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Abstract. The existing medium-resolution land cover time series produced under the European Space Agency's Climate 14 

Change Initiative provides 29 years (1992–2020) of annual land cover maps at 300-m resolution, allowing for a detailed study 15 

of land change dynamics over the contemporary era. Because models need two-dimensional parameters rather than two-16 

dimensional land cover information, the land cover classes must be converted into model-appropriate plant functional types 17 

(PFTs) to apply this time series to Earth system and land surface models. The first generation cross-walking table that was 18 

presented with the land cover product prescribed pixel-level PFT fractional compositions that varied by land cover class but 19 

lacked spatial variability. Here we describe a new ready-to-use data product for climate modelling: spatially explicit annual 20 

maps of PFT fractional composition at 300 m resolution for 1992–2020, created by fusing the 300 m medium-resolution land 21 

cover product with several existing high-resolution datasets using a globally consistent method. In the resulting data product, 22 

which has 14 layers for each of the 29 years, pixel values at 300-m resolution indicate the percentage cover (0–100 %) for 23 

each of 14 PFTs, with pixel-level PFT composition exhibiting significant intra-class spatial variability at the global scale. We 24 

additionally present an updated version of the user tool that allows users to modify the baseline product (e.g., re-mapping, re-25 

projection, PFT conversion, and spatial sub-setting) to meet individual needs. Finally, these new PFT maps have been used in 26 

two land surface models - ORCHIDEE and JULES - to demonstrate their benefit over the conventional maps based on a generic 27 

cross-walking table. Regional changes in the fractions of trees, short vegetation, and bare soil cover induce changes in surface 28 

properties, such as the albedo, leading to significant changes in surface turbulent fluxes, temperature, and vegetation carbon 29 

stocks.  30 

1. Introduction 31 

Terrestrial ecosystems have always been shaped by people who depend on land for their consumption of direct (e.g., food and 32 

materials) and indirect (e.g., land for human activities) goods (Vitousek et al., 1986; Foley et al., 2005). Land cover change 33 

induces significant biogeochemical and biogeophysical effects on the climate by altering greenhouse gas emissions (e.g., CO2) 34 

and the surface energy budget, induced by modified albedo, evapotranspiration, and roughness (Pielke et al., 2011; Mahmood 35 

et al., 2014; Pielke, 2005; Brovkin et al., 2006; Dale, 1997; Liu et al., 2017). The fragmented landscapes that result from land 36 

cover change also influence surface temperatures, altering clouds and precipitation (Dale, 1997; Perugini et al., 2017; Sampaio 37 

et al., 2007). The physical climate changes driven by land cover change can manifest far afield of the surface changes; for 38 

example, large areas deforested at the expense of brighter land cover (e.g., cropland expansion) modify albedo (Loarie et al., 39 
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2011; Lambin et al., 2001), with the altered energy balance driving changes in monsoon patterns (Feddema et al., 2005; 44 

Devaraju et al., 2015).  45 

 46 

Anthropogenic activities, driven mainly by economic and population growth (Pachauri and Meyer, 2014), have changed the 47 

atmosphere's composition (IPCC, 2022). The land use, land-use change, and forestry sector is estimated to account for net 48 

emissions of 4.1 ± 2.6 Gt CO2 yr-1 (1 𝜎 uncertainty, period 2011–2020), accounting for 10 % of total anthropogenic CO2 49 

emissions (Friedlingstein et al., 2022). The estimated net CO2 emission uncertainty (± 2.6 Gt CO2 yr-1) represents more than 50 

50 % of the 10-year mean emission estimate and is the most uncertain emission component of the global carbon budget 51 

(Friedlingstein et al., 2022; Houghton et al., 2012). Various sources contribute to this uncertainty, including differences in the 52 

processes implemented in models (Bastos et al., 2020; Houghton et al., 2012; Pitman et al., 2009; McGlynn et al., 2022), 53 

including the definition of the fluxes themselves (Pongratz et al., 2014) and the inclusion of management practices (Houghton 54 

et al., 2012); the estimates of vegetation biomass density (Houghton, 2005); and estimates of land cover and rates of change 55 

(Houghton et al., 2012; Bastos et al., 2021, 2020). 56 

 57 

In support of the United Nations Framework Convention on Climate Change (UNFCCC) needs for observations of the climate 58 

system, the Global Climate Observing System (GCOS) has identified 54 Essential Climate Variables (ECVs) that critically 59 

contribute to improved characterization of the state of the global climate, making predictions of climate changes, and 60 

performing attribution of the causes of such changes (GCOS, 2016). As a direct response, the European Space Agency (ESA) 61 

launched the Climate Change Initiative (CCI) to provide stable, long-term, and consistent satellite climate data records 62 

(Hollmann et al., 2013). The CCI thereby provides useful information to monitor the Paris Agreement goal of maintaining the 63 

global temperature increase above pre-industrial levels to less than 2°C (UNFCCC, 2016). 64 

 65 

Land cover, the observed biophysical cover of the Earth's surface (Di Gregorio and Jansen, 2005; Turner et al., 1993), is an 66 

ECV (Sessa, 2008) tackled by the ESA CCI (Plummer et al., 2017). The ESA CCI medium-resolution land cover (MRLC) 67 

dataset, operationalized within the EU Copernicus Climate Change Service (C3S) (2016-2020) thanks to strong user 68 

endorsement, provides the longest consistent land cover climate data record, with annual maps from 1992 to 2020 at a spatial 69 

resolution of 300 m. It describes the land surface in 22 land cover classes according to the standard of the United Nations Land 70 

Cover Classification System (UN-LCCS) (Di Gregorio and Jansen, 2005) and 13 land cover change types consistent with the 71 

IPCC land categories (Defourny et al., submitted).  72 

 73 

The land surface components of global circulation models and global Earth system models play a significant role in quantifying 74 

the historical and present-day representations of land use and land cover change impacts on climate. Most land surface models 75 

(LSMs) parameterize global vegetation processes (e.g., photosynthesis and evapotranspiration) for a reduced set of globally 76 

representative and similarly behaving plant types, referred to as Plant Functional Types (PFTs). PFTs can be related to 77 

physiognomy and phenology (Anon, 1991 in Box, 1996), climate (which defines the geographical ranges in which a plant type 78 

can grow and reproduce under natural conditions; Box, 1981), and physiological activity (e.g., C3/C4 photosynthetic pathways).  79 

 80 

Spectral information acquired by remote sensing techniques does not allow direct mapping of PFTs. However, land cover map 81 

series derived from satellite Earth Observations (EO) are a valuable source of physiognomy (life form and leaf type) and 82 

phenology information for inferring the spatial distribution of PFTs. EO-derived land cover maps must be translated ("cross-83 

walked") into model-specific PFTs, which is typically accomplished using the information provided by the land cover class 84 

legend (Jung et al., 2006). Differences in land cover categories, spatial resolutions, and temporal coverage between various 85 

land cover products propagate errors to the cross-walked PFT maps and significantly contribute to uncertainties in deriving 86 
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gross primary production (GPP) and other climate-relevant variables at the regional scale (Poulter et al., 2011). To reduce 87 

uncertainty in model ensembles, Poulter et al. (2015) proposed a standardized cross-walking framework that converts each 88 

CCI MRLC class into pre-defined PFT fractions relevant for three leading ESMs (JULES-MOHC, ORCHIDEE-LSCE and 89 

JSBACH-MPI) based on expert knowledge and auxiliary data. This reclassification procedure was implemented in a flexible 90 

tool to generate other related PFT schemes required by the modelling community.  91 

 92 

Hartley et al. (2017) used the same three ESMs to quantify the impact of uncertainties in (1) the land cover map and (2) the 93 

cross-walking procedure on the spatio-temporal patterns of three important land surface variables: GPP, evapotranspiration, 94 

and albedo. To disentangle the two sources of uncertainty, the modelling setup translated the plausible uncertainty ranges of 95 

the land cover and cross-walking components into a common biomass scale. The simulations indicated that the uncertainty of 96 

the cross-walking procedure contributed slightly more than the uncertainty of the land cover map to the inter-model uncertainty 97 

for all three variables.  98 

 99 

In a continuation of the ESA CCI contribution to the land cover ECV, this work aims to reduce the uncertainty in the cross-100 

walking component by adding spatial variability to the PFT composition within a land cover class. This work moves beyond 101 

fine-tuning the cross-walking approach for specific land cover classes and/or regions and, instead, separately quantifies the 102 

PFT fractional composition for each 300 m pixel globally for each year in the time series (1992–2020). The new PFT product 103 

is generated by fusing the annual CCI MRLC map series with existing high-resolution auxiliary data products that individually 104 

characterize one surface type with high accuracy. The resulting 300 m PFT product is a companion time series of continuous 105 

field PFT fractions that is consistent with the existing CCI MRLC map series. The global PFT product has an annual resolution, 106 

covering 1992–2020, and indicates the specific percentage cover of 14 PFTs for each pixel at 300 m resolution. The set of 14 107 

PFTs represented in the product includes the full set of 13 PFTs initially developed by Poulter et al. (2015) complemented 108 

with a new built-up surface type. The full set of PFTs includes bare soil, built, water, snow and ice, natural grasses, managed 109 

grasses (i.e., herbaceous cropland), broadleaved deciduous trees, broadleaved evergreen trees, needleleaved deciduous trees, 110 

needleleaved evergreen trees, broadleaved deciduous shrubs, broadleaved evergreen shrubs, needleleaved deciduous shrubs, 111 

and needleleaved evergreen shrubs. Thus, in this paper, the term "plant functional type" is applied even to the abiotic surface 112 

types to cleanly differentiate between the land types derived from Earth observation data (i.e., land cover classes) and the land 113 

types required by models (i.e., PFTs). Finally, these new PFT maps have been used in two land surface models (ORCHIDEE 114 

and JULES) to demonstrate their benefit over the conventional maps based on a generic cross-walking table. For brevity, the 115 

new PFT product is referred to as “PFTlocal” due to the new localised nature of the PFT fractions at the pixel level. Products 116 

derived by using the global cross-walking approach (using the same version 2.0.8 of the CCI MRLC map series) are referred 117 

to as “PFTglobal.” 118 

 119 

The following sections describe the auxiliary inputs and method used to quantitatively determine the PFT fractional 120 

composition for each 300 m pixel globally; a description of the new PFT data product; and modelling results from the 121 

application of the new PFT distribution for the year 2010 to the ORCHIDEE and JULES land surface models. 122 

2. Methods 123 

The PFT distribution was created by combining auxiliary data products with the CCI MRLC map series. The land cover 124 

classification provides the broad characteristics of the 300 m pixel, including the expected vegetation form(s) (tree, shrub, 125 

grass) and/or abiotic land type(s) (water, bare area, snow and ice, built-up) in the pixel. For some classes, the class legend 126 

specifies an expected range for the fractional covers of the contributing PFTs and broadly differentiates between natural and 127 
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cultivated vegetation. The applied auxiliary data products (described in Sect. 2.1; e.g., surface water cover and tree cover) are 131 

of higher resolution than the 300 m land cover product and therefore serve as the basis for computing the fractional covers of 132 

the contributing PFTs at 300 m resolution. In cases of inconsistency between the land cover product and the auxiliary datasets 133 

– for example, if the tree cover percentage derived from the auxiliary products falls outside of the range suggested by the class 134 

legend for a 300 m pixel – the characteristics from the land cover classification are maintained. This achieves a strong coupling 135 

between the CCI MRLC maps dataset and this new CCI PFT dataset. Deference to the class legend provides guardrails for the 136 

temporal extrapolation of the PFT fractional covers across the entire time series (1992–2020) given the lack of available 137 

auxiliary inputs extending across the full era. The approaches used to estimate the PFT fractions at 300 m resolution differ for 138 

(1) pixels that did not experience a change in land cover classification over the period 1992–2020 (termed "static pixels", 139 

described in Sect. 2.2.1) and (2) pixels that did experience a change at least once in this period (termed "change pixels", 140 

described in Sect. 2.2.2). 141 

2.1. Input datasets 142 

2.1.1. CCI medium-resolution land cover time series (300 m) 143 

The CCI MRLC product (Defourny et al., submitted) delineates 22 primary classes and 15 additional sub-classes of land cover 144 

at a 10-arcsecond (300 m) resolution (Table 1). The maps have global coverage and an annual time step extending from 1992 145 

through 2020, with plans for the continued release of maps for 2021 and future years. The classification system used for the 146 

CCI MRLC map series is based on the Land Cover Classification System (LCCS) of the United Nations Food and Agriculture 147 

Organization (UN FAO) (Di Gregorio and Jansen, 2005). The LCCS defines fundamental landscape elements called 148 

“classifiers” (e.g., trees) forming the class legend when combined in various proportions (e.g. tree cover, broadleaved, 149 

evergreen, closed to open (>15 %)). The 15 sub-classes, also called “regional classes,” are defined only in geographic regions 150 

where appropriate training data is available and are those with a numeric classification code that has a final digit of 1, 2, or 3 151 

(Table 1). The 22 primary classes and 15 sub-classes are collectively referred to here as simply "classes." For each year of the 152 

time series, each 300 m pixel in the dataset is assigned as a single land cover class. The change detection algorithm monitors 153 

thirteen possible land cover transitions through time. For a pixel to register a change in its assigned land cover class, the 154 

algorithm must identify the change for two consecutive years in the workflow. A lack of change in a pixel's assigned class 155 

does not necessarily indicate an absence of change in the land surface over the time series; rather, it indicates that any change 156 

that has occurred in the pixel was limited enough in scale or duration that the assigned class did not change. The full time 157 

series and an associated set of quality flags are freely available at https://maps.elie.ucl.ac.be/CCI/viewer/ (last access August 158 

