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Abstract. Spatial soil databases can help model complex phenomena in which soils are decisive, for example, evaluating 

agricultural potential or estimating carbon storage capacity. The Soil Information System for Latin America and the Caribbean, 

SISLAC, is a regional initiative promoted by the FAO's South American Soil Partnership to contribute to the sustainable 

management of soil. SISLAC includes data coming from 49,084 soil profiles distributed unevenly across the continent, making 

it the region's largest soil database. In addition, there are other soil databases in the region with about 40,000 soil profiles that 55 

can be integrated into SISLAC and improve it. However, some problems hinder its usages, such as the quality of the data and 

its high dimensionality. The objective of this research is twofold. First, to evaluate the quality of the SISLAC and its data 

values and and the other available soil databases to generate a new, improved version that meets the minimum quality 

requirements to be used by different interests or practical applications Second, to demonstrate the potential of improved soil 

profile databases to generate more accurate information on soil properties, by conducting a case study to estimate the spatia l 60 

variability of the percentage of soil organic carbon using 192 profiles in a 1473 km2 region located in the department of Valle 

del Cauca, Colombia.. The findingsresults show that 15 percent% of the existing soil profiles had an inaccurate description of 

the diagnostic horizons and 17% of the additional profiles already existed in SISLAC, a total of 32% of profiles were excluded 

for these two reasons. Further correction of an 4.5 percent additional of existing inconsistencies improved overall data quality. 

The improved database consists of 41,691 profiles and is available for public use at https://doi.org/10.5281/zenodo.6540710 65 

(Díaz-Guadarrama, S. & Guevara, M., 2022). The updated profiles were segmented using algorithms for quantitative pedology 

to estimate the spatial variability. We generated segments one centimeter thick along with each soil profile data, then the values 

of these segments were adjusted using a spline-type function to enhance vertical continuity and reliability. Vertical variability 

was estimated up to 150 cm in-depth, while ordinary kriging predicts horizontal variability at three depth intervals, 0 to 5, 5 to 

15, and 15 to 30 cm, at 250 m-spatial resolution, following the standards of the GlobalSoilMap project. Finally, the leave-one-70 

out cross-validation provides information for evaluating the kriging model performance, obtaining values for the RMSE index 

between 1.77% and 1.79% and the R2 index greater than 0.5. The results show the usability of SISLAC database to generate 

spatial information on soil properties and suggest further efforts to collect a more significant amount of data to guide 

sustainable soil management.66,746 profiles and is available for public use at https://doi.org/10.5281/zenodo.7876731 (Díaz-

Guadarrama, S. & Guevara, M., 2023). This revised version of SISLAC data offers the potential to generate information that 75 

helps decision-making on issues in which soils are decisive. It can also be used to plan future soil surveys in areas with low 

density or where updated information is required.  
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1 Introduction 

Soil is a three-dimensional natural body consisting of strata called horizons when there are chemical, biological, and even 

physical relations (i.e., transference of components or products of their alteration among them) or simply layers when they are 80 

a consequence of successive deposition of different sediments. Both, horizons and layers are a mixture of degraded mineral 

materials, organic material, air, and water (Bockheim et al., 2005). Soil is a product of the soil itself (such a point information 

on a site), climate, organisms, topography, parent material, time, and spatial position, also known as the SCORPAN factors of 

soil formation (Mcbratney et al., 2003). The soil provides various ecologic or productive contributions besides the obvious 

importance as a critical factor in food production, e. g. in urban ecosystem services (such a water buffering capacity of open 85 

areas), human health (breakdown of toxic contaminants), or climate regulation through carbon storage (Otte et al., 2012). Its 

sustainable management is of the utmost importance in the main environmental challenges such as food security, climate 

change, and the loss of biodiversity (Dewitte et al., 2013). Soil data are an essential starting point to reach an adequate level 

of knowledge about soil status, raise awareness about its importance and preserve this valuable resource (Bouma et al., 2012). 

Digital soil data (such as soil profiles) are in great demand as inputs to, for example, estimate the potential of agricultural land 90 

(Amirinejad et al., 2011; Bini et al., 2013; Owusu et al., 2020); in addition, their availability is key to assess soil functions 

such as water and climate regulation, energy supply and biodiversity (Greiner et al., 2017). Greater diffusion of soil information 

has substantial benefits in disciplines such as agricultural sciences by allowing better estimation of current and future crop 

productivity or identifying constraints and risks of land degradation (FAO & IIASA, 2009; Hopmans et al., 2021; Paterson et 

al., 2015). FAO indicates that more and better soil data can drive achievements in the fight against poverty and hunger as well 95 

as to advance sustainable development(FAO, 2017). 

Technological advances and increased computing capabilities have led to the development of soil databases at regional and 

global scales (Hendriks et al., 2019; Keskin et al., 2019; Rossiter, 2018). Global databases such as the World Soil Information 

Service, WoSIS (Batjes et al., 2017, 2020), or World Inventory of Soil Property Estimates, WISE (Batjes, 2016), regional 

databases such as Soil Profiles in Africa (Leenaars, 2013), as well as national ones such as SISINTA in Argentina (Angelini 100 

et al., 2018), Harmonized Soil Database of Ecuador 2021 (Armas et al., 2022)  or IRAKA in Colombia (Araujo-Carrillo et al., 

2021) exist. These datasets are an example of efforts at different levels to have soil profile data that helps to support decision-

making in problems involving this resource's management. Organizations such as FAO, the Global Soil Partnership (GSP), 

and the Latin America and the Caribbean Soil Partnership (LACS), emphasize the need to preserve such data due as, in some 

parts of the world,  soil survey data are the only source of information available (Beaudette & O’Geen, 2009; Hengl & 105 

Macmillan, 2019). 

The mentioned databases allow scientists to generate information on soil properties such as organic carbon (SOC). SOC is one 

of the most important chemical properties related to soil fertility and climate regulation, the key to multiple functions in 

ecosystem services (Owusu et al., 2020). Global projects such as the FAO Organic Carbon Map (FAO & ITPS, 2018), national 

projects in Brazil (Gomes et al., 2019), Ghana (Owusu et al., 2020), Cameroon (Silatsa et al., 2020) or regional projects in 110 
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Andalusia, Spain (Armas et al., 2017), or in paramo ecosystem soils in Colombia (Gutierrez et al., 2020); have been some of 

the works that have estimated SOC (in its vertical or horizontal dimensions) from soil databases. 

