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Abstract 

Knowledge of the spatial distribution of the fluxes of greenhouse gases and their temporal variability as well 

as flux attribution to natural and anthropogenic processes is essential to monitoring the progress in mitigating 60 

anthropogenic emissions under the Paris Agreement and to inform its Global Stocktake. This study provides a 

consolidated synthesis of CH4 and N2O emissions using bottom-up (BU) and top-down (TD) approaches for the 

European Union and UK (EU27+UK) and updates earlier syntheses (Petrescu et al., 2020, 2021). The work integrates 

updated emission inventory data, process-based model results, data-driven sector model results, inverse modelling 

estimates, and extends the previous period 1990-2017 to 2020. BU and TD products are compared with European 65 

National GHG Inventories (NGHGI) reported by Parties under the United Nations Framework Convention on Climate 

Change (UNFCCC) in 2021. The uncertainties of NGHGIs were evaluated using the standard deviation obtained by 

varying parameters of inventory calculations, reported by the EU Member States following the guidelines of the 

Intergovernmental Panel on Climate Change (IPCC) and harmonized by gap-filling procedures. Variation in estimates 

produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets 70 

(BU), arise from diverse sources including within-model uncertainty related to parameterization as well as structural 

differences between models. By comparing NGHGIs with other approaches, the activities included are a key source 

of bias between estimates e.g. anthropogenic and natural fluxes, which, in atmospheric inversions are sensitive to the 

prior geospatial distribution of emissions. For CH4 emissions, over the updated 2015-2019 period, which  covers a 

sufficiently robust number of overlapping estimates, and most importantly the NGHGIs, the anthropogenic BU 75 

approaches are directly comparable, accounting for mean emissions of 20.5 Tg CH4 yr-1 (EDGAR v6.0, last year 2018) 

and 18.4 Tg CH4 yr-1 (GAINS, 2015), close to the NGHGI estimates of 17.5 ± 2.1 Tg CH4 yr-1. TD inversions estimates 

give higher emission estimates, as they also detect natural emissions. Over the same period, high resolution regional 

TD inversions report a mean emission of 34 Tg CH4 yr-1. Coarser-resolution global-scale TD inversions result in 

emission estimates of 23 Tg CH4 yr-1  and 24 Tg CH4 yr-1 inferred from GOSAT and surface (SURF) network 80 

atmospheric measurements, respectively. The magnitude of natural peatland and mineral soils emissions from the 

JSBACH-HIMMELI model, natural rivers, lakes and reservoirs emissions, geological sources and biomass burning 

together could account for the gap between NGHGI and inversions and account for 8 Tg CH4 yr-1. For N2O emissions, 

over the 2015-2019 period, both BU products (EDGAR v6.0 and GAINS) report a mean value of anthropogenic 

emissions of 0.9 Tg N2O yr-1, close to the NGHGI data (0.8 ± 55 % Tg N2O yr-1). Over the same period, the mean of 85 

TD global and regional inversions was 1.4 Tg N2O yr-1 (excluding TOMCAT which reported no data). The TD and 

BU comparison method defined in this study can be ‘operationalized’ for future annual updates for the calculation of 

CH4 and N2O budgets at the national and EU27+UK scales. Future comparability will be enhanced with further steps 

involving analysis at finer temporal resolutions and estimation of emissions over intra-annual timescales, of great 

importance for CH4 and N2O, which may help identify sector contributions to divergence between prior and posterior 90 

estimates at the annual/inter-annual scale. Even if currently comparison between CH4 and N2O inversions estimates 

and NGHGIs is highly uncertain because of the large spread in the inversion results, TD inversions inferred from 

atmospheric observations represent the most independent data against which inventory totals can be compared. With 

anticipated improvements in atmospheric modelling and observations, as well as modelling of natural fluxes, TD 
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inversions may arguably emerge as the most powerful tool for verifying emissions inventories for CH4, N2O and other 95 

GHGs. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.6992472 (Petrescu 

et al., 2022). 

 

1. Introduction 

Atmospheric concentrations of greenhouse gases (GHGs) reflect a balance between emissions from sources and 100 

removals by sinks, the former arising from both human activities and natural sources and the latter being found in the 

biosphere, oceans and atmospheric oxidation. Increasing levels of GHG in the atmosphere due to human activities 

have been the major driver of climate change since the pre-industrial period (pre-1750). In 2020, GHG mole fractions 

were record highs, with globally averaged mole fractions reaching 1889±2 parts per billion (ppb) for methane (CH4) 

and 333.2±0.1 ppb for nitrous oxide (N2O), representing 262% and 123% of respective pre-industrial levels (WMO, 105 

2021). Since 2004, when CH4 registered a negative dip, the trend in the CH4 concentration in the atmosphere continues 

to increase (NOAA, atmospheric data: https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/, last access May 2022). This 

increase was attributed to anthropogenic emissions from agriculture (livestock enteric fermentation and rice 

cultivation (12%) and fossil fuel related activities (17%), combined with a contribution from natural tropical wetlands 

(Saunois et al., 2020, Thompson et al. 2018, Feng et al, 2022a,b). The increase in atmospheric N2O also continues to 110 

rise with the highest annual increase ever recorded in 2020 (https://gml.noaa.gov/ccgg/trends_n2o/, last access: May 

2022). The main sources remain linked to agriculture particularly the application of nitrogen fertilizers and livestock 

manure on agricultural land (FAO, 2020, 2015; IPCC, 2019b, Tian et al., 2020). 

National GHG emission inventories (NGHGIs) are prepared and reported on an annual basis by Annex I 

Parties1 to the United Nations Framework Convention on Climate Change (UNFCCC). These inventories contain 115 

annual time series of each country’s GHG emissions from the 1990 base year2 until two years before the year of 

reporting and were originally set to track progress towards their reduction targets under the Kyoto Protocol (UNFCCC, 

1997). Non-Annex I Parties3 to the UNFCCC also provide emissions estimates in Biennial Update Reports (BURs) as 

well as through National Communications (NCs); however, non-Annex I emissions are neither reported for annually 

nor use harmonized formats due to the comparatively less-stringent reporting requirements. Annex I NGHGIs are 120 

reported according to the Decision 24/CP.19 of the UNFCCC Conference of the Parties (COP) which states that the 

national inventories shall be compiled using the methodologies provided in the IPCC Guidelines for National 

 
1 Annex I Parties include the industrialized countries that were members of the OECD (Organization for Economic Co-operation and Development) 

in 1992 plus countries with economies in transition (the EIT Parties), including the Russian Federation, the Baltic States, and several central and 

eastern European states (UNFCCC, https://unfccc.int/parties-observers, last access: February 2022). Under the Paris agreement all countries are 

requested to report their emissions.  
2
 For most Annex I Parties, the historical base year is 1990. However, parties included in Annex I with an economy in transition during the early 

1990s (EIT Parties) were allowed to choose one year up to a few years before 1990 as reference because of a non-representative collapse during the 
breakup of the Soviet Union (e.g., Bulgaria, 1988, Hungary, 1985–1987, Poland, 1988, Romania, 1989, and Slovenia, 1986). 

 
3 Non-Annex I Parties are mostly developing countries. Certain groups of developing countries are recognized by the Convention as being especially 
vulnerable to the adverse impacts of climate change, including countries with low-lying coastal areas and those prone to desertification and drought. 

Others (such as countries that rely heavily on income from fossil fuel production and commerce) feel more vulnerable to the potential economic 

impacts of climate change response measures. The Convention emphasizes activities that promise to answer the special needs and concerns of these 
vulnerable countries, such as investment, insurance and technology transfer (UNFCCC, https://unfccc.int/parties-observers, last access: February 

2022). 
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Greenhouse Gas Inventories (IPCC, 2006). The 2006 IPCC Guidelines provide methodological guidance for 

estimating emissions for well-defined sectors using national activity and available emission factors. Decision trees 

indicate the appropriate level of methodological sophistication (methodological Tier) based the absolute contribution 125 

of the sector to the national GHG balance (is the source or sink a Key Category or not) and the country’s national 

circumstances (availability and resolution of national activity data and emission factors). Generally, Tier 1 methods 

are based on global or regional default emission factors that can be used with aggregated activity data, while Tier 2 

methods rely on country-specific factors and/or activity data at a higher subsector resolution. Tier 3 methods are based 

on more detailed process-level modelling or even facility-level emission measurements. Annex I Parties are 130 

furthermore required to estimate and report uncertainties in emissions (95% confidence interval) following the 2006 

IPCC guidelines using, as a minimum requirement, the Gaussian error propagation method (approach 1). Annex I 

Parties may use Monte-Carlo methods (approach 2) or a hybrid approach and are encouraged to do so.  

Annex I NGHGIs should follow principles of transparency, accuracy, consistency, completeness and 

comparability (TACCC) under the guidance of the UNFCCC (UNFCCC, 2014) and as mentioned above, shall be 135 

completed following the 2006 IPCC guidelines (IPCC, 2006). In addition, the IPCC 2019 Refinement (IPCC, 2019a), 

that may be used to complement the 2006 IPCC guidelines, has updated sectors with additional emission sources and 

provides guidance on the use of atmospheric data for independent verification of GHG inventories. Complementary 

to the NGHGIs, research groups and international institutions produce estimates of national GHG emissions, with two 

kind of approaches: atmospheric inversions (top-down, TD) and GHG inventories based on the same principle as 140 

NGHGI but using activity and/or emissions factors from (partially) different sources (bottom-up, BU). 

The two approaches (BU and TD) provide useful insights on emissions from two different point of view. 

First, TD approaches act as an additional quality control tool for BU and NGHGI approaches, and facilitates a deeper 

understanding of the processes driving changes in different elements of GHG budgets. Second, NGHGIs cover 

regularly only a subset of countries (Annex I), and it is therefore necessary to construct BU estimates independently 145 

for all countries. Furthermore, while additional BU methods do not have prescribed standards like the IPCC 

Guidelines, independent BU methods can draw on different input data, or can provide estimates at higher-sectoral 

resolution, and therefore add complementary information to help quality control NGHGIs and help inform climate 

mitigation policy processes. Additionally, BU estimates are needed as input for TD estimates. As there is no formal 

guideline to estimate uncertainties in TD or BU approaches, uncertainties are usually assessed from the spread of 150 

different estimates within the same approach, though some groups or institutions report uncertainties for their 

individual estimates using a variety of methods, for instance, by performing sensitivity tests (Monte Carlo approach) 

on input data parameters. However, this can be logistically and computationally difficult when dealing with complex 

process-based models. 

Despite the important insights gained from complementary BU and TD emission estimates, it should be noted 155 

that comparisons with the official reported is not always straightforward. BU estimates often share common 

methodology and input data, and through harmonization, structural differences between BU estimates and NGHGIs 

can be bridged. However, the use of common input data, albeit to varying extents, restricts the independence between 

the datasets and, from a verification perspective, may limit the conclusions drawn from the comparisons. On the other 
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hand, TD estimates are constrained by independent atmospheric observations and can serve as an additional, almost-160 

fully independent quality control for NGHGIs. Nonetheless, structural differences between NGHGIs (what sources 

and sinks are included, and where and when emissions/removals occur) and the actual fluxes of GHGs to the 

atmosphere must be factored in to the comparison of estimates. While NGHGIs go through a central QA/QC review 

process, the IPCC procedures do not incorporate mandatory large-scale observation-derived verification. 

Nevertheless, the individual countries may use atmospheric data and inverse modelling within their data quality 165 

control, quality assurance and verification processes, with expanded and updated guidance provided in chapter 6 of 

the 2019 Refinement of IPCC 2006 Guidelines (IPCC, 2019). So far, only a few countries (e.g. Switzerland, UK, New 

Zealand and Australia) have used atmospheric observations to constrain national emissions and documented these 

verification activities in their national inventory reports (Bergamaschi et al., 2018).  

A key priority in the current policy process is to facilitate the 5 yearly Global Stocktakes (GSTs) of the Paris 170 

agreement, the first of which is in 2023, and to assess collective progress towards achieving the near- and long-term 

objectives, considering mitigation, adaptation and means of implementation. The GSTs are expected to create political 

momentum for enhancing commitments in Nationally Determined Contributions (NDCs) under the Paris Agreement. 

Though the modalities of the GSTs implementation are not clear, the key component of this process will be the NGHGI 

reporting by countries under the Enhanced transparency framework of the Paris Agreement. Under the framework, 175 

emissions reporting will move away from the differential Annex I and non-Annex I reporting requirements and 

become more harmonized across Parties. Non-Annex I parties will be required to follow the 2006 IPCC guidelines 

and provide regular (biennial) national GHG inventory reports to the UNFCCC, alongside developed countries, that 

will continue to submit their inventories on an annual basis. Some developing countries will face challenges to 

construct and subsequently update their NGHGIs and meet the more-stringent reporting requirements. 180 

The work presented in this paper covers dozens of distinct datasets and models, in addition to the individual 

country submissions to the UNFCCC of the EU Member States and the UK. As Annex I Parties, the NGHGIs of the 

EU Member States and the UK are consistent with the general guidance laid out in IPCC (2006) yet still differ in 

specific approaches, models, and parameters, in addition to differences underlying activity datasets. A comprehensive 

investigation of detailed differences between all datasets is beyond the scope of this paper, though systematic analyses 185 

have been previously made for specific sectors (e.g. agriculture Petrescu et al., 2020) and by the Global Carbon Project 

CH4 and N2O syntheses (Saunois et al., 2020 and Tian et al., 2020). The focus of this paper is on updates of the 

information from Petrescu et al., 2021a discussing whenever needed the changes in terms of emissions and trends. 

The data from Petrescu et al., 2021a is labeled as v2019, while the latest results are labeled v2020 and v2021 

respectively. Except for one on N2O, the global inversions did not provide an update for v2021, and, therefore, the 190 

earlier results are incorporated into this synthesis. 

As this is the most comprehensive comparison of NGHGIs and research datasets (including both TD and BU 

approaches) for the European continent to date, the focus of the paper is on improvement of estimates in the most 

recent version in comparison with the previous one, changes in the uncertainty estimates and identification of the 

knowledge gaps and added value of the updated data sets for policy making. Official anthropogenic NGHGI emissions 195 

were compared with research datasets, including necessary harmonization of the latter on total emissions to ensure 

https://doi.org/10.5194/essd-2022-287
Preprint. Discussion started: 2 September 2022
c© Author(s) 2022. CC BY 4.0 License.



6 
 

consistency. Differences and inconsistencies between emissions were analyzed, and recommendations were made 

towards future evaluation of NGHGI data. While NGHGI include uncertainty estimates, individual spatially 

disaggregated research datasets of emissions often lack quantification of uncertainty. Here, the median4 and 

minimum/maximum (min/max) range of different research products of the same type were used in this work to get a 200 

first estimate of uncertainty. 

2. CH4 and N2O data sources and estimation approaches 

 

The CH4 and N2O emissions in the EU27+UK from inversions and anthropogenic emissions inventories from 

various BU approaches covering specific sectors were analyzed. The data (Table 2) span the period from 1990 to 205 

2020, with some of the data only available for shorter time periods. The estimates are available both from peer-

reviewed literature and from unpublished research results from the VERIFY project (Table 1 and Appendix A) and in 

this work they are compared with NGHGIs reported in 2021 (time series for 1990-2019). Data sources are summarized 

in Table 2 with the detailed description of all products provided in Appendix A1-A3. 

For both CH4 and N2O BU approaches, inventories of anthropogenic emissions covering all sectors (EDGAR 210 

v6.0 and GAINS) and models and inventories limited to agriculture (CAPRI, FAOSTAT, DayCent, ECOSSE) were 

used. For CH4 biogeochemical models of natural peatland emissions (JSBACH-HIMMELI), and lakes and reservoirs 

emissions (Lauerwald et al., 2019; Maisonnier et al., in prep.), as well as updated data for inland waters (rivers, lakes 

and reservoirs; Lauerwald et al., in prep.) and updated data for total geological emissions (Etiope et al., 2019) were 

used. Emissions from gas hydrates and termites are not included as they are close to zero in the EU27+UK (Saunois 215 

et al., 2020). Anthropogenic NGHGI CH4 emissions from the LULUCF sector are very small for EU27+UK (3 % in 

2019 including biomass burning) (section 2.2). 

TD approaches include both regional and global inversions, the latter having a coarser spatial resolution. 

These estimates are described in section 2.3. 

For N2O emissions, the same global BU inventories as for CH4, natural emissions from inland waters (rivers, 220 

lakes and reservoirs) (RECCAP2 Lauerwald et al., in prep) were used, which did not change with respect to Petrescu 

et al., 2021a. In this study, about 66 % of the N2O emitted by Europe’s natural rivers are considered anthropogenic 

indirect emissions, caused by leaching and run-off of N-fertilizers from the agriculture sector. One important update 

is the inclusion of estimates of natural N2O emissions from soils simulated with the O-CN model (Zaehle et al., 2011). 

These emissions are derived from model simulations in which land-use and atmospheric CO2 remain constant, but 225 

climate varies through to 2020. These estimates are considered to be closer to what background natural N2O emissions 

would be present day, so they were used for subtraction from outputs of inversions (as it has a reasonable 

representation of the inter-annual variability (IAV)). The TD N2O inversions include one regional inversion 

FLEXINVERT and three global inversions (Friedlingstein et al., 2019; Tian et al., 2020, Patra et al., 

2022).Agricultural sector emissions of N2O were presented in detail by Petrescu et al., 2020. In this current study, 230 

 
4
 The reason for using median instead of mean for the ensembles is because there is a large spread between global inversions and we don't want 

to be biased by outliers/extremes. 
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CAPRI and ECOSSE models and FAO provided updated  emissions , with the latter additionally covering non-CO2 

emissions from biomass burning as a contribution to LULUCF. Fossil fuel related emissions and industrial emissions 

were obtained from GAINS (see Appendix A1). Table A2 in Appendix A presents the methodological differences of 

the current study with respect to Petrescu et al., 2020 and Petrescu et al., 2021a. 

 235 

Table 1: Sectors included in this study and data sources providing estimates for these sectors. 

Anthropogenic  (BU)5 

CH4 and N2O 

Natural (BU)6 CH4 Natural** (BU) N2O TD (CH4 and N2O) 

1. Energy (NGHGI, 

GAINS, EDGAR 

v6.0) 

 

 
 No sectoral split – total 

emissions 

FLExKF (CAMSv19r); 

TM5-4DVAR; 

FLEXINVERT; 

CTE-CH4 

InGOS inversions 
GCP-CH4 2019 

anthropogenic partition 

from inversions 
GCP-CH4 2019 

Natural partition from 

inversions 

GN2OB 2019 

CHIMERE 

InTEM NAME (only for 

UK) 

2. Industrial Products 

and Products in Use 

(IPPU) (NGHGI, 

GAINS, EDGAR 

v6.0) 

3. Agriculture* 

(NGHGI, CAPRI, 

GAINS, EDGAR v6.0, 

FAOSTAT, ECOSSE 

and DayCent (only for 

N2O) 

4. LULUCF total 

emissions (NGHGIs 

Fig. 1,2,4,6, B1a for 

CH4 and Fig. 10, 11, 14 

and B1b for N2O) 

5. Waste (NGHGI, 

GAINS, EDGAR v6.0) 

 Peatlands, mineral soils, 

inland waters (lakes, rivers 

and reservoirs)  and 
geological fluxes 

(JSBACH-HIMMELI, 

inland water RECCAP2 

estimate, 

Rosentreter_et_al, Etiope 

et al., 2019) with updated 

activity (this study), 

biomass burning 

GFEDv4.1 

Inland water (lakes,  rivers 

and reservoirs) fluxes 

(inland water RECCAP2 

estimate), biomass 

burning GFEDv4.1, pre-

industrial natural soil 

emissions (O-CN) 

* Anthropogenic (managed) agricultural soils can also have a level of natural emissions. 

**Natural soils (unmanaged) can have both natural and anthropogenic emissions. 

 

The units used in this paper are metric tonne (t) [1kt = 109 g; 1Mt = 1012g] of CH4 and N2O. The referenced 240 

data used for the figures’ replicability purposes are available for download at https://doi.org/10.5281/zenodo.6992472 

 
5
 For consistency with the NGHGI, here we refer to the five reporting sectors as defined by the UNFCCC and the Paris Agreement decision 

(18/CMP.1),the IPCC Guidelines (IPCC, 2006), and their Refinement (IPCC, 2019a), with the only exception that the latest IPCC Refinement 
groups together Agriculture and LULUCF sectors in one sector (Agriculture, Forestry and Other land Use - AFOLU). 
6
 The term natural refers here to unmanaged natural CH4 emissions (peatlands, mineral soils, geological, inland waters and biomass burning) not 

reported under the UNFCCC LULUCF sector. 
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(Petrescu et al., 2022). Upon request, the codes necessary to plot the figures in the same style and layout can be 

provided. The focus is on EU27+UK emissions.  In the VERIFY project, an additional web tool was developed which 

allows for the selection and display of all plots shown in this paper (as well as the companion paper on CO2), not only 

for the EU Member States and UK but for a total of 79 countries and groups of countries in Europe (Table A1, 245 

Appendix A). The data, located on the VERIFY project website: 

http://webportals.ipsl.jussieu.fr/VERIFY/FactSheets/, is free and can be accessed upon registration. 

 

2.1. CH4 and N2O anthropogenic emissions from NGHGI 

Anthropogenic CH4 emissions from the four UNFCCC sectors (excluding LULUCF) were grouped together. 250 

Anthropogenic CH4 emissions in 2019 account for 17.1 Tg CH4 yr-1 and represent 10.5 % of the total EU27+UK 

emissions (in CO2e , GWP 100 years, IPCC AR47). CH4 emissions are predominantly related to agriculture (9.2 Tg 

CH4 yr-1 ± 0.8  Tg CH4 yr-1) or 53.8 % in 2019 (52.5 % in 2018) of the total EU27+UK CH4 emissions. Anthropogenic 

NGHGI CH4 emissions from the LULUCF sector are very small for EU27+UK e.g. 0.5 Tg CH4 yr-1 or 3 % in 2019, 

including emissions from biomass burning. 255 

Regarding CH4 emissions from wetlands, following the recommendations of the 2013 IPCC Wetlands 

supplement (IPCC, 2014) only emissions from managed wetlands are reported by Parties. According to NGHGI data 

between 2008 and 2018, managed wetlands in the EU27+UK for which emissions were reported under LULUCF 

(CRF table 4(II) accessible for each EU27+UK country8) represent one fourth of the total wetland area in EU27+UK 

(G. Grassi, EC-JRC, pers. comm.) and their emissions summed up in 2019 to 0.1 Tg CH4 yr-1. 260 

Anthropogenic N2O emissions (excluding LULUCF) in 2019 account for 0.8 Tg N2O yr-1 and represent 6.2 

% of the total EU27+UK emissions in CO2eq. N2O emissions are predominantly related to agriculture (0.6 Tg N2O yr-

1 or 73.0 % in 2019 (73.5 % in 2018) of the total EU27+UK (including LULUCF+BB) N2O emissions) but are also 

found in the other sectors (Tian et al. 2020). In addition, N2O has natural sources, which are defined as the pre-

industrial background emissions before the use of synthetic N-fertilizers and intensive agriculture, and derive from 265 

natural processes in soils but also in lakes, rivers and reservoirs (Lauerwald et al., in prep, Maavara et al., 2019; 

Lauerwald et al., 2019; Tian et al., 2020). 