2022) in GeoTiff and https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview (last access 159 

August 2022) in netCDF. This CCI PFT product is based on v2.0.8 of the CCI MRLC time series, which includes corrections 160 

for the known overestimation of cropland relative to grassland in South America (Defourny et al., submitted). 161 

2.1.2. Surface water product (30 m) 162 

The Landsat-based surface water product developed by the Joint Research Centre (Pekel et al., 2016) is used to derive the 163 

permanent inland water fractions at 300 m resolution (calculation details in Sect. 2.2). The surface water occurrence layer 164 

(obtained at https://global-surface-water.appspot.com) indicates the frequency of water occurrence in each 30 m pixel (80°N–165 

60°S) over the period March 1984 to December 2019. The frequency occurrence data is reported as integer values of 1–100 166 

%, where a value of 100 % occurrence indicates a permanent water surface that existed over the entire analysis period, which 167 

encompasses all but the most recent year (2020) of the time series of the MRLC product. 168 
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2.1.3. Tree canopy cover product (30 m) 172 

A Landsat-based tree canopy cover product (Hansen et al., 2013) is used to derive the tree cover fractions for 300 m pixels 173 

belonging to vegetated classes (except where otherwise noted in Sect. 2.2). The product (obtained at 174 

https://glad.umd.edu/Potapov/TCC_2010/) is based on the application of a regression tree model to growing-season Landsat 7 175 

ETM+ data (https://glad.umd.edu/dataset/global-2010-tree-cover-30-m). The dataset indicates the maximum tree canopy cover 176 

percentage (integer values of 1–100 %) at 30 m resolution (80°N–60°S) and is approximately representative of 2010.  177 

2.1.4. Tree canopy height product (30 m) 178 

The global forest canopy height product from Potapov et al. (2021) is used to derive the fractional covers of trees and shrubs 179 

in 300 m pixels classified as shrubland. The 30 m product (obtained at https://glad.umd.edu/dataset/gedi/) was created by 180 

combining the footprint-level lidar forest height measurements (using the 95th percentile relative height metric) for April–181 

October 2019 from the Global Ecosystem Dynamics Investigation with wall-to-wall Landsat optical data to perform 182 

spatiotemporal extrapolation. The resulting dataset indicates the canopy height (0–60 m) at 30 m resolution (52°N–52°S), 183 

where canopy heights < 3 m were set to 0 m under the assumption that the pixel lacks woody vegetation. 184 

2.1.5. Built-up product (38 m) 185 

The Landsat-based Global Human Settlement Layer (GHSL) dataset produced by the Joint Research Centre (Pesaresi et al., 186 

2013) is used to derive the built-up fraction for 300 m pixels classified as urban land cover by the Global Urban Footprint 187 

(GUF) dataset (Esch et al., 2017). The built-up fraction of the PFT dataset is defined as buildings, roads, and man-made 188 

structures. The GHSL (alpha version dated November 2014) consists of globally consistent built-up maps for four consecutive 189 

years (1975, 1992, 2000, and 2014) at 38 m resolution. Built-up areas include both permanent and temporary above-ground 190 

buildings. 191 

2.1.6. Zonation products 192 

In addition, three zonation products are used complementarily to consolidate the assignment of the phenology type (deciduous 193 

or evergreen) and leaf type (broadleaved or needleleaved) to shrubs and, in a very small number of pixels, to trees belonging 194 

to a class legend of mixed trees. The Köppen-Geiger climate zone product from Beck et al. (2018) divides the Earth's land 195 

surface into 30 distinct climate zones at 0.0083° resolution (about 1 km) based on present-day (1980–2016) temperature and 196 

precipitation records. Data were obtained at https://figshare.com/articles/dataset/Present_and_future_K_ppen-197 

Geiger_climate_classification_maps_at_1-km_resolution/6396959/2. The landform dataset from Sayre et al. (2014) identifies 198 

landforms – surface water, plains, hills, or mountains – at 250 m resolution for 83.6°N–56°S and is derived from a digital 199 

elevation model (USGS GMTED2010: Danielson and Gesch, 2011). The data product was obtained at 200 

https://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global/. Finally, world regions follow the definitions used in the Integrated 201 

Model to Assess the Global Environment 3.0 (IMAGE03) (Stehfest et al., 2014). The IMAGE03 regional classification 202 

framework has been harmonized with the CCI MRLC grid by reconstructing the original dataset using the IMAGE-based list 203 

of countries per region (available at https://models.pbl.nl/image/index.php/Region_classification_map) along with country 204 

boundaries from the FAO Global Administrative Unit Layers (available at https://data.apps.fao.org/), expanding the list to 205 

include Antarctica, Greenland, and additional small islands. The resulting raster dataset divides Earth's surface into 28 regions 206 

on the CCI MRLC grid. 207 
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2.1.7. CCI medium-resolution water body product 212 

The CCI MRLC water body product (Lamarche et al., 2017) is used to delineate between inland water and ocean. The dataset 213 

(available at http://maps.elie.ucl.ac.be/CCI/viewer/download.php) designates all pixels at 150 m resolution as either ocean or 214 

non-ocean, the latter of which includes both land and inland water. The dataset is consistent with the water body class (code 215 

210) of the land cover maps of the CCI MRLC. An updated version 4.1 of the product was used here, in which the North 216 

American Great Lakes are now considered to be inland water rather than ocean. It is available at 217 

http://maps.elie.ucl.ac.be/CCI/viewer/download.php. 218 

2.2. PFT dataset development 219 

The overall approach assumes that the definition of the MRLC class is the basis for harmonizing the four existing high-220 

resolution land cover data sets. It proceeds through a systematic sequence of estimating water fraction and tree cover fraction, 221 

using tree height to assign life form, and finally deriving phenology. This step-by-step approach is first applied to static pixels 222 

before extending it to pixels that undergo changes over time, as identified in the CCI MRLC map series. 223 

2.2.1. Static pixels 224 

For static pixels – that is, pixels that have not experienced a class change over the era covered by the CCI MRLC time series 225 

(1992–2020) – the derived PFT fractions are treated as temporally invariant for the entire period. Therefore, any intra-pixel 226 

change in the fractions of a static pixel is not captured in the PFT map series due to a lack of temporally resolved auxiliary 227 

inputs extending over the full time series. Such a change is expected to be so limited in scale and/or duration that it did not 228 

prompt a change in class assignment, underscoring the appropriateness of treating the fractional composition of the static pixels 229 

as consistent over time. 230 

 231 

The same set of auxiliary inputs and the same calculation method are applied to the widest possible set of land cover classes 232 

to ensure spatial consistency in the derived PFT fractions. Nonetheless, inherent differences between the classes necessitate 233 

the use of different input datasets and methods in some cases. For each class, only a subset of the 14 PFTs is permitted non-234 

zero fractions (Table 1). Because the PFT fractional composition is estimated independently for each 300 m pixel of a class, 235 

in some cases, an individual pixel of the class can have zero fractional cover even for a PFT that is allowed non-zero cover for 236 

that class. For all pixels, the sum of PFT fractions is 100 %. The vegetation thresholds used to define whether pixels are 237 

predominantly vegetated or abiotic are based on the definitions of the CCI MRLC classes, which are based on the concepts 238 

and definitions of the FAO LCCS (Di Gregorio and Jansen, 2005). Table 2 is a high-level overview of the method used to 239 

derive the PFT fractional composition for the static pixels. 240 

 241 

The 30 m water frequency occurrence dataset of Pekel et al. (2016) is used to estimate the permanent inland water fraction of 242 

the 300 m pixels for all but the permanent snow and ice class, which has no liquid surface water cover. A threshold of 90 % 243 

frequency occurrence is applied to assign 30 m pixels as either water (frequency occurrence ≥ 90 %) or non-water (frequency 244 

occurrence < 90 %). The resulting binary representation of water/non-water is aggregated to 300 m to estimate the percentage 245 

of the 300 m pixel that is permanent inland water PFT. 246 

 247 

The percentage of the 300 m pixel that is vegetated is calculated as 100 % minus the inland water percentage; that is, for all 248 

vegetation-containing classes except for the sparse vegetation classes, which have bare soil PFT cover, all non-inland-water 249 

area in the 300 m pixel is entirely vegetated (0 % bare soil PFT) in the PFT product. Pixels belonging to the shrubland classes 250 
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(codes 120–122 and 180) can have a mixture of trees, shrubs, and herbaceous cover. For pixels of non-shrubland vegetation-259 

containing classes, the vegetated portion of the pixel is composed of trees and herbaceous cover (i.e., cropland and/or natural 260 

grass). The percentage of the 300 m pixel that is tree cover is estimated using the 30 m tree cover dataset for 2010 from Hansen 261 

et al. (2013). This Landsat-based dataset provides the percentage of tree canopy cover (integers 1–100 %) based on growing 262 

season observations. The tree cover percentage of the vegetated (i.e., non-water) portion of the 300 m pixel is obtained from 263 

the median of the tree canopy cover fractions of the non-water 30 m pixels, where the 30 m non-water pixels are identified 264 

using the binary water/non-water representation derived using the surface water occurrence dataset. The tree cover percentage 265 

of the entire 300 m pixel is calculated as the product of this value (the tree cover fraction of the non-water part of the grid cell) 266 

and the non-water fraction of the grid cell. This approach harmonizes the Landsat-based surface water occurrence and tree 267 

canopy cover datasets such that the combined tree and water percentages never exceed 100 %. 268 

 269 

For the tree cover classes 50–82, the class legend specifies an expected range for the tree cover percentage (Table 1, class 270 

description column). For the tree cover classes 90, 160, and 170, a tree cover fraction of >15 % is implicit from the UN LCCS. 271 

Based on the spatial and temporal consistency of the map series, deference is made to the class legend for pixels in which the 272 

estimated tree cover fraction derived from the auxiliary datasets disagrees with the class legend. This allows the PFT product 273 

to retain the advantages of the CCI MRLC map series while improving the translation of the land cover dataset into PFT maps. 274 

For tree cover class pixels in which the estimated tree cover fraction derived from the auxiliary datasets disagrees with the 275 

class legend, the mean tree cover among all static 300 m pixels of its class is calculated over the 0.25° longitude × 0.25° 276 

latitude window overlapping the pixel – that is, a window with width and height of 0.25° with the pixel of interest at the centre. 277 

The mean is based on the initially calculated tree cover fractions derived from the auxiliary data products (i.e., the tree cover 278 

fraction harmonized with the surface water occurrence dataset). The window is expanded to 0.5° longitude × 0.5° latitude if 279 

no static pixels of the class exist in the smaller window. (Because class 82 has so few pixels globally, class 72 pixels are 280 

additionally applied in the window mean calculation for class 82 pixels.) 281 

 282 

One of five cases is possible: 283 

(1) If the mean tree fraction for the window falls within the expected range based on the class legend, then the tree cover 284 

fraction of the pixel of interest is assigned as the mean tree fraction for the window. 285 

(2) If the mean tree fraction for the window is higher than the upper limit specified by the class legend, then the tree cover 286 

fraction of the pixel of interest is assigned as the upper limit from the legend. For classes 62, 72, and 82, the legend 287 

upper limit is 40%. For classes 50, 60, 61, 70, 71, 80, 81, 90, 160, and 170, the legend upper limit is 100 %, and the 288 

initial mean tree fraction for the window can never exceed this threshold.  289 

(3) If the mean tree fraction for the window is lower than the lower limit specified by the class legend, then the tree cover 290 

fraction of the pixel of interest is assigned as the lower limit from the legend. For classes 50, 60, 62, 70, 72, 80, 82, 90, 291 

160, and 170, the legend lower limit is 16 %. For classes 61, 71, and 81, the legend lower limit is 41 %. 292 

(4) If a window of 0.5° × 0.5° does not have any pixels of the class of interest and the tree cover fraction derived from the 293 

auxiliary products exceeds the upper limit specified by the class legend, then the tree cover fraction for the pixel is 294 

assigned as the upper limit of the class legend. 295 

(5) If a window of 0.5° × 0.5° does not have any pixels of the class of interest and the tree cover fraction derived from the 296 

auxiliary products is lower than the lower limit specified by the class legend, then the tree cover fraction for the pixel is 297 

assigned as the lower limit of the class legend. 298 

 299 

For pixels that belong to a tree cover class and had tree cover percentages assigned using the neighbourhood mean, the resulting 300 

sum of the inland water and tree cover percentages can exceed 100 %. In such cases, the tree cover percentage is calculated as 301 

100 % minus the inland water percentage. If the resulting tree cover percentage is lower than the legend minimum for that 302 

class, then the tree cover percentage is set as the legend minimum and the water percentage is set as the residual area in the 303 

pixel (100 % minus tree cover percentage). For all tree cover class pixels, the grass cover percentage is calculated as 100 % 304 

minus the final tree cover percentage minus the inland water percentage, and the grass type is assigned as natural grasses. No 305 

minimum water percentage is defined for the flooded tree cover classes (codes 160 and 170). 306 
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 307 