Soil Information System for Latin America and the Caribbean, SISLAC, is an initiative coordinated and financed by the FAO's 

Global Soil Partnership to contribute to the sustainable management of this resource in the region (SISLAC, 2013). SISLAC 

(Fig. 1a) has data on almost 50,000 soil profiles and 140,000 horizons and layers, making it the most extensive database in the 115 

region. The data includes a description of the site for each profile, its spatial location, the layers that comprise it, its physical 

and chemical properties, data provider, and metadata. In addition to SISLAC, there are other soil databases available in the 

region that should be analyzed and integrated with it, in order to improve it.  

When analyzing available data, it is evident that some of them present inconsistencies due to the high heterogeneity of sources 

that provide such data. These inconsistencies can be due to, for example, old descriptions using obsolete description systems 120 

or errors in transcriptions from field to office. So, if they are not corrected, the analysis results will have a high degree of 

uncertainty and inaccuracies, primarily since the performance of a model depends on the quality of the training data  (Garg et 

al., 2020). Data quality is a multidimensional concept involving management, analysis, quality control, storage, and 

presentation (Chapman, 2005). It is closely related to their potential use and ability to meet user needs  (English, 1999), which 

Krol (2008) calls “use aptitude”. 125 
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Figure 1,: a) SISLAC interface, each number in the orange circles indicates the number of profiles in that area (from SISLAC 

webpage); b) Location of the data usability demonstration area (ESRI 2022); c) Vertical variability of the percentage of organic 

carbon in Latin America. 130 

Therefore, this research aims to: (i) evaluate the quality of the SISLAC data and existing soil databases in terms of logical 

consistency; (ii) enhanced database improve the quality of the data to providegenerate a new updated version; and (iii) 

demonstrate the usability, applicability, and potential of the SISLAC database that meets the minimum requirements of 

SISLAC to support digital soil mapping and soil-related policy researchcompleteness in South America by assessing the 

vertical and horizontal variabilitythe description of SOC percentage (as in Fig. 1c) in a region of Valle del Cauca Colombia. 135 

Two factors were considered for selecting the case study zone: (i) to be an area of agricultural production; and (ii) to have a 

relatively high density of soil profiles with SOC valuesprofile horizons. 

Con formato: Inglés (Reino Unido)

Con formato: Descripción, Espacio Después:  0 pto

Con formato: Inglés (Reino Unido)
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2 Data and Methods 

The flow diagram (Fig. 2) shows the work carried out, consisting of four phases: the first comprises a revision of the special 

correspondence, the second an identification of spatially duplicated profiles, the third a validation of errors in the description 140 

of horizons and the fourth a correction of minor inconsistencies.  

 

  
Figure 2,: Flowchart of this research. The blue box shows the validation processes applied to 100% of the data. The second part 

(lower frame) is about data preparation and estimation of the spatial variability of the SOC. 145 

2.1 Study area 

The study area (Fig. 1a) is composed of the Latin American and Caribbean countries listed in Table 1, where since 2016 we 

have a soil database representative of such a diverse region. In the same figure, the number of profiles per region can be seen 

aggregated in orange circles. In addition, an agricultural area located in the department of Valle del Cauca, Colombia (Fig 2a), 

was selected as case study zone to demonstrate usability. This area is located between latitudes 3°15' and 3°51' N and longitudes 150 

75°57' and 76°10' W. The altitude of the area varies between 900 and 1,000 meters above sea level, and it has an approximate 

area of 1,437 square kilometers. 
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2.2 Data 

The SISLAC database, which can be downloaded from the official site (http://54.229.242.119/sislac/es), consists of 49,084 

profiles (with a total of 139,746 horizons). The number of these by country is detailed in Table 1. For the first part of this 155 

research, 100% of the data were analyzed, while for the analysis of the spatial variability of the SOC, 192 profiles 

corresponding to the case study zone were used and their distribution is shown in Fig. 1b.Validations will be applied to 100% 

of the data.  

Table 1,: Initial profiles and their layers by country. The countries are ordered by number of profiles, those with less than 100 

profiles were grouped together. NA: Not Applicable. 160 

Country Profiles Layers 

Ecuador 13056 36749 

México 12223 26051 

Brazil 7842 23926 

Colombia 4864 18900 

Argentina 3774 16902 

Paraguay 2830 6041 

Bolivia 2557 2773 

Venezuela 1056 4108 

Uruguay 272 1382 

Peru 148 631 

Jamaica, Costa Rica, Cuba. 
Between 

100 and 51 
NA 

Chile, Guyana, Puerto Rico, 

Surinam, Nicaragua.  

Between  

50 and 26 
NA 

Panamá, Guatemala, Belice, 

Honduras, El Salvador, French 

Guiana, The Antilles, Barbados, 

Virgin islands, Trinidad y Tobago, 

República Dominicana. 

Less than 26 NA 

Total 49084 139746 

 

Profile attributes are detailed in Table 2, in this the name of the attribute is listed in the first column, description in the second 

and data type in the third. The location is given in geographic coordinates, WGS84 datum. While for horizons and layers, their 

attributes are listed in Table 3 in the same way as in the profiles. 

Table 2.: Profiles attributes, attributes related to the site description. 165 

Column name Description Type 

profile_identifier Profile identifier text 

latitude Profile latitude. Decimal degrees numeric 

longitude Profile longitude. Decimal degrees numeric 

country_code Country code. ISO 3166-1 text 

Comentado [Diaz1]: RC1-09 
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date Survey date YYYY-MM-DD 

source data source text 

contact Contact e-mail about the data text 

order Soil order text 

type Type (profile, auger) text 

license 

License code (; Public Domain Dedication and License: PDDL,; 

Attribution License: ODC-By,; Open Database License: ODC-ODbL,; 

Creative Commons Attribution 4.0 International: CC-BY,; Creative 

Commons Attribution - Non-Commercial 4.0 International: CC-BY-

NC,; Creative Commons Attribution - Non Commercial No Derivatives 

4.0 International:  CC-BY-NC-ND). 

text 

Table 3.: Layers attributes, the measured attributes are numerical attributes (excluding top and bottom, which are the limits of each 

layer), in the last column, for each attribute measured, the percentage of records with valid data is indicated. NA: Not applicable. 

Column name Description Units % of layers 

with data 

profile_identifier Profile identifier text NA 

layer_identifier Unique ID of each horizon text NA 

designation Layer nomenclature text NA 

top Upper limit numeric NA 

bottom Lower limit numeric NA 

bulk_density Bulk density numeric 15.2 

ca_co3 Inorganic carbon (%) numeric 5.7 

coarse_fragments Coarse fragments (%) numeric 5.3 

ecec Effective cation exchange capacity numeric 39.5 

conductivity Electric conductivity numeric 23.6 

organic_carbon Organic carbon (%) numeric 57.1 

ph pH specified with metadata numeric 75.8 

clay Clay (%) numeric 75.2 

silt Silt (%) numeric 59.7 

sand Sand (%) numeric 73.5 

water_retention Water retention (%) numeric 3.1 

 

The additional available databases are listed in Table 4, detailing the country, link to the data, number of profiles, license of 

use and spatial reference system. The data of the new version are in geographic coordinates, EPSG 4326, those in a different 170 

system will be reprojected. As with SISLAC data, 100% of the data is analyzed. The total number of profiles to be analyzed 

is 96783. These databases contain more or less attributes than those of the SISLAC structure, in this case, only those within 

the SISLAC structure will be processed. 