 

2.2. CH4 and N2O anthropogenic and natural emissions from other bottom-up estimates 

 270 

Data from five global data sets and models of CH4 and N2O anthropogenic emissions inventories were used, 

namely: CAPRI, DayCent, ECOSSE, FAOSTAT, GAINS and EDGAR v6.0 (Table 3). These estimates are not 

completely independent from NGHGIs (see Figure 4 in Petrescu et al., 2020) as they integrate their own sectorial 

modelling with the UNFCCC data (e.g., common activity data and IPCC emission factors) when no other source of 

information is available. The CH4 biomass and biofuel burning emissions are included in NGHGI under the UNFCCC 275 

 
7 IPCC AR4 GWP 100 values are still used by the Member States in their NGHGI reporting to the UNFCCC. 
8https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-

annex-i-parties/national-inventory-submissions-2019 
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LULUCF sector, although they are identified as a separate category by the Global Carbon Project CH4 budget 

synthesis (Saunois et al., 2020). For both CH4 and N2O, CAPRI (Britz and Witzke, 2014; Weiss and Leip, 2012) and 

FAOSTAT (FAO, 2021) report only agricultural emissions. DayCent and ECOSSE report only emissions for 

agriculture N2O. Out of all BU inventories, only CAPRI reported new uncertainties for 2014, 2016 and 2018, while 

values for EDGARv6.0 were the same (Solazzo et al., 2021) as those reported in Petrescu et al., 2021a. 280 

In this study, natural CH4 emissions are included under the category “peatlands” and “other natural 

emissions”, the latter including geological emissions, biomass burning emissions and two estimates of inland waters 

(rivers, lakes and reservoirs). One inland water estimate comes from “process-based models” and is based on the 

Rosentreter et al., (2021) with ranges from Bastviken et al., (2011) and Stanley et al., (2016) and the second represent 

an upscaled estimate for inland waters from the RECCAP2 project (Lauerwald et al., in prep). 285 

For peatlands and mineral soils, the JSBACH-HIMMELI framework was used. Additionally, the ensemble 

of thirteen monthly gridded estimates of peatland emissions based on different land surface models as calculated for 

Saunois et al. (2020) were used as described in Appendix B2. Geological emissions were initially based on the global 

gridded emissions from Etiope et al. 2019 and previously estimated to be 1.3 Tg CH4 yr−1 (Petrescu et al., 2021a). For 

this study these emissions were recalculated, using more detailed input data related to the activity, i.e., a more precise 290 

estimate of the continental oil-gas field area (which determines the potential area of microseepage) and offshore 

seepage area (Appendix A2) and now account for 3.3 Tg CH4 yr
−1

 (0.9 Tg CH4 yr
−1

 from offshore marine seepage 

and 2.4 Tg CH4 yr
−1

 onshore). This rescaled geological source represent the second largest natural component 

accounting for 42 % of the total EU27+UK natural CH4 emissions. The upscaled inland waters, (rivers, lakes,  and 

reservoirs, based on Lauerwald et al., in prep) are the largest component of natural emissions (3.3 Tg CH4 yr-1  and 295 

ranging from 2.7 Tg CH4 yr-1 to 4.3 Tg CH4 yr-1) and account for 44 %. The remaining 14 % emissions are attributed 

to peatlands, mineral soils and biomass burning. Overall, in EU27+UK the natural emissions thus accounted for 8 Tg 

CH4 yr−1. Finally, It should be noted that to a small extent the CH4 natural emissions from waters are also due to an 

anthropogenic component, namely eutrophication following N-fertilizer leaching to inland waters. 

The N2O anthropogenic emissions from inventory datasets belong predominantly to agriculture and are 300 

associated to two main categories: 1) direct emissions from the agricultural sector where synthetic fertilizers and 

manure were applied, and from manure management, and 2) indirect emissions on non-agricultural land and water 

receiving anthropogenic N through atmospheric N deposition, leaching and run-off (also from agricultural land).  

Additional anthropogenic emissions result from industrial processes, in particular, adipic and nitric acid production, 

which are declining owing to the implementation of emission  abatement technologies. Other N2O emissions come 305 

from the wastewater treatment activities and fossil fuel combustion.  

In this study, “natural” N2O fluxes refer to emissions from inland waters (lakes, rivers and reservoirs, 

Maavara et al., 2019; Lauerwald et al., 2019, Lauerwald et al., in prep,) which include also lakes with dams. The other 

component is the natural N2O emissions from soils simulated with the O-CN model (Zaehle et al., 2011). Regarding 

the inland water emissions, more than half of the emissions (56 % globally, Tian et al., 2020, and 66 % for Europe 310 

this study) are due to enhanced N inputs from fertilizers, manure, sewage and, to a smaller extent, atmospheric N 
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deposition. However, emissions from natural soils in this study are considered as “anthropogenic” because, according 

to the country specific National Inventory Reports (NIRs), all land in EU27+UK is considered to be managed 

For both CH4 and N2O the natural biomass burning emissions from GFEDv4.1 (van der Werf et al., 2017) 

are included in Figs. 1, 4b, 5b, 9 and 13, while for CH4 only, biomass burning emissions from the GCP 2020 (Saunois 315 

et al., 2020) are included in Fig 6. 

 

2.3. CH4 and N2O emission data from inversions 

Atmospheric inversions optimize prior estimates of emissions and sinks through modeling frameworks that 

utilizes atmospheric observations as a constraint on fluxes. Emission estimates from inversions depend on the data set 320 

of atmospheric measurements and the choice of the atmospheric model, as well as on other inputs (e.g., prior emissions 

and their uncertainties). Inversion results were taken from original publications without evaluation of their 

performance through specific metrics (e.g., fit to independent cross validation atmospheric measurements 

(Bergamaschi et al., 2013, 2018; Patra et al., 2016)). Some of the inversions allow for explicit attribution to different 

sectors, while others optimize all fluxes in each grid cell and then attribute emissions to sectors using prior grid-cell 325 

fractions (see details in Saunois et al. 2020 for global inversions). 

For CH4, the same set of nine regional inversions and 22 global inversions as listed in Table 3 and presented 

in Petrescu et al., 2021a was used. While many different inversion have been used, it should be stressed that the 

variants are not completely independent of one another. Table B4, Appendix B in Petrescu et al., 2021a illustrates this 

by documenting to what extent the transport models, priors and atmospheric measurement data vary between the 330 

inversion datasets”. The subset of InGOS inversions (Bergamaschi et al., 2018a) belongs to a project where all models 

used the same atmospheric data over Europe covering the period 2006-2012. The global inversions from Saunois et 

al. 2020 were not updated for this work and cover a period until 2017. 

The regional inversions generally use both higher-resolution prior data and higher-resolution transport models, and 

e.g. TM5-JRC runs simultaneously over the global domain at coarse resolution and over the European domain at 335 

higher resolution, with atmospheric CH4 concentration boundary conditions taken from global fields. For CH4, 11 

global inversions use GOSAT for the period 2010-2017, eight global inversions use surface stations (SURF) from 

2000 to 2017, two global models use SURF since from 2010-2017 and one SURF from 2003-2017 (see “Appendix 4 

Table” in Saunois et al. 2020). All regional inversions use observations from SURF stations as a base of their emission 

calculation. 340 

Table 2: Data sources for CH4 and N2O emissions used in this study: 

Name CH4 N2O Contact / 

lab 

References Status compared to 

Petrescu et al., 2021a 

CH4 and N2O Bottom-up anthropogenic 

UNFCCC NGHGI 

(2021) CRFs 

CH4 emissions 

1990-2019 

N2O emissions 

1990-2019 

MS 

inventory 

agencies  

UNFCCC CRFs 

https://unfccc.int/process-

and-meetings/transparency-

updated 
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Yearly 

uncertaint

ies from 

UBA 

Vienna 

and-reporting/reporting-and-

review-under-the-

convention/greenhouse-gas-

inventories-annex-i-

parties/national-inventory-

submissions-2019 

EDGAR v6.0 CH4 sectoral 

emissions 

1990-2018 

N2O sectoral 

emissions 

1990-2018 

EC-JRC 

 

Crippa et al., 2019a 

Crippa et al., 2019 EU 

REPORT 

Janssens-Maenhout et al., 

2019 

Solazzo et al., 2020 (in 

review ACP) 

Updated 

CAPRI CH4 agricultural 

emissions 

1990-2014 and 

2016, 2018 

N2O agricultural 

emissions 

1990-2014 and 

2016, 2018 

EC-JRC 

 

Britz and Witzke, 2014 

Weiss and Leip, 2012 

Updated 

GAINS CH4 sectoral 

emissions 

1990-2015 

N2O sectoral 

emissions 

1990-2015 

(every five years) 

IIASA 

 

Höglund-Isaksson, L. 2017 

Höglund-Isaksson, L. et al., 

2020 

Winiwarter et al., 2018 

Not updated 

FAOSTAT CH4 agriculture 

and land use 

emissions 

1990-2019 

N2O agricultural 

emissions  

1990-2019 

FAO 

 

Tubiello et al. 2013 

FAO, 2015, 2020 

Tubiello, 2019 

 

 

Updated 

ECOSSE  Direct N2O 

emissions from 

agricultural soils 

2000-2020 

UNIABD

N 

 

Bradbury et al., 1993 

Coleman., 1996 

Jenkinson., 1977, 1987 

Smith et al., 1996, 2010a,b 

Updated 

DayCent  N2O emissions from 

direct agricultural 

soils 

avg. 2015-2019 

 

 

EC-JRC Orgiazzi et al., 2018 

Lugato et al., 2018, 2017 

Quemada et al., 2020 

Updated 

CH4 and N2O natural 
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JSBACH-HIMMELI CH4 emissions 

from peatlands and 

mineral soils 

2005-2020 

 FMI 

 

Raivonen et al., 2017 

Susiluoto et al., 2018 

Updated 

Non-wetland inland 

waters 

One average value 

for CH4 fluxes 

from rivers, lakes 

and reservoirs with 

uncertainty 

2010-2019 

One median 

upscaled value 

from RECCAP2 

analysis 

1990-2019 

One median N2O 

value for emissions 

from lakes, rivers, 

reservoirs from the 

RECCAP2 analysis 

1990-2019 

ULB 

 

Maisonnier et al., in prep., 

after Maavara et al., 2017, 

2019 and Lauerwald et al., 

2019 

Bastviken et al., 2011 

Stanley et al. 2016 

Rosentreter et al., 2021 

Lauerwald et al., in prep. 

Updated 

Geological emissions, 

(onshore and 

offshore)  

Global grid 

geological CH4 

emission model 

(2019) 

 Istituto 

Nazionale 

di 

Geofisica 

e 

Vulcanolo

gia 

(INGV) 

Etiope et al., 2019 and this 

work (updated activity data) 

 

updated 

GFED4.1 Biomass burning 

emissions 

2000-2020 

Biomass burning 

emissions 

2000-2020 

VU 

Amsterda

m 

van der Werf et al., 2017 new 

O-CN  Background natural 

N2O emissions from 

soils (model 

simulations in which 

land-use and atm. 

CO2 remain 

constant, but climate 

varies through to 

2020)  

MPI-BGC Zaehle et al., 2011 

Zaehle & Friend, 2010 

new 

CH4 and N2O inversions 

Regional inversions over Europe (high transport model resolution) 

FLExKF-CAMSv19r 

 

Total CH4 

emissions from 

inversions with 

uncertainty 

2005-2019 

 

 EMPA Brunner et al., 2012 

Brunner et al., 2017 

Background concentrations 

from CAMSv19r (Arjo 

Segers) 

Updated 
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TM5-4DVAR CH4 emissions 

from inversions, 

split into total, 

anthropogenic and 

natural 

2005-2018 

 EC-JRC Bergamaschi et al., 2018a Not updated 

FLEXINVERT CH4 total 

emissions from 

inversions 

2005-2018 

N2O total 

emissions, 

2005-2019 

NILU 

 

Thompson and Stohl, 2014 Updated for N2O 

CTE-CH4 Total CH4 

emissions from 

inversions for 

Europe with 

uncertainty 

2005-2018 

 FMI  Brühl et al., 2014 

Houweling et al., 2014 

Giglio et al., 2013 

Ito et al., 2012 

Janssens-Maenhout et al., 

2013 

Krol et al., 2005 

Peters et al., 2005 

Saunois et al., 2020 

Stocker et al., 2014 

Tsuruta et al., 2017 

Not updated 

InGOS inversions Total CH4 

emissions from 

inversions 

2006-2012 

 

 

 EC-JRC 

and 

InGOS 

project 

partners 

Bergamaschi et al., 2018a 

TM5-4DVAR: Meirink et 

al., 2008; Bergamaschi et al. 

2010; 2015 

TM5-CTE: Tsuruta et al., 

2017 

LMDZ-4DVAR: Hourdin 

and Armengaud, 1999; 

Hourdin et al., 2006 

TM3-STILT: Trusilova et 

al., 2010, Gerbig et al., 2003; 

Lin et al., 2003; Heimann 

and Koerner, 2003 

NAME: Manning et al. 2011; 

Bergamaschi et al., 2015 

CHIMERE: Berchet et al. 

2015a; 2015b;  Menut et al., 

2013; Bousquet et al., 2011\ 

COMET: Eisma et al., 1995; 

Vermeulen et al., 1999; 

Vermeulen et al., 2006 

Not updated 

Global inversions from the Global Carbon Project CH4 and N2O budgets (Saunois et al. 2020, Tian et al., 2020) 
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GCP-CH4 2019 

anthropogenic 

partition from 

inversions 

22 models for CH4 

inversions, both 

SURF and GOSAT 

2000-2017 

 LSCE and 

GCP-CH4 

contributo

rs 

Saunois et al., 2020 and 

model specific references in 

Appendix B, Table B4 

 

Not updated  

GCP-CH4 2019 

Natural partition from 

inversions 

22 models with 

optimized wetland 

CH4 emissions  

2000-2017 

 LSCE Saunois et al., 2020 and 

model specific references in 

Appendix B, Table B3 

Not updated 

GN2OB 2019  Inverse N2O 

emissions - 3 

Inversions PYVAR 

(CAMS-N2O) 

TOMCAT 

MIROC4-ACTM 

1998-2016 

GN2OB 

2019 and 

contributo

rs 

Thompson et al., 2019 

Tian et al., 2020 

Not updated 

 

For N2O, one regional inversion (FLEXINVERT) for the 2005-2019 period and three global inversions for 

the period 1998-2016 from Tian et al., (2020) and Thompson et al. (2019) were used as listed in Table 3. These 

estimates were not updated for this paper. These inversions are not completely independent from each other since 345 

most of them use the same input information (Appendix B3). The regional inversion uses a higher resolution 

atmospheric transport model for Europe, with atmospheric N2O concentration boundary conditions taken from global 

model fields. As all inversions produced total rather than anthropogenic emissions, emissions from soils (O-CN) and 

inland waters (lakes, rivers and reservoirs) estimated by Lauerwald et al., in prep were subtracted from the total 

emissions. Note that inland water emissions include anthropogenic emissions from N-fertilizer leaching accounting 350 

for 66 % of the inland water emissions in EU27+UK. In 2019, emissions from inland waters represented 1.4 % of the 

total UNFCCC NGHGI (2021) N2O emissions. 

The largest share of N2O emissions comes from agricultural soils (direct and indirect emissions from the 

applications of fertilizers, whether synthetic or manure) contributing in 2019 79 % of the total N2O emissions 

(excluding LULUCF) in EU27+UK. In Petrescu et al., 2021a, “Table B1c, Appendix B1” presented the allocation of 355 

emissions by activity type covering all agricultural activities and natural emissions, following the IPCC (2006) sector 

classification scheme. Each data product has its own particular way of grouping emissions, and does not necessarily 

cover all emissions activities. The main inconsistencies between process-based models and inventories are observed 

regarding activity allocation in the two models, ECOSSE and DayCent. ECOSSE only estimates direct N2O emissions, 

and does not estimate downstream emissions of N2O, for example indirect emissions from nitrate leached into water 360 

courses, which also contributes to an underestimation of total N2O emissions. Field burning emissions are also not 

included by most of the data sources. 
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3. Results and discussion 

3.1. Comparing CH4 emission estimates from different approaches 365 

 

3.1.1. Estimates of European and regional total CH4 fluxes 

Total CH4 fluxes from EU27+UK and five main regions in Europe: North, West, Central, East (non-EU) and 

South are presented in the paper. The countries included in these regions, which include countries outside the 

EU27+UK bloc, are all Annex I Parties to UNFCCC and are listed in Appendix A, table A. Figure 1 shows the total 370 

CH4 fluxes from the NGHGIs for base year 1990, as well as five-year mean values for the 2011-2015 and 2015-2019 

periods. We use the five-year periods as an exercise for what could be achieved in 2023, the year of the first GST, 

when for most parties to the Convention the reported inventories will include 2021. Given that the GST is only 

repeated every five years, a five-year average is clearly of interest. 

The total NGHGI estimates include emissions from all sectors (excluding LULUCF) and are plotted and 375 

compared to fluxes from global datasets, BU models and inversions. There is a good agreement noted in absolute total 

values between inventories, as well as between regional and global inversion ensembles, but uncertainties (min/max 

ranges) are large. This match can be explained by interdependencies in input data (AD and EFs) for the BU estimates 

(Petrescu et al., 2020) and similar prior information used by inversions (Petrescu et al., 2021a). In Figure 1, 

hatched transparent bars represent the 2011-2015 mean while colour-filled bars represent the new updated 2015-2019 380 

mean values. For GAINS and some inversions that do not have annual estimates for all five years, only the average of 

available years is calculated (e.g., 2015 for GAINS). 

For all study regions, 2019 CH4 emissions decreased by 24 % (Southern Europe) to 57 % (Eastern Europe), 

with respect to NGHGI 1990 values; and for EU27+UK emissions decreased by 39 %. This is encouraging in the 

context of meeting EU total GHG commitments under the Paris Agreement (55% decrease in 2030 compared to 1990 385 

levels and reaching carbon neutrality by 2050). This reduction will need to be achieved by strong reductions in top 

emitter sectors (e.g. Agriculture) and compensated by sinks in the LULUCF sector. It also shows that not only at 

EU27+UK level, but also at regional European level, the emissions from BU (anthropogenic and natural) and TD 

estimates agree in magnitude with reported NGHGI data despite the high uncertainty associated with the TD estimates. 

This uncertainty is represented here by the variability in the model ensembles and denotes the range (min and max) 390 

of estimates within each model ensemble. The comparison of TD to anthropogenic estimates (Fig. 1), suggests that 

the total CH4 flux is dominated by natural emissions (i.e., Northern Europe) although comparison with EDGAR v6.0 

would indicate that anthropogenic emissions are dominant (e.g. Northern, Central and Western Europe). 
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 395 

Figure 1: Five-year means (2011-2015 and 2015-2019)in total CH4 emission estimates (excluding LULUCF) for 

EU27+UK and five European regions (North, West, Central, South and East non-EU). Eastern European region does 

not include European Russia. Northern Europe includes Norway. Central Europe includes Switzerland. The data comes 

from UNFCCC NGHGI (2021) submissions (grey), which are plotted with respective base year 1990 (black star) 

estimates, two inventories (GAINS and EDGAR v6.0), natural unmanaged emissions (sum of peatland, geological,  400 

inland waters (Reccap2) and GFEDv4.1 biomass burning emissions) and three inversion estimates: one regional 

European inversion (excluding InGOS unavailable for 2013-2015) and GOSAT and SURF ensemble estimates from 

global inverse models. The relative error on the UNFCCC value represents the NGHGI (2021) reported uncertainties 

computed with the error propagation method (95% confidence interval) and gap-filled to provide respective 

estimates for each year. Uncertainty for EDGAR v6.0 was calculated for 2015 based on the 95 % confidence interval 405 

of a lognormal distribution (Solazzo et al., 2021). 

The EDGAR v6.0 updated estimates for Northern Europe remain two-times higher than NGHGI and GAINS 

ones. The EDGAR approach is to use a globally harmonised methods and sources of data, which means that country-

specific detail is often replaced with global averages. In some countries and for some sectors or gases, these 

assumptions lead to huge differences. For example, fugitive emissions of methane in the oil and gas sector are 410 

estimated based on the level of production of oil and gas. In the case of Norway this ignores the substantial effects of 

regulation on reducing such fugitive emissions. Instead, EDGAR’s methane emissions estimates for Norway follow 

the pattern of its total production of oil and gas (Olhoff et al., 2022). For Eastern Europe we note that all estimates 

decreased compared to the previous five year mean and the BU anthropogenic estimates remain similar in magnitude 

to the TD estimates of total CH4 emissions. One possible explanation is that for TD estimates (i.e. using atmospheric 415 
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inversions) the fluxes are better constrained by a larger number of observations. Where there are fewer or no 

observations, like in Eastern Europe, the fluxes in the inversion will stay close to the prior estimates, since there is 

little or no information to adjust them. 

In line with Bergamaschi et al., 2018a the potentially significant contribution from natural unmanaged 

sources (peatlands, mineral soils, geological and inland waters (RECCAP2)), which for EU27+UK accounted in 2019 420 

for  8 Tg CH4 yr-1 (Figure 1) can be highlighted. Taking into account these natural unmanaged CH4 emissions, and 

adding it to the range of the BU anthropogenic estimates (22 Tg CH4 yr-1 (NGHGI) – 26 Tg CH4 yr-1  (EDGARv6.0)) 

improves agreement with the TD estimates. BU estimates become consistent with the lower range of the regional total 

TD estimates  (32 Tg CH4 yr-1 (TM5_JRC)– 41 Tg CH4 yr-1 (FLEXINVERT)) and show even better agreement in 

absolute values with the global median SURF (24 Tg CH4 yr-1) and GOSAT (23 Tg CH4 yr-1) inversions. The broad 425 

consistency between the TD and BU estimates could be interpreted in two ways: 1) BU and TD regional estimates are 

similar given the large uncertainties and spread in TD results, or 2) regional TD higher estimates potentially indicate 

shortcomings of BU inventories, the latter interpretation being more consistent with the general atmospheric 

developments (WMO, 2021). 

