM2) and 3 (ADM3). The temporal coverage of crop statistics differs across the study area (Table S1). We eliminated 

outliers of census data with values +/− 2 standard deviation from the average. 

2.2.3 Environmental Data 100 

Meteorological information was obtained from high-spatial resolution (1/24°, ~4-km) monthly TerraClimate datasets 

(Abatzoglou et al., 2018). The climate variables used for this analysis were maximum temperature (Tmin), minimum 

temperatures (Tmax), precipitation (Pre), vapor pressure (Vap), vapor pressure deficit (Vpd), evapotranspiration (Pet), Soil 

moisture (Soil), palmer drought severity index (Pdsi), and downward surface shortwave radiation (Srad) from 1981 to 2021. 

In addition, soil properties were derived from Harmonized World Soil Database (HWSD) at 0.00833° (~1 km), involving bulk 105 

density, organic carbon, pH, gravel, clay, sand and silt fraction for the topsoil (0-30cm) (Nachtergaele et al., 2012). 

2.3 Methods 

We applied the framework, Global Wheat Production Mapping System (GWPMS), developed by Luo et al. (2022a) for 

mapping global wheat harvesting area and estimating gridded-yield. 

2.3.1 Identifying the spatial distribution of wheat 110 

Phenology information plays a paramount role in large-scale crop mapping (Dong et al., 2015; Luo et al., 2020; Song et al., 

2017). The occurrence of phenological stages of wheat differs from other crops, especially for winter wheat. More specifically, 

winter wheat is often sown in autumn, reaches heading in late spring and ultimately matures in early summer. That is, the 

phenological dates of winter wheat are earlier than other crops (e.g., summer crops and spring wheat). In addition, the duration 
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of growth period of winter wheat is generally longer. Spring wheat can also be differentiated from other summer crops as its 115 

phenological phases occur earlier. Therefore, we developed a wheat detecting algorithm that formalized these features in rules 

to automatically detect the harvested areas of spring and winter wheat (Luo et al., 2022a). In addition, we modified the 

algorithm when applied it in some regions where winter wheat was not a dominant crop or grown in rotation with other crops. 

For example, the rule for the senescence phase was loosened or even eliminated when the signal was weak due to the mixed 

pixel issues or the short duration of the interval between the maturity date of winter wheat and the planting date of the second 120 

crop. 

First, we compared the cropland map derived from the GFSAD1KCM with statistics to determine whether to use it as a 

cropland mask; that is, the mask was utilized only when the GFSAD1KCM-derived areas matched with (or were larger than) 

statistics. Then, we combined all the available GLASS LAI images during the wheat growing season together and obtained 

LAI time series for each cropland pixel. The commonly used Savitzky-Golay (S-G) filter method was used to remove the noise 125 

from the data, which had shown good performance for smoothing time series (Geng et al., 2014; Savitzky and Golay, 1964; 

Wang et al., 2018). Finally, we applied the algorithm to extract annual spatial distribution of spring and winter wheat during 

2006-2014. 

2.3.2 Estimating gridded-yield using data-driven models 

We first compared the predictive performance of two commonly used ML and DL approaches, i.e., Random Forest (RF) and 130 

LSTM. RF combines a set of decision trees that are constructed from a random subset of data (Breiman, 2001). Each tree is 

trained separately on these samples, and the remaining data are called out of bag (OOB) sample and can be used to validate 

the RF model. In this study, we used Python scikit-learn module to develop the RF regression model. The number of decision 

trees, the maximum depth of the tree and the number of features were selected for tuning. The LSTM network performs a 

framework of recurrent neural network (RNN) and memory gate structure, demonstrating superior performance in coping with 135 

sequential data and capturing the nonlinear and cumulative relationships between crop yield and meteorological factors 

(Hochreiter and Schmidhuber, 1997; Jiang et al., 2019). The model consists of an input layer, one or more LSTM layers and 

an output layer. The LSTM layers are composed of LSTM cells, in which information is forgotten or outputted decided by 

three gates. Batch normalization were firstly implemented for all the input data. The transient data (i.e., NDVI and climate 

data) were dealt with two LSTM layers that has 200 hidden units, whereas the non-sequential data (i.e., soil properties) were 140 

appended to the final LSTM layer and then fully connected to the output layer. In addition, a rectified linear unit (ReLU) 

activation function was used for all the layers. Model were run for 2000 maximum iterations with a mini-batch size of 500 and 

RMSprop was used to optimize hyperparameters with a learning rate of 0.001. The LSTM network for estimating gridded-

yield was performed on TensorFlow (GPU version 2.0). 