Comentado [Diaz2]: RC1-10 
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Table 4: List of databases available for incorporation to the new version of SISLAC. 

Country Source 
Number of 

Profiles 
License to use 

Spatial reference 

system (EPSG) 

Argentina http://sisinta.inta.gob.ar/ 6180 No data 4326 

Brazil https://www.pedometria.org/febr/ctb0003/ 400 
Attribution 4.0 
International 
(CC BY 4.0) 

4326 

Chile https://doi.org/10.17605/OSF.IO/NMYS3 13612 
Attribution 4.0 
International 
(CC BY 4.0) 

4326 

Ecuador 
https://doi.org/doi:10.6073/pasta/1560e80395

3c839e7aedef78ff7d3f6c  
13542 

Attribution 4.0 
International 
(CC BY 4.0) 

32717 

México 

Series I y II 

https://www.inegi.org.mx/app/biblioteca/ficha.
html?upc=702825266707 

13965 No data 6362 

 175 

The above databases have different structures and attributes. Table 5 lists the SISLAC attributes found in those databases that 

will be added to this one. As can be seen, SOC is the common attribute in all, followed by clay, silt, sand and pH. 

 

Table 5:  SISLAC physical and chemical property attributes available in the databases. The attribute in common is SOC. The 

databases of Argentina, Ecuador and Mexico have the most attributes in common (Y = Yes; N= No). 180 

 Bulk 

density 
ca_co3 

Coarse 

fragments 
ecec conductivity 

Organic 

carbon 
pH clay silt sand 

Water 

retention 

Argentina Y Y Y Y Y Y Y Y Y Y Y 

Brazil N N N N N Y N Y Y Y N 

Chile N N N N N Y N N N N N 

Ecuador Y N N Y Y Y Y Y Y Y N 

México N N N Y Y Y Y Y Y Y N 

 

2.3 Methods 

2.3.1 Quality assessment and improvement of SISLAC data 

The evaluation of the quality and improvement of the SISLAC data were carried out in three stages, the first two for the site 

data and the third for the different layers. The first stage consisted of checking that the profiles are in the correct locat ion 185 

(spatial correspondence). It was carried out by spatial intersection between the profiles (points) and the cartography of the 

countries (polygons). Based on the country_code attribute of the profiles, this correspondence was verified, those that 

coincided with their respective country were considered valid (Fig. 3a). Those that did not coincide were verified one by one, 

those that were within the limits of their country, considering the cartographic scale of the reference information, the precision 

http://sisinta.inta.gob.ar/
https://www.pedometria.org/febr/ctb0003/
https://doi.org/10.17605/OSF.IO/NMYS3
https://doi.org/doi:10.6073/pasta/1560e803953c839e7aedef78ff7d3f6c
https://doi.org/doi:10.6073/pasta/1560e803953c839e7aedef78ff7d3f6c
https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825266707
https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825266707
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of the equipment with which the coordinate was taken, or the reference systems under which original data were taken, they 190 

were considered valid (Fig. 3b). Still, others had the coordinates inverted (Fig. 3c), the latitude and longitude values were 

exchanged, and their correspondence was verified again. Finally, the profiles outside their zone that could not be corrected for 

having the wrong location were excluded (Fig. 3d). 

 

 195 

Figure 3,: Example of criteria found in spatial validation, (figures a, b and d source ESRI 2022; c: SISLAC webpage)). 

Comentado [Diaz3]: RC1-02 
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The second stage consisted of verifying if there are overlapping profiles, in addition, to verifying if  the values in their attributes 

are different. For this, the number of times the same pair of coordinates is repeated was massively validated. Unlike the 

previous validation, these cannot be arbitrarily excluded since the correct profile cannot be determined. Then, those with 

duplicity were marked, so the user of the data can use the ones he considers appropriate. A new attribute in the profiles 200 

(perfil_duplicado of binary type) indicates if the profile has duplicity (TRUE) or is unique (FALSE). With respect to the 

additional databases, the existence of these profiles in SISLAC is also verified. If this occurs, the profiles with the highest 

number of valid attributes will be validated in order to keep them in the new database. 

The third stage consisted of validating the description of the horizons or layers of each profile, verifying: 𝑢1 < 𝑣1 ≤ 𝑢2 <

 𝑣2 ≤ . . . ≤ 𝑢𝑛 < 𝑣𝑛; where 𝑢 is the upper limit and 𝑣 the lower limit. The upper limit must be less than its lower limit, and the 205 

lower limit must be less than or equal to the upper limit of the next layer. Gaps may exist but never overlap between layers. 

Gaps can occur for reasons such as: the data was not taken at the site, loss of data in the office, or error or omission in 

transcription. Errors were first validated, those in which the structure could not be corrected, so the profiles were excluded. 

Table 6 lists the three applied rules, their description, and an example of these. 

 210 
Table 6:,: Layer errors validation. In the example, the layers with errors are highlighted in bold letters, for the first and third case, 

the last layers of the profiles are the ones with error, while in the second case, both layers have error because the limits have no data. 

Validation Description Example 

Duplicated 

layers 

Layer limits are duplicated, and the 

values of the attributes are different. 

 

Empty limits 
Upper and lower limits do not 

contain data. 
 

Layers overlap Layers overlap in a profile. 

 
 

After excluding the profiles with errors, the existence of inconsistencies was validated. Unlike errors, these can be corrected 

by guidelines that do not alter the structure of the profile. Next, Table 7 lists the rules applied to their description and the 215 

guideline for their correction. For a better understanding of the content of Table 7, Table 8 below illustrates the described 

inconsistency (middle column) and how it was corrected (third column). 

Table 7:,: Description of the validation of inconsistencies and their correction guideline. 

Validation Description Correction Guideline 

Comentado [Diaz4]: RC1-03 
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Organic layer 

When the first layer is described in the opposite 

direction and from the second the normal 

description begins. Layer commonly known as 

organic. 

Invert the values of the first layer and 

rescale subsequent limits based on the 

thickness of the organic layer. 

Inverted layer 

The value of the limits of a layer is inverted, it 

is verified considering also the previous and 

later layers. 

Invert the values of the layer. 