For the biotic classes rainfed cropland (codes 10, 11, 12), irrigated or post-flooding cropland (code 20), mosaic of cropland–308 

natural vegetation (codes 30 and 40), mosaic of woody–herbaceous vegetation (codes 100 and 110), and grassland (code 130), 309 

the tree cover percentage derived from the auxiliary products is used directly since the legend does not specifically define the 310 

expected tree cover; therefore, modification of the PFT fractions based on the class legend is not applied for these classes as it 311 

is for some other classes. The percentage of the 300 m pixel that is grass cover is calculated as 100 % minus the sum of the 312 

inland water and tree cover percentages. The grass type – managed (i.e., crops) or natural – is defined by the class legend. For 313 

most mixed classes, the assigned grass type reflects the majority type as indicated by the legend. All grass in the pixel is 314 

assigned as managed grass for classes 10, 11, 12, 20, and 30. Pixels belonging to the mosaic class 40 have a mix of herbaceous 315 

crops (up to 49 % of the pixel area) and natural grasses (for excess grass cover beyond 49 % of the pixel area). All grass cover 316 

is assigned as natural grass for all other classes. 317 

 318 

In some of the classes in this set, an expected percentage cover is given for total woody vegetation (trees and shrubs) or for 319 

the shares of cropland and natural vegetation, where the two categories differentiate by management status rather than life 320 

form. In the PFT product, shrub cover is estimated only for the shrubland classes due to a lack of appropriate auxiliary inputs 321 

to discriminate between trees and shrubs for all classes, so modification of the life form shares in such pixels based on the 322 

legend description may introduce additional bias in the PFT product and is therefore avoided. Management status (cropland 323 

vs natural) is assigned in the PFT product only for grasses and is based on the class descriptions, so an independent assessment 324 

of the shares by management status is not possible. 325 

 326 

Pixels belonging to the sparse vegetation classes (codes 150, 151, 152, and 153) can have non-zero fractions of bare soil, trees, 327 

natural grass, and inland water. The class definition requires a vegetation fraction of 4–14 %. Since shrub cover is not estimated 328 

for the sparse vegetation classes, the vegetation component is composed of trees and natural grasses; therefore, the total 329 

vegetation fraction is enforced for sparse vegetation pixels, but the resulting life form may differ from that indicated by the 330 

legend for the sub-classes with codes 151–153. If the tree cover derived from the auxiliary inputs is ≥ 15 %, then the tree PFT 331 

is reduced to 14 % in deference to the legend of the CCI MRLC map series, natural grass PFT is assigned as 0 % since tree 332 

cover accounts for the maximum total vegetation fraction (trees + grass), and the bare soil PFT percentage is calculated as 100 333 

% minus the inland water percentage minus 14 % tree PFT. If the tree cover derived from the auxiliary inputs is < 15 %, then 334 

this input tree percentage value is assigned as the final tree PFT percentage in the pixel and additional legend-consistency steps 335 

are applied to assign the grass and bare fractions: (1) if the non-water area of the pixel is 4–14 %, then natural grass PFT 336 

accounts for the residual portion of the pixel (14 % minus tree PFT percentage minus inland water percentage); (2) if the non-337 

water percentage of the pixel is < 4 %, then the natural grass PFT percentage is calculated as 4 % minus the tree PFT percentage 338 

(since the lower bound on total vegetation is 4 %) and the water PFT percentage is scaled down to 96 %; or (3) if the non-339 

water percentage of the grid cell exceeds 14 %, then the natural grass percentage is calculated as 14 % minus the tree PFT 340 

percentage (that is, the upper bound of 14 % is assumed for total vegetation cover) and the residual pixel area is assigned as 341 

bare soil PFT (100 % minus water PFT percentage minus 14 % vegetation cover). 342 

 343 

A mixture of tree and shrub woody vegetation types is assigned to pixels of the shrubland classes (codes 120, 121, 122, and 344 

180). The 30 m resolution tree canopy height dataset from Potapov et al. (2021) is applied to discriminate between shrubs and 345 

trees in pixels that are covered by this data product (52°N–52°S). Potapov et al. (2021) re-assign pixel values of ≤ 2 m to 0 m 346 

height. Here, the 30 m resolution pixels are assigned to three broad height classes: 0 m, 3–5 m, and > 5 m. Mean re-sampling 347 

to the 300 m resolution of the land cover dataset results in pixel values that indicate the percentage cover of the three height 348 

classes. The percentage cover of the 3–5 m height class is taken to be the percentage shrub cover in the 300 m pixel and the 349 
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percentage cover of the > 5 m height class is taken to be the percentage tree cover in the 300 m pixel, recognizing that there 350 

may be some bias introduced by 30 m pixels in the input dataset that contain both shrubs and trees. In deference to the class 351 

legend, 300 m pixels with shrub cover < 16 % are assigned as having 16 % shrub cover and those with tree cover > 15 % are 352 

assigned as having 16 % tree cover. For shrubland pixels that occur outside of the extent of the Potapov et al. (2021) data 353 

product (52°N–52°S), the tree cover percentage is assigned according to the tree cover input derived from Hansen et al. (2013) 354 

and the shrub cover percentage is assigned following the most recent version of the global cross-walking table (CWT) (60 % 355 

shrub cover for classes 120–122 and 40 % shrub cover for class 180). For all shrubland pixels, in cases where the sum of water, 356 

tree, and shrub cover exceeds 100 %, the three PFTs are scaled down proportionally so that the sum is 100 % while retaining 357 

the legend expectations for the tree and shrub cover. Natural grass cover is assigned as the residual area of the pixel in cases 358 

where the sum of water, tree, and shrub cover is < 100 %. No minimum water percentage is defined for the flooded shrubland 359 

class (code 180). 360 

 361 

Pixels classified as urban (code 190) can have non-zero fractions of inland water, trees, natural grass, and urban impervious 362 

(built-up) PFTs. In the land cover classification, pixels are assigned as an urban class when a minimum threshold of 50 % built 363 

was exceeded based on the GUF dataset (Esch et al., 2017). In the PFT product, the tree and surface water fractions are derived 364 

using the same protocol as the one applied to the vegetated classes. The urban impervious fraction is derived from the GHSL 365 

dataset (Pesaresi et al., 2013) by aggregating the built-up pixels from the four epochs into a binary built-up / non-built-up 366 

distribution at 38 m. Re-sampling to 300 m provides the percentage of the 300 m pixel that is built PFT, introducing local 367 

variability which at the global scale ranges from 0–100 % built. Only pixels classed as urban by GUF are assigned a non-zero 368 

urban impervious fraction in the PFT dataset. Non-urban pixels (i.e., those with less than 50 % urban land cover according to 369 

GUF) are not refined with GHSL data or assigned a percentage built-up. The GHSL appears to capture urban impervious areas 370 

more consistently whereas GUF misses road fractions in the built fractions. This is most notable in rural areas and a few 371 

selected locations in city centres. If the sum of the urban impervious, tree, and water fractions exceeds 100 %, then the urban 372 

impervious percentage is retained and the water and tree percentages are scaled down proportionally to a total sum of 100 %; 373 

otherwise, the residual of the urban impervious, tree, and water percentages is assigned as the natural grass percentage.  374 

 375 

Water body class (code 210) pixels that are ocean are assigned as 100 % water PFT, while those that are inland can additionally 376 

have a non-zero cover of tree and natural grass PFTs. The designation of ocean vs. inland at 300 m is determined using the 377 

150 m water body product. The ocean designation is applied to water body class pixels in which all four of the overlapping 378 

150 m pixels of the water body product are classified as the ocean; all other water body class pixels are designated as inland 379 

water. The water and tree PFT fractions for inland water body class pixels are assigned using the same 300 m harmonized 380 

surface water and tree cover auxiliary inputs that are used for the other classes; however, a minimum of 86 % water PFT is 381 

enforced following the legend definition for this class. If the sum of the tree fraction and the adjusted water PFT fraction 382 

exceeds 100 %, then the tree percentage is scaled down as 100 % minus the adjusted water PFT percentage. Any residual area 383 

is assigned as natural grass PFT. 384 

 385 

The bare area classes (codes 200, 201, and 202) can have up to 3 % vegetation cover (by definition of the abiotic class in the 386 

FAO LCCS, Di Gregorio and Jansen, 2005), so bare area pixels can have non-zero fractions of bare soil, tree, and water PFTs. 387 

The auxiliary products define the tree and inland water fractions, but tree cover exceeding 3 % is scaled down to the class 388 

maximum of 3 %. Bare soil PFT percentage is calculated as 100 % minus the inland water percentage minus the tree percentage. 389 

Pixels of the mosses and lichens class (code 140) can have non-zero fractions of surface water and natural grasses, the latter 390 

of which is estimated as 100 % minus the inland water percentage. 391 

 392 
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The permanent snow and ice class (code 220) is assigned as 100 % snow and ice PFT. All other classes are assigned as 0 % 396 

snow and ice PFT. Nearly all pixels classified as permanent snow and ice class in the CCI MRLC time series are static pixels; 397 

that is, such pixels are snow and ice cover for every year of the land cover map series. This is due to a lack of temporally 398 

resolved input data available at the global scale to track the evolution of this surface type. Therefore, neither the CCI MRLC 399 

classification nor the associated PFT product should be used to track changes in glaciers over time. 400 

 401 

For all pixels – of any class – that have a non-zero tree fraction, the total tree fraction is assigned as a single tree type 402 

(broadleaved or needleleaved leaf type, deciduous or evergreen phenology). For the tree cover classes coded 50–82, the specific 403 

tree type follows the class legend. For example, class 50 is defined as "Tree cover – broadleaved evergreen >15 %," so the tree 404 

component of this class is assigned as the broadleaved evergreen tree type. Tree cover is assigned as broadleaved deciduous 405 

in pixels of classes 60–62, needleleaved evergreen in pixels of classes 70–72, and needleleaved deciduous in pixels of classes 406 

80–82. For pixels of the tree cover classes coded 90, 160, and 170 and all other vegetation-containing classes except the 407 

shrubland classes, the specific tree type is assigned by pixel based on the majority tree type in the surrounding 0.25° × 0.25° 408 

neighbourhood window, where the majority calculation is performed on static pixels of the tree cover classes with legend-409 

defined tree types (classes 50–82). If the 0.25° × 0.25° window does not contain any static pixels of the well-defined tree types, 410 

then the window is incrementally expanded by 0.25° in each direction (longitude and latitude) to a maximum window size of 411 

2° × 2° until such a pixel is contained within the search window. The same tree type is assigned to all pixels in a class for the 412 

tree cover classes 50–82, while the assigned tree type can vary between pixels within a class for the other classes. The vast 413 

majority (75 %) of pixels with a non-zero tree fraction were assigned a tree type directly using the class legend; an additional 414 

24 % had tree type assigned using a surrounding window of 0.25° × 0.25°, < 1 % using a larger window up to a size of 1° × 415 

1°, and < 0.1 % using an even larger window up to a size of 2° × 2°. 416 

 417 

For a very small number of pixels, static pixels of the type-defined tree cover classes are absent from the surrounding 2° × 2° 418 

window, so a climatological approach is instead used to assign the tree type to such pixels. This approach uses three auxiliary 419 

inputs: (1) the present-day Köppen-Geiger climate zone map from Beck et al. (2018), downscaled from 1 km resolution to the 420 

300 m CCI MRLC grid using mode resampling; (2) the map of world regions derived for use with the IMAGE03 model, 421 

expanded to include Greenland, Antarctica, and additional small islands; and (3) the landform map from Sayre et al. (2014), 422 

resampled from 250 m resolution to the 300 m CCI MRLC grid using mode resampling. A nearest neighbour analysis is used 423 

to gap fill missing data at 300 m resolution for each of the three auxiliary inputs. Pixels requiring data are those with < 100 % 424 

water PFT cover in the PFT product. Pixels that are designated as surface water in the landform dataset and have < 100 % 425 

water PFT cover in the PFT product are additionally filled with one of the terrestrial landforms (plains, hills, and mountains). 426 

Missing data generally occur along coastlines due to mismatches in the land-sea masks of the auxiliary datasets and the CCI 427 

MRLC data. The gap-filled datasets are combined to create a dataset of 1,531 unique combinations of landform, region, and 428 

climate zone. For each of the unique combinations, the areal cover of each of the tree cover classes with well-defined tree 429 

types (codes 50–82) is calculated using static pixels of those classes, and the majority tree type by area is identified for each 430 

unique combination. There are very few static pixels of the type-defined tree cover classes in the Middle East and Sahara 431 

regions, so the dominant tree type in these regions is set as broadleaved deciduous. For pixels in which the tree type – 432 

broadleaved or needleleaved, deciduous or evergreen – cannot be assigned based on the neighbourhood window, the majority 433 

tree type of the pixel's unique zone is assigned. This method is also applied to assign the types of both shrubs and trees in all 434 

shrubland class pixels. Thus, there may be inconsistencies between the shrub type indicated by the class legend and that 435 

assigned using this biogeographical approach. 436 

 437 
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Most of the auxiliary inputs are based on Landsat images and therefore have an extent of 80°N–60°S. The main processing 438 

algorithm for the PFT product, explained above for the static pixels, therefore operates on this extent. Less than 0.5 % of the 439 

area outside of this extent is composed of pixels belonging to a class other than water bodies (code 210) or permanent snow 440 

and ice (code 220). The largest contributors to this small area are the sparse vegetation classes followed by the bare area classes 441 

with negligible contributions from shrubland (including flooded shrubland), grassland, and lichens and mosses classes. To 442 

extend the PFT product to global extent, the following assumptions are applied to the pixels north of 80°N and south of 60°S: 443 