Is it notable to highlight that the regional TD total is considerably higher for all regions and EU27+UK total 430 

and by considering this estimate the best to date total estimate for the whole Europe, including all sources and sinks, 

this would infer a missing of 20 to 30 % of CH4 emissions from the other BU approaches. 

 

3.1.2. NGHGI sectoral emissions and decadal changes 

According to the UNFCCC (2021) NGHGI estimates, in 2019 the EU27+UK emitted GHGs totaling 3.7 Gt 435 

CO2e (including LULUCF), of this total, CH4 emissions accounted for 11.8 % (0.4 Gt CO2e or 17.5 Tg CH4 yr-1± 2.2 

Tg CH4 yr-1 ) (Appendix, B2, Figure B2a) with France, UK and Germany together contributing 37 % of total CH4 

emissions. 

The data in Figure 2 shows anthropogenic CH4 emissions and their change from one decade to the next, from 

UNFCCC NGHGI (2021), with the split between the different sectors. In 2019, NGHGI report CH4 from agricultural 440 

activities to be 52.4 % (± 8.7 %) of the total EU27+UK CH4 emissions, followed by emissions from waste, 27.5 % (± 

22.5 %). The large share of agriculture in total anthropogenic CH4 emissions also holds at global level (IPCC Special 

Report on Climate Change and Land (SRCCL), 2019). Between the 1990s and the 2000s, the net 17.6 % reduction 

originates largely from the energy and waste sectors, with only negligible contributions to emission trends and levels 

from IPPU (metal and chemical industry) and LULUCF. Between the 2000s and 2010-2019, a further reduction by 445 

16.5 % is observed  with the waste sector as the largest contributor to this reduction. The two largest sectors 

contributing to total EU27+UK emission are agriculture and waste, but energy and waste are showing the higher 

reductions over the last decade. 

The reduction observed in the waste sector coincide with the adoption of the first EU methane strategy 

published in 1996 (COM(96) 557, 1996). EU legislation addressing emissions in the waste sector may have been 450 

successful to trigger the largest reductions. Directive 1999/31/ EC on the landfill (also referred to as the Landfill 

Directive) required the Member States to separate waste, minimizing the amount of biodegradable waste disposed 
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untreated in landfills and to install landfill gas recovery at all new sites. Based on the 1999 Directive, the new 

2018/1999 EU Regulation on the Governance of the Energy Union requires the European Commission to propose a 

strategic plan for methane, which will become an integral part of the EU’s long-term strategy. In the waste sector, the 455 

key proposal included the adoption of EU legislation requiring the installation of methane recovery and use systems 

at new and existing landfills. Other suggested actions included measures aimed at the minimization, separate collection 

and material recovery of organic waste (Olczak and Piebalgs, 2019). 

 

 460 

Figure 2: The contribution of changes (%) in CH4 anthropogenic emissions in the five sectors to the overall change 

in decadal mean for the EU27+UK, as reported to UNFCCC. The top plot shows the previous NGHGI data from 

Petrescu et al., 2021a and bottom plot illustrates data from UNFCCC NGHGI (2021). The three stacked columns 

represent the average CH4 emissions from each sector during three periods (1990-1999, 2000-2009 and 2010-2019) 

and percentages represent the contribution of each sector to the total reduction percentages (black arrows) between 465 

periods. 
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3.1.3. NGHGI estimates compared with bottom-up inventories 

The data in Figure 3 presents the total anthropogenic CH4 emissions from four BU inventories and UNFCCC 

NGHGI (2021) submissions excluding emissions from LULUCF, which was identified to a non-significant contributor 470 

(Figure 2). According to NGHGI, in 2019 anthropogenic CH4 emissions from the four sectors (Table 1, excluding 

LULUCF) amounted to 17.1 Tg CH4 yr-1, representing 10.5 % of the total EU27+UK GHG emissions in CO2eq.. 

Figure 3a shows EDGARv6.0 and GAINS trends being consistent with the ones of NGHGI (excluding LULUCF), 

although while GAINS and NGHGI agree in terms of emissions levels. EDGARv6.0estimates are consistently higher 

estimates (~19 %) than NGHGI. In contrast to the previous version, EDGAR v4.3.2, which was found by Petrescu et 475 

al. 2020 to be consistent with NGHGI (2018) data, EDGAR v6.0 reports higher estimates then EDGARv5.0 (~8% 

higher) and falls outside the 9.6 % UNFCCC uncertainty range. Over the 1990-2019 period, the trends in emissions 

agree well between the two BU data sets and NGHGI, showing linear trend reductions of 40 % for EDGAR v6.0 and 

36 % for GAINS and NGHGIs. The average yearly reduction trend was 2 % yr-1 for all three data sources . 

 480 

 

Figure 3: Total annual anthropogenic CH4 emissions (excluding LULUCF) for the EU27+UK over time. The top plot 

presents previous data synthesized in Petrescu et al., 2021a while bottom plot data synthesized by the current study: 
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a) EU27+UK and total sectoral emissions from: b) Energy, c) Industry and Products in Use (IPPU), d) Agriculture 

and e) Waste from UNFCCC NGHGI (2021) submissions compared to global bottom-up inventory models for 485 

agriculture (CAPRI, FAOSTAT) and all sectors excl. LULUCF (EDGAR v6.0, GAINS). CAPRI reports one estimate 

for Belgium and Luxembourg. The relative error on the UNFCCC value represents the UNFCCC NGHGI (2021) 

Member States reported uncertainties computed with the error propagation method (95% confidence interval) that 

were gap-filled and provided for every year. The uncertainty for EDGARv6.0 is the same as that of v5.0 and calculated 

for 2015 as min/max values for the total and each sector (Solazzo et al., 2021) and represents the 95 % confidence 490 

interval of a lognormal distribution. The mean column represents the common overlapping periods between datasets:  

1990-2015 for Total EU27+UK, Energy, Agriculture and Waste, 1990-2018 for IPPU and 1990-2014 for CAPRI. 

Last years of the time series of the respective datasets are 2018 (EDGAR v6.0, CAPRI) 2019 (FAOSTAT, UNFCCC) 

and 2015 (GAINS). After 2014 CAPRI delivered estimates for two additional years, 2016 and 2018 as well as 

uncertainties for 2014 and 2018 (25.1 %) and 2016 (25.2 %). 495 

Sectoral time series of anthropogenic CH4 emissions (excluding LULUCF) and their means are shown in 

Figures 3b,c,d and e. For the energy sector (Figure 3b), both EDGAR v6.0 and GAINS agree in trends with the NGHGI 

thanks to updated methodology that derives emission factors and accounts for country-specific information about 

associated petroleum gas generation and recovery, venting and flaring (Höglund-Isaksson, 2017). After 2005, GAINS 

reports consistently lower emissions than UNFCCC due to a phase-down of hard coal production in Czech Republic, 500 

Germany, Poland and the UK, a decline in oil production in particular in the UK, and declining emission factors 

reflecting reduced leakage from gas distribution networks as old town gas networks are replaced. A difference in tiers 

is also one reason for the differences (Petrescu et al., 2020). 

The consistently higher estimates (+6 % compared to the UNFCCC mean) of EDGAR v6.0 might be due to 

the use of default emission factors for oil and gas production based on data from the US (Janssens-Maenhout et al. 505 

(2019). There are several other reasons that could be the cause for the differences, including the use of Tier 1 emission 

factors for coal mines, assumptions for material in the pipelines (in the case of gas transport) and the activity data). 

Also EDGAR v6.0, similar to the previous estimates from EDGARv5.0 uses the gas pipeline length as a proxy for the 

activity data however this may not be appropriate for the case of the official data, which could consider the total 

amount of gas being transported or both methods according to the countries. Using pipeline length may overestimate 510 

the emissions because the pipeline is not always at 100% capacity thus a larger amount of methane is assumed to be 

leaked (Rutherford et al., 2021). For coal mining, emissions are a function of the different types of processes being 

modelled. 

The IPPU sector (Figure 3c), which has only a small share of the total emissions, is not included in GAINS, 

while EDGAR v6.0 estimates are less than half of the emissions reported by NGHGI 2021 in this sector. The 515 

discrepancy for this sector has negligible impact on discrepancy for the total CH4 emission. However, we identified 

that the low bias of EDGAR v6.0 could be explained by fewer activities included in EDGAR v6.0 (e.g. missing 

solvent, electronics and other manufacturing goods) accounting for 5.5 % of the total IPPU emissions in 2015 reported 

to UNFCCC. The reason for the remaining difference could be explained by the allocation of emissions from auto-
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producers9 in EDGAR v6.0 to the Energy sector (following the 1996 IPCC guidelines), while in NGHGI they are 520 

reported under the IPPU sector (following the 2006 IPCC guidelines). 

As CAPRI and FAOSTAT report only emissions from agriculture, they are included only in Fig. 3d. The data 

(EDGAR v6.0, GAINS, CAPRI and FAOSTAT) shows good agreement, with CAPRI at the lower range of emissions 

(Petrescu et al., 2020) and on average 3% lower than that of  NGHGI, and EDGAR v6.0 at the upper range. The reason 

for EDGAR v6.0 having the highest estimate (contrary to Petrescu et al., 2020 where NGHGI were the highest and 525 

EDGAR v4.3.2 was the second highest) is likely due to the activity data updates in EDGAR v6.0 based on FAOSTAT 

values, compared to EDGAR v4.3.2. When looking at the time series mean, EDGAR v6.0, GAINS and FAOSTAT 

show 5 % higher emissions than that of NGHGI. The three BU estimates and NGHGI estimates show similar mean 

values likely due to the use of similar activity data and emission factors (EFs) (i.e. Figure 4 in Petrescu et al., 2020). 

The updates submitted by CAPRI, for the years 2014, 2016 and 2018 match the NGHGI emission estimates and have 530 

uncertainties of 21 %. Compared to the previous version of CAPRI used in Petrescu et al., 2021a, the new runs report 

lower CH4 emissions. Compared to previous results, in the last version some changes have been implemented in the 

last version (e.g. introduction of slope and altitude limits based on LUCAS10, improved distribution of grazing 

livestock etc.). The main activity triggering the differences was the emissions from enteric fermentation. Statistical 

information on most agricultural data required for the estimation of CH4 and N2O emissions are not available at high 535 

spatial (regional) and temporal (annual since 1990) resolution. Therefore, the CAPRI model features a module that 

provides generic data at regional level (CAPREG) and additionally a module that also estimates feed distribution and 

GHG emissions at the required resolution for VERIFY (CAPINV). As indicated in an internal VERIFY report (Leip 

et al., 2019), the results of the CAPINV module were scrutinized and shortcomings were identified. These concern 

mainly the distribution of feed, which is one of the most important parameter for CH4 emissions from enteric 540 

fermentation, and manure excretion and subsequent GHG emissions. Other updates included addition of some regional 

input data (sources: FAOSTAT and EUROSTAT). 

For the waste sector (Figure 3e) EDGAR v6.0 shows consistently higher estimates compared to the NGHGI data, 

while GAINS has higher emissions than the NGHGI after 2000 (mean 1990-2015 value 6% higher than NGHGI 

emissions). The two inventories, EDGAR v6.0 in its 2020 update for landfills, and GAINS used an approach based 545 

on the decomposition of waste into different biodegradable streams, with the aim of applying the methodology 

described in the 2019 Refinement of the 2006 IPCC guidelines and the IPCC waste model (IPCC, 2019) using the 

First-Order-Decay (FOD) method. The main differences between the two datasets come from i) sources for total waste 

generated per person, ii) assumption for the fraction composted and iii) the oxidation. The two inventories may have 

used different strategies to complete the waste database when inconsistencies were observed in the EUROSTAT 550 

database or in the waste emissions trends in NGHGI. 

 

 
9
 auto-producers of electricity and heat: cogeneration by industries and companies for housing management (central heating and other services) 

(Olivier et al., 2017 PBL report) 
10 https://ec.europa.eu/eurostat/web/lucas 
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3.1.4. NGHGI estimates compared to atmospheric inversions 

European estimates from regional inversions 

 555 

Figure 4 compares TD regional estimates, NGHGI anthropogenic data for CH4 emissions and natural BU 

emissions. Figure 4a presents TD estimates of total emissions (anthropogenic and natural) from Petrescu et al., 2021a 

while Fig. 4b shows the current study with updated total TD estimates. Figs. 4c and 4d show estimates of 

anthropogenic emissions (Petrescu et al., 2021a and current study) calculated by subtracting the total natural emissions 

from the total TD emissions. 560 

 

 

Figure 4: a) and b) Comparison of total CH4 emissions for EU27+UK from four top-down regional inversions with 

UNFCCC NGHGI (grey) data and two estimates for inland waters (lakes_rivers_reservoirsprocess-based models, 

blue and upscaled emissions, cyan), peatlands and mineral soils(from JSBACH-HIMMELI, green), geological 565 

emissions (yellow) and biomass burning, (from GFEDv4.1, brown) as following: a) shows previous data from Petrescu 

et al., 2021a and b)current study; c)and d) comparison of anthropogenic CH4 emissions from four top-down regional 

inversions with UNFCCC NGHGI (grey) data as following: c) previous data from Petrescu et al., 2021a and d) current 

study. Anthropogenic emissions from these inversions are obtained by removing natural emissions and biomass 

burning from total TD CH4 emissions shown in Figure 4a,b. UNFCCC NGHGI (2021) reported uncertainties 570 

computed with the error propagation method (95% confidence interval) were calculated for each year of the time 

series and represents the gap-filled harmonized Member States reported uncertainty for all sectors (including 

LULUCF). The time series mean was computed for the common period 2005-2018 between datasets (excluding 

InGOS). 

 575 
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The TD estimates of European CH4 emissions in Figure 4b use four European regional models for 2005-2018 

period and an ensemble of five different inverse models (InGOS, Bergamaschi et al., 2015) for 2006-2012. 

For the 2005-2018 period (excluding InGOS), the four regional inversions give a total CH4 emissions mean of 36 (32-

42) Tg CH4 yr-1 compared to anthropogenic total of 20 Tg CH4 yr-1 in NGHGI (Fig. 4b). The large positive difference 

between TD and NGHGI suggests a potentially significant contribution from BU natural sources (peatlands, 580 

geological sources, inland waters and biomass burning), which for the same period are estimated at 8 Tg CH4 yr-1. 

However, it needs to be emphasized that natural wetland emission estimates have large uncertainties and show large 

variability in the spatial (seasonal) distribution of CH4 emissions but for Europe their inter-annual variability is not 

very strong (mean of 14 years from JSBACH-HIMMELI peatland emissions is 1.0 Tg CH4 yr-1). Overall, they do 

represent an important source, and could dominate the budget assessments in some regions such as Northern Europe 585 

(Figure 1). That TD and NGHGIs diverged in terms of both emissions levels and trends is certainly significant and 

potentially has implications for bottom-up and NGHGI estimates of CH4 emissions, if the discrepancies cannot be 

explained by natural fluxes alone. 

The geological emissions were recalculated based on the global grid model of Etiope et al (2019), using more 

precise “activity” data for EU27+UK (details in Appendix A2): the emission resulted to be 3.3 Tg CH4 yr-1,  i.e. 42 % 590 

of the total natural CH4 emissions in EU27+UK. Geological emissions are an important component of the EU27+UK 

emissions budget, but their temporal variability is unknown (Etiope and Schwietzke, 2019) and so their impact on 

climate warming cannot be predicted. 

The other natural sources of CH4 contribute as following: natural emissions from inland waters (based on 

Lauerwald et al., in prep, see Appendix A2) contribute 3.4 Tg CH4 yr-1, or 43 % of the total natural CH4 emissions; 595 

peatlands and mineral soils (Raivonen et al. 2017 and Susiluoto et al. 2018) account for 1.0 Tg CH4 yr-1, i.e. 13.4 % 

of the total natural CH4 emissions while biomass burning contributes only 0.6 % to the total CH4 natural emissions. 

Similar to peatlands, inland water emissions also remain highly uncertain. The compilation of emission estimates lead 

to a total flux that is 3.3 Tg CH4 yr-1 (min 2.7 Tg CH4 yr-1 and max 4.3 Tg CH4 yr-1) and about five times larger than 

the process-based model estimates for lakes+reservoirs and the spatially resolved flux for rivers (0.6 Tg CH4 yr-1 with 600 

min 0.2 and max 0.8 Tg CH4 yr-1) and about 25 % larger than the previous budget in Petrescu et al., 2021a (2.5 Tg 

CH4 yr-1), which ignored the contribution of rivers and relied on one observation-based estimate (extrapolation from 

late-summer data reported in Rinta et al. 2017) and four semi-empirical model assessments (Petrescu et al., 2021a). 

Interestingly, the new process-based estimate for natural lake+reservoirs CH4 emissions matches well the data-driven 

assessment by Rinta et al. (2017) for the late summer season, with a relative difference smaller than 5 %. The first 605 

approach synthesizes 15 average annual CH4 emissions fluxes for Europe that were rescaled to a consistent set of 

inland water surface area (Lauerwald et al., in prep.) and corrected for the effect of seasonal ice cover. 

Model results however also reveal a strong seasonal variability in CH4 emissions, with much lower fluxes 

during winter. This finding partly explains why the spatio-temporally resolved model for rivers results lead to 

significantly lower estimates than observation-based methods that do not capture well the temporal variability in lake 610 

CH4 emissions. 
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According to the IPCC 2006 guidelines (IPCC, 2006) CH4 emissions from wetlands are reported by the 

Member States to the NGHGI under the LULUCF sector and considered anthropogenic, if the wetlands in question 

are considered managed land. They are included in the total LULUCF values (Figure 1, 2, 4 and 6) and in 2019 615 

reported CH4 emissions from wetlands accounted for 0.1 Tg CH4 yr-1
. 

To quantify the anthropogenic CH4 component in the European TD estimates, the BU peatland emissions 

from the regional JSBACH-HIMMELI model and those from geological, inland water sources and biomass burning 

were subtracted from the total TD emissions (Fig. 4d). It remains however uncertain to perform these corrections due 

to the prior inventory data allocation of emissions to different sectors (e.g. anthropogenic or natural) used in inversions, 620 

which can induce uncertainty of up to 100 % if for example an inventory allocates all emissions to natural emissions 

and the correction is made by subtracting the natural emissions. All regional inversion anthropogenic estimates are 

higher compared to the UNFCCC NGHGI (2021), mean of 28 Tg CH4 yr-1 from inversions compared to 20 Tg CH4 

yr-1 from the NGHGIs.. Regarding trends, TD are stable except for CTE showing a linear decreasing trend up to 2015 

followed by an increase over the next three years, while NGHGIs and BU trends are declining. From this attempt we 625 

find that not many of the inversions showed the clear decline reported by the NGHGIs. As NGHGI emissions are 

dominated by anthropogenic fluxes and decline by almost 30% compared to 1990, a similar decline was expected in 

the corrected anthropogenic inversions. Further investigation into how well the NGHGIs reflect reality or how well 

the TD estimates capture the trends is clearly needed. Currently, in the UK NIR (https://unfccc.int/documents/273439) 

the national inversion system produced similar recent UK CH4 emission levels, but did not validate the large declining 630 

trend since 1990 that is estimated by the UK inventory. 

 

Spatial distribution of CH4 emissions from regional inversions 

A novelty in this study is represented by the new top-down estimates of CH4 fluxes were also calculated in 

this reporting period using the Community Inversion Framework (CIF) (Berchet et al. 2021). For CH4 (Figure 5), 635 

inversions using three atmospheric transport models (or model variants) were performed with the CIF, there were: i) 

the regional non-hydrostatic Eulerian model, CHIMERE (Fortems-Cheiney et al., 2021) used by LSCE, ii) the 

Lagrangian particle dispersion model, FLEXPART used by EMPA (from hereon, FLEXPART-EMPA), and iii) 

FLEXPART used by NILU (from hereon, FLEXPART-NILU).  

The spatial distribution of CH4 fluxes are similar for the three inversions with higher emissions in the 640 

Netherlands and Belgium, western France and southern UK. However, FLEXPART-NILU inversions show some 

spurious areas of very low fluxes in Italy, Switzerland and southern France, which are presumably owing to the 

positive bias in the prior modelling mixing ratios at mountain sites, which will be corrected in future simulations. The 

patterns of differences, however, are quite different between the CHIMERE and the two FLEXPART inversions. All 

inversions find positive increments (posterior high than prior) over northern Netherlands, but FLEXPART-EMPA 645 

finds negative increments over southern Netherlands and both FLEXPART inversions find negative increments over 

northern Italy, which is not the case in CHIMERE (Figure 5, top). The total mean emissions for EU27+UK over 2006-

2017 (Figure 5) were 26, 22 and 24 Tg CH4 yr-1, for CHIMERE, FLEXPART-NILU and FLEXPART-EMPA, 

respectively. FLEXPART-EMPA is the same model as used in the comparison shown in Figure 4 
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(FLEXPART(FLExKF-CAMSv19r)) but in those inversions the total mean emissions for EU27+UK were higher at 650 

33 Tg yr-1. This difference is likely owing to the different dataset used for determining the background mixing ratios 

and farther analysis is ongoing. 

Figure 5: Posterior CH4 fluxes averaged over 2006-2017 (g CH4 m-2 yr-1) from three regional inversions, CHIMERE 

(LSCE), FELXPART (NILU) and FLEXPART (EMPA) shown with a log base 2 color scale (top) and the flux 

increments (g CH4 m-2 yr-1) shown on a linear color scale (bottom). 655 

 

European estimates from global inversions 

Figures 6 compares TD global estimates, with NGHGI data and provides information about the wetland 

emissions from global wetland inversions (Saunois et al., 2020). Figure 6a presents TD estimates of total emissions 

(anthropogenic and natural) from Petrescu et al., 2021a while Fig. 6b shows the current study with updated total TD 660 

estimates. Figs. 6c and 6d show estimates of anthropogenic emissions (Petrescu et al., 2021a and current study) 

calculated by subtracting the total natural emissions from the global total TD emissions. 

The global inversion models were split according to the type of observations used, 11 of them using satellites 

(GOSAT) and 11 using surface stations (SURF). Each of these 22 global inversions provided as well wetlands 

emissions used by the Global Methane Budget (Saunois et al., 2020) and are post-processed with prior ratios estimates 665 

for wetlands CH4 emissions (Appendix B2, Table B2.4). 