Continuous 

final layer 

The value of the lower limit of the last layer is 

empty 

Assign the value of the upper limit of 

the last layer plus 10. Defined by 

expert judgment to guarantee a 

minimum thickness in these layers 

duplicated 

layer 

Horizon that presents duplicate layers in all its 

attributes. 
Delete duplicated layers. 

Upper limit is 

null 

The upper limit of a layer is null, in addition, 

the lower limit of that layer and the previous 

one is not null. 

Assign the lower limit value of the 

previous layer. 

Lower limit is 

null 

The lower limit of a layer is null, in addition, 

the upper limit of that layer and the next are not 

null. The last layer is not validated. 

Assign the value of the upper limit of 

the next layer. 

 

Table 8,: Illustration of inconsistencies and their correction guideline. In the second column in bold type the layers with inconsistency 220 
are shown, in the third column also in bold type it is shown how to correct them using the established guidelines. In the first case all 

profile limits are modified, for the rest only those of the layer with inconsistency. 

Validation Inconsistency Correction Guideline 

Organic layer 

 

 

Inverted layer 

  

Continuous 

final layer 

  

Comentado [Diaz5]: RC1-12 
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Duplicated 

layer 

  

Upper limit is 

null 

  

Lower limit is 

null 

  

2.3.2 Brief characterization of LAC soils using the new SISLAC database. 

After applying the above validations, workflow presented in this research, we obtained a new harmonized database for Latin 

America is obtained from of soil profiles that havemeet minimum integrity requirements. The following is an exercise to 225 

demonstrate the usability of this database, taking  for use in different applications such as soil organic carbon in percentage as 

a target variable and digitalcharacterization, soil mapping as a practical approach. 

2.3.2 Data Usability 

As mentioned in the introduction, the case study zone was selected for its availability of profiles, however, this exercise can 

be replicated by applying small changes to the code, which is available as part of this work. It should be considered that the 230 

chosen area should preferably be homogeneous and have a good density of profiles. The above is intended to demonstrate the 

potential of this database. 

With the 192 profiles corresponding to the case study zone, the vertical and horizontal variability of the SOC was estimated.  

For the latter, the spatial resolution was 250 meters at three depth intervals: 0 to 5, 5 to 15 and 15 to 30 cm, following the 

standards of the project GlobalSoilMap (2015). As a first step, to harmonize the profiles —using the R software (R Core Team, 235 

2018)— these were segmented using the slice function of the aqp library (Beaudette et al., 2013), which generates so many 

one-centimeter segments thick as the maximum depth of each profile. However, the values for each segment are inherited from 

the corresponding horizon, which generates a discontinuous or staggered representation that does not correspond to reality 

(Malone et al., 2017). To make their values more representative, they were adjusted using the equal area spline proposed by 

Bishop, et al. (1999) and available (ea_spline function) in the ithir library (Malone et al., 2009). An example is shown in Fig. 240 

4 of the original profiles (a), their segmentation (b) and their adjusted values (c).evaluation, soil process recognition, and soil 

impact identification in the ecosystems. At last, in this research, we present a brief characterization of LAC soils through a 

principal components analysis (PCA).  

Con formato: Espacio Antes:  12 pto, Después:  12 pto



 

14 

 

 

Figure 4, Harmonization of soil profiles, a) normal representation of the horizons and their SOC percentage; b) segmented horizons, 245 
in these the SOC percentage value (the same as the previous one) and c) horizons segmented and with adjusted values to improve 

their representation using the equal areas spline. 

To calculate vertical variability, the aggregation function of the AQP package was used, which generates statistics for each 

depth segment (quantiles 5, 25, 50, 75, 95 and percentage of profiles used). From the data generated it is possible to know the 

behavior of continuous soil characteristics as a function of depth. On the other hand, ordinary kriging (OK) was used for 250 

horizontal variability assessment, a method frequently used to predict SOC (Bhunia et al., 2018; Duan et al., 2020; Yao et al., 

2019; Y. Zhang et al., 2020; Z. Zhang et al., 2020).  For each of the three intervals, the SOC percentage value of each profile 

corresponds to the average of the range of the previously adjusted and segmented values. First, the variogram was generated 

for each depth and fitted to a theoretical model to obtain the optimal values for interpolation. The estimation of values was 

carried out and the resulting information was classified according to three categories established by the Instituto Geográfico 255 

Agustín Codazzi (2016): low: less than 1.2%; medium: between 1.2% and 2.4%; high: greater than 2.4%. Finally, leave-one-

out cross-validation was used for validating the performance of the OK and the root mean squared error (RMSE) and the 

coefficient of determination (R2) indices were calculated. The Eq. (1) and (2) respectively used for the indices described are 

the following: 

𝑅𝑀𝑆𝐸 = [
1

𝑛
 ∑ (𝑝𝑖 −  𝑜𝑖)2𝑛

𝑖=1 ]
1/2

           (1)  260 

𝑅2 = 1 −
∑ (𝑝𝑖−𝑜𝑖)𝑛

𝑖=1
2

∑ (𝑜𝑖−𝑜�̅�)2𝑛
𝑖=1

           (2) 

where 𝑜𝑖  represents the observed values, 𝑝𝑖  the values estimated and 𝑛 is the number of locations used for the prediction. 
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3 Results 

The PCA included profile characteristics (soil variables), profile depth, number of profile horizons, and profile classificat ion 

according to the World Reference Base for Soil Resources WRB (IUSS Working Group WRB. 2007). The soil variables used 265 

were effective cation exchange capacity (ecec), pH, organic carbon (OC), and clay and sand content. These variables were 

selected because they are those with the highest number of records in the database. To represent the soil profile at each site, 

using the values registered by the horizon, the mean, minimum (min), and maximum (max) of each variable were calculated. 

The profile depth was identified as the maximum value of each site's "bottom" variable. Finally, the profile classification was 

obtained from the most probable soil group layer of SoilGrids at 250 meters of spatial resolution.  270 

At last, 18 variables (17 quantitative and one qualitative) were included in the PCA. Those group soils with less than 100 

profiles were removed from the dataset, and finally, a total of 27.960 soil profiles (those with complete cases) distributed in 

the LAC region were analyzed. The PCA was performed with the FactoMineR package in R (Lê et al., 2008). 

3 Results 

3.1 Quality assessment and improvement of SISLAC data 275 

With the first validation, 2726 profiles were found that did not match their country. Table 9 lists these profiles at the country 

level. As can be seen, Bolivia has the largest number of these with 2,472 (90% of the cases). After the review, it was identified 

that 2471 of those cases (from Bolivia) had the coordinates inverted, so after changing the values and their validation, their 

correct location was verified, and they were considered valid. A total of 36 profiles (1.3% of those reviewed) were excluded 

for having an erroneous location, as presented in Fig. 3d, 3 from Colombia and 33 from Paraguay. A total of 49,04896,747 280 

profiles (of the initial 49,08496,783 considering SISLAC and the additional databases) passed the second validation. 