(1) 100 % snow and ice PFT is assigned to pixels of the permanent snow and ice class; (2) 100 % water PFT is assigned to 444 

pixels of the water body class; (3) 100 % bare soil PFT is assigned to pixels of the bare area classes; (4) 100 % natural grass 445 

PFT is assigned to pixels of the grassland and lichens and mosses classes; (5) 96 % bare soil PFT and 4 % natural grass PFT 446 

(to meet the legend minimum of vegetation cover) are assigned to pixels of the sparse vegetation classes; and (6) 84 % natural 447 

grass PFT and 16 % needleleaved deciduous shrub PFT (matching the legend minimum shrub cover) are assigned to pixels of 448 

the shrubland classes. For the shrubland classes, the shrub type of needleleaved deciduous is assigned because the shrubland 449 

class pixels needing assignment (north central Russia) occur nearest pixels of needleleaved deciduous shrubs that had shrub 450 

type assigned using the standard method. 451 

2.2.2. Pixels experiencing land cover change  452 

Dynamic pixels – that is, pixels that have experienced at least one land cover class change over the 1992–2020 era – correspond 453 

to 5.88 % of the ice-free land surface (Defourny et al., submitted). For such pixels, the derived PFT fractions are derived for 454 

each of the classes assigned to that pixel over the era. For example, if a pixel changed from forest to cropland, PFT fractions 455 

associated with the forest class are estimated and PFT fractions associated with the cropland class are also estimated for the 456 

pixel. The method used to assign the PFT fractions depends on the timestamp of the class in relation to the timestamp (2010) 457 

of the auxiliary dataset (Hansen et al., 2013) from which the tree cover fractions are derived. The PFT fraction of a pixel in 458 

2010 was derived using the following class-specific methods described in Sect. 2.2.1. Any change of class occurring before or 459 

after 2010 leads to deriving new PFT fractions as the mean PFT fractions of all 300 m pixels of the same class pixels within 460 

the overlapping 0.25° x 0.25° window centred on the pixel of interest. The input pixels over which the mean is calculated are 461 

the 300 m pixels that did not experience land cover class change over the 1992–2020 era. If no pixels of the relevant class are 462 

within the 0.25° x 0.25° window, then the window is incrementally expanded by 0.25° in both the latitude and longitude 463 

directions until at least one pixel of the relevant class is contained in the window. A pixel can experience up to 7 land cover 464 

changes in the 1992–2020 era (Defourny et al., submitted), which leads to deriving new PFT fractions for each new land cover 465 

class encountered.  466 

2.3. Modelling assessment  467 

The impact of the updated PFT distribution on land surface fluxes is evaluated using global simulations of two land surface 468 

models: the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE; Krinner et al. 2005 and later revisions) 469 

and the Joint UK Land Environment Simulator (JULES; Best et al., 2011; Clark et al., 2011). The simulations with ORCHIDEE 470 

focus on evaluating the impact of the updated PFT distributions on a selected set of climate-relevant variables. The ORCHIDEE 471 

model applies the Climatic Research Unit (CRU)–Japanese reanalysis (JRA55) v2.0 6-hourly atmospheric driving data for 472 

1901–2018 (Harris et al., 2014; Kobayashi et al., 2015; UEA CRU and Harris, 2019) and the CCI PFT distribution maps for 473 

2010. Two PFT distributions are applied: (1) the new PFT map (PFTlocal) described above and (2) the PFT distribution based 474 

on the application of the global standard CWT to the CCI MRLC product for 2010 (PFTglobal) (Table C1) (Hartley et al., 2017, 475 

Lurton et al., 2020). The 2010 PFT map is used (recycled) for each year of the simulation. ORCHIDEE is run at a horizontal 476 

resolution of 0.5° latitude × 0.5° longitude over the period 1900 - 2018, and all simulated data before 1980 are discarded as 477 
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spin-up, with analysis based on the years 1980–2018. The impact of the updated distribution relative to that based on the global 480 

CWT is compared with ORCHIDEE for an ensemble of climate-related variables, including albedo, surface fluxes (latent and 481 

sensible heat and their ratio), gross primary productivity, surface temperature, tree fraction, leaf area index (LAI), and above-482 

ground biomass (Sect. 4). 483 

 484 

In a separate assessment of the implications of the updated PFT distributions for model evaluation, JULES simulations of PFT 485 

distributions, created for the Inter-Sectoral Impacts Model Inter-comparison Project (ISIMIP; Frieler et al., 2017), were used. 486 

This was done to compare evaluation results using both the CWT-derived PFT distributions (PFTglobal) and the updated PFT 487 

distributions (PFTlocal). The 2010 PFT distributions are used to evaluate the JULES dynamic vegetation results. JULES was 488 

driven by the ISIMIP2b protocol described in Frieler et al. (2017) and applied to JULES as described in Mathison et al. (in 489 

preparation). Sect. 4.2 describes the Dynamic Global Vegetation Model results for 2010 from the JULES offline simulations 490 

driven by HADGEM2-ES climate for the period 1850 to 2100.  491 

3. CCI PFT dataset description 492 

3.1. General description 493 

The CCI PFT dataset (hereafter called PFTlocal) provides the percentage cover as discrete values of 0–100 % of 14 PFTs at 10 494 

arc-second resolution (300 m at the equator; 64,800 pixels in the latitude dimension × 129,600 pixels in the longitude 495 

dimension). The global continuous field maps are produced at an annual resolution, covering the years 1992–2020. The PFT 496 

distributions are consistent with the CCI MRLC data product and eliminate the need to use a CWT to translate land cover 497 

classes into PFTs. The 14 PFTs encompass: (1) permanent inland water bodies; (2) permanent snow and ice cover; (3) bare 498 

soil; (4) built-up areas, which includes artificial impervious area such as buildings and, frequently but not exhaustively, other 499 

paved surfaces such as roads; (5) managed grasses (i.e., herbaceous crops); (6) natural grasses (i.e., non-cultivated herbaceous 500 

vegetation); (7) broadleaved deciduous shrubs; (8) broadleaved evergreen shrubs; (9) needleleaved deciduous shrubs; (10) 501 

needleleaved evergreen shrubs; (11) broadleaved deciduous trees; (12) broadleaved evergreen trees; (13) needleleaved 502 

deciduous trees; and (14) needleleaved evergreen trees (Figure 1). Following the auxiliary inputs, trees are woody vegetation 503 

with a height > 5 m, while shrubs are woody vegetation with a height of 3–5 m, inclusive. An updated water body product 504 

(version 4.1) at 150 m resolution, used here to delineate between inland water and ocean, likewise replaces the older version 505 

and can be downloaded from the same data repository as the PFT maps. 506 

 507 

  
(a) Broadleaved evergreen trees (b) Broadleaved deciduous trees 
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(c) Needleleaved evergreen trees (d) Needleleaved deciduous trees 

  
(e) Broadleaved evergreen shrubs (f) Broadleaved deciduous shrubs 

  
(g) Needleleaved evergreen shrubs (h) Needleleaved deciduous shrubs 

  
(i) Managed grasses (j) Natural grasses 

  
(k) Built-up areas (l) Permanent inland water bodies 
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(m) Bare soil (n) Permanent snow and ice cover 

  
Figure 1. Percentage cover in 2010 for the 14 PFTs included in the PFTlocal data product at a spatial resolution of 0.25° × 0.25°. (a) 510 
Broadleaved evergreen trees, (b) Broadleaved deciduous trees, (c) Needleleaved evergreen trees, (d) Needleleaved deciduous trees, (e) 511 
Broadleaved evergreen shrubs, (f) Broadleaved deciduous shrubs, (g) Needleleaved evergreen shrubs, (h) Needleleaved deciduous shrubs, 512 
(i) Managed grasses, (j) Natural grasses, (k) Built-up areas, (l) Permanent inland water bodies, (m) Bare soil, and (n) Permanent snow and 513 
ice cover. 514 

The PFTlocal dataset indicates that herbaceous vegetation covers 44.8 % of the Earth's land surface, with around one-third of 515 

that area devoted to herbaceous crops. Tree cover accounts for 21.3 % of the land surface, which is much larger than that of 516 

shrubs (3.2 %). The abiotic surface types cumulatively cover 30.8 % of the land surface: 18.4 % bare soil, 10.0 % snow and 517 

ice, 2.1 % inland water, and 0.3 % built.  518 

 519 

The CCI PFT dataset is provided as a companion product to the ESA CCI LC map series products with similar specifications 520 

with a global extent, a pixel size of 300 m and a Plate Carrée projection. However, climate models may need products 521 

associated with a coarser spatial resolution, over specific areas (e.g., for regional climate models), and/or in another projection. 522 

To tackle the variety of requirements, a user tool has been developed that allows users to adjust the products in a way which 523 

is suitable to their models. A minimum list of possibilities in terms of spatial resolution and projection has been established 524 

and the conversion of CCI-Land Cover classes to other user-defined classes is also foreseen. The CCI PFT product and the 525 

user tool are freely available at maps.elie.ucl.ac.be/CCI/viewer/ and climate.esa.int/en/projects/land-cover/data/. 526 

3.2. PFT layer description considering the CCI MRLC categories and the PFTglobal dataset 527 

Table 3 shows the global areal coverage of each PFT by class for 2010 for the PFTlocal product, and Table A1 shows the 528 

equivalent data corresponding to the application of the most recent version of the CCI MRLC global CWT (Lurton et al. 2020; 529 

Table A2) to the v2.0.8 CCI MRLC map for 2010 (hereafter called PFTglobal). Figure A2 complements Table A1 by illustrating 530 

the differences between the PFTlocal and the PFTglobal products globally at a spatial resolution of 0.25 x 0.25 degrees. For each 531 

class of PFTglobal, the global CWT specifies the fractional composition of contributing PFTs; in this approach, each pixel of a 532 

class is assigned the same fractional PFT composition regardless of its location on Earth. Table 4 indicates the percentage PFT 533 

composition by class for 2010 for PFTlocal, calculated as an area-weighted mean taken over all pixels of the class globally. 534 

Figure A3 provides a spatialized summary of the largest differences between the PFTlocal and the PFTglobal products. (a) PFTs 535 

with the largest increase and (b) corresponding fraction gained, (c) PFT loss and (d) corresponding fractions lost are illustrated 536 

globally with 0.25° x 0.25° pixels. 537 

3.2.1. Tree cover 538 

The PFTlocal product indicates global areal tree cover of 31.4 million km2 (Figure 1): 45.2 % broadleaved evergreen; 24.3 % 539 

needleleaved evergreen; 23.0 % broadleaved deciduous; and 7.5 % needleleaved deciduous. The PFT local product indicates 540 

global areal tree cover that is 4.6 % higher than in the PFTglobal distribution. Globally, tree coverage is higher in the PFT local 541 
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product relative to the PFTglobal distribution for all tree types except needleleaved deciduous trees. Compared to the global 545 

CWT, in which every pixel belonging to a given class is assigned the same PFT fractions, the updated method for estimating 546 

PFT fractions locally results in greater variability of tree fractions among 300 m pixels within a single class. For example, the 547 

global CWT suggests that all class 10 (rainfed cropland) pixels are 0 % tree cover, but the PFTlocal product based on auxiliary 548 

inputs suggests a much wider range of tree cover at the pixel level, ranging from 0–100 % tree cover at the 300 m pixel level. 549 

The distribution for Africa is shown in Figure A1, where tree crops in the Sahel are readily apparent. Globally, class 10 pixels 550 

have 5.1 % tree cover on average (Table 4). On average, class 12 pixels (rainfed cropland – tree or shrub cover) have 18.4 % 551 

tree cover. The auxiliary dataset used to derive tree cover for most classes in the PFTlocal product is based on Landsat 7 images 552 

(Hansen et al. 2013); the artifacts associated with the failure of the Landsat 7 Scan Line Corrector (Andrefouet et al., 2003) 553 

are visible in the 300 m PFT local dataset in some regions, particularly in west-central Africa. Because the PFT product is 554 

harmonized with the CCI MRLC class product, potential classification errors can impact the PFT product. For example, recent 555 

high-resolution mapping in the circumpolar Arctic (Bartsch et al. 2019) suggests that the CCI MRLC classification may 556 

overestimate needleleaved evergreen tree cover in this region, resulting in a possible overestimate of the tree PFT percentage 557 

in such pixels. Future improvements to the land cover classification will likewise flow through to the PFT product.  558 

Supprimé: 3559 



16 

 

3.2.2. Shrub cover 560 

The PFTlocal product indicates 4.7 million km2 of global shrub cover. The largest contributors to total shrub cover are 561 

broadleaved deciduous (44.6 %) and needleleaved evergreen shrubs (25.2 %). Shrub cover is 74 % lower in the PFT  local product 562 

than in the PFTglobal dataset. Some of this difference arises because the PFTlocal product estimates lower shrub PFT in shrubland 563 

class pixels (codes 120–122 and 180) compared to the PFTglobal dataset, which estimates 8.8 million km2 of shrub PFT in 564 

shrubland classes. The area-weighted mean percentage composition of shrubs in shrubland class pixels is 30.0 % for class 120 565 

in the PFTlocal product, 26.1 % for class 121, 34.4 % for class 122, and 30.7 % for class 180. The CWT suggests 60 % shrub 566 

cover for classes 120–122 and 40 % for class 180. The CWT estimates 0 km2 of tree PFT cumulatively in these classes 567 

compared to 630,000 km2 in the PFT product. The uncertainty associated with the height estimation in the global canopy height 568 

product of Potapov et al. (2021) may contribute to the confusion of shrubs and trees in some cases. Nonetheless, the evidence-569 

based PFTlocal product indicates a significantly lower estimate for global woody vegetation cover in pixels of the shrubland 570 

classes compared to the PFTglobal dataset, which was largely based on expert knowledge. 571 