For the common period between datasets (2010-2016), the two ensembles of regional and global models give 

a total CH4 emission mean (Figure 6a) of 23 Tg CH4 yr-1 (GOSAT) and 24 Tg CH4 yr-1 (SURF) for the EU27+UK 

compared to 19 Tg CH4 yr-1 ± 2.3 Tg CH4 yr-1 of NGHGI (Figure 6a). The mean of the natural wetland emissions from 

the global inversions is 1.3 Tg CH4 yr-1 and partly explains the positive difference between total emissions from 670 

inversions and NGHGI anthropogenic emissions. 
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Figure 6: a) and b) Total CH4 emissions from TD global ensembles based on surface stations data (SURF) (yellow) 675 

and satellite concentration observations (GOSAT) (green) from 22 global models compared  with UNFCCC NGHGI 

(grey) data (including LULUCF) as following: a) represents previous data from Petrescu et al., 2021a and b) the 

current study; c) and d) Anthropogenic CH4 emissions from top-down global inversions based on surface stations 

(SURF) (yellow) and on satellite concentration observations (GOSAT) (green) from different estimates as following: 

c) previous data from Petrescu et al., 2021a and d) the current study. Anthropogenic emissions from these inversions 680 

were obtained by removing the sum of the natural emissions (global wetland GCP emissions (blue), the inland waters 

and geological fluxes as shown in figure 4a) from the total estimates. The biomass burning emissions included in each 

inversion results was removed as well. UNFCCC NGHGI (2021) Member States reported uncertainty computed with 

the error propagation method (95% confidence interval) was gap-filled and provided for every year for all sectors 

(including LULUCF). The time series mean was computed for the common period 2010-2016. Two out of 11 SURF 685 

products (GELCA-SURF_NIES, TOMCAT-SURF_UOL) were not available for 2016. 

 

To quantify the European TD anthropogenic CH4 component, the GCP inversions wetlands emissions and 

those from geological, inland water sources and biomass burning emissions (reported by the global inversions) were 

subtracted from the total CH4 emissions (Fig. 6d). 690 

For the 2010-2016 common period, the two ensembles of global models give an anthropogenic CH4 emission 

median (Figure 6b) of 13 Tg CH4 yr-1 with min and max values of 10 and 21 Tg CH4 yr-1) (GOSAT) and 14 Tg CH4 

yr-1 with min and max values of 9 and 22 Tg CH4 yr-1) (SURF) compared to 19 ± 2.3 Tg CH4 yr-1 for NGHGI. The 
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TD ensemble that produced the closest anthropogenic estimate (Figure 6d) to the UNFCCC NGHGI (2021) is SURF, 

with the median of SURF inversions falling just below the uncertainty range of the NGHGI. 695 

Between 2010-2016, total TD CH4 emissions (Figure 6b) from the SURF and GOSAT ensemble decreased 

by 0.5% and 4.6%, respectively. For anthropogenic CH4 emissions (Figure 6d), the SURF and GOSAT ensembles 

show a decrease of 1.1 % and  6.3%, respectively, compared to the 7.7 % decrease for the NGHGI. 

 

3.1.5 CH4 uncertainty reduction maps 700 
 

Bergamaschi et al (2010) used TM5 4DVAR to analyze the sensitivity of the modelling system to  

observations, for further interpretation of the derived emissions, in particular in the context of verification of BU 

inventories. For this purpose, Bergamaschi et al., 2010 calculated uncertainty reduction maps, as a measure of the 

sensitivity of the observational network used for the reference inversion. This reduction in uncertainty is calculated as 705 

the ratio between a posterior and a prior uncertainty with the formula (1-∆post/∆prior), where ∆post represents the 

posterior uncertainties and ∆prior the prior uncertainties of the inversion system. The same methodology was applied 

to two VERIFY regional inversions systems, CTE-CH4 and FLExKF (Brunner et al., 2022). 

The first inversion system, FLExKF, calculated the uncertainty reduction maps for CH4 for the year 2018 

with two different sets of observation stations (Figure 7). Maps of uncertainty reduction can be really informative and 710 

the results below (Figure 7) present the uncertainty reductions for two different sets of stations, which show the value 

of only considering ICOS sites (left figure) and when adding also other stations in the U.K. and Switzerland (right 

figure). However, the larger the prior uncertainties, the stronger potential for uncertainty reduction is, therefore given 

that the prior uncertainty varies, the uncertainty reduction is not a direct indication of the information provided by 

observations. 715 

 

Figure 7: FLExKF uncertainty reduction maps computed as (1-∆post/∆prior) for the same year, 2018, but with two 

different sets of observation stations (white dots). 

The second inversion system, CTE-CH4 (Tsuruta et al., 2017) calculated the uncertainty reduction maps from 

surface inversions (SURF) for 2006 and 2018, as those used in Thompson et al., (2022), referred to here as 720 
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VERIFY_S4 ("inclusive" inversion) (Figure 8). The system included two sets of inversions with different observation 

sets assimilated. However, the degrees of freedom in the state of the system was low, and therefore, the uncertainty 

estimates may not differ much between the two. The data from CTE-CH4 includes uncertainties (standard deviations) 

and fluxes for 2006 and 2018. The differences in the simulations are observation sets and underlying prior covariance 

structure. "VERIFY_S4" has the most observation sites assimilated. From the two panels of the Fig.8, higher 725 

uncertainty reductions are seen in 2018 compared to 2006 because in 2018 more measurements were available. The 

largest uncertainty reductions are observed in Central Europe (the Netherlands, Germany and Switzerland). 

 

Figure 8: VERIFY_S4 inversion run, uncertainty reduction maps computed as (1 − Δpost/Δprior) for 2006 (left) and 730 
2018 (right) with different sets of observation stations. 

 

The differences between the two years are mostly due to changes in the amount of observational data, 

although additional observation stations in certain locations may produce only a limited reduction in uncertainty. This 

can occur if: i) uncertainty assigned to the observations (i.e. how much weight/trust we put on it) are comparatively 735 

high, ii) prior emissions and/or their uncertainties around the sites are simply very small, and therefore the inversion 

does not change fluxes much; and/or  iii) the location is not very sensitive to emissions in the surrounding area (e.g. 

mountain sites) due to the atmospheric transport to the observation site. Generally, sites that contribute to a larger 

uncertainty reduction should be included in the inversions and located closer to emission sources and/or sink areas. 

CTE-CH4 was also used to estimate fluxes utilizing prior information from GOSAT data, for 2010 and 2017. 740 

Figure 9 presents the associated uncertainty reduction maps. Because of the different inversion system set-up (e.g. 

resolution, spatial correlation) compared to previous results, where prior data was coming from observation networks, 

it is difficult to conclude on the effects satellites have on posterior emissions from the two years. However, it is 

interesting to note how satellite data assimilation infers changes on a regional scale. Unlike surface stations, satellite 

data have more power to constrain northern European emissions than central European emissions. 745 
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 750 

 

 

 

Figure 9: CTE-CH4 GOSAT inversion run, uncertainty reduction maps computed as (1-∆post/∆prior) for 2010 (left) 

and 2017 (right). 755 

3.2 Comparing N2O emission estimates from different approaches 

3.2.1. Estimates of European and regional total N2O fluxes 

 

Total N2O fluxes from EU27+UK and five main regions in Europe are presented in a similar fashion as the 

CH4. Figure 10 summarizes the total N2O fluxes from NGHGI 2021 (excluding LULUCF) for the base year 1990 as 760 

well as mean annual emissions for the 2011-2015 and 2015-2019 five-year periods. 

The total UNFCCC estimates that include emissions from all sectors are compared with the fluxes from 

global datasets, BU models and TD inversions. Relative to 1990, N2O emissions in 2019 decreased by a minimum of 

26 % (Eastern Europe) up to a maximum of 46 % (Western Europe) and by 39 % for EU27+UK. At European level, 

the emissions from BU estimates (anthropogenic NGHGI plus the sum of all natural, 991 kton N2O) and TD total 765 

(including natural) regional estimate (1443 kton N2O) averaged over 2015-2019, roughly agree within the uncertainty 

reported by UNFCCC (±59%). The TD uncertainty is represented as the variability in the model ensembles and 

denotes the range between the minimum and maximum estimates within each model ensemble. There is significant 

uncertainty in Northern Europe, where the TD average estimates indicate sources yet the ensemble ranges from a net 

sink to a net source (Figure 10). The current observation network is sparse, which currently limits the capability of 770 

inverse models to quantify N2O emissions at country or regional scale. 

For all other regions, the BU anthropogenic emissions agree in absolute values with the NGHGI given 

uncertainties, though consistently higher estimates are produced by TD regional and global models. The difference is 

still too high to be attributed to the sum of the natural emission, which ranges for all five regions in 2019 between a 

minimum of 13 kton N2O yr-1 (Northern Europe) to a maximum of 113 kton N2O yr-1 (Southern Europe), while the 775 

EU27+UK total natural emission is estimated at 178 kton N2O yr-1. 
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Figure 10: Five-yearly means (2011-2015 and 2015-2019) in total N2O emission estimates (excluding LULUCF) for 

EU27+UK and five European regions (Northern, Western Central, Southern and Eastern non-EU). The Eastern 780 

European region does not include European Russia, Northern Europe includes Norway and Central Europe includes 

Switzerland. The data are from the UNFCCC NGHGI (2021) submissions (grey), which are plotted with respective 

base year 1990 (black star) estimates, two inventories (GAINS and EDGAR v6.0), natural unmanaged emissions 

(lakes_rivers_reservoirs emissions from RECCAP2 and natural N2O from O-CN) and two inversion total estimates 

(one regional European inversions (FLEXINVERT) and average of three global inverse models from GN2OB, Tian et 785 

al. 2020). The relative error on the UNFCCC value represents the NGHGI (2021) reported uncertainties computed 

with the error propagation method (95% confidence interval) and gap-filled to provide respective estimates for each 

year. (see Appendix A); For Easter Europe non-EU the uncertainty value of 42.3 % was calculated from the NIRs. 

Northern Europe Tier 1 uncertainty for Norway was not available. 

 790 

3.2.2. NGHGI sectoral emissions and decadal changes 

According to the UNFCCC NGHGI (2021) estimates for 2019, the EU27+UK emitted GHGs totaling 3.7 Gt 

CO2e (including LULUCF, using a GWP 100, IPCC AR4) (Appendix B1, Figure B1b), of which N2O emissions 

accounted for ~7 % (254 Mt CO2e or 854 kton N2O yr-1) (Figure 11). France, Germany and UK together contributed 

40 % of total N2O emissions (338 kton N2O yr-1). For 2019, NGHGI reported anthropogenic emissions from the 795 

EU27+UK for the four activity sectors (excluding LULUCF) (Table 1), to be 793 kton N2O yr-1. Agricultural N2O 

emissions accounted for 79 % (± 72.5 %) of total EU27+UK emissions in 2019, followed by emissions from the 

energy sector with 12 % (± 30 %). 
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Figure 11 shows anthropogenic N2O emissions from UNFCCC NGHGI (2021) and their changes from one 

decade to the next, with the respective contributions from different sectors also illustrated. 800 

Between the 1990s and the 2000s, the net reduction of 17.9 % originates mainly from IPPU (-13.2 %), with 

a smaller contribution from agriculture (-4.4 %). For the period between the 2000s and 2010-2019, the net reduction 

of 15.4 % was again mainly attributed to the IPPU sector (14.1 %), despite very small increases from the LULUCF 

(0.2 %) and waste sectors (0.2 %). 

By 2019, emissions from the IPPU sector were only 36 kton N2O yr-1, a 91 % decrease compared to 1990. 805 

Although the IPPU sector contributes in only 4% to 2019 total N2O emissions, it is the sector associated with the 

largest emissions reduction. IPPU sector emissions are mainly linked to the production of nitric acid (e.g. used in 

fertilizer production) and adipic acid (e.g. used in nylon production). In the late 1990’s and early 2000’s the five 

European adipic acid plants were equipped with efficient abatement technology, cutting emissions by 95-99 %, largely 

through voluntary agreements of the companies. Much of the remaining IPPU emissions, from nitric acid plants, were 810 

cut in a similar manner around 2010, a development that has been connected with the introduction of the European 

Emission Trading System that made it economically attractive for companies to apply emission abatement 

technologies (catalytic reduction of N2O in the flue gas) to reduce their emissions.  

 

 815 
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Figure 11: The contribution of changes (%) in N2O anthropogenic emissions in the five sectors to the overall change 

in decadal mean for the EU27+UK as reported to UNFCCC. The top plot shows the previous NGHGI data in Petrescu 

et al., 2021a and bottom plot depicts data from UNFCCC NGHGI (2021).The three stacked columns represent the 

average N2O emissions from each sector during three periods (1990-1999, 2000-2009 and 2010-2019) and 820 

percentages represent the contribution of each sector to the total reduction percentages between periods. 

 

3.2.3. NGHGI estimates compared with bottom-up inventories 

Figure 12 compares the six bottom-up inventories with UNFCCC NGHGI (2021) data, and shows that all of 

them are around the NGHGI estimates (Figure 12a), noting that GAINS only provides emissions every five years. The 825 

BU estimates show good agreement with one another and with the NGHGI estimates until 2005. After 2005 the slightly 

increasing trend is influenced by the IPPU (Figure 12c) and Waste (Figure 12e) sectors, with estimates of both EDGAR 

v6.0 and GAINS for total anthropogenic N2O emissions in the year 2018 being 9 % and 13 %higher than the respective 

UNFCCC NGHGI (2021) estimates. Except for agriculture (Figure 12d), where four of the five models/inventories 
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show good match in absolute mean values with the NGHGI and over 1990-2018 and have similar linear trends of -830 

0.18, -0.17, -0.15 and -0.11 % yr-1 in NGHGI, EDGAR v6.0, GAINS and FAOSTAT respectively, for the other sectors 

the trends differ. The match in agriculture trends reflects that the sources rely on the same basic activity data from 

FAOSTAT and follow the IPCC EF Tier 1 or 2 approach (Petrescu et al., 2020). However, the high reported 

uncertainty range from the NGHGIs contradicts the match of the BU estimate absolute values and represents an 

important research question to be further investigated. In contrast, ECOSSE shows lower estimates because it does 835 

not use the FAO fertilizer application rate data base, but instead calculates ideal fertilizer application rates from the 

nitrogen demand of the crops. ECOSSE uses fertilizer data derived by Mueller et al. (2012) and simulates only for 

winter wheat. It is very likely that the assumed fertilizer application rates are lower than those used in FAO for the 

country specific average, which could explain the lower estimates. This means that it may severely under-estimate the 

applied fertilizer amounts for some areas (e.g. Netherlands, Denmark or North-West Germany), and the results are 840 

more indicative of emissions under idealized fertilizer application rates. Additionally, as mentioned above, the model 

simulates only the direct emissions. 
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 845 

Figure 12: a) Total annual anthropogenic N2O emissions (excluding LULUCF) for the EU27+UK over time. The top 

plot presents previous data synthesized in Petrescu et al., 2021a while the bottom plot depicts data synthesized by the 

current study: a) EU27+UK and total sectoral emissions from: b) Energy, c) IPPU, d) Agriculture, e) Waste from 

UNFCCC NGHGI (2021) submissions compared to global BU inventories for agriculture (CAPRI, ECOSSE, 

FAOSTAT, DayCent) and all sectors excl. LULUCF (EDGAR v6.0, GAINS). CAPRI reports one value for Belgium 850 

and Luxembourg. The relative error on the UNFCCC value represents the UNFCCC NGHGI (2021) Member States 

reported uncertainties computed with the error propagation method (95% confidence interval) that were gap-filled 

and provided for every year. The uncertainty for EDGARv6.0 is the same as that of v5.0 and calculated for 2015 as 

min/max values for the total and each sector (Solazzo et al., 2021) and represents the 95 % confidence interval of a 

lognormal distribution. CAPRI reports uncertainties for the last three years as following: 2014 and 2016 (17.6 %) 855 

and 2018 (17.8 %). The mean column represents the common overlapping period 1990-2018  between datasets Last 

years of the time series of the respective datasets are 2019 (UNFCCC and FAOSTAT), 2018 (EDGAR v6.0, CAPRI), 
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2015 (GAINS every five years), 2015-2019 (DayCent) and 2020 ECOSSE, with last two years reporting only crop 

emissions. 

 860 

In the NGHGI (2021) submissions, for 2019, the EU27+UK Tier 1 total uncertainty for the waste sector  

(based on the IPCC chapter 3 error propagation method described in detail by Petrescu et al., 2020) and the gap-filling 

method described in Appendix A, was 360 %. The sectoral activity responsible for this high uncertainty is the 

wastewater treatment and discharge (462%) and this remains one of the most uncertain sources of N2O having the 

highest emissions in the waste sector. Emissions are known to vary markedly in space and time even within a single 865 

wastewater treatment plant (Gruber et al., 2020), a fact that only recently has been properly accounted for in the 

inventory guidelines (IPCC, 2019a). However, the total emissions from the waste sector account for only 4.2 % of the 

total EU27+UK 2019 N2O emissions (excl. LULUCF). 

3.3.4. NGHGI estimates compared to atmospheric inversions 

 870 

Figure 13 compares inversion estimates of total N2O emissions, including natural, from regional 

(FLEXINVERT) and global (three models) N2O inversions with the UNFCCC NGHGI (2021) estimates. The min-

max range of all inversions is within the 2-sigma uncertainty of NGHGI, with the median of global inversions being 

on average 42 % or 0.4 Tg N2O yr-1 higher than that of NGHGI. Over the period 2005-2019, the regional 

FLEXINVERT is almost double that of UNFCCC NGHGI (2021). From the three global inversions, MIROC4-ACTM 875 

shows consistently higher estimates until 2019, when it registers a drop in the estimated emission level  (similar to 

FLEXINVERT). Similar reduction of emissions are seen for 2003 and 2005. In all these years, Europe registered 

record breaking heatwaves. One plausible explanation for the low N2O is that high temperature accompanied with 

lesser soil moisture reduces N2O emission, as seen in the tropics (Patra et al., 2022). 

The other two global inverse models, TOMCAT and CAMS-N2O register high estimates as well as very high 880 

variability. Regarding trends, FLEXINVERT shows a similar decreasing trend of 18 % over 2005-2019, compared to 

16 % for UNFCCC NGHGI (2021). The global CAMS-N2O inversion agrees the best in its absolute mean value (1.0 

Tg N2O yr-1) with the NGHGI estimate (0.9 Tg N2O yr-1) but not in its trend. In this updated synthesis, natural pre-

industrial soil emissions of N2O from the O-CN model, were included, but these are not considered in NGHGI 

reporting, and therefore cannot explain the gap between inventories and TD estimates. In addition, the emission factors 885 

used in NGHGI reporting are regarded to be very uncertain (up to 300% for direct agricultural emissions) which, 

based on the comparison with TD estimates, could imply that inventories underestimate N2O emissions. The 

uncertainty reported by the NGHGIs in 2019 was 59% compared to 86% in 2017 (Petrescu et al., 2021a). 

 Regarding the natural N2O emissions, the median natural flux from inland waters, is very low (12.7 kton 

N2O yr-1) and part of the inland water natural estimate is considered anthropogenic in Europe and is due to the leaching 890 

of N-fertilizers from agriculture. The anthropogenic share accounts for 66 % of the total inland waters emissions 

(Petrescu et al., 2021a). In the current study more natural N2O estimates have been added. The soil natural background 

emissions are estimated at 177 kton N2O yr-1 averaged over 2005-2014 (the common overlapping period of all data 
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sources), while the biomass burning emissions account for only 1.6 kton N2O yr-1for the same period. In the lower 

plot, the NGHGIs uncertainty was recalculated to 56 % compared to 86% in Petrescu et al., (2021a) (upper plot). 895 

 

Figure 13: Comparison of total N2O emissions for EU27+UK  from one top-down regional inversion (FLEXINVERT) 

and three inversions (TOMCAT, CAMS-N2O and MIROC4-ACTM) with UNFCCC NGHGI (grey) data and natural 

N2O emissions (lakes_ reservoirs_ rivers from  RECCAP2, natural pre-industrial soil emissions from the O-CN model 

and biomass burning from GFEDv4.1) as following: the top plot shows the previous synthesized data in Petrescu et 900 

al., 2021a and the bottom plot depicts data synthesized by the current study. The relative error on the UNFCCC value 

represents the UNFCCC NGHGI (2021) Member States reported uncertainties computed with the error propagation 

method (95% confidence interval) that were gap-filled and provided for every year (including LULUCF). Last years 

of the time series of the respective datasets are 2014 (TOMCAT), 2017 CAMS-N2O, 2019 (UNFCCC, FLEXINVERT 

and MIROC4-ACTM). The mean column represents the common overlapping period (2005-2014) between datasets 905 

MACTM-JAMSTEC is the same with MIROC4-ACTM and PYVAR_NILU with CAMS-N2O. 
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Spatial distribution of N2O emissions from regional inversions 910 

 

New top-down estimates of N2O fluxes were produced using the CIF (Berchet et al. 2021). For N2O, inversions were 

performed by LSCE using three CHIMERE and by NILU using FLEXPART(v10.4). For the CIF inversions, the prior 

fluxes and observations of N2O were the same as those used in the Figure 13, and the background mixing ratios were 

calculated using the CAMSv19r products for N2O (based on the global TM5-4DVAR assimilation run (Bergamaschi 915 

et al. 2018a, Rödenbeck et al. (2009)). 

For N2O, the FLEXPART inversion resulted in slightly larger fluxes over Europe compared to the CHIMERE 

inversion, especially over the Netherlands, Belgium, northern France and England. In these regions, FLEXPART also 

results in larger fluxes compared to the prior. FLEXPART estimated smaller fluxes compared to the prior and to 

CHIMERE in northeastern Germany. CHIMERE, on the other hand remained close to the prior estimates. The total 920 

mean emission for EU27+UK for the period 2005-2018 was 1538 kton N2O and 1680 kton N2O yr-1 for CHIMERE 

and FLEXPART, respectively, compared to the estimate of 1513 kton N2O yr-1 from FLEXPART (Figure 13). Both 

inversions also found a decreasing trend over 2005-2018 with decreases of 157 kton N2O yr-1 and 298 kton N2O yr-1 

per year for CHIMERE and FLEXPART, respectively, which was not seen in the prior estimates. 

 925 

 

 

 

 

 930 

 

 

 

 

 935 

 

Figure 14. Posterior N2O fluxes averaged over 2005-2018 (g N2O m-2 yr-1) from two regional inversions CHIMERE 

(LSCE) and FLEXPART (NILU) shown with a log base 2 color scale (top) and the flux increments (g N2O m-2 yr-1) 

shown on a linear color scale. 

Similar to CH4, the differences might be owing to the different dataset used for determining the background mixing 940 

ratios. Farther analysis is ongoing. 
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4. Data availability 

Data files reported in this work which were used for calculations and figures are available for public download 

at https://doi.org/10.5281/zenodo.6992472 (Petrescu et al., 2022). The data are reachable with one click (without the 945 

need for entering login and password), with a second click to download the data, consistent with the two click access 

principle for data published in ESSD (Carlson and Oda, 2018). The data and the DOI number are subject to future 

updates and only refers to this version of the paper. The raw gridded data, according to the VERIFY consortium 

governing document, will be made publicly available 12 months after its publication in ESSD. 