Table 9.: Spatial validation results, sorted by country with the highest number of inconsistencies (second column), the third column 

indicates how many profiles were excluded and the fourth column indicates how many were considered valid after being reviewed 

one by one. 

Country 
Inconsistent 

profiles 

Excluded 

profiles 

Valid profiles 

after check 

Bolivia 2472  0 2472 

Colombia 78 3 75 

Paraguay 53 33 20 

Ecuador 45  0 45 

México 28  0 28 

Brazil 16  0 16 

Argentina 8  0 8 

Nicaragua and Venezuela 5  0 5 

Antillas 4 0 4 
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Peru and Uruguay 3  0 3 

Chile and Costa Rica 2  0 2 

Virgin Islands and Jamaica 1  0 1 

Total profiles 2726 36 2690 

 285 

With the second part of the validations, 1989 duplicate profiles were identified in SISLAC. Table 10 lists the country and the 

number of these. Brazil concentrates the largest amount with 1,680, 84.5% of the total and 21% of the total profiles provided 

by that country (with 7,842). As commented in the previous section, the profiles with duplicity were marked in the table, the 

profiles with duplicity in the perfil_duplicado field contain the value TRUE. In addition, profiles that already existed in 

SISLAC were excluded from the available databases. In Argentina 3374 of 6180; Ecuador 4633 of 13542 and in Mexico 7274 290 

of 13965 profiles. 

Table 10,: Profiles from SISLAC with spatial duplication by country. 

Country duplicated profiles 

Brazil 1680 

Argentina 94 

Colombia 50 

Jamaica 40 

Venezuela 28 

Uruguay 16 

Surinam 11 

Guatemala 9 

Bolivia, Ecuador, Honduras, México 7 

El Salvador, Guyana and Nicaragua. 6 

Panamá 5 

Costa Rica and Peru 4 

Cuba 2 

TOTAL 1989 

Regarding the revision of the horizons from SISLAC, 7,380 errors were found (in 7,357 profiles). Table 11 details the number 

of these by country and type. Most were presented in Mexico, Paraguay and Brazil. Profiles with empty limits were the main 

error with 6,831 cases. Those 7,357 profiles were excluded for being inconsistent. On the other hand, in the additional data, 295 

61 profiles from Argentina, 13 from Chile and 67 from Ecuador were found with overlapping horizons and 6493 profiles from 

Mexico with empty limits, so they were also excluded. An additional point was presented with the data from Mexico, the 

SISLAC data (12223 profiles) were the same as those of Series I and II (13965), the first ones had fewer attributes and an 

incorrect spatial location, for that reason all the data from Mexico were replaced by the valid profiles of Series I and II, 

Table 11,: Layers error validation, theonly countries with errors are listed. The profiles with errors may be fewer than the errors 300 
per country because one profile may have more than one type of error. 

Country 
Duplicate

d layers 
Empty limits 

Layers 

overlap 

Errors by 

country 

Profiles 

with error 

México 16 4942 32 4990 4990 
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Paraguay 0 1866 0 1866 1866 

Brazil 35 12 339 386 368 

Colombia 1 4 32 37 36 

Ecuador 0 0 22 22 22 

Argentina 4 2 12 18 18 

Venezuela 1 4 10 15 13 

Cuba 0 0 12 12 12 

Costa Rica 1 0 9 9 8 

Uruguay 3 0 5 8 7 

Peru 0 0 6 6 6 

Jamaica 0 0 4 4 4 

Nicaragua 0 0 4 4 4 

Chile 1 1 1 3 3 

Errors by type 62 6831 488 7380 7357 

Inconsistencies are described in Table 12. Most were found in Paraguay, Argentina and Colombia. The main causes were the 

null lower limit, continuous final horizon and duplicate horizon. All of these were corrected according to the established 

guidelines. Although 5474 inconsistencies were found, these correspond to 2215 profiles, so there were profiles with more 

than one inconsistency, for example, although in Paraguay there are 4066 inconsistencies, these are present in 931 profiles, the 305 

same number of profiles in that country. 

Table 12,: Layers inconsistencies validation, in these, the bottom limit is null validation was the only one that did not present records 

with this inconsistency. 

Country 
Organic 

layer 

Inverted 

layer 

Continuous 

final layer 

Duplicated 

layer 

Lower 

limit is null 

Inconsistencie

s by country. 

Paraguay 0 0 931 0 3135 4066 

Argentina 0 0 993 0 2 995 

Colombia 38 5 0 339 0 382 

Brazil 0 3 0 11 0 14 

Venezuela 2 0 7 0 0 9 

México 0 1 1 1 0 3 

Uruguay 0 0 3 0 0 3 

Bolivia 0 0 1 0 0 1 

Jamaica 0 0 1 0 0 1 

Total by 

type 
40 9 1937 351 3137 5474 

 

Finally, the following tables summarize the results obtained, first, Table 13 shows a summary of the data after the validation 310 

and correcting processes. Only those lists the countries that had changes due to excluded profiles are listed. The second and 

third columns show the initial and valid profiles, respectively; with a change in the corresponding number of horizons is 

indicated in parentheses. The Errors column indicates the number of profiles. As can be seen, there was an increase in the first 

5 countries, since the available databases correspond to these countries, while in the following countries profiles were excluded 
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due to errors in the their description. In addition, Table 14 lists the sources of the data that contribute to this new version of 315 

SISLAC, as can be seen, there are almost 10,000 profiles obtained from WoSIS and the rest are contributed by institutions in 

the countries of the region. To conclude, Table 15 shows the initial and final percentage of records with valid values for the 

soil property attributes, showing that country and inconsistencies is the number of inconsistencies found and corrected.SOC, 

pH, clay, silt and sand are the attributes with the highest percentage. From SISLAC, after the processes carried out, of the 

49,084 initial profiles, 15% of these were excluded and another 4.5% were corrected so that they met the minimum integrity 320 

requirements, data. in addition, 17% of the profiles in the other databases already existed in SISLAC. Of the 9,6783 total 

profiles analyzed, 32% were excluded due to erroneous description or because they already existed in the SISLAC data . The 

revised version consists of 41,69166,746 profiles made up of 129,355192,568 horizons and layers. 

 

Table 13,: Details of the SISLAC data validation processes, total number of layers are in parentheses, the errors caused the profile 325 
to be excluded, while the inconsistencies were corrected. 