 572 

In addition to the differences in the shrubland class pixels, a large part of the difference in total shrub cover between the PFTlocal 573 

product and the PFTglobal dataset can be ascribed to the fact that the PFTlocal product estimates shrub PFT only in pixels 574 

belonging to the shrubland classes (codes 120–122 and 180) due to a lack of appropriate datasets to apply to the other classes. 575 

The CWT estimates 9.5 million km2 of shrub cover in non-shrubland PFTs, and some of this shrub cover may indeed be 576 

missing from the PFTlocal product. However, because the PFTlocal product, which is based on quantitative estimation using 577 

auxiliary inputs, and the CWT, which is largely based on expert input, differed so strongly in the estimates of shrub PFT in 578 

the shrubland class pixels, some of the differences in the non-shrubland class pixels may likewise be due to bias in the CWT.  579 

3.2.3. Natural and managed grasses 580 

Global grass PFT cover in the PFTlocal product is 65.7 million km2, two-thirds of which is natural grass. Total grass cover is 581 

29.6 % higher in the PFTlocal product than in the PFTglobal map (38.3 % higher for natural grass and 14.7 % higher for managed 582 

grass). In the PFTlocal product algorithm, for the vegetated classes except for sparse vegetation, the entire non-water fraction 583 

of the 300 m pixel is assigned as vegetation; typically, water, trees, and other PFTs are estimated based on auxiliary inputs and 584 

the CCI MRLC class legend, and then the residual area is assigned as grass cover. Thus, grass vegetation may be assigned in 585 

some cases that might otherwise be a temporary bare area. 586 

3.2.4. Water 587 

In the PFTlocal product, the per-pixel fraction of surface water PFT is estimated for pixels of all classes except the permanent 588 

snow and ice class (Table 1). The PFTlocal product indicates around 142,000 km2 of water cover globally among pixels of all 589 

classes except the water body class (code 210). Only two classes – a sparse vegetation sub-class (code 151) and a needleleaved 590 

deciduous tree cover sub-class (code 82) – have no pixels with inland water cover (Table 3), but both classes have extremely 591 

limited total areal coverage, each accounting for only a few square kilometres of area globally. Classes with significant water 592 

coverage include: needleleaved evergreen tree cover classes 70 and 71 (40,000 km2 combined); sparse vegetation class 150 593 

(20,000 km2); lichens and mosses class 140 (14,000 km2); flooded shrub/herbaceous cover class 180 (12,000 km2); and bare 594 

area class 200 (12,000 km2). Coverage of water PFT in pixels of the non-water body classes is especially prevalent in the 595 

boreal region. Classes with the highest fractional composition of inland water – calculated as the area-weighted mean among 596 

all pixels of the class globally (Table 4) – include the flooded tree cover class 170 (2.3 %), the needleleaved evergreen tree 597 

cover class 72 (1.3 %), and the lichens and mosses class 140 (0.9 %). 598 
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 601 

The PFTlocal product indicates 3 % (91,000 km2) lower inland water fractional cover than the PFTglobal product distribution. 602 

While the non-water body classes have a total inland water PFT cover of 142,000 km2 in the PFTlocal product (compared to 0 603 

km2 from the PFTglobal), the PFTlocal product indicates a lower inland water PFT area in the water body class than does the CWT 604 

(difference of 233,000 km2). The difference in the water body class occurs because the PFTlocal product allows up to 14 % 605 

vegetation cover in this class whereas the CWT assumes 100 % water PFT. PFTs with significant global coverage in water 606 

body class pixels in the PFTlocal product include natural grasses (183,000 km2) and needleleaved evergreen trees (31,000 km2) 607 

with smaller contributions from the other tree types. 608 

3.2.5. Bare 609 

In the PFTlocal product, bare soil PFT occurs in the bare area classes (codes 200–202) and the sparse vegetation classes (codes 610 

150–153), accounting for 19.4 million km2 and 7.6 million km2 bare soil area, respectively, at the global scale (Table 3). The 611 

global area-weighted mean bare soil percentages are 85.9 % in sparse vegetation class pixels and 99.9 % in bare area class 612 

pixels, which are nearly identical to the compositions suggested by the global CWT (85 % for sparse vegetation classes and 613 

100 % for bare area classes). Cumulatively for these classes, the PFTlocal product suggests only 0.2 % lower bare soil PFT 614 

coverage at the global scale relative to the assumed distribution in the PFTglobal dataset (difference of 65,000 km2). In the 615 

PFTlocal product, the bare area classes contain, in addition to bare soil PFT, inland water PFT (13,000 km2) and tree cover 616 

(1,000 km2). 617 

 618 

The PFT local product does not include bare soil PFT in the shrubland classes, while the PFTglobal dataset assumes 20 % bare 619 

soil for the non-flooded shrubland classes 120–122. Because the non-flooded shrubland class pixels have such a large extent 620 

globally (13.3 million km2), the PFTglobal dataset suggests 2.7 million km2 of additional bare soil in such pixels relative to the 621 

PFT product. Differences in the distribution of bare area between the PFT local product and the PFTglobal product are especially 622 

pronounced in the U.S. intermountain west, parts of southern and eastern Africa, the northern coast of Australia, and the 623 

highlands of Argentina and Brazil, as these are regions with significant shrubland class cover. In the PFT local product, all 624 

residual area in the shrubland class pixels that is not assigned as surface water or woody vegetation (trees and/or shrubs) based 625 

on the auxiliary input data is assigned as natural grass cover rather than bare soil.  626 

 627 

In the PFT local product, the bare soil PFT represents areas that are not expected to support vegetation regardless of 628 

environmental conditions. For shrubland class pixels, we assume that vegetation growth can be supported given the appropriate 629 

environmental conditions; therefore, the residual pixel area (after accounting for inland water, tree, and shrub cover) is assigned 630 

as natural grass PFT. Since the PFT local product is built mainly for application to land surface models, the actual presence of 631 

grass vegetation vs. bare soil for such pixels (of the shrubland class, but also of the other vegetated classes) will be determined 632 

by the model given simulated or prescribed local climate conditions. Users should consider the definition of the bare soil PFT 633 

to determine suitability of the data product for their use case. 634 

3.2.6. Built fraction 635 

Both the PFTlocal product and the PFTglobal assign built PFT only to pixels of the urban class (code 190). The presence of a built 636 

PFT is not universal in land surface or Earth system models; for example, the current version of the ORCHIDEE land-surface 637 

model considers built areas to be 80 % bare soil and 20 % grasslands. The cross-walking of land cover classes to PFTs for the 638 

urban class strongly depends on the framework used to calculate surface fluxes in the urban environment and therefore inter-639 

model variation in the global CWT may be stronger for the urban class than for vegetated classes. The global CWT used for 640 
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this analysis assigns 100 % of the urban class as built PFT. For comparison, the JULES land surface model assigns urban class 642 

pixels as 75 % built and 25 % bare soil.  643 

 644 

The PFTlocal product suggests 477,000 km2 of built area globally (Table 3), which corresponds to an area-weighted mean 645 

composition of 73.7 % built PFT in urban class pixels (Table 4). The auxiliary inputs suggest that about 1.6 % of urban class 646 

pixels have 0 % built PFT coverage. This suggests a mismatch between the land cover classification and the auxiliary inputs 647 

for a small number of pixels, which could be related to a mismatch in the time stamp of the auxiliary inputs (2014) relative to 648 

the land cover dataset. Considering all urban class pixels, 6.2 % have built PFT of 0–25 %, 7.8 % have built PFT of 26–50 %, 649 

31.9 % have built PFT of 51–75 %, and 54.1 % have built PFT of 76–100 %. As area-weighted means, the non-built portion 650 

of urban class pixels is 25.1 % natural grass cover, 0.3 % inland water, and 0.9 % tree cover. The increased spatial heterogeneity 651 

in urban class pixels due to the PFTlocal product is readily apparent in Figure 2, which shows the PFT distribution for 652 

Amsterdam, the Netherlands. The more realistic characterization of the urban environment in the PFTlocal product that gives 653 

more variability of built PFT coverage within a city should allow a more faithful representation of urban surface fluxes in land-654 

surface models. 655 

 656 

Figure 2. Percentage cover in 2010 for built, total tree, grass, and inland water PFTs in Amsterdam, the Netherlands, in the PFT local 657 
product. 658 

3.2.7. Permanent snow and ice 659 

The permanent snow and ice in PFTlocal accounts for 14.7 million km2 of area globally, largely in Greenland and Antarctica, 660 

but also in the Arctic and mountainous regions of Asia. The PFTlocal product and PFTglobal dataset indicate identical coverage 661 

for this PFT since both datasets assign 100 % snow and ice PFT to the permanent snow and ice class (code 220) and 0 % snow 662 

and ice PFT to all other classes.  663 
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4. Modelling results 666 

4.1. ORCHIDEE simulations: new PFT product (PFTlocal) vs PFT maps based on global CWT (PFTglobal) 667 

 668 

Figure 3. Differences in (a) albedo, (b) latent heat flux, (c) sensible heat flux, (d) evaporative fraction (Latent heat flux / (Latent + Sensible 669 
heat fluxes), (e) soil surface temperature, and (f) Leaf Area Index (LAI) simulated by the ORCHIDEE model between the new PFT (PFTlocal) 670 
and the old PFT distributions (PFTglobal), for the summer (June - July - August, northern hemisphere) of year 2010. 671 

In this section, we compare the results of two ORCHIDEE simulations performed, respectively, by applying the old standard 672 

PFT maps (PFTglobal) and the new PFT product derived in this study (PFTlocal). The results are shown for the year 2010.  673 

The impacts of the changes in the land surface representation between the local and global PFT maps on the surface albedo, 674 

latent and sensible heat fluxes, evaporative fraction (ratio of latent heat flux to the sum of latent and sensible heat fluxes), 675 

surface temperature, and the LAI are shown in Figure 3. Averaged differences (local vs global) for the northern hemisphere 676 

summer period (June-July-August, JJA) were plotted here to highlight the main changes but the plots at the annual scale are 677 

also given in the Supplementary Information. The results show that the energy, water, and carbon fluxes are mainly (and 678 

significantly) impacted in the regions where woody vegetation was replaced by grasslands or where the bare soil fraction has 679 

changed. Since, in ORCHIDEE, the shrub PFTs are assigned to tree PFTs, the regions highlighted in Sect. 3 with significant 680 

fractions of shrub losses or gains in profit of grasses show the largest changes. Given that tree PFTs present a lower albedo, 681 

higher roughness (linked to vegetation height) and maximum transpiration capacity, and higher LAI and biomass, the simulated 682 

differences between the two simulations show coherent features across the different variables. In summer, surface albedo 683 

increases up to 4 % (absolute deviation) in the northern boreal regions because of the decrease of shrubs and the increase of 684 

grasslands and in some regions (like in the Taymir peninsula) the increase of bare soils. More southern of this boreal zone, 685 
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both in Eurasia and North America, the increase of trees and decrease of shrubs, show opposite variations. In the tropical 688 

region (between 0° and 30°S), the PFT changes principally concern differences in the shrubs/grasses partition at the benefit of 689 

grasslands. In these regions, the tree fraction decrease results in a slight increase of the albedo around 2 % (absolute deviation). 690 

At the annual scale (Figure B1), the larger impact of the PFT differences in the high latitudes is explained by the cumulative 691 

impact of changes in snow cover. Indeed, snow melting is more rapid on tree cover compared to grasslands, inducing a shorter 692 

duration of the snow cover with high albedo values, leading to even more differences between short and high vegetation albedo 693 

values.  694 

 695 

Surface albedo differences (impacting surface net radiation) combined with roughness changes (impacting turbulent 696 

exchanges) explain generally the surface flux variations. The balance between the two effects varies according to the latitude 697 

following the amount of solar radiation: in the northern latitudes, the impact of surface roughness is larger than in more 698 

southern ones. In the tropics, we observe a decrease in the turbulent fluxes where the albedo is larger, explaining the lower 699 

evapotranspiration and lower GPP, with different partitions when comparing arid and humid zones. For example, the 700 

consequences of a decrease of shrubs to the benefit of grasses do not have the same effects on the heat flux partition according 701 

to the water availability. In regions where soil moisture limits evapotranspiration, like central Africa (south of the Democratic 702 

Republic of the Congo) or the Sahel, fewer trees lead to less evapotranspiration up to 6 Wm-2 in annual mean, and larger 703 

sensible heat flux at the same level, whereas in the northern latitudes like in eastern Siberia, fewer shrubs lead to larger 704 

evapotranspiration and lower sensible heat flux. This is summarized in the representation of the evaporative fraction which 705 

shows opposite variations in these regions.  706 

 707 

The surface temperature, as the result of the energy and water budgets, shows differences in line with the sensible heat flux 708 

variations, with larger temperatures where the sensible heat flux has decreased. The differences in summer and in annual mean 709 

are significant and can reach 1 K but can show differences up to 3 K on a daily scale.  710 

 711 

LAI differences are in coherence with the PFT differences: lower values where woody vegetation was replaced by grasses, 712 

except in eastern Siberia and northern Australia where the increase of net radiation favored transpiration and GPP and, finally, 713 

