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Abstract. Spatial soil databases can help model complex phenomena in which soils are decisive, for example, evaluating 

agricultural potential or estimating carbon storage capacity. The Soil Information System for Latin America and the 45 

Caribbean, SISLAC, is a regional initiative promoted by the FAO's South American Soil Partnership to contribute to the 

sustainable management of soil. SISLAC includes data coming from 49,084 soil profiles distributed unevenly across the 

continent, making it the region's largest soil database. However, some problems hinder its usages, such as the quality of the 

data and its high dimensionality. The objective of this research is twofold. First, to evaluate the quality of SISLAC and its 

data values and generate a new, improved version that meets the minimum quality requirements to be used by different 50 

interests or practical applications. Second, to demonstrate the potential of improved soil profile databases to generate more 

accurate information on soil properties, by conducting a case study to estimate the spatial variability of the percentage of soil 

organic carbon using 192 profiles in a 1473 km2 region located in the department of Valle del Cauca, Colombia. The 

findings show that 15 percent of the existing soil profiles had an inaccurate description of the diagnostic horizons. Further 

correction of an 4.5 additional percent of existing inconsistencies improved overall data quality. The improved database 55 

consists of 41,691 profiles and is available for public use at https://doi.org/10.5281/zenodo.6540710 (Díaz-Guadarrama, S. & 

Guevara, M., 2022). The updated profiles were segmented using algorithms for quantitative pedology to estimate the spatial 

variability. We generated segments one centimeter thick along with each soil profile data, then the values of these segments 

were adjusted using a spline-type function to enhance vertical continuity and reliability. Vertical variability was estimated up 

to 150 cm in-depth, while ordinary kriging predicts horizontal variability at three depth intervals, 0 to 5, 5 to 15, and 15 to 30 60 

cm, at 250 m-spatial resolution, following the standards of the GlobalSoilMap project. Finally, the leave-one-out cross-

validation provides information for evaluating the kriging model performance, obtaining values for the RMSE index between 

1.77% and 1.79% and the R2 index greater than 0.5. The results show the usability of SISLAC database to generate spatial 

information on soil properties and suggest further efforts to collect a more significant amount of data to guide sustainable 

soil management. 65 

1 Introduction 

Soil is a three-dimensional natural body consisting of strata called horizons when there are chemical, biological, and even 

physical relations (i.e., transference of components or products of their alteration among them) or simply layers when they 

are a consequence of successive deposition of different sediments. Bot, horizons, and layers are a mixture of degraded 

mineral materials, organic material, air, and water (Bockheim et al., 2005). Soil is a product of the soil itself (such a point 70 

information on a site), climate, organisms, topography, parent material, time, and spatial position, also known as the 

SCORPAN factors of soil formation (Mcbratney et al., 2003). The soil provides various ecologic or productive contributions 

besides the obvious importance as a critical factor in food production, e. g. in urban ecosystem services (such a water 

buffering capacity of open areas), human health (breakdown of toxic contaminants), or climate regulation through carbon 

storage (Otte et al., 2012). Its sustainable management is of the utmost importance in the main environmental challenges 75 
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such as food security, climate change, and the loss of biodiversity (Dewitte et al., 2013). Soil data are an essential starting 

point to reach an adequate level of knowledge about soil status, raise awareness about its importance and preserve this 

valuable resource (Bouma et al., 2012). Digital soil data (such as soil profiles) are in great demand as inputs to, for example, 

estimate the potential of agricultural land (Amirinejad et al., 2011; Bini et al., 2013; Owusu et al., 2020); in addition, their 

availability is key to assess soil functions such as water and climate regulation, energy supply and biodiversity (Greiner et 80 

al., 2017). Greater dissemination of soil information has substantial benefits in disciplines such as agricultural sciences by 

allowing better estimation of current and future crop productivity or identifying constraints and risks of land degradation 

(FAO & IIASA, 2009; Hopmans et al., 2021; Paterson et al., 2015). FAO indicates that more and better soil data can drive 

achievements in the fight against poverty and hunger as well as to advance sustainable development(FAO, 2017). 