 950 

5. Summary and concluding remarks 

This study is an update of the first comprehensive synthesis of European CH4 and N2O emission estimates 

(Petrescu et al., (2021a), that compares total and sectoral European CH4 and N2O from BU (anthropogenic and natural) 

with TD estimates to assess their use for quality control and verification of UNFCCC NGHGI reporting. Using the 

most recent data, differences between TD and BU estimates were compared and comparisons were made with the 955 

previous synthesis, Petrescu et al., (2021a). Identification of source specific uncertainty is key in understanding these 

differences and can lead to a reduction of the overall uncertainty in GHG inventories. Furthermore, the results have 

been synthesized in a way that would be compatible with the methodological framework of the first 2023 Global 

Stocktake of the Paris Agreement. Five-year means of CH4 (Figure 1) and N2O (Figure 9) emissions for the periods 

2011-2015 and 2015-2019 from the different BU and TD datasets have been calculated for the EU27+UK bloc, as 960 

well as for five regions in Europe. These estimates are then compared with respective NGHGI emissions for the same 

periods and the 1990 base year. 

Inconsistencies between CH4 BU estimates and NGHGI data at EU27+UK level (Figure 3), are mainly caused 

by different methodologies in calculating emissions as highlighted in Petrescu et al. (2020, 2021a). Both BU 

inventories and the NGHGI use similar activity data and, to varying extents, the default EFs reported in the IPCC 2006 965 

guidelines meaning that the estimates are predestinated to agree rather well. Thus, the spread in all BU estimates may 

not be indicative of the uncertainty. For global consistency purposes, EDGAR v6.0 and FAOSTAT mostly uses Tier 

1 approaches in calculating emissions (and uncertainties), a fact which triggers differences with other data sources 

using Tier 2 or 3 methods (GAINS for all sectors and CAPRI for agriculture). Within the UNFCCC reporting process, 

the agriculture sector was the highest contributor to the CH4 emissions, followed by energy and waste (Figure 1).  970 

A reason for the small inconsistencies between datasets is the allocation of emissions to different sectors and 

that some data sources use updated methods and emission factors from different versions of the IPCC guidelines (e.g. 

1996 versus 2006 or 2019 Refinements to the 2006 (i.e. EDGAR v6.0)). 

For N2O anthropogenic emissions, all BU data sources show good agreement with the UNFCCC NGHGI 

(2021) data in both trends and means (Figure 12), agriculture remaining the largest emitter (e.g. soil emissions due to 975 

fertilizer additions), within the reported uncertainties. As with CH4, the different BU estimates share some common 

elements such as activity data and emissions factors, and the agreement between estimates may not be relevant to the 

underlying uncertainties. 
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An important improvement compared to Petrescu et al., 2021a, was the harmonization of UNFCCC Member 

States uncertainty estimates, which were gap-filled and calculated for each year of the time series. VERIFY interaction 980 

with the EU inventory team has helped improve the uncertainty estimations on the EU GHG emissions reported under 

UNFCCC. For both CH4 and N2O the uncertainties reported by NGHGI are large and underline the need for further 

improvement in the inventories of these two GHGs. 

Regarding the TD estimates, this analysis shows that comparison between CH4 inversions estimates and 

NGHGIs is highly uncertain because of the large spread in the inversion results. Nevertheless, in contrast to BU 985 

methods, TD inversions inferred from atmospheric observations represent the most independent data against which 

CH4 inventory totals can be compared. With anticipated improvements in atmospheric modelling and observations, as 

well as modelling of natural fluxes, TD inversions may arguably emerge as the most powerful tool for verifying 

emissions inventories for CH4 and other GHGs. 

As TD inversions do not fully distinguish between all emission sectors used by NGHGI and report either 990 

total emissions or a coarse sectorial partitioning, their comparison to NGHGI is only possible for total emissions. It is 

also necessary to make an adjustment for natural emissions, which are included in TD inversions but not reported by 

the NGHGIs. A future improvement for the natural CH4 emissions are the consistent time series of measurements  to 

make clear statements about how wetland and lake fluxes change over time. For lakes there is virtually no long-term 

monitoring, while for wetlands variability (e.g. area) is a key uncertainty but Fronzek et al., (2018) have shown that 995 

model ensembles work well in simulating highly uncertain variables. In general regional inversions show less spread 

than the global inversions as they used recent updates of transport models and simulate atmospheric transport at higher 

resolutions. 

The global models use fewer observations for Europe compared to the included regional inversions, and thus 

are expected to have larger uncertainties for the European fluxes. In addition, the global models are at coarser 1000 

resolution, and thus likely have larger model representation errors compared to the regional ones, which may 

contribute to further systematic uncertainty for the European fluxes. Currently, for Europe the regional TD total is 

considerably higher than the global estimates (Figure 1). If the regional TD estimate for whole EU27+UK including 

all sources and sinks is considered to be the best total estimate in place, and if the natural fluxes are assumed to have 

been accurately subtracted from the optimized net flux, then NGHGI and BU approaches may be underestimating 1005 

total EU27+UK CH4 emissions by approximately 20-30%.For N2O, the TD estimates fall within the large range of the 

NGHGI uncertainties, and, in fact, the spread in the regional ensembles is much smaller than the inventory uncertainty 

range (Figure 9). Compared to Petrescu et al., 2021a, the natural emissions consisting of pre-industrial natural soil 

emissions and biomass burning emissions were included, however, for N2O natural emissions do not explain the 415 

kton N2O difference between NGHGI (and BU) estimates and the average TD estimate. More research is thus needed 1010 

to identify the source of discrepancies. 

A key challenge for the inversion CH4 community remains the separation of emissions in specific source 

sectors, as derived total emissions may also include natural emissions (or removals). In the case of N2O this won’t be 

possible since the anthropogenic emissions due to agriculture are caused by a perturbation to microbial processes (i.e., 

nitrification and denitrification) and cannot be cleanly separated from “natural” emissions (defined as the level of 1015 
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emission in the pre-industrial period, i.e., before perturbation by anthropogenic N-inputs). However, some TD 

quantification of industrial emissions should be possible in high-resolution inversions. In any case, TD inversions for 

estimating N2O emissions should mainly focus on the trends. Furthermore, the accuracy of derived emissions and the 

spatial scales at which emissions can be estimated depend on the quality and density of measurements and the quality 

of the atmospheric models (Bergamaschi et al., 2018b). Significant further developments of the global observations 1020 

system and the top-down methods would be required to support the implementation of the Paris Agreement. 

The exercise of presenting uncertainty reduction maps illustrated the effect on uncertainty reductions with 

removing/adding ground-based observation stations. This is one of the elements informing policy makers on the need 

for further investing into a denser and efficient surface observation network used by inverse systems to calibrate their 

estimates and better inform climate policy with respect to emissions verification. This might serve to monitor and 1025 

build more accurate budget of country estimates as well as provide data for inferring subnational (e.g. city-scale) 

emissions. 

This synthesis makes use and brings together state-of-the-art BU and TD estimates from different sources 

and compares these data with the official NGHGI estimates reported to UNFCCC. The exercise underlines the 

uncertainties in the emissions of these important GHGs and illustrates the importance of regional consistent analyses 1030 

and synthesis of available estimates for informing climate policy. Specifically, the approach demonstrated here could 

form the basis of the Multilateral Facilitative Consideration of Progress under the enhanced transparency framework 

of the Paris Agreement. The implementation of the Paris Agreement requires accurate quantification of GHG 

emissions in order to track the progress of all parties with their "Nationally Determined Contributions" and to assess 

collective progress towards achieving the purpose of this Agreement and its long-term goals (GST). As this will be 1035 

mainly achieved and built upon BU methodologies developed by the IPCC, we need to take into consideration the 

potential to quantify GHG emissions by using "top-down" methods ("inverse modelling") (Bergamaschi et al., 2018b). 

One advantage of the inverse estimate is that it provides total emission estimates inferred from atmospheric GHG 

measurements. Therefore, the capability to quantify anthropogenic emissions depends on the magnitude of natural 

sources and sinks and the capability to quantify them and subtract them from the TD estimates. 1040 

As stated in the introduction, the main aim was to explore and discuss the issues causing differences between 

NGHGI, BU and TD approaches. Such an exercise can help to improve the different respective approaches and 

furthermore can inform the development of formal verification systems. Some differences in BU and NGHGI 

estimates were observed and were traced back to factors such as the variations activity data, emission factors and 

sectoral allocation of emissions (CH4). Nevertheless, BU and NGHGI estimates generally converged at the total 1045 

emission level for the EU27+UK bloc and the five European regions. The overall agreement is generally due to similar 

sources of input activity data and emission factors (albeit with some aforementioned variations) and is not indicative 

of the true uncertainties in the respective CH4 and N2O inventories. Indeed, NGHGI report CH4 and N2O emissions 

with large uncertainties and, furthermore, NGHGI estimates generally diverged from the respective TD fluxes. Despite 

the significant spread in the inversion estimates (due to e.g. use of different transport models and/or observation 1050 

datasets, while priors might be the same (Table B2.4)), TD estimates were generally higher than NGHGI, even when 

accounting for the (albeit uncertain) natural fluxes. 
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The analysis done here generally compared estimates in terms of long-term trends and averages over five or 

more years, and thus provides a working example of how such syntheses could inform future Global Stocktakes under 

the Paris Agreement. A further step could involve analysis at finer temporal resolutions. While NGHGIs are reported 1055 

at annual scales, analyzing emissions over intra-annual timescales, of great importance for CH4 (wetland emission 

estimates have large uncertainties and show large variability in space and between seasons) and N2O (agricultural 

fertilizer application), may help to identify sector contributions to divergence between prior and posterior estimates at 

the annual/inter-annual scale. To do this, however requires expanded in-situ monitoring so that such dynamics can be 

better represented in the temporally-resolved prior estimates that feed into the top-down inversions.  1060 

 

 

6. Appendices 

 

Appendix A: Data sources, methodology and uncertainty descriptions 1065 

The country specific plots are found at: http://webportals.ipsl.jussieu.fr/VERIFY/FactSheets/ v1.27 

 

VERIFY project 

VERIFY’s primary aim was to develop scientifically robust methods to assess the accuracy and potential 

biases in national inventories reported by the parties through an independent pre-operational framework. The main 1070 

concept is to provide observation-based estimates of anthropogenic and natural GHG emissions and sinks as well as 

associated uncertainties. The proposed approach is based on the integration of atmospheric measurements, improved 

emission inventories, ecosystem data, and satellite observations, and on an understanding of processes controlling 

GHG fluxes (ecosystem models, GHG emission models). 

Two complementary approaches relying on observational data-streams were combined in VERIFY to 1075 

quantify GHG fluxes: 

1) atmospheric GHG concentrations from satellites and ground-based networks (top-down atmospheric inversion 

models) and 

2) bottom-up activity data (e.g. fuel use and emission factors) and ecosystem measurements (bottom-up models). 

For CH4 and N2O, agricultural emissions were separated from fossil fuel and industrial emissions. Finally, trends in 1080 

the budget of the three GHGs were analyzed in the context of NDC targets. 

The objectives of VERIFY were: 

Objective 1. Integrate the efforts between the research community, national inventory compilers, operational centres 

in Europe, and international organizations towards the definition of future international standards for the verification 

of GHG emissions and sinks based on independent observation. 1085 

Objective 2. Enhance the current observation and modelling ability to accurately and transparently quantify the sinks 

and sources of GHGs in the land-use sector for the tracking of land-based mitigation activities. 

Objective 3. Develop new research approaches to monitor anthropogenic GHG emissions in support of the EU 

commitment to reduce its GHG emissions by 40% by 2030 compared to the year 1990. 
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Objective 4. Produce periodic scientific syntheses of observation-based GHG balance of EU countries and practical 1090 

policy-oriented assessments of GHG emission trends, and apply these methodologies to other countries. 

For more information on project team and products/results check https://verify.lsce.ipsl.fr/. 

 

Table A1: Country grouping used for reconciliation purposes between BU and TD estimates. The countries and 

groups of countries in italic are not directly used by this study but their figures and data is available on the VERIFY 1095 

project web portal at: http://webportals.ipsl.jussieu.fr/VERIFY/FactSheets/. 

Country name – geographical Europe BU-ISO3 Aggregation from TD-ISO3 

Luxembourg LUX   

Belgium BEL BENELUX 

Netherlands NLD BNL 

Bulgaria BGR BGR 

Switzerland CHE   

Lichtenstein LIE CHL 

Czech Republic CZE Former Czechoslovakia 

Slovakia SVK  CSK 

Austria AUT AUT 

Slovenia SVN North Adriatic countries 

Croatia HRV NAC 

Romania ROU ROU 

Hungary HUN HUN 

Estonia EST   

Lithuania LTU Baltic countries 

Latvia LVA BLT 

Norway NOR NOR 

Denmark DNK  

Sweden  SWE  

Finland FIN DSF 

Iceland ISL ISL 

Malta MLT MLT 

Cyprus CYP CYP 

France (Corsica incl.) FRA  FRA 

Monaco MCO   

Andorra AND  
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Italy (Sardinia, Vatican incl.) ITA ITA 

San Marino SMR  

United Kingdom (Great Britain + N Ireland) GBR UK 

Isle of Man IMN  

Iceland   

Ireland IRL IRL 

Germany DEU DEU 

Spain ESP IBERIA 

Portugal PRT IBE 

Greece GRC GRC 

Russia (European part) RUS European   

Georgia GEO RUS European+GEO 

Russian Federation RUS RUS 

Poland POL POL 

Turkey TUR TUR 

EU27+UK (Austria, Belgium, Bulgaria, 

Cyprus, Czech Republic, Germany, Denmark, 

Spain, Estonia, Finland, France, Greece, 

Croatia, Hungary, Ireland, Italy, Lithuania, 

Latvia, Luxembourg, Malta, Netherlands, 

Poland, Portugal, Romania, Slovakia, 

Slovenia, Sweden, United Kingdom) 

AUT, BEL, BGR, 

CYP, CZE, DEU, 

DNK, ESP, EST, 

FIN, FRA, GRC, 

HRV, HUN, IRL. 

ITA, LTU, LVA, 

LUX, MLT, NDL, 

POL, PRT, ROU, 

SVN, SVK, SWE, 

GBR E28 

Western Europe (Belgium, France, United 

Kingdom, Ireland, Luxembourg, Netherlands) 

BEL, FRA, UK, 

IRL, LUX, NDL WEE 

Central Europe (Austria, Switzerland, Czech 

Republic, Germany, Hungary, Poland, 

Slovakia) 

AUT, CHE, CZE, 

DEU, HUN, POL, 

SVK CEE 

Northern Europe (Denmark, Estonia, Finland, 

Lithuania, Latvia, Norway, Sweden) 

DNK, EST, FIN, 

LTU, LVA, NOR, 

SWE NOE 

South-Western Europe (Spain, Italy, Malta, 

Portugal) 

ESP, ITA, MLT, 

PRT SWN 

South-Eastern Europe (all) (Albania, 

Bulgaria, Bosnia and Herzegovina, Cyprus, 

Georgia, Greece, Croatia, Macedonia, the 

ALB, BGR, BIH, 

CYP, GEO, GRC, 

HRV, MKD, MNE, 
SEE 
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former Yugoslav, Montenegro, Romania, 

Serbia, Slovenia, Turkey) 

ROU, SRB, SVN, 

TUR 

South-Eastern Europe (non-EU) (Albania, 

Bosnia and Herzegovina, Macedonia, the 

former Yugoslav, Georgia, Turkey, 

Montenegro, Serbia) 

ALB, BIH, MKD, 

MNE, SRB, GEO, 

TUR SEA 

South-Eastern Europe (EU) (Bulgaria, 

Cyprus, Greece, Croatia, Romania, Slovenia) 

BGR, CYP, GRC, 

HRV, ROU, SVN SEZ 

Southern Europe (all) (SOE) (Albania, 

Bulgaria, Bosnia and Herzegovina, Cyprus, 

Georgia, Greece, Croatia, Macedonia, the 

former Yugoslav, Montenegro, Romania, 

Serbia, Slovenia, Turkey, Italy, Malta, 

Portugal, Spain) 

ALB, BGR, BIH, 

CYP, GEO, GRC, 

HRV, MKD, MNE, 

ROU, SRB, SVN, 

TUR, ITA, MLT, 

PRT, ESP SOE 

Southern Europe (non-EU) (SOY) Albania, 

Bosnia and Herzegovina, Georgia, 

Macedonia, the former Yugoslav, Montenegro, 

Serbia, Turkey) 

ALB, BIH, GEO, 

MKD, MNE, SRB, 

TUR, SOY 

Southern Europe (EU) (SOZ) (Bulgaria, 

Cyprus, Greece, Croatia, Romania, Slovenia, 

Italy, Malta, Portugal, Spain) 

BGR, CYP, GRC, 

HRV, ROU, SVN, 

ITA, MLT, PRT, 

ESP SOZ 

Eastern Europe (non-EU) (Belarus, Moldova, 

Republic of, Russian Federation, Ukraine) 

BLR, MDA, RUS, 

UKR EAE 

EU-15 (Austria, Belgium, Germany, Denmark, 

Spain, Finland, France, United Kingdom, 

Greece, Ireland, Italy, Luxembourg, 

Netherlands, Portugal, Sweden) 

AUT, BEL, DEU, 

DNK, ESP, FIN, 

FRA, GBR, GRC, 

IRL, ITA, LUX, 

NDL, PRT, SWE E15 

EU-27 (Austria, Belgium, Bulgaria, Cyprus, 

Czech Republic, Germany, Denmark, Spain, 

Estonia, Finland, France, Greece, Croatia, 

Hungary, Ireland, Italy, Lithuania, Latvia, 

Luxembourg, Malta, Netherlands, Poland, 

Portugal, Romania, Slovakia, Slovenia, 

Sweden) 

AUT, BEL, BGR, 

CYP, CZE, DEU, 

DNK, ESP, EST, 

FIN, FRA, GRC, 

HRV, HUN, IRL. 

ITA, LTU, LVA, 

LUX, MLT, NDL, 

POL, PRT, ROU, 

SVN, SVK, SWE E27 

All Europe (Aaland Islands, Albania, Andorra, 

Austria, Belgium, Bulgaria, Bosnia and 

Herzegovina, Belarus, Switzerland, Cyprus, 

Czech Republic, Germany, Denmark, Spain, 

Estonia, Finland, France, Faroe Islands, 

United Kingdom, Guernsey, Greece, Croatia, 

Hungary, Isle of Man, Ireland, Iceland, Italy, 

ALA, ALB, AND, 

AUT, BEL, BGR, 

BIH, BLR, CHE, 

CYP, CZE, DEU, 

DNK, ESP, EST, 

FIN, FRA, FRO, 

GBR, GGY, GRC, 
EUR 
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Jersey, Liechtenstein, Lithuania, Luxembourg, 

Latvia, Moldova, Republic of, Macedonia, the 

former Yugoslav, Malta, Montenegro, 

Netherlands, Norway, Poland, Portugal, 

Romania, Russian Federation, Svalbard and 

Jan Mayen, San Marino, Serbia, Slovakia, 

Slovenia, Sweden, Turkey, Ukraine) 

HRV, HUN, IMN, 

IRL, ISL, ITA, JEY, 

LIE, LTU, LUX, 

LVA, MDA, MKD, 

MLT, MNE, NDL, 

NOR, POL, PRT, 

ROU, RUS, SJM, 

SMR, SRB, SVK, 

SVN, SWE, TUR, 

UKR 

*countries highlighted in italic are not discussed in the current 2019 synthesis mostly because unavailability of NGHGI data (non-

Annex I countries11) but are present on the web-portal: http://webportals.ipsl.jussieu.fr/VERIFY/FactSheets/.  Results of Annex I 

countries (NOR, CHE, ISL) and non-EU EAE countries/groups are represented in Figures 1 and 9. 

Table A2: Main methodological changes (in bold) of current study with respect to Petrescu et al., 2020 and 2021a; 1100 

n/a cells mean that there is no data available. 

Publication 

year  

 

Gas Bottom-up anthropogenic CH4 / N2O emissions Bottom-up 

natural CH4 / N2O 

emissions 

Top-down CH4 / N2O emissions Uncertai

nty and 

other 

changes 

  Inventories Global databases Emission 

models 

Emission models Regional models Global models  

Petrescu et 

al., 2020 

CH4 National 

emissions from 

UNFCCC (2018) 

1990-2016 

 

AFOLU sector 

(Agriculture 

and LULUCF) 

EU28 data for 

four years 

(1990, 2005, 

2010 and 2016) 

EGDAR v4.3.2 

1990-2012 

 

EDGAR FT2017 

1990-2016 

 

FAOSTAT 

1990-2016 

 

Agriculture 

sector EU28 data 

for four years 

(1990, 2005, 

2010 and last 

reported year) 

 

CAPRI 

1990-2013 

 

GAINS 

1990-2015 

 

 

Agriculture 

sector EU28 

data for four 

years (1990, 

2005, 2010 and 

last reported 

year)  

 

Natural 

(wetlands) CH4 

emissions model 

ensemble GCP 

(2018) Poulter et 

al. (2017) 

 

Time series 

1990-2017 

n/a n/a UNFCCC (2018) uncertainty 

estimates for 2016 (error 

propagation 95% interval 

method) 

 

EDGAR v.4.3.2. reports only 

for 2012 

 
11Non-Annex I countries are mostly developing countries. The reporting to UNFCCC is implemented through national communications (NCs) 

and biennial update reports (BURs): https://unfccc.int/national-reports-from-non-annex-i-parties. 
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N2O National 

emissions from 

UNFCCC (2018) 

1990-2016 

 

Agriculture 

sector EU28 

data for four 

years (1990, 

2005, 2010 and 

2016) 

 

 

EGDAR v4.3.2 

1990-2012 

EDGAR FT2017 

1990-2016 

FAOSTAT 

1990-2016 

 

Agriculture 

sector EU28 data 

for four years 

(1990, 2005, 

2010 and last 

reported year) 

CAPRI 

1990-2013 

 

GAINS 

1990-2015 

 

Agriculture 

sector EU28 

data for four 

years (1990, 

2005, 2010 and 

last reported 

year)  

 

n/a n/a n/a UNFCCC (2018) uncertainty 

estimates for 2016 

EDGAR v.4.3.2. reports only 

for 2012 

Petrescu et 

al., 2021a 

CH4 National 

emissions from 

UNFCCC (2019) 

1990-2017 

 

All UNFCCC 

sectors 

EU27+UK time 

series  

and 2018 MS-

NRT estimate 

(EEA, 2019) 

 

Regional 

EU27+UK totals 

(incl. NOR, CHE, 

UKR, MLD and 

BLR) 

 

EGDAR v 5.0 

1990-2015 

 

FAOSTAT (only 

agriculture) 

1990-2017 

 

Anthropogenic 

EU27+UK time 

series 

(excl. LULUCF) 

 

Regional 

EU27+UK totals 

(incl. NOR, CHE, 

UKR, MLD and 

BLR)  

 

Excl. LULUCF 

CAPRI 

1990-2013 

 

GAINS 

1990-2015 

 

Agriculture 

sector 

EU27+UK 

Times series 

 

Non-wetland 

inland waters 

Average 2005-

2011 

 

Geological fluxes 

Total pre-

industrial era 

 

JSBACH-

HIMMELI 

2005-2017 

 

Total CH4 column 

Time series 2005-

2017: 

FLEXPART -  

FLExKF 

 

TM5-4DVAR 

 

FLEXINVERT_NILU 

 

CTE-FMI 

 

InTEM-NAME 

Only for UK 

 

InGOS inversions 

2006-2012 

Anthropogenic 

and natural 

partitions 

 

GCP-GCB 2019 

2000-2017 

UNFCCC (2018) uncertainty 

estimates for 2016 (error 

propagation 95% interval 

method) 

 

EDGAR v.4.3.2. reports only 

for 2015 

 

For model ensembles 

reported as variability in 

extremes (min/max) 

N2O National 

emissions from 

UNFCCC (2019) 

1990-2017 

 

All UNFCCC 

sectors 

EGDAR v 5.0 

1990-2015 (excl. 