LAI. The LAI variations may reach 1 m2m-2 in some regions like southeastern Canada or Central Europe, where the broadleaf 714 

deciduous trees have increased in the PFTlocal map.  715 

 716 

Figure 4 illustrates the impacts on the above-ground biomass (AGB) with the tree cover variations. To see if the biomass 717 

changes are more realistic, they have been compared to the ESA CCI Biomass product, version 3 (ESACCI Biomass, Santoro 718 

and Cartus, 2019; Santoro et al., 2021) aggregated at 0.5° resolution. Note that, unlike for the turbulent fluxes discussed above, 719 

the change in AGB between low and high vegetation covers should be large enough and thus easier to evaluate. In Figure 4ab, 720 

we first compare the simulated AGB with the new PFTs (PFTlocal) to the ESACCI Biomass product, which highlights some 721 

issues related to ORCHIDEE model deficiencies and also, in part, to relatively large errors in the ESACCI Biomass product, 722 

especially for high AGB. -The model simulates too low AGB on average with a large underestimation over the tropical forests, 723 

which cannot be due to the PFT cover (above 90 % forest cover). Over temperate and high latitudes, we also find significant 724 

model AGB underestimation. The improvements/degradations with respect to changing the PFT distribution (Figure 4d; where 725 

the mean errors between the two simulations performed with PFTlocal and PFTglobal are represented), provide contrasting results 726 

between regions. The benefits of the new PFTlocal maps (blue color in Figure 4d) are visible in northeast Europe, the eastern 727 

USA and in Democratic Republic of the Congo where the increase of tree fraction (Figure 4c) and biomass seems to be in 728 

better agreement with the remote sensing AGB product. In the other regions, where the tree fractions decreased (northern 729 

Canada and Europe, Sahel, Angola, Zambia and southern China, Figure 4c), the associated decrease of biomass leads to larger 730 
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errors compared to the AGB satellite product. In the western USA (California), the losses of tree PFTs to the benefit of 731 

grasslands did not impact the simulated biomass since, in these arid regions, the trees have very low productivity comparable 732 

to grasses and thus similar low biomass values (less than 1 KgCm-²).  733 

 734 

Overall, these results highlight the importance and impact of land surface PFT distribution on simulated energy, water, and 735 

carbon fluxes as well as carbon stocks in global land surface models.  736 

 737 

 738 

Figure 4. Above Ground Biomass (AGB) (a) simulated by the ORCHIDEE model with the PFTlocal dataset and (b) observed by the ESACCI 739 
Biomass product version v3, for the year 2010 (Santoro and Cartus (2019)); (c) Differences in the tree PFT fraction prescribed; (d) Difference 740 
between the mean bias of simulated versus ESACCI Biomass AGB between the new (PFTlocal) and the former (PFTglobal) distributions of 741 
PFTs. Negative values indicate a decrease in the bias from the PFTglobal to the PFTlocal. 742 

4.2. Evaluation of DGVM (JULES-TRIFFID) using PFT fractions 743 

The impact of using the new PFT distributions (PFTlocal) as a benchmark for JULES-TRIFFID dynamic vegetation is shown 744 

in Figure 5. In contrast to results shown in Sect. 4.1, differences found here indicate the value of the new PFT distributions as 745 

a product for model evaluation, rather than a direct improvement of model predictions. When compared to PFTglobal (‘CWT’), 746 

JULES-TRIFFID indicates significant over-estimation of tree cover in tropical savannahs, and under-estimation of tree cover 747 

in boreal northeast Russia. Additionally, comparison with the global CWT product (PFTglobal) indicates that JULES-TRIFFID 748 

under-estimates shrub cover in tropical savannas in South America, Africa, and Australia, as well as many semi-arid regions 749 

such as western North America. Biases in grass cover are more spatially heterogeneous, but comparison with the global CWT 750 

indicates that JULES-TRIFFID strongly over-estimates in northeast Russia and northern Australia. 751 

 752 

When using the new PFT distributions as a benchmark, many of these biases are reduced, as indicated by green areas in column 753 

“c” of Figure 5. In particular, northeast boreal Russia shows reduced biases in tree, shrub, and grass cover. Globally, using the 754 

new PFT distributions results in a reduction in biases in shrub cover in JULES-TRIFFID in almost every part of the world, 755 

particularly savannahs and semi-arid regions (Figure 4d). Whilst no large areas showed a large increase in bias, some areas 756 

did show increases in bias of up to 25 %, such as tropical forests (10 % increase), grass cover in tropical savannahs (15 to 25 757 

%) and northern high latitudes (10 to 20 %), and bare cover in arid regions (up to 10 % increase).  758 
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 761 

 762 

Figure 5. Comparison of JULES PFT distributions to both the CWT (PFTglobal) and PFT (PFTlocal) products for major vegetation types. Rows 763 
show each major surface type (Tree, Shrub, Grass, Bare), whilst rows show (a) JULES vegetation distribution compared to the global CWT; 764 
(b) the same compared to new PFTlocal distributions; (c) the difference between (a) and (b), where green (pink) indicates positive or negative 765 
anomalies evaluate closer to 0 (further away from 0) using new PFTlocal distributions; (d) absolute latitudinal average fractions for each major 766 
vegetation type from CWT, PFT, and JULES. 767 

5. Conclusion and perspectives 768 

The new PFT product (PFTlocal) was generated to reduce the cross-walking component of uncertainty by adding spatial 769 

variability to the PFT composition within a LC class. This work moved beyond fine-tuning the cross-walking approach for 770 

specific LC classes or regions and, instead, separately quantifies the PFT fractional composition for each 300 m pixel globally. 771 

The result is a dataset representing the cover fractions of 14 PFTs at 300 m for each year in the 1992–2020 era, consistent with 772 

the CCI MRLC map for the corresponding year. The PFTlocal dataset exhibits intraclass spatial variability in PFT fractional 773 

cover at the 300 m pixel level and is complementary to the CCI medium resolution multi-mission LC map series since the 774 

derived PFT fractions maintain consistency with the original LC class legend. 775 

 776 

The PFTlocal dataset provides a more faithful representation of PFT distributions because it draws on high-resolution peer-777 

reviewed mapping of specific vegetation classes to refine global assumptions about PFT fractions. In many cases, the global 778 

CWT presented a reasonable approximation for estimating PFT fractions within many land cover classes as shown by the 779 

fractions estimated from the auxiliary products falling close to that suggested by the global CWT.  780 

 781 

Note that a recent study by Marie et al. (2022) followed the same objective of refining the global CWT (used to map the ESA 782 

land cover classes onto PFTs) but with a different approach. Instead of using the tree cover dataset from Hansen et al. (2013), 783 

they valorised a map of above-ground biomass over Africa (Bouvet et al., 2018) to define local CWTs, using the information 784 

from AGB to better constrain the partition between tree and short vegetation PFTs, for each LC class. As shown in our study, 785 

they found that LC class 10 (rainfed cropland) in the Sahel should contain tree PFTs which correspond to tree crops (Figure 786 

A1). Overall, these efforts highlight the benefits of using additional high-resolution products, like tree cover, AGB, etc. when 787 

translating land cover into PFT distributions for land surface models. Merging all sources of information into a coherent PFT 788 
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product remained however a difficult task. This study demonstrated that using the consistent CCI MRLC time series and 790 

maintaining deference to the original LCCS class in the combination rules allowed bringing these auxiliary data into 791 

consistency. 792 

 793 

Changing the PFT distribution in the ORCHIDEE model (PFTlocal vs PFTglobal) induces significant impacts on the simulated 794 

water, energy, and carbon fluxes as well as on the modelled carbon stocks. These differences are coherent with changes in 795 

surface properties (albedo, roughness, type of cover) induced by changes in PFT types (mainly tree vs short vegetation and 796 

bare soil covers). However, it is not possible and beyond the scope of the paper to evaluate globally and quantitatively model 797 

improvements due to changes in PFTs given i) existing model biases that have been partly compensated by previous model 798 

parameters tuning with the old PFT maps (PFTglobal) and ii) the large uncertainty still associated with data-driven products at 799 

global scale. We initiated an evaluation with AGB; however, the new simulated biomass (induced by PFT changes) is not 800 

always closer to the satellite ESACCI AGB product. In addition, the fact that ORCHIDEE does not differentiate shrubs and 801 

trees limits such biomass evaluation. Additional simulations/tests with more models and a more comprehensive evaluation 802 

with a larger ensemble of variables and data-driven products are therefore needed to quantify the benefits of the PFTlocal maps. 803 

 804 

Using the PFTlocal as a benchmark improves the evaluation of every major surface type in the JULES-TRIFFID dynamic 805 

vegetation model, particularly shrub cover. This allows a new perspective on priorities for dynamic vegetation model 806 

development.  807 

 808 

The user tool described in Poulter et al. (2015) has been reformatted such that it can be applied directly to the new PFT map 809 

series to create user-specific ready-to-use inputs for LSMs. The user tool creates model-ready inputs at user specification, 810 

which greatly expands the ease of use of the product both within and beyond the modelling community. The PFT dataset is 811 

designed primarily for use in land surface and Earth system models. For the vegetated classes except for sparse vegetation, the 812 

entire non-water fraction of the 300 m pixel is assigned as vegetation, allowing the actual presence of grass vegetation to be 813 

determined by the land surface models. For use outside of modelling, this could introduce some bias (e.g., underestimating 814 

bare soil cover in some pixels and overestimating grass cover), but the fractions of the high biomass veg types (trees and 815 

shrubs) can be used for non-modelling use cases. 816 

 817 

Production of the PFTlocal product is dependent on the availability and quality of the auxiliary datasets at a spatial resolution 818 

higher than 300 m; this is especially critical for mapping the shrubland class. With the combined information of the 819 

phenological attribute of the ESA CCI LC classes, the percentage of tree canopy cover from Hansen et al. (2013), and the 820 

GEDI product (Potapov et al., 2021), it was possible, for the first time, to map four shrubland classes at the global scale:  821 

broadleaved evergreen, broadleaved deciduous, needleleaved evergreen, and needleleaved deciduous. Yet, further research is 822 

still needed to improve the estimation of shrubland class pixels north of 52°N (i.e., outside of the extent of the GEDI product). 823 

The urban PFT would benefit from separating impervious surfaces from buildings. Finally, the current workflow should further 824 

be tested against annual ancillary product updates as operational production of very-high-resolution datasets becomes the 825 

norm.  826 

 827 

The proposed methodology is automated so that the PFT dataset will be updated annually as new annual land cover maps are 828 

produced in C3S. Because the PFT product is harmonized with the CCI MRLC map series, future improvements in the land 829 

cover product will flow through to the PFT product. 830 
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Tables 831 

Table 1. For each of the 22 global and 15 regional land cover classes of the CCI MRLC map series, listed are the set of 832 

contributing PFTs with the possibility for non-zero fractional cover. The regional land cover classes with codes ending with 833 

1, 2, or 3, are thematically richer than the global classes but can be found only at the regional scale depending on training data 834 

availability.  835 

Class 

code 
Class description 

PFTs for which non-zero fractions are permitted in the 

PFT product 

10 Rainfed cropland Trees, water, managed grass 

11 Rainfed cropland – herbaceous cover Trees, water, managed grass 

12 Rainfed cropland – tree or shrub cover Trees, water, managed grass 

20 Irrigated or post-flooding cropland Trees, water, managed grass 

30 
Mosaic: > 50 % cropland/ < 50 % natural tree, shrub, 

herbaceous cover 
Trees, water, managed grass 

40 
Mosaic: > 50 % natural tree, shrub, herbaceous cover/ < 50 

% cropland 
Trees, water, natural grass, managed grass 

50 > 15 % broadleaved evergreen tree cover  Broadleaved evergreen trees, water, natural grass 

60 > 15 % broadleaved deciduous tree cover Broadleaved deciduous trees, water, natural grass 

61 > 40 % broadleaved deciduous tree cover Broadleaved deciduous trees, water, natural grass 

62 15–40 % broadleaved deciduous tree cover Broadleaved deciduous trees, water, natural grass 

70 > 15 % needleleaved evergreen tree cover Needleleaved evergreen trees, water, natural grass 

71 > 40 % needleleaved evergreen tree cover Needleleaved evergreen trees, water, natural grass 

72 15–40 % needleleaved evergreen tree cover Needleleaved evergreen trees, water, natural grass 

80 > 15 % needleleaved deciduous tree cover Needleleaved deciduous trees, water, natural grass 

81 > 40 % needleleaved deciduous tree cover Needleleaved deciduous trees, water, natural grass 

82 15–40 % needleleaved deciduous tree cover Needleleaved deciduous trees, water, natural grass 

90 Mixed leaf type (broadleaved and needleleaved) tree cover Trees, water, natural grass 

100 
Mosaic: > 50 % tree and shrub cover / < 50 % herbaceous 

cover 
Trees, water, natural grass 

110 
Mosaic: > 50 % herbaceous cover / < 50 % tree and shrub 

cover 
Trees, water, natural grass 

120 Shrubland Trees, water, natural grass, shrubs 

121 Evergreen shrubland Trees, water, natural grass, shrubs 

122 Deciduous shrubland Trees, water, natural grass, shrubs 

130 Grassland Trees, water, natural grass 

140 Lichens and mosses Water, natural grass 

150 Sparse vegetation: < 15 % tree, shrub, herbaceous cover Trees, water, natural grass, bare soil 

151 Sparse vegetation: < 15 % tree cover Trees, water, natural grass, bare soil 

152 Sparse vegetation: < 15 % shrub cover Trees, water, natural grass, bare soil 

153 Sparse vegetation: < 15 % herbaceous cover Trees, water, natural grass, bare soil 

160 Flooded tree cover – fresh or brackish water Trees, water, natural grass 

170 Flooded tree cover – saline water Trees, water, natural grass 

180 
Flooded shrub or herbaceous cover – fresh, saline, or 

brackish water 
Trees, water, natural grass, shrubs 

190 Urban areas Trees, water, natural grass, built 

200 Bare areas (total vegetative cover < 4%) Trees, water, bare soil 

201 Consolidated bare areas Trees, water, bare soil 

202 Unconsolidated bare areas Trees, water, bare soil 

210 Water body Trees, water, natural grass 

220 Permanent snow and ice Snow and ice 

 836 

 837 



25 

 