Here, we first resampled the gridded input data (i.e., NDVI, climate, and soil data) into 4 km and unified NDVI and climate 145 

data into monthly time steps by the maximum value synthesis and monthly mean method, individually. Then, we derived an 

integrated wheat map to represent reliable spatial distribution over a long-term period on the basis of the grids with cultivation 

https://doi.org/10.5194/essd-2022-297
Preprint. Discussion started: 2 September 2022
c© Author(s) 2022. CC BY 4.0 License.



6 
 

for at least 5 years during 2006-2014. Finally, all input data were averaged on the subnational scale after being masked by 

wheat cultivated pixels. These processes were performed on the Google Earth Engine (GEE) platform. 

We implemented “leave-one-year-out” method to examine the practical performance of the two ML and DL models, that is, 150 

one-year data was used for testing and the records of the remaining years for training. More specifically, each model was first 

trained separately by excluding one year in the data. The best hyperparameters were determined with the ten-fold cross-

validated coefficient of determination (R2). Then, the optimized models were used to estimate gridded-yield for the excluded 

year. Finally, the resultant yield maps were aggregated to the corresponding ADM level and were compared with census data 

for the excluded year. R2 and root mean square error (RMSE) were calculated to validate the accuracy of yield estimation. The 155 

whole process was repeated 20 times and the mean R2 and RMSE were used to compare the performance of the two data-

driven models. 

To improve the accuracy of the yield dataset and lengthen its time coverage, we combined the census data of some countries 

together to train the models and estimate gridded yields. For example, we only collected statistics of Kazakhstan for the years 

2014-2020. Since the growing season of spring wheat was identical in Russian Federation and Kazakhstan, their statistics were 160 

integrated to feed into the model and the yield maps were ultimately generated from 1995 to 2020. The above treatment was 

repeated for all European countries, as well as Afghanistan and Iran. In addition, we applied the pre-trained model to other 

years where statistics are unavailable, aiming at generating a spatiotemporally continuous yield dataset. 

2.3.3 Comparison with other global yield datasets 

We compared our gridded yield estimates with a prevalent product (i.e., SPAM) using statistical data to demonstrate the 165 

reliability of our dataset. These two datasets could be directly compared as they were both generated using statistics. More 

specifically, we calculated the R2 and RMSE between the statistical yield and the estimates of SPAM or GlobalWheatYield4km 

in 2000, 2005, and 2010. 

3 Results 

3.1 Accuracy assessment of wheat distribution maps 170 

To illustrate the reliability of the wheat distribution maps, we validated them with the statistical area at the subnational level. 

The estimated areas generally matched well with the statistics, with R2 ranging from 0.65 to 0.89 (average R2 of 0.8) and 

RMSE ranging from 5.9 Kha to 355.6 Kha (Fig. 2, Table S2). The mapped areas were overestimated in Russian Federation, 

Kazakhstan, Australia, Canada and the United States, while they were underestimated in South America. The possible reason 

for the overestimation was that spring wheat was dominantly grown in these countries and was prone to be confused with other 175 

spring cereals such as spring barley. In addition, the wheat distribution maps showed the lowest accuracy in South America 

with R2 ranging from 0.65 to 0.82, which was ascribed to the mixed pixels and the larger uncertainties from remote sensing 
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products. Overall, the comparisons showed the high consistency between the resultant maps and the census data, demonstrating 

that the derived maps were reliable for further yield prediction. 

 180 

Figure 2: Comparisons between mapped area by the phenology-based method and subnational-level statistics during 2006-2014. (a) 
South and East Asia, (b) Central Asia, (c) Europe, (d) spring wheat in Russian Federation and Kazakhstan, (e) winter wheat in 
Russian Federation, (f) Australia, (g) South America, (h) spring wheat in North America, (i) winter wheat in North America. 