LULUCF) 

FAOSTAT (only 

agriculture) 

1990-2017 

Agriculture 

CAPRI 

1990-2013 

 

ECOSSE 

1990-2018 

N2O missions 

from lakes, 

rivers, reservoirs 

Average 2010-

2014 

Total N2O column 

Time series 

 

FLEXINVERT_NILU 

2005-2017 

Total N2O 

column 

Time series 

GCP - GN2OB 

2019 

CAMS-N2O 

TOMCAT 

UNFCCC (2018) uncertainty 

estimates for 2016 (error 

propagation 95% interval 

method) 

 

EDGAR v.4.3.2. reports only 

for 2015 
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EU27+UK time 

series  

and 2018 MS-

NRT estimate 

(EEA, 2019) 

 

Regional 

EU27+UK totals 

(incl. NOR, CHE, 

UKR, MLD and 

BLR) 

Anthropogenic 

EU27+UK time 

series 

 

 

Regional 

EU27+UK totals 

(incl. NOR, CHE, 

UKR, MLD and 

BLR)  

 

Excl. LULUCF 

 MIROC4-ACTM 

1998-2016 

For model ensembles 

reported as variability in 

extremes (min/max) 

Current 

study 

CH4 National 

emissions from 

UNFCCC (2021) 

1990-2019 

 

All UNFCCC 

sectors 

EU27+UK time 

series 

 

Regional 

EU27+UK totals 

(incl. NOR, CHE, 

UKR, MLD and 

BLR) excl. 

LULUCF 

Two means: 

2011-2015 

2015-2019 

 

EGDAR v6.0 

1990-2018 

 

FAOSTAT (only 

agriculture) 

1990-2020 

 

Anthropogenic 

EU27+UK time 

series 

(excl. LULUCF) 

 

Regional 

EU27+UK totals 

(incl. NOR, CHE, 

UKR, MLD and 

BLR)  

excl. LULUCF 

CAPRI 

1990-2014 and 

2016 and 2018 

 

 

GAINS 

1990-2015 

 

Agriculture 

sector 

EU27+UK 

Times series 

 

One median 

value from 

process-based 

models for non-

wetland inland 

waters (lakes, 

rivers, 

reservoirs) 

2010-2019 

One median 

value from 

upscaled results 

in RECCAP2 

1990-2019 

 

Geological fluxes 

Total pre-

industrial era 

updates for 

EU27+UK 

 

JSBACH-

HIMMELI 

peatlands and 

mineral soils 

2005-2020 

 

Biomass burning 

GFEDv4.1 

emissions 

Total CH4 column 

Time series 2005-

2018: 

FLEXPART -  

FLExKF 

 

TM5-4DVAR 

CTE-FMI 

 

FLEXINVERT_NILU 

1990-2019 

InGOS inversions 

2006-2012 not 

included anymore 

in the mean 

CHIMERE 

InTEM-NAME 

(only for UK plots 

on the VERIFY 

website) 

Anthropogenic 

and natural 

partitions 

 

GCP-GCB  

2000-2017 

UNFCCC (2021) uncertainty 

estimates for 2019 (error 

propagation 95% interval 

method) and for every year 

provided by UBA Vienna 

 

EDGAR reports only for 2015 

values from v6.0 

 

For model ensembles 

reported as variability in 

extremes (min/max) 

 

CAPRI uncertainties for 2014, 

2016 and 2018 

N2O National 

emissions from 

UNFCCC (2021) 

1990-2019 

EGDAR v 6.0 

1990-2018 

 

CAPRI 

1990-2014 and 

2016 and 2018 

One N2O median 

value for 

emissions from 

lakes, rivers, 

Total N2O column 

Time series 

 

Total N2O 

column 

Time series 

UNFCCC (2021) uncertainty 

estimates for 2019 (error 

propagation 95% interval 
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All UNFCCC 

sectors 

EU27+UK time 

series 

 

Regional 

EU27+UK totals 

(incl. NOR, CHE, 

UKR, MLD and 

BLR) excl. 

LULUCF 

Two means: 

2011-2015 

2015-2019 

 

FAOSTAT (v2021) 

(only agriculture) 

1990-2020 

 

Anthropogenic 

EU27+UK time 

series 

(excl. LULUCF) 

 

Regional 

EU27+UK totals 

(incl. NOR, CHE, 

UKR, MLD and 

BLR)  

excl. LULUCF 

 

GAINS 

1990-2015 

 

Agriculture 

sector 

EU27+UK 

Times series 

 

ECOSSE 

1990-2020 

 

reservoirs 

(RECCAP2) 

Average 1990-

2019 

 

Natural N2O pre-

industrial 

emissions from 

O-CN model 

1990-2020 

Biomass burning 

GFEDv4.1 

emissions 

2000-2019 

FLEXINVERT_NILU 

2005-2019 

CAMS-N2O 

1998-2017 

TOMCAT 

1998-2014 

MIROC4-ACTM 

1997-2019 

FELXINVERT 

2005-2019 

CHIMERE 

method) and for every year 

provided by UBA Vienna 

 

EDGAR reports only for 2015 

values from v6.0 

 

For model ensembles 

reported as variability in 

extremes (min/max) 

 

CAPRI uncertainties for 2014, 

2016 and 2018 

 

 

A1: Anthropogenic CH4 emissions (sectors Energy, IPPU, Agriculture, LULUCF and 

Waste) 1105 

Bottom-up CH4 emissions estimates 

 

UNFCCC NGHGI (2021) 

Under the UNFCCC and its Kyoto Protocol national greenhouse gas (GHG) inventories are the most 

important source of information to track progress and assess climate protection measures by countries. In order to 1110 

build mutual trust in the reliability of GHG emission information provided, national GHG inventories are subject to 

standardized reporting requirements, which have been continuously developed by the Conference of the Parties 

(COP)12. The calculation methods for the estimation of greenhouse gases in the respective sectors is determined by 

the methods provided by the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006). These 

Guidelines provide detailed methodological descriptions to estimate emissions and removals, as well as provide 1115 

recommendations to collect the activity data needed. As a general overall requirement, the UNFCCC reporting 

guidelines stipulate that reporting under the Convention and the Kyoto Protocol follow the five key principles of 

transparency, accuracy, completeness, consistency and comparability (TACCC).  

The reporting under UNFCCC should meet the TACCC principles. The three main GHGs are reported in 

time series from 1990 up to two years before the due date of the reporting. The reporting is strictly source category 1120 

based and is done under the Common Reporting Format tables (CRF), downloadable from the UNFCCC official 

submission portal: https://unfccc.int/ghg-inventories-annex-i-parties/2021. 

 
12

 The last revision has been made by COP 19 in 2013 (UNFCCC, 2013) 
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The UNFCCC NGHGI anthropogenic CH4 and N2O emissions analyzed in this study include estimates from 

4 key sectors for the EU27+UK: 1 Energy, 2 Industrial processes and product use (IPPU), 3 Agriculture and 5 Waste. 

The methodological tiers a country applies depends on the source contribution to the national total (Key Category or 1125 

not), on the national circumstances and the individual conditions of the land, which explains the variability of 

uncertainties among the sector itself as well as among EU countries. The LULUCF CH4 and N2O emissions are very 

small but are included in some figures (see Table 1). 

Gap-filling harmonization procedure for NGHGI uncertainties 

The presented uncertainties in the emission levels of the individual countries and the EU27+UK bloc were 1130 

calculated by using the methods and data used to compile the official GHG emission uncertainties that are reported 

by the EU under the UNFCCC (NIRs, 2022). The EU uncertainty analysis reported in the bloc’s National Inventory 

Report (NIR) is based on country-level, Approach 1 uncertainty estimates (IPPC, 2006, Vol. 1, Chap. 3) that are 

reported by EU Member States, Iceland and United Kingdom under Article 7(1)(p) of Regulation (EU) 525/2013. 

These country-level uncertainty estimates are typically reported at beginning of a submission cycle and are not always 1135 

revised with updated CRF submissions later in the submission cycle. Furthermore, the compiled uncertainties of some 

countries are incomplete (e.g. uncertainties not estimated for LULUCF and/or indirect CO2 emissions, certain 

subsector emissions are confidential) and the sector and gas resolution at which uncertainties are provided varies 

between the countries. The EU inventory team therefore implements a procedure to harmonise and gap-fill these 

uncertainty estimates. A processing routine reads the individual country uncertainty files that are pre-formatted 1140 

manually to assign consistent sector and gas labels to the respective estimates of emissions/removals and uncertainties. 

The uncertainty values are then aggregated to a common sector resolution, at which the emissions and removals 

reported in the uncertainty tables of the countries are then replaced with the respective values from the final CRF 

tables of the countries. Due to the issue of incompleteness mentioned above, the country-level data are then screened 

to identify residual GHG emissions and removals for which no uncertainty estimates have been provided. Where 1145 

sectors are partially complete, the residual net emission is quantified in CO2 equivalents and incorporated. An 

uncertainty is then estimated, by calculating the overall sector uncertainty of the sources and sinks that were included 

in that country’s reported uncertainties estimates and assigning this percentage average to the residual net emission. 

In cases where for certain sectors no uncertainties have been provided at all (e.g. indirect CO2 emissions, LULUCF), 

an average (median) sector uncertainty in percent is calculated from all the countries for which complete sectoral 1150 

emissions and uncertainties were reported, and this average uncertainty is assigned to the country’s sector GHG total 

reported in its final CRF tables. 

The country-level uncertainties presented in this paper, have been compiled using this same processing 

routine and using the uncertainties and CRF data reported by the countries in the 2021 submission. However, here the 

method has been expanded to gap-fill at the individual greenhouse gas level (CH4 and N2O emissions only) rather than 1155 

at the aggregate GHG level. Furthermore, the expanded method here assigns the sub-sectoral uncertainties to the 

emissions and removals of the entire time series (1990-2019), rather than just the base year and latest year of the 

respective time series. This allows uncertainties to be sensitive to the sub-sectoral contributions to sectoral and national 

total emissions, which of course change over time. For each year of the time series, uncertainties in the total and 
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sectoral CH4 and N2O emissions are calculated using Gaussian error propagation, by summing the respective sub-1160 

sectoral uncertainties (expressed in kton CH4 and N2O) in quadrature and assuming no error correlation. In contrast, 

for the EU27+UK bloc, uncertainties in the total and sectoral CH4 and N2O emissions were calculated to take into 

account error correlations between the respective country estimates at the subsector level. This was done by applying 

the same methods and assumptions described in the 2022 EU NIR (UNFCCC NIR, 2022). The subsector resolution 

applied for gap-filling allows the routine to access respective data on emission factors from CRF Table Summary 3 1165 

and apply correlation coefficients (r) when aggregating the uncertainties. For a given subsector, it is assumed that the 

errors of countries using default factors are completely correlated (r = 1), while errors of countries using country-

specific factors are assumed uncorrelated (r = 0). For countries using a mix of default and country-specific factors at 

the given subsector level, it is assumed that these errors are partially correlated (r = 0.5) with one another and with the 

errors of countries using the default factors only. 1170 

Based on these correlation assumptions, the routine then aggregates CH4 and N2O emissions and uncertainties 

for the specified subsector resolution at the EU27+UK level. Uncertainties at sector total level are then aggregated 

from the subsector estimates assuming no correlation between subsectors. However, for countries reporting very 

coarse resolution estimates (e.g. total sector CH4 and N2O emissions) or where the sector has been partially or 

completely gap-filled, it is assumed that these uncertainties are partially correlated (r = 0.5) with one another and with 1175 

the other reported subsector level estimates. Level uncertainties on the total EU27+UK CH4 and N2O emissions (with 

and without LULUCF) are then aggregated from the sector estimates assuming no error correlation between sectors. 

 

EDGAR v6.0 

The Emissions Database for Global Atmospheric Research (EDGAR) is an independent global emission 1180 

inventory of greenhouse gases (GHG) and air pollutants developed by the Joint Research Centre of the European 

Commission (https://edgar.jrc.ec.europa.eu/index.php). The first edition of the Emissions Database for Global 

Atmospheric Research was published in 1995. The dataset now includes almost all sources of fossil CO2 emissions, 

is updated annually, and reports data for 1970 to n-1. Estimates are provided by sector. Emissions are estimated fully 

based on statistical data from 1970 till 2018 https://data.jrc.ec.europa.eu/dataset/97a67d67-c62e-4826-b873-1185 

9d972c4f670b. For complete description see Andrew (2020). 

Uncertainties: EDGAR uses emission factors (EFs) and activity data (AD) to estimate emissions. Both EFs 

and AD are uncertain to some degree, and when combined, their uncertainties need to be combined too. To estimate 

EDGAR’s uncertainties (stemming from lack of knowledge of the true value of the EF and AD), the methodology 

devised by IPCC (2006, Chapter 3) is adopted, that is the sum of squares of the uncertainty of the EF and AD 1190 

(uncertainty of the product of two variables). A log-normal probability distribution function is assumed to avoid 

negative values, and uncertainties are reported as 95 % confidence interval according to IPCC (2006, chapter 3, 

equation 3.7). For emission uncertainty in the range 50 % to 230% a correction factor is adopted as suggested by Frey 

et al (2003) and IPCC (2006, chapter 3, equation 3.4). Uncertainties are published in Solazzo et al., 2021. 

 1195 
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CAPRI 

CAPRI is an economic, partial equilibrium model for the agricultural sector, focused on the EU (Britz and 

Witzke, 201413; Weiss and Leip, 201214). CAPRI stands for ‘Common Agricultural Policy Regionalised Impact 

analysis’, and the name hints at the main objective of the system: assessing the effect of CAP policy instruments not 

only at the EU or Member State level but at sub-national level too. The model is calibrated for the base year (currently 1200 

2012) and then baseline projections are built, allowing the ex-ante evaluation of agricultural policies and trade policies 

on production, income, markets, trade and the environment.  

Among other environmental indicators, CAPRI simulates CH4 emissions from agricultural production 

activities (enteric fermentation, manure management, rice cultivation, agricultural soils). Activity data is mainly based 

on FAOSTAT and EUROSTAT statistics and estimation of emissions follows IPCC 2006 methodologies, with a 1205 

higher or lower level of detail depending on the importance of the emission source. Details on CAPRI methodology 

for emissions calculations is referenced in the Annex Table A1. For this study CAPRI updated three years: 2014, 2016 

and 2018. 

Uncertainties were calculated for the updated years, 2014, 2016 and 2018. The uncertainty of the spatial allocation 

of emissions for CH4 and N2O has been calculated by taking into account the uncertainty of the spatial 1210 

disaggregation and the uncertainty of the emission sources, assuming: 

- the disaggregation having an uncertainty of 50% for N2O and 20% for CH4. 

- the emission processes have uncertainty of:   

o 50%: N2O soil processes; 

o 30%: N2O manure processes; 1215 

o 30%: CH4 manure and enteric, and  

o 10%: rice. 

Then, for each cell, the uncertainty of the disaggregation and that of the process are combined as they are 

independent (sum of squares, (see Solazzo et al., 2021) and then the total uncertainty for the grid cell is aggregated 

using emission weighted sum of squares. 1220 

GAINS 

Specific sectors and abatement technologies in GAINS vary by the specific emitted compound, with source 

sector definition and emission factors largely following the IPCC methodology at the Tier 1 or Tier 2 level. GAINS 

includes in general all anthropogenic emissions to air, but does not cover emissions from forest fires, savannah burning 

and land use / land use change. Emissions are estimated for 174 countries/regions, with the possibility to aggregate to 1225 

a global emission estimate, and spanning a timeframe from 1990 to 2050 in five-year intervals. Activity drivers for 

macroeconomic development, energy supply and demand, and agricultural activities are entered externally, GAINS 

 
13 https://www.capri-model.org/docs/CAPRI_documentation.pdf 
14 https://www.sciencedirect.com/science/article/pii/S0167880911004415 
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extends with knowledge required to estimate “default” emissions (emissions occurring due to an economic activity 

without emission abatement) and emissions and costs of situations under emission control (see Amann et al., 2001). 

The GAINS model covers all source sectors of anthropogenic methane (CH4) emissions; agricultural sector 1230 

emissions from livestock, rice cultivation and agricultural waste burning, energy sector emissions from upstream and 

downstream sources in fossil fuel extraction and use, and emissions from handling and treatment of solid waste and 

wastewater source sectors. A description of the modelling of CH4 emissions in GAINS is presented in Höglund-

Isaksson (2020). Generation of solid waste and the carbon content of wastewater are derived within the model in 

consistency with the relevant macroeconomic scenario. The starting point for estimations of anthropogenic CH4 is the 1235 

methodology recommended in the IPCC (2006 and revision in 2019) guidelines, for most source sectors using country-

specific information to allow for deriving country- and sector/technology- specific emission factors at a Tier 2 level. 

Consistent methodologies were further developed to estimate emissions from oil and gas systems (Höglund-Isaksson, 

2017) and solid waste (Höglund-Isaksson, 2018; Gómez-Sanabria et al., 2018). Emission factors are specified in a 

consistent manner across countries for given sets of technology and with past implementation of emission abatement 1240 

measures reflected as changes in technology structures. The resulting emission estimates are well comparable across 

geographic and temporal scales. The GAINS approach to calculate waste emissions is developed in consistency with 

the First-Order-Decay method recommended by IPCC (2006 and 2019 revision), applying different decay periods 

when estimating emissions from flows of different types of organic waste, i.e., food & garden, paper, wood, textile 

and other. Data on waste generation, composition and treatment are taken from EUROSTAT (2019) and 1245 

complemented with national information from the UNFCCC (2019) Common Reporting Format tables on the amounts 

of waste diverted to landfills of various management levels and to treatment e.g., recycling, composting, biodigestion 

and incineration. 

Uncertainties: Uncertainty is prevalent among many different dimensions both in the estimations of emissions, 

abatement potentials and costs. When constructing global bottom-up emission inventories at a detailed country and 1250 

source level, it is inevitable that some information gaps will be bridged using default assumptions. As it is difficult to 

speculate about how such sources of uncertainty affect resulting historical and future emission estimates, we instead 

address uncertainty in historical emissions by making comparisons to estimates by other publicly available and 

independently developed bottom-up inventories and various top-down estimates consistent with atmospheric 

measurements and inverse model results. Although existing publicly available global bottom-up inventories adhere to 1255 

the recommended guidelines of the IPCC (2006), the flexibility in these is large and results will depend on the 

availability and quality of gathered source information. There is accordingly a wide range of possible sources of 

uncertainty built into estimations in such comprehensive efforts. Having a pool of independently developed 

inventories, each with its own strengths and weaknesses, can improve the understanding of the scope for uncertainty, 

in particular when compared against top-down atmospheric measurements.  1260 

 

FAOSTAT 

FAOSTAT: The Food and Agricultural Organization of the United Nations (FAO), provides CH4 emissions 

totals or per gas/activity from agriculture and LULUCF available at: https://www.fao.org/faostat/en/#data/GT. The 
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FAOSTAT emissions database is computed following Tier 1 IPCC 2006 Guidelines for National GHG Inventories 1265 

(http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html). Country reports to FAO on crops, livestock and 

agriculture use of fertilizers are the source of activity data. Geospatial data are the source of AD for the estimates from 

cultivation of organic soils, biomass and peat fires. GHG emissions are provided by country, regions and special 

groups, with global coverage, relative to the period 1961-present (with annual updates, currently to 2019) and with 

projections for 2030 and 2050, expressed as CO2e for CH4, by underlying agricultural emission sub-domain and by 1270 

aggregate (agriculture total, agriculture total plus energy, agricultural soils). LULUCF emissions consist of  CH4 

(methane) associated with biomass and peat fires. Comparison to the UNFCCC submissions is also provided. 

Uncertainties were computed by Tubiello et al., 2013 but are not available in the FAOSTAT database. 

Top-down CH4 emission estimates 

FLEXPART – FLExKF 1275 

FLExKF applies an Extended Kalman Filter (Brunner et al. 2012) in combination with backward Lagrangian 

transport simulations using the model FLEXPART (Stohl et al. 2005; Pisso et al. 2019). It optimizes surface-

atmosphere fluxes by assimilating atmospheric observations in a sequential manner, which allows for an analytical 

solution for relatively large inversion problems (long time periods, number stations O(100)). Since model-observation 

residuals typically follow a log-normal distribution, the method optimizes log-transformed emissions, which also 1280 

guarantees a positive solution. Source-Receptor Matrices (Seibert and Frank, 2004) were computed at 0.25° x 0.25° 

resolution with FLEXPART driven by ECMWF Era Interim meteorological fields in the same way as for FlexInvert. 

Backward simulations were limited to 10 days prior to each observation and to the domain 15°W – 35°E, 30°N – 

75°N. Fluxes were estimated for this domain on a monthly basis at 0.5° x 0.5° resolution. For the version used in this 

study, FLExKF-CAMSv19r_EMPA, the background mole fraction was taken from CAMSv19r which is based on the 1285 

global TM5-4DVAR assimilation run (Bergamaschi et al. 2018a) where the above domain was cut out following the 

two-step approach of Rödenbeck et al. (2009). 

Uncertainties: The uncertainty in the posterior fluxes is composed of random and systematic errors. The random 

uncertainties are represented by the posterior error covariance matrix provided by the Kalman Filter, which combines 

errors in the prior fluxes with errors in the observations and model representation. Systematic uncertainties primarily 1290 

arise from systematic errors in modelled atmospheric transport and in background mole fractions, but also include 

aggregation errors, i.e. errors arising from the way the flux variables are discretized in space and time. 