 838 

Table 2. Summary of method applied to derive pixel-level functional type composition by land cover class. See Table 1 for more 839 

comprehensive class descriptions. PEA16 = surface water data product of Pekel et al. 2016. HEA13 = tree canopy cover product 840 

of Hansen et al. 2013. PEA13 = Global Human Settlement Layer from Pesaresi et al. 2013. PEA21 = tree canopy height dataset of 841 

Potapov et al. 2021. For the calculation of tree percentage: “Method 1” indicates that, in cases of disagreement in tree cover 842 

percentage between the ancillary dataset and the class legend, a window of up to 0.5° x 0.5° is used to estimate the final tree cover 843 

percentage based on neighborhood pixels of the same class; and “Method 3” indicates that an upper limit of 14 % tree cover is 844 

applied based on the class definition. See the text for additional details about the processing and use of the ancillary data products, 845 

the method used to align the derived PFT percentages with the class legend, the scaling method applied in cases where the sum of 846 

PFT percentages from the ancillary data exceeds 100% in a pixel, and the method used to derive the PFT fractional composition 847 

for pixels falling outside of the extents of the ancillary datasets. 848 

 849 

Class 

descriptio

n 

Inland 

water % 

Tree % Tree type Grass % Grass 

type 

Shrub % Bare soil 

% 

Built % Snow/ice 

% 

Rainfed 

cropland 

(10-12) 

PEA16 HEA13 Neighbor

hood 

majority 

100% - 

water % - 

tree % 

Managed 0% 0% 0% 0% 

Irrigated or 

post-

flooding 

cropland 

(20) 

Mosaic of 

cropland 

and natural 

vegetation 

(30) 

Mosaic of 

cropland 

and natural 

vegetation 

(40) 

Managed 

& natural 

mixture 

Mosaic of 

tree/shrub 

and 

herbaceous 

(100 & 

110) 

Natural 

Grassland 

(130) 

Broadleave

d evergreen 

tree cover 

(50) 

HEA13, 

Method 1 

Class 

legend 

Broadleave

d deciduous 

tree cover 

(60-62) 

Needleleav

ed 



26 

 

evergreen 

tree cover 

(70-72) 

Needleleav

ed 

deciduous 

tree cover 

(80-82) 

Mixed leaf 

type tree 

cover (90) 

Neighbor

hood 

majority 

Flooded 

tree cover 

(160-170) 

Lichens and 

mosses 

(140) 

0% N/A 100% - 

water % 

Sparse 

vegetation 

(150-153) 

HEA13, 

Method 2 

Neighbor

hood 

majority 

Tree % + 

grass % 

must be 

in range 

4-14% 

100% - 

water % - 

tree % - 

grass % 

Shrubland 

(120-122) 

PEA21 Biogeogr

aphical 

approach 

100% - 

water % - 

tree % - 

shrub % 

PEA21 0% 

Flooded 

shrub or 

herbaceous 

cover (180) 

Urban areas 

(190) 

HEA13 Neighbor

hood 

majority 

100% - 

water % - 

tree % - 

built % 

0% PEA16 

Bare areas 

(200-202) 

0% N/A 100% - 

water % - 

tree % 

0% 

Inland 

water 

bodies 

(210) 

100% - 

water % - 

tree % 

Natural 0% 

Ocean 

(210) 

100% 0% N/A 0% N/A 

Permanent 

snow and 

ice (220) 

0% 100% 

 850 

 851 

 852 

 853 

 854 
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Table 3. Global areal cover (1000 km²) of each PFT by land cover class for 2010 in the PFT local product. 855 

Class 
Bare 

soil 
Built 

Managed 

grasses 

Natural 

grasses 
Snow/ice Water1 

BD 

trees 

BE 

trees 

ND 

trees 

NE 

trees 

BD 

shrubs 

BE 

shrubs 

ND 

shrubs 

NE 

shrubs 

10 0 0 7729.7 0 0 2.3 175.1 199.5 0.7 36 0 0 0 0 

11 0 0 6774.9 0 0 1.5 110.4 112.9 4.1 19.7 0 0 0 0 

12 0 0 155.1 0 0 0.1 4.6 29.8 0 0.6 0 0 0 0 

20 0 0 2415.5 0 0 1.2 19 7.4 0.2 1.8 0 0 0 0 

30 0 0 2803 0 0 1.1 123.2 467.2 0.8 39 0 0 0 0 

40 0 0 1557.4 1247.9 0 1.2 195.1 493.2 4.7 65.1 0 0 0 0 

50 0 0 0 1262.6 0 4.3 0 11476.1 0 0 0 0 0 0 

60 0 0 0 2237.9 0 1.7 3599.6 0 0 0 0 0 0 0 

61 0 0 0 337 0 0.2 538.6 0 0 0 0 0 0 0 

62 0 0 0 2673.9 0 0.2 1000 0 0 0 0 0 0 0 

70 0 0 0 2411.4 0 21.9 0 0 0 4060.4 0 0 0 0 

71 0 0 0 710.7 0 18 0 0 0 1720.3 0 0 0 0 

72 0 0 0 0.7 0 0 0 0 0 0.3 0 0 0 0 

80 0 0 0 2977.6 0 4 0.1 0 2143.5 0 0 0 0 0 

81 0 0 0 0.7 0 0 0 0 4.1 0 0 0 0 0 

82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

90 0 0 0 441 0 1.6 674.1 63.7 77.8 918.5 0 0 0 0 

100 0 0 0 2443.7 0 2.6 233.8 329.3 43.4 354 0 0 0 0 

110 0 0 0 977.3 0 0.5 66.1 26.1 3.5 11.1 0 0 0 0 

120 0 0 0 7246.3 0 4 176.3 125.5 3.9 80.7 1746.8 632.9 164.7 724.5 

121 0 0 0 142.5 0 0 1.6 26.3 5.3 0.6 2.7 31.2 26.8 1.5 

122 0 0 0 1294.6 0 1.1 41 68.5 10.4 4.2 211 154.6 293.8 86.8 

130 0 0 0 13338.8 0 5.8 144 159 8.5 47.4 0 0 0 0 

140 0 0 0 1476.9 0 14.2 0 0 0 0 0 0 0 0 

150 7254.8 0 0 1157.7 0 20.4 0.5 1.3 0.6 12 0 0 0 0 

151 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

152 63 0 0 8.9 0 0.2 0.1 0 0.2 1.1 0 0 0 0 

153 323.8 0 0 52.7 0 0.1 0 0 0 0 0 0 0 0 

160 0 0 0 200.4 0 2.3 71.7 442.6 27.4 151.4 0 0 0 0 

170 0 0 0 86.1 0 5 12.3 110 4.6 0.8 0 0 0 0 

180 0 0 0 1231.9 0 11.7 12.7 15.1 5.5 51.8 122.3 56.6 47.7 362.7 

190 0 476.7 0 162.5 0 1.9 2.5 1.3 0.2 2.1 0 0 0 0 

200 19156.9 0 0 0 0 12.2 0.4 0 0.2 0.5 0 0 0 0 

201 108.8 0 0 0 0 0.3 0 0 0 0 0 0 0 0 

202 97.2 0 0 0 0 0.1 0 0 0 0 0 0 0 0 

210 0 0 0 182.6 0 365991.8 7.2 8.9 3.1 31.3 0 0 0 0 

220 0 0 0 0 14694.2 0 0 0 0 0 0 0 0 0 

 856 

Table 4. Percentage PFT composition by class for 2010 calculated as an area-weighted mean over all pixels of the class globally. 857 

Class 
code 

Bare 
soil 

Built 
Managed 
grasses 

Natural 
grasses 

Snow/ice Water2 
BD 

trees 
BE 

trees 
ND 

trees 
NE 

trees 
BD 

shrubs 
BE 

shrubs 
ND 

shrubs 
NE 

shrubs 

10 0.0 0.0 94.9 0.0 0.0 0.0 2.1 2.5 0.0 0.4 0.0 0.0 0 0.0 

11 0.0 0.0 96.5 0.0 0.0 0.0 1.6 1.6 0.1 0.3 0.0 0.0 0 0.0 

12 0.0 0.0 81.6 0.0 0.0 0.0 2.4 15.7 0.0 0.3 0.0 0.0 0 0.0 

20 0.0 0.0 98.8 0.0 0.0 0.1 0.8 0.3 0.0 0.1 0.0 0.0 0 0.0 

30 0.0 0.0 81.6 0.0 0.0 0.0 3.6 13.6 0.0 1.1 0.0 0.0 0 0.0 

40 0.0 0.0 43.7 35.0 0.0 0.0 5.5 13.8 0.1 1.8 0.0 0.0 0 0.0 

50 0.0 0.0 0.0 9.9 0.0 0.0 0.0 90.1 0.0 0.0 0.0 0.0 0 0.0 

60 0.0 0.0 0.0 38.3 0.0 0.0 61.6 0.0 0.0 0.0 0.0 0.0 0 0.0 

61 0.0 0.0 0.0 38.5 0.0 0.0 61.5 0.0 0.0 0.0 0.0 0.0 0 0.0 

62 0.0 0.0 0.0 72.8 0.0 0.0 27.2 0.0 0.0 0.0 0.0 0.0 0 0.0 

70 0.0 0.0 0.0 37.1 0.0 0.3 0.0 0.0 0.0 62.5 0.0 0.0 0 0.0 

71 0.0 0.0 0.0 29.0 0.0 0.7 0.0 0.0 0.0 70.2 0.0 0.0 0 0.0 

72 0.0 0.0 0.0 72.6 0.0 1.3 0.0 0.0 0.0 26.1 0.0 0.0 0 0.0 

80 0.0 0.0 0.0 58.1 0.0 0.1 0.0 0.0 41.8 0.0 0.0 0.0 0 0.0 

81 0.0 0.0 0.0 15.4 0.0 0.5 0.0 0.0 84.1 0.0 0.0 0.0 0 0.0 

82 0.0 0.0 0.0 82.9 0.0 0.0 0.0 0.0 17.1 0.0 0.0 0.0 0 0.0 

90 0.0 0.0 0.0 20.3 0.0 0.1 31.0 2.9 3.6 42.2 0.0 0.0 0 0.0 

100 0.0 0.0 0.0 71.7 0.0 0.1 6.9 9.7 1.3 10.4 0.0 0.0 0 0.0 

110 0.0 0.0 0.0 90.1 0.0 0.0 6.1 2.4 0.3 1.0 0.0 0.0 0 0.0 

120 0.0 0.0 0.0 66.4 0.0 0.0 1.6 1.2 0.0 0.7 16.0 5.8 1.5 6.6 

121 0.0 0.0 0.0 59.7 0.0 0.0 0.7 11.0 2.2 0.3 1.1 13.1 11.3 0.6 

122 0.0 0.0 0.0 59.8 0.0 0.1 1.9 3.2 0.5 0.2 9.7 7.1 13.6 4.0 

130 0.0 0.0 0.0 97.3 0.0 0.0 1.1 1.2 0.1 0.3 0.0 0.0 0 0.0 

140 0.0 0.0 0.0 99.1 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 

150 85.9 0.0 0.0 13.7 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0 0.0 

                                                           
1 For the water body class (code 210), the water PFT area includes 2,877,500 km2 of inland water. For all other classes, all 

water PFT area is inland water. 
2 For the water body class (code 210), the water PFT percentage includes inland water. The area-weighted mean percentage 

composition of inland water PFT in water body class pixels is 0.8 %. For all other classes, all water is inland water. 