3.2 Accuracy of GlobalWheatYield4km 

The performance of RF and LSTM models in gridded yield prediction during 2006-2014 for each region/country were shown 185 

in Fig. 3. Generally, the LSTM model outperformed RF with average R2 (nRMSE) of 0.72 (13.1) and 0.64 (16.2), respectively. 

More specifically, LSTM achieved the highest accuracy in the United States, Europe, China, India and Pakistan (R2 > 0.8) 

while RF showed comparable performance (R2 of 0.7 ~ 0.82), perhaps due to the abundant training samples. Moreover, the 

LSTM models were improved R2 by around 15% as compared with RF, especially in Russian Federation, Kazakhstan, Ukraine, 

Iran, Bangladesh, Japan, Brazil, Peru and Bolivia with more improvements ranging 15%~48%. The superior performance of 190 

LSTM was attributed to its powerful temporal learning capabilities that can capture nonlinear and cumulative relationships 

between yield and meteorological factors over long time periods. 
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Figure 3: Performance of RF and LSTM in yield estimation during 2006-2014 across all regions: (a) R2, (b) nRMSE. 

 195 

Figure 4: Comparisons between the predicted yields of GlobalWheatYield4km and statistics. (a) South and East Asia, (b) Central 

Asia, (c) Europe, (d) spring wheat in Russian Federation and Kazakhstan, (e) winter wheat in Russian Federation, (f) Australia, (g) 

South America, (h) spring wheat in North America, (i) winter wheat in North America. 

Therefore, the optimal LSTM model was implemented to predict global wheat yield at grid scale. Overall, the predicted yield 

agreed well with the census data as they were closely and consistently distributed around the 1:1 line, with R2 (0.56~0.86), 200 

RMSE (123.2~911.3 kg/ha) and nRMSE (13.8~33.8%) (Figs. 4, S1). The highest R2 was found in Bangladesh (R2 = 0.86, 

nRMSE = 14.9%) and Europe (R2 = 0.86, nRMSE = 17.3%), followed by China, Chile, Pakistan, India, Canada and the United 
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States (R2 of 0.77~0.82). By contrast, the lowest R2 was found in Japan (R2 = 0.56, nRMSE = 20.6%), Afghanistan and Iran 

(R2 = 0.58, nRMSE = 33.8%), which might be caused by the less wheat cultivation or insufficient yield records. 

Fig. 5 showed the spatial distributions of GlobalWheatYield4km and census data in 2010. Generally, the spatial patterns of 205 

predicted yields were consistent with the statistical yields, with a large variability from 130–11546 kg/ha. We further 

summarized the gridded yield by countries. The averages of yield were highest in Europe (e.g., Belgium: 8457 kg/ha; 

Netherlands: 8011 kg/ha), followed by Chile (5201 kg/ha) and China (4658 kg/ha). By contrast, Kazakhstan, Bangladesh and 

Bolivia achieved the lowest average yield (< 1000 kg/ha). 

 210 

Figure 5: Spatial distribution of the predicted yield (a) and the observed yields (b) in 2010. 
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Figure 6: Comparisons between census statistics and estimated yields of SPAM (a1-a3) or GlobalWheatYield4km (b1-b3) for 2000 

(a1, b1), 2005 (a2, b2) and 2010 (a3, b3). 215 

3.3 Comparing GlobalWheatYield4km with SPAM 

We aggregated gridded-yield estimates of GlobalWheatYield4km and SPAM in 2000, 2005 and 2010 to administrative units 

and then compared them with census yields, respectively. Overall, the yield estimates of GlobalWheatYield4km showed higher 

consistencies with census yields as they were closer to 1:1 line than SPAM, with average R2 (RMSE) of 0.84 (670.2 kg/ha) 

and 0.7 (933.6 kg/ha), respectively (Fig. 6). In addition, GlobalWheatYield4km exhibited higher and more robust accuracies 220 

than SPAM in all years and regions (Fig. 7, Table S3). The R2 (RMSE) of GlobalWheatYield4km was improved (reduced) by 

an average of 50.8% (25.1%) as comparing with SPAM, especially in Australia, Canada, Iran, Pakistan and the United States 

(improvements over 40% and 34% for R2 and RMSE). We ascribed such improvement into more accurate wheat distribution 
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maps and the consequent high-quality input data at more consistent and finer resolution. In contrast, the methodology and 

input data of SPAM were improved stepwise. We are sure more accurate yield datasets would be expected with higher 225 

resolution remote sensing products available in the world. 