Technological advances and increased computing capabilities have led to the development of soil databases at regional and 85 

global scales (Hendriks et al., 2019; Keskin et al., 2019; Rossiter, 2018). Global databases such as the World Soil 

Information Service, WoSIS (Batjes et al., 2017, 2020), or World Inventory of Soil Property Estimates, WISE (Batjes, 

2016), regional databases such as Soil Profiles in Africa (Leenaars, 2013), as well as national ones such as SISINTA in 

Argentina (Angelini et al., 2018), or IRAKA in Colombia (Araujo-Carrillo et al., 2021) exist. These datasets are an example 

of efforts at different levels to have soil profile data that helps to support decision-making in problems involving this 90 

resource's management. Organizations such as FAO, the Global Soil Partnership (GSP), and the Latin America and the 

Caribbean Soil Partnership (LACS), emphasize the need to preserve such data due as, in some parts of the world,  soil survey 

data are the only source of information available (Beaudette & O’Geen, 2009; Hengl & Macmillan, 2019). 

The mentioned above databases allow scientists to generate information on soil properties and estimate soil organic carbon 

(SOC). SOC is one of the most important chemical properties related to soil fertility and climate regulation, the key to 95 

multiple functions in ecosystem services (Owusu et al., 2020). Global projects such as the FAO Organic Carbon Map (FAO 

& ITPS, 2018), national projects in Brazil (Gomes et al., 2019), Ghana (Owusu et al., 2020), Cameroon (Silatsa et al., 2020) 

or regional projects in Andalusia, Spain (Armas et al., 2017), or in paramo ecosystem soils in Colombia (Gutierrez et al., 

2020); have been some of the works that have estimated SOC (in its vertical or horizontal dimensions) from soil databases. 

Soil Information System for Latin America and the Caribbean, SISLAC, is an initiative coordinated and financed by the 100 

FAO Global Soil Partnership to contribute to the sustainable management of this resource in the region (SISLAC, 2013). 

SISLAC (Fig. 1a) has data on almost 50,000 soil profiles and 140,000 horizons and layers, making it the most extensive 

database in the region. The data includes a description of the site for each profile, its spatial location, the layers that comprise 

it, its physical and chemical properties, data provider, and metadata. However, when analyzing the SISLAC data, it is 

evident that some of them present inconsistencies due to the high heterogeneity of sources that provide such data. These 105 

inconsistencies can be due to, for example, old descriptions using obsolete description systems or errors in transcriptions 

from field to office. So, if they are not corrected, the analysis results will have a high degree of uncertainty and inaccuracies, 

primarily since the performance of a model depends on the quality of the training data (Garg et al., 2020). 
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Data quality is a multidimensional concept involving management, analysis, quality control, storage, and presentation 

(Chapman, 2005). It is closely related to their potential use and ability to meet user needs  (English, 1999), which Krol 110 

(2008) calls “use aptitude”. 

 

Figure 1, a) SISLAC interface, each number in the orange circles indicates the number of profiles in that area (from SISLAC 

webpage); b) Location of the data usability demonstration area (ESRI 2022); c) Vertical variability of the percentage of organic 

carbon in Latin America. 115 

Therefore, this research aims to: (i) evaluate the quality of the SISLAC data in terms of logical consistency; (ii) improve the 

quality of the data to provide a new updated version; and (iii) demonstrate the usability, applicability, and potential of 

SISLAC to support digital soil mapping and soil-related policy research in South America by assessing the vertical and 

horizontal variability of SOC percentage (as in Fig. 1c) in a region of Valle del Cauca Colombia. Two factors were 

considered for selecting the case study zone: (i) to be an area of agricultural production; and (ii) to have a relatively high 120 

density of soil profiles with SOC values.  
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2 Data and Methods 

The flow diagram (Fig. 2) shows the work carried out, consisting of two phases. The first phase comprises processes of 

validation and debugging of errors and inconsistencies in the SISLAC data. The second phase focuses on analysis of the 

usability demonstration using the spatial variability of the SOC in a specific site. 125 

 
Figure 2, Flowchart of this research. The first part (upper frame) consists of verification of spatial correspondence, profile 

duplication, debugging of errors and inconsistencies. The second part (lower frame) is about data preparation and estimation of 

the spatial variability of the SOC. 

2.1 Study area 130 

The study area (Fig. 1a) is composed of the Latin American and Caribbean countries listed in Table 1, where since 2016 we 

have a soil database representative of such a diverse region. In the same figure, the number of profiles per region can be seen 

aggregated in orange circles. In addition, an agricultural area located in the department of Valle del Cauca, Colombia (Fig 

2a), was selected as case study zone to demonstrate usability. This area is located between latitudes 3°15' and 3°51' N and 

longitudes 75°57' and 76°10' W. The altitude of the area varies between 900 and 1,000 meters above sea level, and it has an 135 

approximate area of 1,437 square kilometers. 