Supprimé: 2858 

Supprimé: 3859 
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151 86.0 0.0 0.0 14.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 

152 85.8 0.0 0.0 12.1 0.0 0.2 0.1 0.0 0.3 1.5 0.0 0.0 0 0.0 

153 86.0 0.0 0.0 14.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 

160 0.0 0.0 0.0 22.4 0.0 0.3 8.0 49.4 3.1 16.9 0.0 0.0 0 0.0 

170 0.0 0.0 0.0 39.3 0.0 2.3 5.6 50.3 2.1 0.4 0.0 0.0 0 0.0 

180 0.0 0.0 0.0 64.2 0.0 0.6 0.7 0.8 0.3 2.7 6.4 3.0 2.5 18.9 

190 0.0 73.7 0.0 25.1 0.0 0.3 0.4 0.2 0.0 0.3 0.0 0.0 0 0.0 

200 99.9 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 

201 99.7 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 

202 99.9 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 

210 0.0 0.0 0.0 0.0 0.0 99.9 0.0 0.0 0.0 0.0 0.0 0.0  0.0 

220 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 
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Appendix A: complementary information about the CCI PFT dataset description 1130 

 1131 

 1132 

Figure A1. Distribution of tree cover percentage in rainfed cropland class pixels in Africa. Gray pixels belong to other classes. 1133 

 1134 
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Figure A2. Absolute differences (percentage of pixel) between the 2010 PFT local dataset and corresponding PFTglobal maps 1135 

(i.e., applying the global cross-walking scheme) for the 14 PFT types. The spatial resolution is 0.25 x 0.25 degrees. 1136 
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 1137 

Figure A3.  PFT with the largest increase (a) and largest loss (c) in coverage within 0.25° x 0.25° pixels in the PFT local dataset compared to 1138 
the PFTglobal and corresponding fractions gained (b) and lost (d). White areas remained stable in both PFT datasets. 1139 

 1140 

Table A1. Global areal cover (1000 km²) of each PFT by land cover class for 2010 based on the most recent version of the 1141 

global CWT applied to v2.0.8 of the CCI MRLC map. 1142 
Clas

s 

Bare 

soil 
Built 

Grass 

Man 

Grass 

NAT 

Snow/ic

e 
Water3 

BD 

trees 

BE 

trees 

ND 

trees 

NE 

trees 

BD 

shrubs 

BE 

shrubs 

ND 

shrubs 

NE 

shrubs 

10 0 0 7328.9 814.3 0 0 0 0 0 0 0 0 0 0 

11 0 0 6321.2 702.4 0 0 0 0 0 0 0 0 0 0 

12 0 0 57.1 0 0 0 0 0 0 0 133.2 0 0 0 

20 0 0 2200.6 244.5 0 0 0 0 0 0 0 0 0 0 

30 0 0 2060.5 515.1 0 0 171.7 171.7 0 0 171.7 171.7 0 171.7 

40 0 0 712.9 1069.4 0 0 267.4 267.4 0 0 534.7 356.5 0 356.5 

50 0 0 0 0 0 0 0 
11468.

7 
0 0 637.1 637.1 0 0 

60 0 0 0 1751.8 0 0 2919.6 0 0 0 1167.9 0 0 0 

61 0 0 0 131.4 0 0 613.1 0 0 0 131.4 0 0 0 

62 0 0 0 1653.3 0 0 1102.2 0 0 0 918.5 0 0 0 

70 0 0 0 974 0 0 0 0 0 4545.6 324.7 324.7 0 324.7 

71 0 0 0 367.4 0 0 0 0 0 1714.4 122.5 122.5 0 122.5 

72 0 0 0 0.5 0 0 0 0 0 0.3 0 0 0 0.3 

80 0 0 0 1537.6 0 0 0 0 2562.6 0 128.1 128.1 640.7 128.1 

81 0 0 0 0.7 0 0 0 0 3.4 0 0.2 0.2 0 0.2 

82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

90 0 0 0 544.2 0 0 653 0 217.7 435.3 108.8 108.8 0 108.8 

100 0 0 0 1362.7 0 0 681.4 340.7 170.3 170.3 340.7 170.3 0 170.3 

110 0 0 0 650.8 0 0 108.5 54.2 0 54.2 108.5 54.2 0 54.2 

120 2181.1 0 0 2181.1 0 0 0 0 0 0 2181.1 2181.1 0 2181.1 

121 47.7 0 0 47.7 0 0 0 0 0 0 0 71.6 0 71.6 

122 433.2 0 0 433.2 0 0 0 0 0 0 1299.7 0 0 0 

130 0 0 0 13703.6 0 0 0 0 0 0 0 0 0 0 

140 0 0 0 1491 0 0 0 0 0 0 0 0 0 0 

150 7180.2 0 0 422.4 0 0 253.4 84.5 0 84.5 253.4 84.5 0 84.5 

151 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

152 62.4 0 0 3.7 0 0 0 0 0 0 4.4 1.5 0 1.5 

153 320.1 0 0 56.5 0 0 0 0 0 0 0 0 0 0 

160 0 0 0 224 0 0 335.9 335.9 0 0 0 0 0 0 

170 0 0 0 0 0 0 0 164.1 0 0 0 54.7 0 0 

180 0 0 0 1150.8 0 0 0 0 0 0 479.5 0 0 287.7 

190 0 
647.

1 
0 0 0 0 0 0 0 0 0 0 0 0 

200 19170.2 0 0 0 0 0 0 0 0 0 0 0 0 0 

201 109.1 0 0 0 0 0 0 0 0 0 0 0 0 0 

202 97.3 0 0 0 0 0 0 0 0 0 0 0 0 0 

210 0 0 0 0 0 
36622

5 
0 0 0 0 0 0 0 0 

220 0 0 0 0 14694.2 0 0 0 0 0 0 0 0 0 

                                                           
3 For the water body class (code 210), the water PFT area includes 3,110,600 km2 of inland water. 
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 1143 

 1144 

 1145 

 1146 

Table A2. Percentage PFT composition by class based on the most recent update to the global cross-walking table. 1147 

Class 

code 

Bare 

soil 

Buil

t 

Managed 

grasses 

Natural 

grasses 

Snow/ic

e 

Wate

r 

BD 

trees 

BE 

trees 

ND 

trees 

NE 

trees 

BD 

shrubs 

BE 

shrubs 

ND 

shrubs 

NE 

shrubs 

10 0 0 90 10 0 0 0 0 0 0 0 0 0 0 

11 0 0 90 10 0 0 0 0 0 0 0 0 0 0 

12 0 0 30 0 0 0 0 0 0 0 70 0 0 0 

20 0 0 90 10 0 0 0 0 0 0 0 0 0 0 

30 0 0 60 15 0 0 5 5 0 0 5 5 0 5 

40 0 0 20 30 0 0 7.5 7.5 0 0 15 10 0 10 

50 0 0 0 0 0 0 0 90 0 0 5 5 0 0 

60 0 0 0 30 0 0 50 0 0 0 20 0 0 0 

61 0 0 0 15 0 0 70 0 0 0 15 0 0 0 

62 0 0 0 45 0 0 30 0 0 0 25 0 0 0 

70 0 0 0 15 0 0 0 0 0 70 5 5 0 5 

71 0 0 0 15 0 0 0 0 0 70 5 5 0 5 

72 0 0 0 45 0 0 0 0 0 30 0 0 0 25 

80 0 0 0 30 0 0 0 0 50 0 2.5 2.5 12.5 2.5 

81 0 0 0 15 0 0 0 0 70 0 5 5 0 5 

82 0 0 0 45 0 0 0 0 30 0 0 0 25 0 

90 0 0 0 25 0 0 30 0 10 20 5 5 0 5 

100 0 0 0 40 0 0 20 10 5 5 10 5 0 5 

110 0 0 0 60 0 0 20 10 5 5 10 5 0 5 

120 20 0 0 20 0 0 0 0 0 0 20 20 0 20 

121 20 0 0 20 0 0 0 0 0 0 0 30 0 30 

122 20 0 0 20 0 0 0 0 0 0 60 0 0 0 

130 0 0 0 100 0 0 0 0 0 0 0 0 0 0 

140 0 0 0 100 0 0 0 0 0 0 0 0 0 0 

150 85 0 0 5 0 0 3 1 0 1 3 1 0 1 

151 85 0 0 5 0 0 2 0 2 6 0 0 0 0 

152 85 0 0 5 0 0 0 0 0 0 6 2 0 2 

153 85 0 0 15 0 0 0 0 0 0 0 0 0 0 

160 0 0 0 25 0 0 37.5 37.5 0 0 0 0 0 0 

170 0 0 0 0 0 0 0 75 0 0 0 25 0 0 

180 0 0 0 60 0 0 0 0 0 0 25 0 0 15 

190 0 100 0 0 0 0 0 0 0 0 0 0 0 0 

200 100 0 0 0 0 0 0 0 0 0 0 0 0 0 

201 100 0 0 0 0 0 0 0 0 0 0 0 0 0 

202 100 0 0 0 0 0 0 0 0 0 0 0 0 0 

210 0 0 0 0 0 100 0 0 0 0 0 0 0 0 

220 0 0 0 0 100 0 0 0 0 0 0 0 0 0 

Supprimé: 91148 

Supprimé: 91149 

Supprimé: 31150 

Supprimé: 91151 

Supprimé: 61152 

Supprimé: 21153 

Supprimé: 01154 

Supprimé: 01155 

Supprimé: 01156 

Supprimé: 71157 

Supprimé: 71158 

Supprimé: 31159 

Supprimé: 21160 

Supprimé: 51161 

Supprimé: 11162 

Supprimé: 51163 

Supprimé: 51164 

Supprimé: 31165 

Supprimé: 01166 

Supprimé: 11167 

Supprimé: 11168 

Supprimé: 01169 

Supprimé: 61170 

Supprimé: 01171 

Supprimé: 21172 

Supprimé: 01173 

Supprimé: 251174 

Supprimé: 01175 
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Appendix B: complementary information about the modelling results 1176 

 1177 

Figure B1. Differences in albedo (a), latent heat flux (b), sensible heat flux (c), evaporative fraction (d: Latent heat flux / (Latent + Sensible 1178 
heat fluxes), soil surface temperature (e) and Leaf Area Index (LAI, f) simulated by the ORCHIDEE model between the new PFT and the 1179 
old PFT distributions, for the annual mean of year 2010 (same as figure 4 but for the annual mean). 1180 

Appendix C: the original default land cover to plant functional type cross-walking table 1181 

Table C1. Default land cover to plant functional type cross-walking table provided by the conversion tool with the level 1 UNLCCS 1182 
classes and level 2 UNLCCS sub-classes in italics. The units are % coverage of each PFT per UNLCCS class (from Poulter et al., 2015). 1183 

Code 
UN LCCS Land Cover 

Class Description 

Trees Shrubs Grasses Non-vegetated 

Br 

Ev 

Br 

De 

Ne 

Ev 

Ne 

De 

Br 

Ev 

Br 

De 

Ne 

Ev 

Ne 

De 

Nat 

Gr 
Crops 

Bare 

Soil 
Water 

Snow/ 

Ice 

10 Cropland, rainfed          100    

11 Herbaceous cover          100    

12 Tree or shrub cover      50    50    

20 
Cropland, irrigated or 

post-flooding 
         100    

30 

Mosaic cropland (>50 

%) / natural vegetation 

(tree, shrub, herbaceous 

cover) (<50 %) 

5 5   5 5 5  15 60    

40 

Mosaic natural 

vegetation (tree, shrub, 

herbaceous cover) (>50 

%) / cropland (<50 %)  

5 5   7.5 10 7.5  25 40    

50 

Tree cover, 

broadleaved, evergreen, 

closed to open (>15 %) 

90    5 5        

60 

Tree cover, 

broadleaved, deciduous, 

closed to open (>15 %) 

 70    15   15     

61 

Tree cover, 

broadleaved, deciduous, 

closed (>40 %) 

 70    15   15     
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Code 
UN LCCS Land Cover 

Class Description 

Trees Shrubs Grasses Non-vegetated 

Br 

Ev 

Br 

De 

Ne 

Ev 

Ne 

De 

Br 

Ev 

Br 

De 

Ne 

Ev 

Ne 

De 

Nat 

Gr 
Crops 

Bare 

Soil 
Water 

Snow/ 

Ice 

62 

Tree cover, 

broadleaved, deciduous, 

open (15-40 %) 

 30    25   35  10   

70 

Tree cover, 

needleleaved, 

evergreen, closed to 

open (>15 %) 

  70  5 5 5  15     

71 

Tree cover, 

needleleaved, 

evergreen, closed (>40 

%) 

  70  5 5 5  15     

72 

Tree cover, 

needleleaved, 

evergreen, open (15-40 

%) 

  30   5 5  30  30   

80 

Tree cover, 

needleleaved, 

deciduous, closed to 

open (>15 %) 

   70 5 5 5 0 15     

81 

Tree cover, 

needleleaved, 

deciduous, closed (>40 

%) 

   70 5 5 5  15     

82 

Tree cover, 

needleleaved, 

deciduous, open (15-40 

%) 

   30  5 5 0 30  30   

90 

Tree cover, mixed leaf 

type (broadleaved and 

needleleaved) 

 30 20 10 5 5 5  15  10   

100 

Mosaic tree and shrub 

(>50 %) / herbaceous 

cover (<50 %) 

10 20 5 5 5 10 5  40     

110 

Mosaic herbaceous 

cover (>50 %) / tree and 

shrub (<50 %) 

5 10 5  5 10 5  60     

120 Shrubland     20 20 20  20  20   

121 Shrubland evergreen     30  30  20  20   

122 Shrubland deciduous      60   20  20   

130 Grassland         60  40   

140 Lichens and mosses         60  40   

150 

Sparse vegetation (tree, 

shrub, herbaceous 

cover) (<15 %) 

1 3 1  1 3 1  5  85   

151 Sparse tree (<15 %)  2 6 2     5  85   

152 Sparse shrub (<15 %)     2 6 2  5  85   

153 
Sparse herbaceous 

cover (<15 %) 
        15  85   

160 
Tree cover, flooded, 

fresh or brakish water 
30 30       20   20  

170 
Tree cover, flooded, 

saline water 
60    20       20  

180 

Shrub or herbaceous 

cover, flooded, 

fresh/saline/brakish 

water 

 5 10   10 5  40   30  

190 Urban areas  2.5 2.5      15  75 5  

200 Bare areas           100   

201 
Consolidated bare 

areas 
          100   

202 
Unconsolidated bare 

areas 
          100   

210 Water bodies            100  

220 Permanent snow and ice                         100 

 1184 