Country 
Initial profiles 

(layers) 

Remain profiles 

(layers) 
Errors Inconsistencies 

Ecuador 
13056 

(36749) 

13034 

(3658221912 

(70204) 

22 0 

Chile 
45 

(220) 

42 

(20113403 

(16371) 

3 0 

Brazil 
7842 

(23926) 

7474 

(226168114 

(23367) 

368 14 

México 
12223 

(26051) 

7233 

(209137472 

(23899) 

4990 3 

Argentina 
3774 

(16902) 

3756 

(168136515 

(30041) 

18 995 

Colombia 
4864 

(18900) 

4825 

(17615) 
39 382 

Paraguay 
2830 

(6041) 

931 

(4066) 
1899 4066 

Venezuela 
1056 

(4108) 

1043 

(4051) 
13 9 

Uruguay 
272 

(1382) 

265 

(1321) 
7 3 

Peru 
148 

(631) 

142 

(561) 
6 0 

Jamaica 
76 

(361) 

72 

(331) 
4 1 

Costa Rica 
55 

(318) 

47 

(257) 
8 0 
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Cuba 
52 

(282) 

40 

(186) 
12 0 

Nicaragua 
26 

(132) 

22 

(99) 
4 0 

 

 

 

3.2 Data Usability 330 

With the 192 profiles processed which did not present errors or inconsistencies in the validation process, using the aggregation 

function of the aqp library, the SOC vertical variation is shown in Fig. 5, the blue line corresponds to the median, while the 

shading around it corresponds to at the 25th and 75th percentiles, that is, the variability of 50% of the SOC data. As can be 

seen, from 0 to 50 cm depth, the median values varies from 1.6%  to 0,5%, respectively. While the variability of 50% of the 

data for the same interval ranges from 0.3% in the minimum values to 2.3% in the maximum values. After 50 cm of depth, the 335 

values stabilize, with a median value of 0.5% to 0.3% and almost constant variation up to 150 cm.of depth. 

 

Figure 5, Vertical variability of the SOC in the area of interest 

Semivariograms obtained allowed us to know the spatial behavior of the profiles. Figure 6 shows that for the first two depths 

the resulting parameters were similar, while for the third one the range increases and the adjustment model is different. The 340 

resulting cartography is shown in Fig. 7, in which it is observed that the estimates have the same distribution patterns of the 

different categories, although in the third depth (15 to 30 cm) the spot of low category increases. Table 14 shows details of the 

area percentages for each depth interval and each category. It is observed that the medium category predominates in the three 

depths mapped with more than 80%, while the low category increases slightly with depth, the inverse being the case in the 

high category, which decreases. 345 
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Figure 6, Adjusted variograms for the three depths, the first two fit the same model (Stein parameterization), with similar range,  

nugget and sill values, while the third fit a spherical model, its range was considerably larger and the nugget and sill values are 

similar to the previous ones. 

 350 

Figure 7, interpolation results for each depth, orange color predominates, which represents a medium SOC percentage content, as 

the depth increases the SOC percentage decreases and more yellow patches are observed, mainly in the western zone. 

Table 14, Percentages of area by depth and category, the values for the 0 to 5 and 5 to 15 cm intervals show very similar percent 

areas, while the 15 to 30 interval shows what was observed in Fig. 7, that the percent SOC decreases. 

Table 14: Count of profiles contributed by each data source to the new version of SISLAC. 355 

Source Country Profiles 

CHLSOC: the Chilean Soil Organic Carbon database Chile 13359 

WoSIS July 2016 Snapshot Various 9230 

Harmonized soil database of Ecuador (HESD) Ecuador 8842 

SIGTIERRAS-MAG Ecuador 8342 

SISINTA (sisinta.inta.gob.ar) Argentina 6277 
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Instituto Geográfico Agustín Codazzi Colombia 4687 

MAGAP & IEE Ecuador 4633 

México Serie-II México 4420 

México Serie-I México 3052 

ZONISIG Bolivia 2145 

Reservatorio do DNOS-CORSAN Brazil 400 

Sistema de información de suelos de la depresión del lago 

de Valencia - SISDELAV 
Venezuela 366 

Sistema Integrado de Apoyo al Productor - SIAP Venezuela 270 

ECOSUR-VT-2016 Bolivia 242 

N/D Various 183 

Ministerio de Ganadería, Agricultura y Pesca Uruguay 141 

Universidad Central de Venezuela - UCV Venezuela 43 

Instituto Nacional de Investigaciones Agrícolas - INIA Venezuela 42 

SPECTROLAB 

Depth 1: 

0- 5 

cmBolivia 

Depth 2: 

5 - 15 cm 
Depth 3: 

15 - 30 cm 

% SOC lowCentro Internacional de Agricultura Tropical 

- CIAT 
5.2Bolivia 

5.8 
19 

% SOC mediumUniversidad Mayor De San Simon - 

UMSS 
92.6Bolivia 92.614 

80.4 

% SOC highZONISIG_GQ 2.2Bolivia 1.69 0.6 

Total of profiles  66746 

 

Finally, to evaluate the kriging performance, using leave-one-out cross-validation, the RMSE and R2 indices were obtained. 

Fig. 8 shows the results of these indexes, as can be seen, the RMSE value was similar for the three intervals, 1.78% from 0 to 

5 cm, 1.77% from 5 to 15 cm and 1.79% from 15 to 30 cm. While the resulting R2 was 0.56, 0.53 and 0.83, respectively. 
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 360 

Figure 8, Cross validation, some subestimated values are observed towards the right side of the graphs, the RMSE values are similar, 

while the R2 for the last interval increases notably. 

Table 15: Percentage of valid records for soil properties, showing that SOC is the attribute with the highest number of valid records, 

followed by pH, clay, silt and sand. 

Attribute 

Initial 

percentage of 

valid values 

final percentage of 

valid values 

Bulk density 15.2 13.6 

Inorganic carbon (%) 5.7 5.5 

Coarse fragments (%) 5.3 6.8 

Effective cation exchange capacity 39.5 51.9 

Electric conductivity 23.6 18.2 

Organic carbon (%) 57.1 65.2 

pH 75.8 66.0 

Clay (%) 75.2 66.1 

Silt (%) 59.7 55.4 

Sand (%) 73.5 64.9 

Water retention (%) 3.1 2.6 

 365 

3.2 Brief characterization of LAC soils using the new SISLAC database. 

According to the most probable soil group from SoilGrids 2.0 (based on the World Reference Base - WRB of 2006), the 27.960 

soil profiles (those with complete cases) in the new SISLAC database correspond to 16 soil Groups. The Cambisols (22.2%), 

Andosols (19.9%), and Ferrasols (14.6%) are those with the major amount of soil profiles. Cambisols are across all LAC 

regions, principally in Colombia, Ecuador, Mexico, Venezuela, Brazil, and Argentina. Andosols are primarily in the Andes 370 
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Mountains regions (Colombia and Ecuador) and some volcanic mountains in Mexico and Costa Rica. Ferralsols are principally 

from South American regions in Brazil, Ecuador, Colombia, and Argentina. Meanwhile, Arenosols (0.5%), Planosols (0.7%), 

and Fluvisols (1%) are those less represented in the database. Arenosols are principally in the northern region of Mexico and 

central Brazil. Planosols are in the south of Brazil and North of Argentina. Fluvisols are principally in the north of Colombia, 

East of Brazil, and west of Ecuador. 375 

 

Figure 5. Frequency of soil profiles by Soil Group according to the World Reference Base (WRB). 