2.2 Data 

The SISLAC database, which can be downloaded from the official site (http://54.229.242.119/sislac/es), consists of 49,084 

profiles (with a total of 139,746 horizons). The number of these by country is detailed in Table 1. For the first part of this 

research, 100% of the data were analyzed, while for the analysis of the spatial variability of the SOC, 192 profiles 140 

corresponding to the case study zone were used and their distribution is shown in Fig. 1b. 
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Table 1, Initial profiles and their layers by country. The countries are ordered by number of profiles, those with less than 100 

profiles were grouped together. NA: Not Applicable 

Country Profiles Layers 

Ecuador 13056 36749 

México 12223 26051 

Brazil 7842 23926 

Colombia 4864 18900 

Argentina 3774 16902 

Paraguay 2830 6041 

Bolivia 2557 2773 

Venezuela 1056 4108 

Uruguay 272 1382 

Peru 148 631 

Jamaica, Costa Rica, Cuba. 
Between 

100 and 51 
NA 

Chile, Guyana, Puerto Rico, 

Surinam, Nicaragua.  

Between  

50 and 26 
NA 

Panamá, Guatemala, Belice, 

Honduras, El Salvador, French 

Guiana, The Antilles, Barbados, 

Virgin islands, Trinidad y Tobago, 

República Dominicana. 

Less than 26 NA 

Total 49084 139746 

Profile attributes are detailed in Table 2, in this the name of the attribute is listed in the first column, description in the 145 

second and data type in the third. The location is given in geographic coordinates, WGS84 datum. While for horizons and 

layers, their attributes are listed in Table 3 in the same way as in the profiles. 

Table 2. Profiles attributes, attributes related to the site description. 

Column name Description Type 

profile_identifier Profile identifier text 

latitude Profile latitude. Decimal degrees numeric 

longitude Profile longitude. Decimal degrees numeric 

country_code Country code. ISO 3166-1 text 

date Survey date YYYY-MM-DD 

source data source text 

contact Contact e-mail about the data text 

order Soil order text 

type Type (profile, auger) text 

license 

License code (PDDL, ODC-By, ODC-

ODbL, CC-BY, CC-BY-NC, CC-BY-

NC-ND) 

text 
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Table 3. Layers attributes, the measured attributes are numerical attributes (excluding top and bottom, which are the limits of 150 

each layer), in the last column, for each attribute measured, the percentage of records with valid data is indicated. NA: Not 

applicable 

Column name Description Units % of layers 

with data 

profile_identifier Profile identifier text NA 

layer_identifier Unique ID of each horizon text NA 

designation Layer nomenclature text NA 

top Upper limit numeric NA 

bottom Lower limit numeric NA 

bulk_density Bulk density numeric 15.2 

ca_co3 Inorganic carbon (%) numeric 5.7 

coarse_fragments Coarse fragments (%) numeric 5.3 

ecec Effective cation exchange capacity numeric 39.5 

conductivity Electric conductivity numeric 23.6 

organic_carbon Organic carbon (%) numeric 57.1 

ph pH specified with metadata numeric 75.8 

clay Clay (%) numeric 75.2 

silt Silt (%) numeric 59.7 

sand Sand (%) numeric 73.5 

water_retention Water retention (%) numeric 3.1 

2.3 Methods 

2.3.1 Quality assessment and improvement of SISLAC data 

The evaluation of the quality and improvement of the SISLAC data were carried out in parallel in three stages, the first two 155 

for the site data and the third for the different layers. The first stage consisted of checking that the profiles are in the correct 

location (spatial correspondence). It was carried out by spatial intersection between the profiles (points) and the cartography 

of the countries (polygons). Based on the country_code attribute of the profiles, this correspondence was verified, those that 

coincided with their respective country were considered valid (Fig. 3a). Those that did not coincide were verified one by one, 

those that were within the limits of their country, considering the cartographic scale of the reference information, the 160 

precision of the equipment with which the coordinate was taken, or the reference systems under which original data were 

taken, they were considered valid (Fig. 3b). Still, others had the coordinates inverted (Fig. 3c), the latitude and longitude 

values were exchanged, and their correspondence was verified again. Finally, the profiles outside their zone that could not be 

corrected for having the wrong location were excluded (Fig. 3d). 
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 165 

Figure 3, Example of criteria found in spatial validation, (figures a, b and d source ESRI 2022; c: SISLAC webpage) 

The second stage consisted of verifying if there are overlapping profiles, in addition, to verifying if  the values in their 

attributes are different. For this, the number of times the same pair of coordinates is repeated was massively validated. 

Unlike the previous validation, these cannot be arbitrarily excluded since the correct profile cannot be determined. Then, 

those with duplicity were marked, so the user of the data can use the ones he considers appropriate. A new attribute in the 170 

profiles (perfil_duplicado of binary type) indicates if the profile has duplicity (TRUE) or is unique (FALSE). 