 

FLEXINVERT 

The FlexInvert framework is based on Bayesian statistics and optimizes surface-atmosphere fluxes using the 1295 

maximum probability solution (Rodgers, 2000). Atmospheric transport is modelled using the Lagrangian model 

FLEXPART (Stohl et al., 2005; Pisso et al., 2019) run in the backwards time mode to generate a so-called Source-

Receptor Matrix (SRM). The SRM describes the relationship between the change in mole fraction and the fluxes 

discretized in space and time (Seibert and Frank, 2004) and was calculated for 8 days prior to each observation. For 

use in the inversions, FLEXPART was driven using ECWMF operational analysis wind fields. The state vector 1300 

consisted of prior fluxes discretized on an irregular grid based on the SRMs (Thompson et al. 2014). This grid has 
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finer resolution (in this case the finest was 0.25°×0.25°) where the fluxes have a strong influence on the observations 

and coarser resolution where the influence is only weak (the coarsest was 2°×2°). The fluxes were solved at 10-days 

temporal resolution. The state vector also included scalars for the background contribution. The background mixing 

ratio, i.e., the contribution to the mixing ratio that is not accounted for in the 8-day SRMs, was estimated by coupling 1305 

the termination points of backwards trajectories (modelled using virtual particles) to initial fields of methane simulated 

with  the Lagrangian FLEXPART-CTM model, which was developed at Empa based on FLEXPART (Stohl et al., 

2005; Pisso et al., 2019). In these simulations, we applied the data assimilation method described by Groot Zwaaftink 

et al. (2018) that constrains modelled fields with surface observations through nudging.  

Uncertainties: The posterior fluxes are subject to systematic errors primarily from: 1) errors in the modelled 1310 

atmospheric transport; 2) aggregation errors, i.e. errors arising from the way the flux variables are discretized in space 

and time; 3) errors in the background methane fields; and 4) the incomplete information from the observations and 

hence the dependence on the prior fluxes. In addition, there is, to a smaller extent, some error due to calibration offsets 

between observing instruments. Uncertainties in the observation space were inflated to take into account the model 

representation errors 1315 

InGOS and TM5-4DVAR 

The atmospheric models used within the European FP7 project InGOS (Integrated non-CO2 Greenhouse gas 

Observing System) are described by Bergamaschi et al., 2018a and Supplement (https://www.atmos-chem-

phys.net/18/901/2018/acp-18-901-2018-supplement.pdf). The models include global Eulerian models with a zoom 

over Europe (TM5-4DVAR, TM5-CTE, LMDZ), regional Eulerian models (CHIMERE), and Lagrangian dispersion 1320 

models (STILT,NAME,COMET). The horizontal resolutions over Europe are∼1.0–1.2◦ (longitude)×∼0.8–1.0◦ 

(latitude) for the global models (zoom) and ∼0.17–0.56◦ (longitude)×∼0.17–0.5◦ (longitude) for the regional models. 

Most models are driven by meteorological fields from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) ERA-Interim reanalysis (Dee et al., 2011). In the case of STILT, the operational ECMWF analyses were 

used, while for NAME meteorological analyses of the Met Office Unified Model (UM) were employed. The regional 1325 

models use boundary conditions (background CH4 mole fractions) from inversions of the global models (STILT from 

TM3, COMET from TM5-4DVAR, CHIMERE from LMDZ) or estimate the boundary conditions in the inversions 

(NAME) using baseline observations at MaceHead as prior estimates. In the case of NAME and CHIMERE, the 

boundary conditions are further optimised in the inversion. The inverse modelling systems applied in this study use 

different inversion techniques. TM5-4DVAR, LMDZ, and TM3-STILT use 4DVAR variational techniques, which 1330 

allow optimisation of emissions of individual grid cells. These 4DVAR techniques employ an adjoint model in order 

to iteratively minimise the cost function using a quasi-Newton (Gilbert and Lemaréchal, 1989) or conjugate gradient 

(Rödenbeck, 2005) algorithm. The NAME model applies a simulated annealing technique, a probabilistic technique 

for approximating the global minimum of the cost function. In CHIMERE and COMET, the inversions are performed 

analytically after reducing the number of parameters to be optimised by aggregating individual grid cells before the 1335 

inversion. TM5-CTE applies an ensemble Kalman filter (EnKF) (Evensen, 2003), with a fixed-lag smoother (Peters 

et al., 2005). 
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Uncertainty: In general, the estimated model uncertainties depend on the type of station and for some models (TM5-

4DVAR and NAME) also on the specific synoptic situation. In InGOS the uncertainty of the ensemble was calculated 

as 1σ estimate. Bergamaschi et al. (2015) showed that the range of the derived total CH4 emissions from north-western 1340 

and eastern Europe using four different inverse modelling systems was considerably larger than the uncertainty 

estimates of the individual models because the latter typically use Bayes’ theorem to calculate the reduction of 

assumed a prior emission uncertainties by assimilating measurements (propagating estimated observation and model 

errors to the estimated emissions). An ensemble of inverse models may provide more realistic overall uncertainty 

estimates, since estimates of model  errors are often based on strongly simplified assumptions and do not represent the 1345 

total uncertainty. 

InTEM – NAME 

The Inverse Technique for Emission Modelling (InTEM) (Arnold et al., 2018) uses the NAME (Numerical 

Atmospheric dispersion Modelling Environment) (Jones et al, 2007) atmospheric Lagrangian transport model. NAME 

is driven by analysis 3-D meteorology from the UK Met Office Unified Model (Cullen, 1993). The horizontal and 1350 

vertical resolution of the meteorology has improved over the modelled period from 40 km to 12 km (1.5 km over the 

UK). InTEM is a Bayesian system that minimises the mismatch between the model and the atmospheric observations 

given the constraints imposed by the observation and model uncertainties and prior information with its associated 

uncertainties. The direction (latitude and longitude) and altitude varying background concentration and observation 

station bias are solved for within the inverse system along with the spatial distribution and magnitude of the emissions. 1355 

The time-varying prior background concentration for the DECC network stations is derived from the MHD 

observations when they are very largely sensitive only to Northern Canada (Arnold et al., 2018). The prior bias (that 

can be positive or negative) for each station is set to zero with an uncertainty of 1 ppb. The observations from each 

station are assumed to have an exponentially decreasing 12-hr time correlation coefficient and, between stations, a 

200 km spatial correlation coefficient. The observations are averaged into 2-hr periods. The uncertainty of the 1360 

observations is derived from the variability of the observations within each 2-hr period. The modelling uncertainty for 

each 2-hr period at each station varies and is defined as the larger of; the median pollution events in that year at that 

station, or 16.5% of the magnitude of the pollution event. These values have been derived from analysis of the 

observations of methane at multiple heights at each station across the DECC network. Each inversion is repeated 24 

times, each time 10% of the observations per year per station are randomly removed in 5-day intervals and the results 1365 

and uncertainty averaged. 

Uncertainty: This random removal of observations allows a greater exploration of the uncertainty, given the potential 

for some of the emission sources to be intermittent within the time-period of the inversion. 

CTE-CH4 Europe, CTE-SURF and CTE-GOSAT 

CarbonTracker Europe CH4 (CTE-CH4) (Tsuruta et al., 2017) applies an ensemble Kalman filter (Peters et 1370 

al. 2005) in combination with the Eulerian transport model TM5 (Krol et al. 2005). It optimizes surface fluxes weekly     

, and assimilates atmospheric CH4 observations. TM5 was run at 1° x 1° resolution over Europe and 6° x 4° resolution 

globally, constrained by 3-hourly ECMWF ERA-Interim meteorological data. The photochemical sink of CH4 due to 
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tropospheric and stratospheric OH, and stratospheric Cl and O(1D) was pre-calculated based on Houweling et al. 

(2014) and Brühl and Crutzen (1993) and not adjusted in the optimization scheme. 1375 

Three experiments were conducted, which differ in (1) sets of prior fluxes, (2) sets of assimilated 

observations, and (3) optimization resolution over the Northern Hemisphere. CTE-FMI uses sets of prior fluxes from 

LPX-Bern DYPTOP (Stocker et al., 2014) for biospheric, EDGAR v4.2 FT2010 (Janssens-Maenhout et al., 2013) for 

anthropogenic, GFED v4 (Giglio et al., 2013) for biomass-burning, Ito and Inatomi (2012) for termites and Tsuruta et 

al. (2017) for ocean sources. CTE-SURF and CTE-GOSAT use sets of prior fluxes from Global Carbon Project 1380 

(Saunois et al., 2020). CTE-FMI and CTE-SURF assimilated ground-based surface CH4 observations, while CTE-

GOSAT assimilated GOSAT XCH4 retrievals from NIES v2.72. CTE-FMI optimized fluxes at 1° x 1° resolution over 

Northern Europe, northeast Russia and southeast Canada, 6° x 4° resolution over other parts of the Northern 

Hemisphere land, and region-wise (combined TransCom regions and soil-type) over the Southern Hemisphere and 

ocean. CTE-SURF and CTE-GOSAT fluxes were optimized at 1° x 1° resolution over Europe and region-wise 1385 

elsewhere globally. 

Uncertainty: The prior uncertainty is assumed to be a Gaussian probability distribution function, where the error 

covariance matrix includes errors in prior fluxes, observations and transport model representations. The uncertainty 

for the prior fluxes were assumed to be 80 % of the fluxes over land and 20 % over ocean, with correlation between 

grid cells or regions to be 100-500 km over land and 900 km over ocean. The uncertainty for observations and transport 1390 

model representations vary between observations, with min. aggregated uncertainty to be 7.5 ppb for surface 

observations and 15 ppb for GOSAT data. The posterior uncertainty is calculated as standard deviation of the ensemble 

members, where the posterior error covariance matrix is driven by the ensemble Kalman filter. 

 

MIROC4-ACTM:  1395 

The MIROC4-ACTM time dependent inversions solve for emissions from 53 regions for CH4 and 84 regions for N2O. 

The inversion framework is based on Bayesian statistics and optimizes surface-atmosphere fluxes using the maximum 

probability solution. Atmospheric transport is modelled using the JAMSTEC’s Model for Interdisciplinary Research 

on climate, version 4 based atmospheric chemistry-transport model (MIROC4-ACTM) (Watanabe et al. 2008; Patra 

et al. 2018). The Source-Receptor Matrix (SRM) is calculated by simulating unitary emissions from 53 or 84 basis 1400 

regions, for which the fluxes are optimised. The SRM describes the relationship between the change in mole fraction 

at the measurement locations for the unitary basis region fluxes. The MIROC4-ACTM meteorology was nudged to 

the JMA 55-year reanalysis (JRA55) horizontal wind fields and temperature. The calculation of photo-chemical losses 

is performed online. The hydroxyl (OH) radical concentration for reaction with CH4 vary monthly but without any 

interannual variations. The simulated mole fractions for the total a priori fluxes are subtracted from the observed 1405 

concentrations before running the inversion calculation (as in Patra et al., 2016 for CH4 inversion). Both the inversion 

results are contributed to the GCP-CH4 and GCP-N2O activities (Saunois et al., 2020; Thompson et al., 2019; Tian et 

al., 2020). 

Uncertainties: The posterior fluxes are subject to systematic errors primarily from: 1) errors in the modelled 

atmospheric transport; 2) aggregation errors, i.e. errors arising from the way the flux variables are discretized in space 1410 
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(84 regions) and time (monthly-means); 3) errors in the background mole fractions (assumed to be a minor factor); 

and 4) the incomplete information from the sparse observational network and hence the dependence on the prior fluxes. 

In addition, there is, to a much smaller extent, some error due to calibration offsets between observing instruments, 

which is more pertinent for N2O than for other GHGs. We have validated model transport in troposphere using SF6 

for the inter-hemispheric exchange time, and the using SF6 and CO2 for the age of air in the stratosphere. The simulated 1415 

N2O concentrations are also compared with aircraft measurements in the upper troposphere and lower stratosphere for 

evaluating the stratosphere-troposphere exchange rates. Comparisons with ACE-FTS vertical profiles in the 

stratosphere and mesosphere indicate good parameterisation of N2O loss by photolysis and chemical reactions, and 

thus the lifetime, which affect the global total N2O budgets. Random uncertainties are calculated by the inverse model 

depending on the prior flux uncertainties and the observational data density and data uncertainty. Only 37 sites are 1420 

used in the inversion and thus the reduction in priori flux uncertainties have been minimal. The net fluxes from the 

inversion from individual basis regions are less reliable compared to the anomalies in the estimated fluxes over a 

period of time.  

 

Global Carbon Project – Global Methane Budget (GMB) 1425 

GMB uses an ensemble of 22 top-down global inversions for anthropogenic CH4 emissions presented in 

Saunois et al. (2020) for the Global Methane Budget. These inversions were simulated by nine atmospheric inversion 

systems based on various chemistry transport models, differing in vertical and horizontal resolutions, meteorological 

forcing, advection and convection schemes, and boundary layer mixing. Surface-based inversions were performed 

over the period 2000-2017 while satellite-based inversions cover the GOSAT data availability 2010-2017. The 1430 

protocol established for these simulations was not stringent as the prior emission flux data set was not mandatory, and 

each group selected their constraining observations. More information can be found in Saunois et al. (2020) in 

particular in their Table 6 and S6. 

Uncertainties: currently there are no uncertainties reported for the GMB models. This study uses the median and the 

min/mas as uncertainty range estimation from the 22 models ensemble. In general uncertainties might be due to factors 1435 

like: different transport models, physical parametrizations, prior fluxes, observation data sets etc. 

 

A2: Natural CH4 emissions 

Bottom-up CH4 emissions estimates 

 1440 

CH4 emissions from inland waters 

The CH4 estimate from inland waters represents a climatology of diffusive and ebullitive CH4 emissions from 

rivers, lakes and reservoirs. It is based on two approaches. The first approach synthesizes average annual CH4 

emissions fluxes for Europe that were rescaled to a consistent set of inland water surface area (Lauerwald et al., in 

prep.) and corrected for the effect of seasonal ice cover. To obtain fluxes for the EU27+UK domain, the median and 1445 

first interquartile range values are scaled down by a factor 0.75 based on the surface area of the two domains. The 

second approach provides a spatially-resolved climatology of inland water fluxes at the resolution of 0.1°. The river 
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estimate relies on the 0.1°x0.1° river water surface area of Lauerwald et al. (2015) and 3 observation-based 

assessments (Bastviken et al., 2011; Stanley et al., 2016; Rosentreter et al., 2021) of mean CH4 flux densities for 

European rivers. Note the very large range encompassed by the 3 studies (0.07-0.66 Tg CH4 yr-1 for EU27+UK), 1450 

reflecting high uncertainty in the assessment of the river CH4 flux. The lake estimate not only resolves the spatial 

variability, but also the temporal variability in CH4 emissions. To do so, the mechanistic-stochastic-modeling (MSM) 

approach of Maavara et al. (2017, 2019) and Lauerwald et al. (2019) was expanded to resolve the lake seasonal 

dynamics and the biogeochemical processes of the CH4 and O2 cycles occurring in the water column and sediments. 

To constrain the lake physics, the Canadian Small Lake Model (CSLM) was used (MacKay, 2012). CSLM represents 1455 

lake stratification and mixing events by simulating vertical temperature profiles, thermocline and light penetration 

depths, and lake ice dynamics. For carbon, the MSM simulates a lake-mean trophic state from the balance between 

Net Primary Production (limited by light and nutrient inputs from the watershed) and heterotrophic decomposition of 

organic matter. It was upgraded to simulate vertical profiles of O2 and CH4 by accounting for eddy-diffusive transport 

and the set of consumption/production processes of the O2-CH4 cycles at the (sub)-daily resolution with a vertical 1460 

resolution of less than one meter (Maisonnier et al., in prep.). In the sediment, net CH4 production was split into 

diffusive and ebullitive pathways using an approach modified from Langenegger et al. (2019). The new process-based 

model was then applied to the European domain, using a lake clustering approach whereby within each grid of the 

simulation domain (2.5°x2.5°), lakes are binned into different classes as a function of the key drivers of CH4 fluxes 

that are lake-size and depth (Messager et al., 2016), and lake trophic status. Then, for each grid and each class, a 1465 

representative simulation forced by high-resolution local climate forcings extracted from the lake sector of ISIMIP 

was performed. To carry out the spatial upscaling, the resulting diffusive and ebullitive areal CH4 fluxes through the 

water-air interface were multiplied by the surface area of each lake class in each grid of the domain, extracted from 

the HydroLAKES database (Messager et al., 2016). 

 1470 

JSBACH-HIMMELI 

The model framework, JSBACH-HIMMELI (Raivonen et al., 2017; Susiluoto et al., 2018) is used to estimate 

wetland and mineral soil emissions, and an empirical model is used to estimate the emissions from inland water bodies. 

JSBACH-HIMMELI is a combination of two models, JSBACH, that is the land-surface model of MPI-ESM 

(Reick et al., 2013), and HIMMELI, that is a specific model for northern peatland emissions of CH4 (Raivonen et al., 1475 

2017). HIMMELI (HelsinkI Model of MEthane buiLd-up and emIssion for peatlands) has been developed especially 

for estimating CH4 production and transport in northern peatlands. It simulates both CH4 and CO2 fluxes and can be 

used as a module within different modelling environments (Raivonen et al., 2017; Susiluoto et al., 2018). HIMMELI 

is driven with soil temperature, water table depth, the leaf area index and anoxic respiration. These parameters are 

provided to HIMMELI from JSBACH, which models hydrology, vegetation and soil carbon input from litter and root 1480 

exudates. CH4 emission and uptake of mineral soils are calculated applying the method by Spahni et al. (2011) based 

on soil moisture estimated by JSBACH.  
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The distribution of terrestrial vegetation types in JSBACH-HIMMELI is adopted from CORINE land cover 

data and from native JSBACH land cover for the areas that CORINE does not cover. The HIMMELI methane model 

is applied for peatlands and the mineral soil approach for the rest. The map of inland water CH4 emissions has been 1485 

combined with JSBACH-HIMMELI land use map so that the map of inland waters is preserved and JSBACH grid-

based fractions of different land use categories adjusted accordingly. In order to avoid double-counting the terrestrial 

CH4 flux estimates have been normalized by the ratio of the two inland water body distributions. 

Uncertainties: As in any process modeling the uncertainties of the bottom up modeling of CH4 arise from three 

primary sources: parameters, forcing data (including spatial and temporal resolution), and model structure. An 1490 

important source of uncertainty in the case of terrestrial CH4 flux modeling is the spatial distribution of peatlands. 

The uncertainties of JSBACH-HIMMELI peatland emissions were estimated by comparing the annual totals of 

measured and simulated methane fluxes at five European observation sites. Two of the sites are located in Finnish 

Lapland, one in middle Sweden, one in southern Finland and one in Poland. 

For the sensitivity of mineral soil fluxes Spahni et al. (2011) tested two soil moisture thresholds, 85% or 95% of water 1495 

holding capacity, below which mineral soils were assumed to be only CH4 sinks, above which sources. We used the 

higher value, 95% of water holding capacity. The uncertainty was estimated using CH4 flux simulations of one year 

(2005). We did two new model runs, using moisture thresholds 95±15%, and derived the uncertainty from the resulting 

range in the annual emission sum. 

 1500 

Geological fluxes 

Framework and previous works 

Geological methane emissions to the atmosphere, including natural gas seepage in petroliferous sedimentary 

basins and geothermal exhalations, were estimated at the global scale by multiple authors, based on bottom-up and 

top-down procedures (see review, including discussions on conflicting estimates, in Etiope and Schwietzke, 2019; 1505 

Thornton et al. 2021 and references therein), and accounting for about 40-50 Tg CH4 yr-1.  

For the European continent, a first geo-methane emission estimate was proposed by Simpson et al. (1999) 

with “a best guess” of 0.01 Tg yr-1 and a speculative upper limit of 3 Tg yr-1, only on the basis of an extrapolation of 

a few submarine emission data. At the time of the Simpson’s work, very few data on geological methane fluxes on 

land were available, and emission factors were basically unknown. Bottom-up emission estimates at European level 1510 

including onshore seepage and geothermal exhalations were proposed ten years later, by Etiope (2009), on the basis 

of published regional emission estimates, suggesting around 3 Tg yr-1 for geographic, onshore and offshore, Europe 

(including Azerbaijan; practically corresponding to present EU49). 

Again ten years later, thanks to a wider data-set of CH4 seepage flux from different geological environments 

in different countries and global inventories of geo-CH4 emission sites, a process-based model using statistically 1515 

derived emission factors and activity (areas) was developed to derive a global grid map of geo-CH4 emissions (Etiope 

et al. 2019). The global grid model, developed by ArcGIS at 1°x1° resolution, can be, in theory, used to derive (scale-

up) geo-CH4 emissions at continental or regional scale.  
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This exercise was done, for Europe (EU27+UK) by Petrescu et al. (2021a), obtaining a value of 8.8 Tg yr-1. 

The authors wished, however, to scale-down this value taking into account a global top-down estimate based on 1520 

radiocarbon-free CH4 in ice cores by Hmiel et al. (2020), who suggested, for the entire planet, 1.6 Tg yr-1. This global 

estimate has more recently been contextualized and questioned by Thornton et al. (2021); in fact, the Hmiel et al. 

(2020) estimate has the same order of magnitude of emissions estimated by multiple authors for single local and 

regional seepage areas, so that the global emission must be considerable higher.  

Petrescu et al. (2021) used however the upper limit of Hmiel et al. (2020), 5.4 Tg yr-1, to scale-down the 1525 

global gridded emission of Etiope et al. (2019), i.e. 37.4 Tg yr-1, which is not the estimated global emission (43-50 Tg 

yr-1, which included some factors that could not be considered in the grid model). From the 8.8 Tg yr-1 (EU27 + UK), 

Petrescu et al. (2021) obtained then 1.3 Tg yr-1 (for marine and land geological emissions) as follows: 

8.8 x 5.4/37.4 = 1.3 Tg CH4  yr-1     (1) 

Besides the subjective use of the upper limit of Hmiel et al. (2020) and of the gridded (not the estimated 1530 

global) value of Etiope et al. (2019), it is important to note that the initial gridded value derived for EU27+UK, 8.8 yr-

1, is affected by the relatively low precision, at the European scale, of the input data used for the global grid model. 