 

In the PCA, five dimensions have eigenvalues greater than 1 (Table 16). These first five dimensions explained 86.49% of the 

total variance in the dataset. The first two dimensions express 52.52% of the total variance, which means that 52.52% of the 380 

individuals' (or variables') total cloud variability is explained by the plane formed by Dim 1 and Dim 2. The first dimension 

(28.73% of variance explained) represents soil texture (clay and sand content) and the cation exchange capacity variables 

(Figure 6A). On the other hand, the second dimension (23.79% of variance explained) captures the variability of pH, organic 

carbon, and cation exchange capacity (Figure 6A). The third dimension (16.28% of variance explained) comprises profile 

depth, number of profile horizons, and cation exchange capacity (Figure 6B). The organic carbon content and pH variables 385 

represent the fourth dimension (9.72% of variance explained) (Figure 6B). 
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Table 16. Decomposition of the total inertia obtained from the principal component analysis based on profile characteristics of 28.460 

sites of the new version of the SISLAC database. 

 Variable Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 

Eigenvalue 4.88 4.04 2.77 1.65 1.36 

Explained variance (%) 28.73 23.79 16.28 9.72 7.98 

Cumulative variance (%) 28.73 52.52 68.79 78.51 86.50 

 390 
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Figure 6: Variables map for the first plane. Quantitative variables such as pH, effective cation exchange capacity (ecec), organic 

carbon (OC), clay and sand content, number of horizons (num_horizons), and profile depth (depth).  

   395 

Figure 7: Quality factor map with soil group according to the World Reference Base (WRB). A) First plane and B) Second plane of 

the principal component analysis. 

 

The qualitative factor map shows the distance between soil groups in the first plane (Figure 6). In the first plane, the soil groups 

most differentiated from others are Arenosols, Calcisols, Solonetz, Acrisols, and Lixisols (Figure 7A). The Arenosols are those 400 

most correlated with Dim 1, representing the soil's texture and cation exchange capacity. Meanwhile, Calcisols, Lixisols, 

Solonetz, and Acrisols are most correlated with Dim 2, which represents the soil's pH and organic carbon. On the other hand, 

in the second plane, the soil groups most differentiated are Solonetz, Calcisols, Phazoems, Lixisols, Ferrasols, and Gleysols 

(Figure 7B). The Solonetz, Phaeozems, Ferrasols, and Lixisols are most correlated to Dim 3, which represents profile attributes 

such as profile depth and number of horizons; meanwhile, Solonetz, Calcisols, and Arenosols are most correlated with Dim 4, 405 

which represents principally organic carbon content and pH of the soil. 

4 Discussion 

This work made it possible to identify that the main problems in the SISLAC profiles occur systematically in some countries. 

In addition, it shows the potential of improved soil databases for the generation of spatial information such as SOC or any 
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other property which have been surveyedwe were able to incorporate new data to improve this database and make available to 410 

the soil community a greater number of soil profiles of the region. 

4.1 Quality assessment and improvement of SISLAC data 

As shown in Table 1, the most frequent error in the profiles was due to empty limits, which occur mainly in Mexico and 

Paraguay with 67% and 25% of the total errors, respectively. In Mexico, these errors correspond to 40% of the profiles 

provided, while in Paraguay to 65%. On the other hand, most of the inconsistencies (Table 12) are found in Argentina, Paraguay 415 

and Colombia with 44%, 42% and 12% of the total respectively. Although all these inconsistencies were corrected, it is 

observed that, for example, in Paraguay of the total profiles provided (2830), only 9 contain SOC values, the rest have all the 

empty attributes. The foregoing represents a limitation if one wanted to carry out any type of analysis with these data. 

The validations were defined by expert judgment, they coincide with those described in the works of  Batjes (1995) and 

Leenaars (2013) and were applied to all the elements. For the horizons, it was guaranteed that they were correctly described, 420 

since as these authors indicate, if they are not adequately described, in-depth analyzes cannot be carried out since the analysis 

tools may fail or a high degree of uncertainty may be generated.6 

 

The variability allowed knowing the behavior of the SOC in its vertical and horizontal dimensions, the latter following 

standards for the elaboration of spatial information on soil properties such as those of GlobalSoilMap. An important aspect is 425 

that with the segmentation and adjustment of the values carried out, it is possible to generate information for any interval, or 

even for each centimeter of depth. 

This work is a effort towards the consolidation and availability of more and better data in the region, which should be reflected 

in national results such as those of Araujo-Carrillo et al. (2021) and Varón-Ramírez et al. (2022) in Colombia; Armas et al. 

(2022) in Ecuador; Pfeiffer et al. (2020) in Chile or Schulz et al. (2022) in Argentina. Free access to these data can increase 430 

the knowledge of the properties or improve the existing one. It can also generate information with global standards, under 

which the cartography presented in this research was elaborated. From this mapping it is observed that the values obtained for 

the RMSE and R2 index (Fig. 9) for the range of 0 to 5 cm were 1.78% and 0.56 respectively. From 5 to 15 were 1.77% and 

0.53 and from 15 to 30, 1.79% and 0.83, very similar results in the first two intervals, partly due to the dimensionality and 

proximity between them. Taking as reference the R2 values, all higher than 0.5, this work presents better results than similar 435 

works that used the same method for SOC estimation, for example, those reported by Y. Zhang (2020), using 122 samples in 

an area of 7692 km2, those of Xin et al. (2016) with 180 samples in 72 km2 or those of Yao (2019) using 90 samples, which 

obtained R2 values of 0.21, 0.2 and 0.4 respectively. 

In the profiles of the available databases, the data had a correct description of the profiles, so most of them are incorporated 

into SISLAC. In these, the main attributes available were SOC, pH, clay, silt and sand. With these data, an increase in the 440 

database of more than 50 percent was achieved, since the revised SISLAC database had just over 42,000 records and the new 

version exceeds 66,000 soil profiles from the entire Latin American region. 
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4.2 Brief characterization of LAC soils using the new SISLAC database. 