The third stage consisted of validating the description of the horizons or layers of each profile, verifying: 𝑢1 < 𝑣1 ≤ 𝑢2 <

 𝑣2 ≤ . . . ≤ 𝑢𝑛 < 𝑣𝑛; where 𝑢 is the upper limit and 𝑣 the lower limit. The upper limit must be less than its lower limit, and 

the lower limit must be less than or equal to the upper limit of the next layer. Gaps may exist but never overlap between 

layers. Errors were first validated, those in which the structure could not be corrected, so the profiles were excluded. Table 4 175 

lists the three applied rules, their description, and an example of these. 
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Table 4, Layer errors validation. In the example, the layers with errors are highlighted in bold letters, for the first and third case, 

the last layers of the profiles are the ones with error, while in the second case, both layers have error because the limits have no 

data. 180 

Validation Description Example 

Duplicated 

layers 

Layer limits are duplicated, and the 

values of the attributes are different. 

 

Empty limits 
Upper and lower limits do not 

contain data. 
 

Layers overlap Layers overlap in a profile. 

 
 

After excluding the profiles with errors, the existence of inconsistencies was validated. Unlike errors, these can be corrected 

by guidelines that do not alter the structure of the profile. Next, Table 5 lists the rules applied to their description and the 

guideline for their correction. For a better understanding of the content of Table 5, Table 6 below illustrates the described 

inconsistency (middle column) and how it was corrected (third column). 185 

Table 5, Description of the validation of inconsistencies and their correction guideline. 

Validation Description Correction Guideline 

Organic layer 

When the first layer is described in the opposite 

direction and from the second the normal 

description begins. Layer commonly known as 

organic. 

Invert the values of the first layer and 

rescale subsequent limits based on the 

thickness of the organic layer. 

Inverted layer 

The value of the limits of a layer is inverted, it 

is verified considering also the previous and 

later layers. 

Invert the values of the layer. 

Continuous 

final layer 

The value of the lower limit of the last layer is 

empty 

Assign the value of the upper limit of 

the last layer plus 10. 

duplicated 

layer 

Horizon that presents duplicate layers in all its 

attributes. 
Delete duplicated layers. 

Upper limit is 

null 

The upper limit of a layer is null, in addition, 

the lower limit of that layer and the previous 

one is not null. 

Assign the lower limit value of the 

previous layer. 

Lower limit is 

null 

The lower limit of a layer is null, in addition, 

the upper limit of that layer and the next are not 

null. The last layer is not validated. 

Assign the value of the upper limit of 

the next layer. 
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Table 6, Illustration of inconsistencies and their correction guideline. In the second column in bold type the layers with 

inconsistency are shown, in the third column also in bold type it is shown how to correct them using the established guidelines. In 

the first case all profile limits are modified, for the rest only those of the layer with inconsistency. 190 

Validation Inconsistency Correction Guideline 

Organic layer 

  

Inverted layer 

  

Continuous 

final layer 

  

Duplicated 

layer 

  

Upper limit is 

null 

  

Lower limit is 

null 

  

After applying the above validations, a new harmonized database for Latin America is obtained from soil profiles that have 

minimum integrity requirements. The following is an exercise to demonstrate the usability of this database, taking soil 

organic carbon in percentage as a target variable and digital soil mapping as a practical approach. 

2.3.2 Data Usability 

As mentioned in the introduction, the case study zone was selected for its availability of profiles, however, this exercise can 195 

be replicated by applying small changes to the code, which is available as part of this work. It should be considered that the 
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chosen area should preferably be homogeneous and have a good density of profiles. The above is intended to demonstrate 

the potential of this database. 

With the 192 profiles corresponding to the case study zone, the vertical and horizontal variability of the SOC was estimated. 

For the latter, the spatial resolution was 250 meters at three depth intervals: 0 to 5, 5 to 15 and 15 to 30 cm, following the 200 

standards of the project GlobalSoilMap (2015). As a first step, to harmonize the profiles —using the R software (R Core 

Team, 2018)— these were segmented using the slice function of the aqp library (Beaudette et al., 2013), which generates so 

many one-centimeter segments thick as the maximum depth of each profile. However, the values for each segment are 

inherited from the corresponding horizon, which generates a discontinuous or staggered representation that does not 

correspond to reality (Malone et al., 2017). To make their values more representative, they were adjusted using the equal 205 

area spline proposed by Bishop, et al. (1999) and available (ea_spline function) in the ithir library (Malone et al., 2009). An 

example is shown in Fig. 4 of the original profiles (a), their segmentation (b) and their adjusted values (c). 