 

Figure 7: The comparisons of GlobalWheatYield4km-derived yield maps with the SPAM dataset across all regions and three years: 

(a) R2, (b) RMSE. 

4 Discussions 230 

4.1 Advantages of GlobalWheatYield4km 

Compared with other global crop yield products (e.g., SPAM, GAEZ), GlobalWheatYield4km had the following advantages: 

1) the highest spatial resolution of 4km among all yield datasets presently available; 2) a higher and more stable accuracy than 

SPAM as comparing with census data; 3) more accurate spatial distribution and clear subdivision of spring and winter wheat, 

highly contributing to agricultural system modeling over larger areas; 4) clearly charactering the temporal dynamics of wheat 235 
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yields over 40 years. Moreover, we compared two typical ML and DL models that were commonly used for yield prediction 

and determined the optimal model to generate gridded-yield estimates, which could partly improve the accuracy of our dataset. 

We found that LSTM consistently outperformed RF despite of years and regions, which was well supported by many previous 

studies (Jeong et al., 2022; Luo et al., 2022a; Schwalbert et al., 2020; Tian et al., 2021). The strengths of the LSTM model are 

its recurrent neural network structure, which had been proved to successfully capture cumulative and complex nonlinear 240 

relationships between crop yields and climatic factors (Jiang et al., 2019; Zhang et al., 2021). 

4.2 Uncertainties 

Despite the higher accuracy of GlobalWheatYield4km, there were still some uncertainties. First, the largest constraint was the 

uncertainties of remote sensing data. For example, cloud and snow contaminations could cause noise in GLASS LAI products 

and consequently dampen the wheat detection signal (Xiao et al., 2014). Moreover, the coarse spatial resolution of 1 km could 245 

result in mixed pixel issues, thereby reducing the accuracy of our dataset, especially in areas where wheat was sparsely and 

less cultivated such as South America. To partly avoid these uncertainties, we integrated annual maps during 2006-2014 to 

generate a single map of wheat harvested area on the basis of the grids with cultivation for at least 5 years. However, it could 

lead to errors in aggregated features as wheat growing areas changed over time. In future studies, we will attempt to map the 

spatial distribution of wheat using remote sensing images with finer spatial resolutions (Nie et al., 2022; Wang et al., 2020). 250 

In addition, another limitation lay in the accessibility of statistical data. On the one hand, the performance of LSTM was 

dependent on the quantity and quality of statistics. It was particularly difficult to collect finer-scale census data with longer 

time coverage in some countries such as Kazakhstan and Afghanistan. On the other hand, reliable statistical data were not 

available in Africa, leading to data gaps in GlobalWheatYield4km. 

5 Data availability 255 

The 4-km global dataset of wheat yield from 1982 to 2020 is available at https://doi.org/10.6084/m9.figshare.10025006 (Luo 

et al., 2022b). 

6 Conclusions 

We generated a long-term global wheat yield dataset at a spatial resolution of 4-km using data-driven models. First, we mapped 

the spatial distribution of wheat harvested area using a phenology-based method. Then, we compared the predictive 260 

performance of two commonly used ML and DL models and finally developed the optimal model to estimate yield at grid 

scale. The wheat distribution map had a high accuracy with an average R2 of 0.8. The LSTM model outperformed RF in 

predicting gridded yields, with R2 (nRMSE) ~0.72 (13.1) and 0.64 (16.2), respectively. The GlobalWheatYield4km dataset 

were highly consistent with statistical data, indicated by R2 (RMSE) of 0.82 (619.8 kg/ha) and 51% higher accuracy than those 
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of SPAM (R2 ~0.49) across all regions and three years. Our GlobalWheatYield4km can be applied for many purposes, 265 

including large-scale agricultural system modeling and climate change impact assessments. 
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