A principal components analysis (PCA) considering the profile attributes and soil variables with the highest number of records 

(SOC, pH, ecec, and clay and sand content, number of horizons and profile depth) was carried out to characterize the new 445 

SISLAC database. A way to validate the database information was to relate those profile attributes and soil variables with a 

soil classification. In the database, just 37% of the soil profiles have a taxonomic classification, 26% based on USDA (Profiles 

in Argentina, Colombia and Ecuador, principally) and 11% based on WRB (Profiles in Mexico) taxonomic classification 

system. Therefore, it was necessary to identify the most probable soil group from a unified global source (SoilGrids 2.0) for 

the 27,960 soil profiles with complete records for the soil variables included in the PCA. If it is not a field-based taxonomic 450 

classification of each soil profile, the SoilGrids product represents the global tendency of the world soils (Poggio et al., 2021). 

 Some soil groups are separated from others and strongly correlated to dimension one or two according to soil variables. As 

expected, soil groups characterized by the variables included in the PCA are those most differentiated in the analysis. Soil 

groups characterized by textural attributes such as Arenosols (high content of sand) are strongly correlated with Dim 1, which 

represents the sand and clay content of the mineral soil. Meanwhile, soil groups characterized by accumulation of sales such 455 

as Calcisols (high content of calcium) or Solonetz (high content of exchangeable sodium) are correlated with Dim 2 due to the  

effect of sales in the pH of the soil; similarly, those soil groups with an accumulation of organic matter such as Phaezoems 

(dark superficial layers) are also mostly correlated with Dim 2, which represent organic matter characteristics too. 

On the other hand, those majors represented soil groups in the new SISLAC database, and no characterized by the variables 

included in the PCA are not differentiated from other soil groups. Cambisols (which are identified by edafogenetic alteration  460 

evidence but not stronger alteration or accumulation processes), Andosols (which are identified by their relationship between 

Fe and Al, bulk density, and phosphate retention), and Ferralsols (which are identified by Fe or Mn accumulation in the soil 

profile) are those soil groups major represented in the database (57% of the total soil profiles). These soil groups appear at the 

central portion of the factor maps in the PCA and do not show a specific correlation with dimensions.  

The PCA analysis showed the relation between soil variables in the new SISLAC database and soil groups (from a different 465 

source), making evident this new database's value and potential use. However, it is essential to highlight that this PCA was 

made with 42% (27,960) of the total soil profiles in the new SISLAC database (66,746). This analysis does not represent 

regions with few complete data such as, Central America (Guatemala, Honduras, Nicaragua, Cuba, Dominican Republic, 

among others) and South America (Chile, Peru, Bolivia, Paraguay and south of Venezuela and Brazil).  

4.3 Limitations  and future directions 470 

A factor not considered in this work was the validation of the attributes of the horizon properties in a simple or combined way 

to identify outliers, for example, using Tukey's rule (Pham et al., 2019) or out of range (pH values less than 0 or greater than 

14). This omission was due to the fact that a large part of the horizons did not have assigned values. As shown in Table 15, 

only four attributes (SOC, pH, clay and sand) exceed 65% of records with values, while another two (silt and Effective cation Con formato: Color de fuente: Color
personalizado(RGB(0;0;10))
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exchange capacity) have just over 50% values. The other attributes do not exceed 20%, there are even three properties with 475 

less than 6%, which are inorganic carbon, coarse fragments and water retention. The above was a factor that influenced the 

choice of the area for the case study, it is important to have data, but also that they are complete. 

A possible reason why the profiles have been provided incomplete may be the one mentioned by Arrouays et al. (2017) or 

Rossiter (2004), about privacy or data ownership policies, in addition to institutional, legal and cultural factors, prevent data 

from being fully shared. Breaking down those barriers would allow that data to be used by a larger number of global users. 480 

Given the importance of these databases, it is pertinent to make new efforts to collect data from other sources, such as research 

centers or universities, in order to strengthen this or other databases. As shown in the analysis of SOC variability, thisThis 

revised version of SISLAC data offers the potential to generate information that helps decision-making on issues in which 

soils are decisive. It can also be used to plan future soil surveys in areas with low density or where updated information is 

required. Another possible use of these data may be to improve existing information (in scale and depth), such as the Organic 485 

Carbon Map (FAO & ITPS, 2018), or to generate new information such as that presented by Gutierrez (2020) using SISLAC 

data. 

In summary, from the total data set, 38% of profiles were excluded and another 4.5% were corrected and from the available 

databases, nearly 24,000 soil profiles were incorporated. This work tried to exclude as few profiles as possible given their 

importance in areas with low spatial density. Furthermore, as mentioned by Hengl (2019), this data is the only thing available 490 

at this time in many places, so its availability is important. Knowing the level of integrity of the data, what the main problems 

are and where they occur, can help the countries involved to know where to put more efforts to have more reliable data. In that 

sense, this work may contribute to support soil conservation efforts, increase food and water security, maintain healthy 

ecosystems, and reduce climate change's impact. 

5 Data availability 495 

The data is available at https://doi.org/10.5281/zenodo.6540710https://doi.org/10.5281/zenodo.7876731  (Díaz-Guadarrama, 

S. & Guevara, M., 20222023) in three different formats: Comma-Separated Values format (csv)., Microsoft Access Database 

(.mdb), and as PostgreSQL – PostGIS Database backup ). The source code used for data processing is also available at the 

same repository. 

6 Conclusions 500 

This work was successful in improving the SISLAC database, thus generating a revised database version in which all the soil 

profiles have high quality and completeness to be efficiently used in multiple applications (e.g., digital soil carbon mapping 

and reporting). In the revised SISLAC database, 15% of soil profiles were excluded (e.g., horizon information duplicated or 

overlapped) and 4.5% of the soil profiles were adjusted to the same data structure. We demonstrate the usability of the revised 

https://doi.org/10.5281/zenodo.7876731
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SISLAC database developing a reproducible digital soil carbon mapping framework which improves the analysis of soil carbon 505 

and depth relationships from a discrete to a continuous fashion. In our usability example we observe relatively high accuracy 

(R2 of  0.5 and RMSE 1.78), demonstrating the potential of databases such as SISLAC to generate information on the spatial 

variability of soils across large areas with high spatial detail. The database usedWith the available soil databases, it was possible 

to increase the database by more than 50 percent, initially the valid SISLAC profiles were around 41 thousand, so the additional 

profiles represent more than 25 thousand records. SISLAC is a product of the cooperation of national institutions of the 510 

countries of the region, investing efforts in the collection of additional data, for example, those produced in universities or 

research centers could lead to an increase in the volume of the revised version of SISLAC (as new and better data become 

available), and these in turn, may allow the generation of new spatial information on soil properties to improve what is currently 

available. 
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