 

Figure 4, Harmonization of soil profiles, a) normal representation of the horizons and their SOC percentage; b) segmented 

horizons, in these the SOC percentage value (the same as the previous one) and c) horizons segmented and with adjusted values to 210 
improve their representation using the equal areas spline. 

To calculate vertical variability, the aggregation function of the AQP package was used, which generates statistics for each 

depth segment (quantiles 5, 25, 50, 75, 95 and percentage of profiles used). From the data generated it is possible to know 

the behavior of continuous soil characteristics as a function of depth. On the other hand, ordinary kriging (OK) was used for 

horizontal variability, frequently used to estimate SOC (Bhunia et al., 2018; Duan et al., 2020; Yao et al., 2019; Y. Zhang et 215 

al., 2020; Z. Zhang et al., 2020).  For each of the three intervals, the SOC percentage value of each profile corresponds to the 

average of the range of the previously adjusted and segmented values. First, the variogram was generated for each depth and 

fitted to a theoretical model to obtain the optimal values for interpolation. The estimation of values was carried out and the 

resulting information was classified according to three categories established by the Instituto Geográfico Agustín Codazzi 

(2016): low: less than 1.2%; medium: between 1.2% and 2.4%; high: greater than 2.4%. Finally, leave-one-out cross-220 
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validation was used for validating the performance of the OK and the root mean squared error (RMSE) and the coefficient of 

determination (R2) indices were calculated. The Eq. (1) and (2) respectively used for the indices described are the following: 

𝑅𝑀𝑆𝐸 = [
1

𝑛
 ∑ (𝑝𝑖 −  𝑜𝑖)2𝑛

𝑖=1 ]
1/2

           (1)  

𝑅2 = 1 −
∑ (𝑝𝑖−𝑜𝑖)𝑛

𝑖=1
2

∑ (𝑜𝑖−𝑜�̅�)2𝑛
𝑖=1

           (2) 

where 𝑜𝑖  represents the observed values, 𝑝𝑖  the values estimated and 𝑛 is the number of locations used for the prediction. 225 

3 Results 

With the first validation, 2726 profiles were found that did not match their country. Table 7 lists these profiles at the country 

level. As can be seen, Bolivia has the largest number of these with 2,472 (90% of the cases). After the review, it was 

identified that 2471 of those cases (from Bolivia) had the coordinates inverted, so after changing the values and their 

validation, their correct location was verified, and they were considered valid. A total of 36 profiles (1.3% of those 230 

reviewed) were excluded for having an erroneous location, as presented in Fig. 3d, 3 from Mexico and 33 from Paraguay. A 

total of 49,048 profiles (of the initial 49,084) passed the second validation. 

Table 7. Spatial validation results, sorted by country with the highest number of inconsistencies (second column), the third column 

indicates how many profiles were excluded and the fourth column indicates how many were considered valid after being reviewed 

one by one. 235 

Country 
Inconsistent 

profiles 

Excluded 

profiles 

Valid profiles 

after check 

Bolivia 2472  0 2472 

Colombia 78 3 75 

Paraguay 53 33 20 

Ecuador 45  0 45 

México 28  0 28 

Brazil 16  0 16 

Argentina 8  0 8 

Nicaragua and Venezuela 5  0 5 

Antillas 4 0  4 

Peru and Uruguay 3  0 3 

Chile and Costa Rica 2  0 2 

Vírgen Islands and Jamaica 1  0 1 

Total profiles 2726 36 2690 

 

With the second part of the validations, 1989 duplicate profiles were identified. Table 8 lists the country and the number of 

these. Brazil concentrates the largest amount with 1,680, 84.5% of the total and 21% of the total profiles provided by that 

https://doi.org/10.5194/essd-2022-291
Preprint. Discussion started: 14 September 2022
c© Author(s) 2022. CC BY 4.0 License.



13 

 

country (with 7,842). As commented in the previous section, the profiles with duplicity were marked in the table, the profiles 

with duplicity in the perfil_duplicado field contain the value TRUE. 240 

Table 8, Profiles with spatial duplication by country. 

Country duplicated profiles 

Brazil 1680 

Argentina 94 

Colombia 50 

Jamaica 40 

Venezuela 28 

Uruguay 16 

Surinam 11 

Guatemala 9 

Bolivia, Ecuador, Honduras, México 7 

El Salvador, Guyana and Nicaragua. 6 

Panamá 5 

Costa Rica and Peru 4 

Cuba 2 

TOTAL 1989 

Regarding the revision of the horizons, 7,380 errors were found (in 7,357 profiles). Table 9 details the number of these by 

country and type. Most were presented in Mexico, Paraguay and Brazil. Profiles with empty limits were the main error with 

6,831 cases. Those 7,357 profiles were excluded for being inconsistent. 

Table 9, Layers error validation, the profiles with errors may be fewer than the errors per country because one profile may have 245 
more than one type of error. 

Country 
Duplicate

d layers 
Empty limits 

Layers 

overlap 

Errors by 

country 

Profiles 

with error 

México 16 4942 32 4990 4990 

Paraguay 0 1866 0 1866 1866 

Brasil 35 12 339 386 368 

Colombia 1 4 32 37 36 

Ecuador 0 0 22 22 22 

Argentina 4 2 12 18 18 

Venezuela 1 4 10 15 13 

Cuba 0 0 12 12 12 

Costa Rica 1 0 9 9 8 

Uruguay 3 0 5 8 7 

Peru 0 0 6 6 6 

Jamaica 0 0 4 4 4 

Nicaragua 0 0 4 4 4 

Chile 1 1 1 3 3 

Errors by type 62 6831 488 7380 7357 

Inconsistencies are described in Table 10. Most were found in Paraguay, Argentina and Colombia. The main causes were the 

null lower limit, continuous final horizon and duplicate horizon. All of these were corrected according to the established 
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guidelines. Although 5474 inconsistencies were found, these correspond to 2215 profiles, so there were profiles with more 

than one inconsistency, for example, although in Paraguay there are 4066 inconsistencies, these are present in 931 profiles, 250 

the same number of profiles in that country. 

Table 10, Layers inconsistencies validation, in these, the bottom limit is null validation was the only one that did not present 

records with this inconsistency. 

Country 
Organic 

layer 

Inverted 

layer 

Continuous 

final layer 

Duplicated 

layer 

Lower 

limit is null 

Inconsistencie

s by country. 

Paraguay 0 0 931 0 3135 4066 

Argentina 0 0 993 0 2 995 

Colombia 38 5 0 339 0 382 

Brazil 0 3 0 11 0 14 

Venezuela 2 0 7 0 0 9 

México 0 1 1 1 0 3 

Uruguay 0 0 3 0 0 3 

Bolivia 0 0 1 0 0 1 

Jamaica 0 0 1 0 0 1 

Total by 

type 
40 9 1937 351 3137 5474 

 

Finally, Table 11 shows a summary of the data after the validation and correcting processes. Only those countries that had 255 

changes due to excluded profiles are listed. The second and third columns show the initial and valid profiles, respectively; 

the corresponding number of horizons is indicated in parentheses. The Errors column indicates the number of errors in the 

profiles for that country and inconsistencies is the number of inconsistencies found and corrected. After the processes carried 

out, of the 49,084 initial profiles, 15% of these were excluded and another 4.5% were corrected so that they met the 

minimum integrity requirements. The revised version consists of 41,691 profiles made up of 129,355 horizons and layers. 260 
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Table 11, Details of the SISLAC data validation processes, total number of layers are in parentheses, the errors caused the profile 

to be excluded, while the inconsistencies were corrected. 

Country 
Initial profiles 

(layers) 

Remain profiles 

(layers) 
Errors Inconsistencies 

Ecuador 
13056 

(36749) 

13034 

(36582) 
22 0 

México 
12223 

(26051) 

7233 

(20913) 
4990 3 

Brazil 
7842 

(23926) 

7474 

(22616) 
368 14 

Colombia 
4864 

(18900) 

4825 

(17615) 
39 382 

Argentina 
3774 

(16902) 

3756 

(16813) 
18 995 

Paraguay 
2830 

(6041) 

931 

(4066) 
1899 4066 

Venezuela 
1056 

(4108) 

1043 

(4051) 
13 9 

Uruguay 
272 

(1382) 

265 

(1321) 
7 3 

Peru 
148 

(631) 

142 

(561) 
6 0 

Jamaica 
76 

(361) 

72 

(331) 
4 1 

Costa Rica 
55 

(318) 

47 

(257) 
8 0 

Cuba 
52 

(282) 

40 

(186) 
12 0 

Chile 
45 

(220) 

42 

(201) 
3 0 

Nicaragua 
26 

(132) 

22 

(99) 
4 0 

3.2 Data Usability 

With the 192 profiles processed which did not present errors or inconsistencies in the validation process, using the 265 

aggregation function of the aqp library, the SOC vertical variation is shown in Fig. 5, the blue line corresponds to the 

median, while the shading around it corresponds to at the 25th and 75th percentiles, that is, the variability of 50% of the SOC 

data. As can be seen, from 0 to 50 cm depth, the median values varies from 1.6%  to 0,5%, respectively. While the variability 

of 50% of the data for the same interval ranges from 0.3% in the minimum values to 2.3% in the maximum values. After 50 

cm of depth, the values stabilize, with a median value of 0.5% to 0.3% and almost constant variation up to 150 cm.of depth. 270 
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Figure 5, Vertical variability of the SOC in the area of interest 

Semivariograms obtained allowed us to know the spatial behavior of the profiles. Figure 6 shows that for the first two depths 

the resulting parameters were similar, while for the third one the range increases and the adjustment model is different. The 

resulting cartography is shown in Fig. 7, in which it is observed that the estimates have the same distribution patterns of the 275 

different categories, although in the third depth (15 to 30 cm) the spot of low category increases. Table 12 shows details of 

the area percentages for each depth interval and each category. It is observed that the medium category predominates in the 

three depths mapped with more than 80%, while the low category increases slightly with depth, the inverse being the case in 

the high category, which decreases. 

 280 

Figure 6, Adjusted variograms for the three depths, the first two fit the same model (Stein parameterization), with similar range,  

nugget and sill values, while the third fit a spherical model, its range was considerably larger and the nugget and sill values are 

similar to the previous ones. 
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Figure 7, interpolation results for each depth, orange color predominates, which represents a medium SOC percentage content, as 285 
the depth increases the SOC percentage decreases and more yellow patches are observed, mainly in the western zone. 

Table 12, Percentages of area by depth and category, the values for the 0 to 5 and 5 to 15 cm intervals show very similar percent 

areas, while the 15 to 30 interval shows what was observed in Fig. 7, that the percent SOC decreases. 

 

Depth 1: 

0- 5 cm 

Depth 2: 

5 - 15 cm 

Depth 3: 

15 - 30 cm 

% SOC low 5.2 5.8 19 

% SOC medium 92.6 92.6 80.4 

% SOC high 2.2 1.6 0.6 

 

Finally, to evaluate the kriging performance, using leave-one-out cross-validation, the RMSE and R2 indices were obtained. 290 

Fig. 8 shows the results of these indexes, as can be seen, the RMSE value was similar for the three intervals, 1.78% from 0 to 

5 cm, 1.77% from 5 to 15 cm and 1.79% from 15 to 30 cm. While the resulting R2 was 0.56, 0.53 and 0.83, respectively. 
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Figure 8, Cross validation, some subestimated values are observed towards the right side of the graphs, the RMSE values are 

similar, while the R2 for the last interval increases notably. 295 

4 Discussion 

This work made it possible to identify that the main problems in the SISLAC profiles occur systematically in some countries. 

In addition, it shows the potential of improved soil databases for the generation of spatial information such as SOC or any 

other property which have been surveyed. 

As shown in Table 10, the most frequent error in the profiles was due to empty limits, which occur mainly in Mexico and 300 

Paraguay with 67% and 25% of the total errors, respectively. In Mexico, these errors correspond to 40% of the profiles 

provided, while in Paraguay to 65%. On the other hand, most of the inconsistencies (Table 11) are found in Argentina, 

Paraguay and Colombia with 44%, 42% and 12% of the total respectively. Although all these inconsistencies were corrected, 

it is observed that, for example, in Paraguay of the total profiles provided (2830), only 9 contain SOC values, the rest have 

all the empty attributes. The foregoing represents a limitation if one wanted to carry out any type of analysis with these data. 305 

The validations were defined by expert judgment, they coincide with those described in the works of  Batjes (1995) and 

Leenaars (2013) and were applied to all the elements. For the horizons, it was guaranteed that they were correctly described, 

since as these authors indicate, if they are not adequately described, in-depth analyzes cannot be carried out since the 

analysis tools may fail or a high degree of uncertainty may be generated. 

The variability allowed knowing the behavior of the SOC in its vertical and horizontal dimensions, the latter following 310 

standards for the elaboration of spatial information on soil properties such as those of GlobalSoilMap. An important aspect is 

that with the segmentation and adjustment of the values carried out, it is possible to generate information for any interval, or 

even for each centimeter of depth. 

This work is a effort towards the consolidation and availability of more and better data in the region, which should be 

reflected in national results such as those of Araujo-Carrillo et al. (2021) and Varón-Ramírez et al. (2022) in Colombia; 315 
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Armas et al. (2022) in Ecuador; Pfeiffer et al. (2020) in Chile or Schulz et al. (2022) in Argentina. Free access to these data 

can increase the knowledge of the properties or improve the existing one. It can also generate information with global 

standards, under which the cartography presented in this research was elaborated. From this mapping it is observed that the 

values obtained for the RMSE and R2 index (Fig. 9) for the range of 0 to 5 cm were 1.78% and 0.56 respectively. From 5 to 

15 were 1.77% and 0.53 and from 15 to 30, 1.79% and 0.83, very similar results in the first two intervals, partly due to the 320 

dimensionality and proximity between them. Taking as reference the R2 values, all higher than 0.5, this work presents better 

results than similar works that used the same method for SOC estimation, for example, those reported by Y. Zhang (2020), 

using 122 samples in an area of 7692 km2, those of Xin et al. (2016) with 180 samples in 72 km2 or those of Yao (2019) 

using 90 samples, which obtained R2 values of 0.21, 0.2 and 0.4 respectively. 

A factor not considered in this work was the validation of the attributes of the horizon properties in a simple or combined 325 

way to identify outliers, for example, using Tukey's rule (Pham et al., 2019) or out of range (pH values less than 0 or greater 

than 14). This omission was due to the fact that a large part of the horizons did not have assigned values. As shown in Table 

3, only three attributes (pH, clay and sand) exceed 70% of records with values, while another two (silt and organic carbon) 

have just over 50% values. The other attributes do not exceed 40%, there are even three properties with less than 6%, which 

are inorganic carbon, coarse fragments and water retention. The above was a factor that influenced the choice of the area for 330 

the case study, it is important to have data, but also that they are complete. 

A possible reason why the profiles have been provided incomplete may be the one mentioned by Arrouays et al. (2017) or 

Rossiter (2004), about privacy or data ownership policies, in addition to institutional, legal and cultural factors, prevent data 

from being fully shared. Breaking down those barriers would allow that data to be used by a larger number of global users. 

Given the importance of these databases, it is pertinent to make new efforts to collect data from other sources, such as 335 

research centers or universities, in order to strengthen this or other databases. As shown in the analysis of SOC variability, 

this revised version of SISLAC data offers the potential to generate information that helps decision-making on issues in 

which soils are decisive. It can also be used to plan future soil surveys in areas with low density or where updated 

information is required. Another possible use of these data may be to improve existing information (in scale and depth), such 

as the Organic Carbon Map (FAO & ITPS, 2018), or to generate new information such as that presented by Gutierrez (2020) 340 

using SISLAC data. 

In summary, from the initial data set, 15% of profiles were excluded and another 4.5% were corrected. This work tried to 

exclude as few profiles as possible given their importance in areas with low spatial density. Furthermore, as mentioned by 

Hengl (2019), this data is the only thing available at this time in many places, so its availability is important. Knowing the 

level of integrity of the data, what the main problems are and where they occur, can help the countries involved to know 345 

where to put more efforts to have more reliable data. In that sense, this work may contribute to support soil conservation 

efforts, increase food and water security, maintain healthy ecosystems, and reduce climate change's impact. 
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5 Data availability 

The data is available at https://doi.org/10.5281/zenodo.6540710 (Díaz-Guadarrama, S. & Guevara, M., 2022) in three 

different formats: Comma-Separated Values (.csv), Microsoft Access Database (.mdb), and as PostgreSQL – PostGIS 350 

Database backup. The source code used is located at the same repository. 

6 Conclusions 

This work was successful in improving the SISLAC database, thus generating a revised database version in which all the soil 

profiles have high quality and completeness to be efficiently used in multiple applications (e.g., digital soil carbon mapping 

and reporting). In the revised SISLAC database, 15% of soil profiles were excluded (e.g., horizon information duplicated or 355 

overlapped) and 4.5% of the soil profiles were adjusted to the same data structure. We demonstrate the usability of the 

revised SISLAC database developing a reproducible digital soil carbon mapping framework which improves the analysis of 

soil carbon and depth relationships from a discrete to a continuous fashion. In our usability example we observe relatively 

high accuracy (R2 of  0.5 and RMSE 1.78), demonstrating the potential of databases such as SISLAC to generate information 

on the spatial variability of soils across large areas with high spatial detail. The database used is a product of the cooperation 360 

of national institutions of the countries of the region, investing efforts in the collection of additional data, for example, those 

produced in universities or research centers could lead to an increase in the volume of the revised version of SISLAC (as 

new and better data become available), and these in turn, may allow the generation of new spatial information on soil 

properties to improve what is currently available. 
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