The global model was, in fact, developed on the basis of a global, large scale distribution of geological factors (for 

example the area of petroleum fields which determines the microseepage area), which lack the necessary precision for 

lower (continental and country) scale application. The main purpose of the global gridding was to offer a global spatial 1535 

distribution of geo-CH4 sources, with emission potential and methane isotopic values; it could not provide locally 

precise geo-CH4 emissions because the datasets, developed for gridding purposes, was not complete and did not 

contain all the information necessary for improving previous estimates. A refinement of bottom-up estimates was 

possible only for mud volcanoes and microseepage because their gridding implied a more careful assessment of the 

spatial distribution and emission factors. 1540 

 

Re-assessment of geo-CH4 emissions in Europe 

For the current study,. Etiope and Ciotoli applied the global grid model of Etiope et al. (2019) using more detailed 

input data for Europe, with reference to the potential area of microseepage (activity) derivable by a more precise 

estimate of the continental oil-gas field area. They used the same microseepage emission factors statistically derived 1545 

on global scale. For the other categories of geo-CH4 sources (mud volcanoes, onshore seeps, submarine seepage and 

geothermal manifestations) they applied European country masks from VERIFY (relative to EU27+UK and EU49) 

for the calculation of the onshore emission, and related EEZ (Exclusive Economic Zone) for the calculation of the 

sub-marine seepage to derive the global emission grid. 

In the global microseepage emission model, the area where microseepage can potentially exist (named EMA 1550 

- effective microseepage area) was estimated taking into account the distribution of microseepage observed by direct 

measurements in several oil-gas fields: statistical analysis of available data (summarized in Etiope et al. 2019) 

suggested that microseepage fluxes occur in about 57% of the petroleum field area (PFA). In theory, microseepage is 

expected also in the regions where seepage phenomena, manifested by macro-seeps (oil and gas seeps), exist. In Etiope 
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et al. (2019) the global PFA was derived from Petrodata (Lujala et al. 2007), based on an oil-gas field digital map of 1555 

USGS (Pawlewicz et al. 1997), which considered for each oil-gas field center point a buffer area of 30 km radius. The 

reason for this radius was not explained in Lujala et al. (2007). 

In this work, the PFA of Europe (EU49) was derived by digitising all petroleum field center points from the 

USGS map (Pawlewicz et al. 1997). The microseepage CH4 emission related to EMA is then derived by using the 

same emission factors (four levels of microseepage; Table 2) established on global scale in Etiope et al. (2019). The 1560 

results of the gridding, integrating activity (EMA) and emission factors, for EU49 are reported in Table A2.1. 

 

Table A2.1: Results of microseepage gridding (0.05°x0.05°) for EU49 

 N. cell Area (km2) MS (t km-2 yr-1) Total output (t yr-1) 

Gridded EMA 9457 199,703  2,985,570 

Gridded Level 1 6843 143,307 0.474 67,927 

Gridded Level 2 1899 40,094  11.366 455,708 

Gridded Level 3 134 2959 40.15 118,804  

Gridded Level 4 581 13,008 180.13 2,343,131  

MS: Microseepage emission factor statistically derived as described in Etiope et al. (2019). 

The EMA and related microseepage emission for EU27+UK are derived by applying the related mask on 1565 

EU49, resulting in: 

EU27+UK EMA= 177,439 km2 and microseepage EU27+UK = 2,161,060 t yr-1. 

The total microseepage emission is quite sensitive to the activity (area); This estimate can be improved by increasing 

the number of measurements worldwide and related spatial (activity) and emission factor statistics. 

For the other geological sources categories, i.e., onshore seeps (OS; including mud volcanoes), geothermal 1570 

manifestations (GM) and submarine seepage (SS), we applied the masks of the European territories (for EU27+UK 

and EU49, and the EEZ for the marine areas) on the global 1°x1° emission grid of Etiope et al. (2019). The result is 

summarised in Table A2.2. 

Table A2.2: Gridded European geo-CH4 emissions (t yr-1).  

 Microseepage 

 (MS) 

Onshore seeps 

(OS) 

Geothermal 

(GM) 

Submarine 

Seeps (SS) 

TOTAL 

EU49 2,985,570 2,162,539 404,205 1,653,049 7,205,363 

EU27+UK 2,183,733 69,618 206,705 863,368 3,323,424 

 1575 
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Table A2.3 compares the new results with previous European estimates (Etiope, 2009; Petrescu et al. 2021a). 

Table A2.3: European geo-CH4 emission estimates (Tg yr-1) 

 Etiope 

(2009) 

Petrescu et al. (2021a) This work 

Geographic Europe  

(onshore+ offshore, including 

Azerbaijan) 

 

 

3 

  

EU27+UK onshore   8.8 (from global grid model) 

1.3 (scaled-down as Hmiel, 

2020) 

2.4 

EU27+UK onshore + offshore   3.3 

EU49 onshore   5.5 

EU49 onshore + offshore    7.2 

 

The overall uncertainties of the spatial distribution of the geo-CH4 sources and CH4 emissions depend on 

individual uncertainties of the four categories of seepage, which are discussed in Etiope et al. (2019). Compared to 1580 

the global grid model, we have reduced the uncertainty of the microseepage at European scale by refining the activity 

(microseepage area). 

The new EU27+UK geo-CH4 emission estimate is lower than the one derived by Petrescu et al. (2021a) using 

the global gridding, but higher than the scaled-down value (eq. 1). The EU49 (onshore+offshore) emission is higher 

than, but of the same order of magnitude of, the preliminary, rough estimate of geographic Europe, which included 1585 

Azerbaijan, by Etiope (2009). Onshore geo-CH4 emissions occur mostly in Azerbaijan, Italy, Romania, which are 

actually the EU49 countries with major onshore oil-gas reserves and production (BP, 2020), and thus with greater 

natural seepage potential. Offshore emissions are dominated by the large estimates published for the UK shelf (Judd 

et al, 1997, revised by Tizzard, 2008). These estimates need to be verified and improved. Beyond the emission values, 

our gridding provides, however, the first detailed map of natural geological methane emission in Europe, which can 1590 

be used for continental scale methane budget modelling. 

 

Top-down CH4 emissions estimates 

 

Global Carbon Project - Global Methane Budget (Saunois et al., 2020) 1595 

For this study, none of the global inversions were updated. 

GMB uses an ensemble of thirteen monthly gridded estimates of wetland emissions based on different land 

surface models as calculated for Saunois et al. (2020). Each model conducted a 30-year spin-up and then simulated 
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net methane emissions from wetland ecosystems over 2000-2017. The models were forced by CRU-JRA reconstructed 

climate fields (Harris, 2019), and by the remote sensing-based wetland dynamical area dataset WAD2M (Wetland 1600 

Area Dynamics for Methane Modeling). This data set provides monthly global areas over 2000-2017 based on a 

combination of microwave remote sensing data from Schroeder et al. (2015) and various regional inventory data sets. 

More information is available in Saunois et al. (2020) and more details will be presented in a future publication led 

by Poulter et al., 2017 and colleagues. 

Uncertainty: As described by Saunois et al. (2020) uncertainties are reported as minimum and maximum values of 1605 

the available studies, in brackets. They do not take into account the uncertainty of the individual estimates, but rather 

express the uncertainty as the range of available mean estimates, i.e., the standard error across 

measurements/methodologies considered. 

 

A3: Anthropogenic and natural N2O emissions 1610 

 

Bottom-up N2O emission estimates 

UNFCCC NGHGI (2019), EDGAR v6.0 and CAPRI: descriptions are found in Appendix A1. 

 

ECOSSE 1615 

ECOSSE is a biogeochemical model that is based on the carbon model ROTH-C (Jenkinson and Rayner, 

1977; Jenkinson et al. 1987; Coleman and Jenkinson, 1996) and the nitrogen-model SUNDIAL (Bradbury et al. 1993; 

Smith et al. 1996). All processes of the carbon and nitrogen dynamics are considered (Smith et al., 2010a,b). 

Additionally, in ECOSSE processes of minor relevance for mineral arable soils are implemented as well (e.g. methane 

emissions) to have a better representation of processes that are relevant for other soils (e.g. organic soils). ECOSSE 1620 

can run in different modes and for different time steps. The two main modes are site specific and limited data. In the 

later version, basis assumptions/estimates for parameters can be provided by the model. This increases the uncertainty 

but makes ECOSSE a universal tool that can be applied for large scale simulations even if the data availability is 

limited. To increase the accuracy in the site-specific version of the model, detailed information about soil properties, 

plant input, nutrient application and management can be added as available. 1625 

 During the decomposition process, material is exchanged between the SOM pools according to first order 

rate equations, characterised by a specific rate constant for each pool, and modified according to rate modifiers 

dependent on the temperature, moisture, crop cover and pH of the soil. The N content of the soil follows the 

decomposition of the SOM, with a stable C:N ratio defined for each pool at a given pH, and N being either mineralised 

or immobilised to maintain that ratio. Nitrogen released from decomposing SOM as ammonium (NH4+) or added to 1630 

the soil may be nitrified to nitrate (NO3-).  

 For spatial simulations the model is implemented in a spatial model platform. This allows us to aggregate the 

input parameter for the needed resolution. ECOSSE is a one-dimensional model and the model platform provides the 

input data in a spatial distribution and aggregates the model outputs for further analysis. While climate data are 
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interpolated, soil data are represented by the dominant soil type or by the proportional representation of the different 1635 

soil types in the spatial simulation unit (this is in VERIFY a grid cell).  

Uncertainties in ECOSSE arise from three primary sources: parameters, forcing data (including spatial and 

temporal resolution), and model structure.  

 

DayCent 1640 

DayCent was designed to simulate soil C dynamics, nutrient flows (N, P, S) and trace gas fluxes (CO2, CH4, 

N2O, NOx, N2) between soil, plants and the atmosphere at daily time-step. Submodels include soil water content and 

temperature by layer, plant production and allocation of net primary production (NPP), decomposition of litter and 

soil organic matter, mineralization of nutrients, N gas emissions from nitrification and denitrification, and CH4 

oxidation in non-saturated soils.  1645 

The DayCent modelling application at the EU level is a consolidated model framework running on LUCAS 

point (Orgiazzi, 2018) which was extensively explained in previous works (Lugato et al., 2017, 2018; Quemada et al., 

2020) where a detailed description of numerical and geographical datasets and uncertainty estimations is reported. 

Information directly derived from LUCAS (2009-2015) included the soil organic carbon content (SOC), 

particle size distribution and pH. Hydraulic properties and bulk density was also calculated with an empirically-1650 

derived pedotransfer. Management information was derived from official statistics (Eurostat, 2019) and included crop 

shares at NUTS2 level. The amount of mineral N was partitioned according to the regional crop rotations and 

agronomic crop requirements. Organic fertilization and irrigated areas were derived from the ‘Gridded Livestock of 

the World’ FAO dataset and the FAO-AQUASTAT product. 

Meteorological data were downloaded from the E-OBS gridded dataset (http://www.ecad.eu) at 0.1° 1655 

resolution. For the climatic projection, the gridded data from CORDEX database (https://esgf-

node.ipsl.upmc.fr/search/cordex-ipsl/) were used. The average annual (2006-2010) atmospheric N deposition from the 

EMEP model (rv 4.5) were also implemented into the simulations. The results were updated to 2015-2019 mean. 

Uncertainty: The starting year of the simulation was set in 2009 and projected in the future. The uncertainty analysis, 

based on the Montecarlo approach, was done running the model 52 times in each point and, contemporary, randomly 1660 

sampling model inputs from probability density functions for: SOC pool partition, irrigation and both mineral and 

organic fertilization rates. The model outputs (including uncertainties) at point level were up-scaled regionally at 1 

km resolution by a machine learning approach based on Random Forest regression. 

 

N2O emissions from inland waters 1665 

The N2O estimate represents a climatology of average annual N2O emissions from rivers, lakes, reservoirs 

and estuaries at the spatial resolution of 0.1°. Based on a spatially explicit representation of water bodies and point 

and non-point sources of N and P, this model quantifies the global scale spatial patterns in inland water N2O emissions 

in a consistent manner at 0.5° resolution, which were then downscaled to 0.1° using the spatial distribution of European 

inland water bodies. The procedure to calculate the cascading loads of N and P delivered to each water body along the 1670 

river–reservoir–estuary continuum and to topologically connect 1.4 million lakes (extracted from the HYDROLAKES 
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database) is described in Maavara et al., 2019 and Lauerwald et al., 2019. The methodology to quantify N2O emissions 

is based on the application of a mechanistic stochastic model (MSM) to estimate inland water C-N-P cycling as well 

as N2O production and emission generated by nitrification and denitrification. Using a Monte Carlo analysis, the MSM 

allows to generate relationships relating N processes and N2O emissions to N and P loads and water residence time 1675 

from the mechanistic model outputs, which are subsequently applied for the spatially resolved upscaling. For the 

estimation of N2O emission, we ran two distinct model configurations relying on EFs scaling to denitrification and 

nitrification rates: one assuming that N2O production equals N2O emissions, the other taking into account the kinetic 

limitation on N2O gas transfer and progressive N2O reduction to N2 during denitrification in water bodies with 

increasing residence time (Maavara et al., 2019). The model outputs from the two scenarios are used to constrain 1680 

uncertainties in N2O emission estimates. For this study, the upscaled RECCAP2 estimates were used (Lauerwald et 

al., in prep) 

 

GAINS 

Specific sectors and abatement technologies in GAINS vary by the specific emitted compound, with source 1685 

sector definition and emission factors largely following the IPCC methodology at the Tier 1 or Tier 2 level. GAINS 

includes in general all anthropogenic emissions to air, but does not cover emissions from forest fires, savannah burning 

and land use / land use change. Emissions are estimated for 174 countries/regions, with the possibility to aggregate to 

a global emission estimate, and spanning a timeframe from 1990 to 2050 in five-year intervals. Activity drivers for 

macroeconomic development, energy supply and demand, and agricultural activities are entered externally, GAINS 1690 

extends with knowledge required to estimate “default” emissions (emissions occurring due to an economic activity 

without emission abatement) and emissions and costs of situations under emission control (Amann et al., 2001). 

Emissions of nitrous oxide derive from energy, industry, agriculture, and waste. Land use change emissions 

are not included. In the energy sector, certain technologies implemented to improve air quality affect N2O emission 

factors (like catalytic converters in vehicles), sometimes also negatively. That is also the case for non-selective 1695 

catalytic reduction devices for NOx abatement in power plants, or for fluidized bed combustion. Relevant industrial 

processes cover nitric acid and adipic acid, with other processes (glyoxal, if relevant, or caprolactam) included. Both 

processes allow for two different levels of abatement technologies, which both are relatively easily accessible and low 

cost. The use of N2O in gaseous form, often as an anesthetic for medical purposes, is associated with population 

numbers and scaled by availability of hospital beds. Marked emission reductions (at low costs) as well as complete 1700 

phase out of emissions (high costs) are implemented as technologies. Agricultural emissions in part derive from 

manure handling, where different management strategies have repercussions on emissions. The larger fraction of 

emission is from application of nitrogen compounds in different forms to grassland, crops and rice, with rice using a 

different emission factor. Application of manure and of mineral fertilizer in GAINS can be reduced by advanced 

computer technology such as automatic steering and variable rate application, or by agrochemistry (nitrification 1705 

inhibitors). Costs of implementation are considered to depend on the size of a farm, hence farm size is an important 

parameter. In the waste sector, composting and wastewater treatment are considered relevant sources. For wastewater 

treatment, GAINS also considers a specific emission reduction option when optimizing processes towards N2O 
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reduction (e.g. via favoring the anammox process). All details have been reported by Winiwarter et al. (2018) in their 

supplementary material.  1710 

Uncertainties: The same paper provides full information on the uncertainty of N2O emissions in the GAINS model, 

which is a consequence of uncertainty provided in the activity data, in the emission factors, and in the actual structure 

of the respective management strategies that also include the share of abatement technology already implemented. 

Further parameters also described (on uncertainty of future projections and on costs) are not relevant here. 

 1715 

FAOSTAT 

FAOSTAT: Statistics Division of the Food and Agricultural Organization of the United Nations, provides 

N2O emissions from agriculture: https://www.fao.org/faostat/en/#data/GT and its sub-domains, as well as N2O 

emissions from land use linked to biomass burning. The FAOSTAT emissions database is computed following Tier 1 

IPCC 2006 Guidelines for National GHG Inventories (http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html). 1720 

Country reports to FAO on crops, livestock and agriculture use of fertilizers are the source of activity data. Geospatial 

data are the source of AD for the estimates from cultivation of organic soils, biomass and peat fires. N2O  emissions 

are provided by country, regions and special groups, with global coverage, relative to the period 1961-present (with 

annual updates, currently 2019) and with projections for 2030 and 2050 for agriculture only, expressed in both CO2e 

and N2O by underlying agricultural and land use emission sub-domain and by aggregate (agriculture total, agriculture 1725 

total plus energy, agricultural soils). The main N2O  emissions are reported for the following agricultural activities: 

manure management, synthetic fertilizers, manure applied to the soils, manure left in pasture, crop residues, cultivation 

of organic soils and burning crop residues. LULUCF emissions consist of N2O associated with burning biomass and 

peat fires, as well as from the drainage of organic soils. Comparison to the UNFCCC submissions is also provided. 

Uncertainties were computed by Tubiello et al., 2013 but are not available in the FAOSTAT database. 1730 

Top-down N2O emission estimates 

FLEXINVERT 

The FlexInvert framework is based on Bayesian statistics and optimizes surface-atmosphere fluxes using the 

maximum probability solution (Rodgers 2000). Atmospheric transport is modelled using the Lagrangian model 

FLEXPART (Stohl et al. 2005; Pisso et al. 2019) run in the backwards time mode to generate a so-called Source-1735 

Receptor Matrix (SRM). The SRM describes the relationship between the change in mole fraction and the fluxes 

discretized in space and time (Seibert and Frank, 2004) and was calculated for 7 days prior to each observation. For 

use in the inversions, FLEXPART was driven using ECMWF Era Interim wind fields. 

The state vector consisted of flux increments (i.e. offsets to the prior fluxes) discretized on an irregular grid 

based on the SRMs (Thompson et al. 2014). This grid has finer resolution (in this case the finest was 0.5°×0.5°) where 1740 

the fluxes have a strong influence on the observations and coarser resolution where the influence is only weak (the 

coarsest was 2°×2°). The flux increments were solved at 2-weekly temporal resolution. The state vector also included 

scalars for the background mole fractions. The optimal (posterior) fluxes were found using the Conjugate Gradient 

method (e.g. Paige and Saunders, 1975). 
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The background mole fractions, i.e., the contribution to the modelled mole fractions that is not accounted for 1745 

in the 7-day SRMs, was estimated by coupling the termination points of backwards trajectories (modelled using virtual 

particles) to initial fields of mole fractions from the optimized Eulerian model LMDz (i.e. the CAMS N2O mole 

fraction product v18r1) following the method of Thompson et al. 2014.  

Uncertainties: The posterior fluxes are subject to systematic errors primarily from: 1) errors in the modelled 

atmospheric transport; 2) aggregation errors, i.e. errors arising from the way the flux variables are discretized in space 1750 

and time; 3) errors in the background mole fractions; and 4) the incomplete information from the observations and 

hence the dependence on the prior fluxes. In addition, there is, to a smaller extent, some error due to calibration offsets 

between observing instruments, which is more pertinent for N2O than for other GHGs. Random uncertainties are 

calculated from a Monte Carlo ensemble of inversions following Chevallier et al. (2007) and uncertainties in the 

observation space were inflated to take into account the model representation errors. 1755 

 

Global N2O Budget – GCP (Tian et al., 2020) 

CAMS-N2O 

Within the GCP 2019 results, N2O fluxes are estimated using the atmospheric inversion framework, CAMS-

N2O. Atmospheric inversions use observations of atmospheric mixing ratios, in this case, of N2O, and provide the 1760 

fluxes that best explain the observations while at the same time being guided by a prior estimate of the fluxes. In other 

words, the fluxes are optimized to fit the observations within the limits of the prior and observation uncertainties. To 

produce the optimized (a posteriori) fluxes a number of steps are involved: first, the observations are pre-processed, 

second, a prior flux estimate is prepared, third mixing ratios are simulated using the prior fluxes and are used to 

estimate the model representation error, and fourth, the inversion is performed. In total 140 ground-based sites, ship 1765 

and aircraft transects are included in the inversion. The term “site” refers to locations where there is a long-term record 

of observations and includes ground-based measurements, both from discrete samples (or “flasks”) and quasi-

continuous sampling by in-situ instruments, as well as aircraft measurements. A prior estimate of the total N2O flux 

with monthly resolution and inter-annually varying fluxes is prepared from a number of models and inventories. For 

the soil fluxes (including anthropogenic and natural) an estimate from the land surface model OCN-v1.2 is used, which 1770 

is driven by observation-based climate data, N-fertilizer statistics and modelled N-deposition (Zaehle et al. 2011). For 

the ocean fluxes, an estimate from the ocean biogeochemistry model PlankTOM-v10.2 is used, which is a prognostic 

model (Buitenhuis et al. 2018). Atmospheric transport is modelled using an offline version of the Laboratoire de 

Meteorologie Dynamique model, LMDz5, which computes the evolution of atmospheric compounds using archived 

fields of winds, convection mass fluxes and planetary boundary layer (PBL) exchange coefficients that have been 1775 

calculated using the online version nudged to ECMWF ERA interim winds. 

CAMS-N2O uses the Bayesian inversion method to find the optimal fluxes of N2O given prior information about the 

fluxes and their uncertainty, and observations of atmospheric N2O mole fractions. The method is the same as that used 

in Thompson et al. (2014)  

Uncertainty: Uncertainties in CAMS-N2O simulations pertain to observation space and to state space. Uncertainty in 1780 

the observation space is calculated as the quadratic sum of the measurement and transport uncertainties. The 

measurement uncertainty is assumed to be 0.3 ppb (approximately 0.1%) based on the recommendations of data 
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providers. The transport uncertainty includes estimates of uncertainties in advective transport (based on the method 

of Rödenbeck et al. (2003)) and from a lack of subgrid-scale variability (based on the method of Bergamaschi et al. 

(2010)). For the error in each land grid cell, the maximum magnitude of the flux in the cell of interest and its 8 1785 

neighbours is used, while for ocean grid cells the magnitude of the cell of interest only is used. Posterior flux 

uncertainties are calculated from a Monte Carlo ensemble of inversions, based on the method of Chevallier et al. 

(2005). 

 

TOMCAT-INVICAT 1790 

TOMCAT-INVICAT (Wilson et al., 2014) is a variational inverse transport model, which is based on the 

global chemical transport model TOMCAT, and its adjoint.  It uses a 4-D variational (4D-VAR) optimization 

framework based on Bayesian theory which seeks to minimize model-observation differences by altering surface 

fluxes, while allowing for prior knowledge of these fluxes to be retained.  TOMCAT (Monks et al., 2017) is an offline 

chemical transport model, in which meteorological data is taken from ECMWF ERA-Interim reanalyses (Dee et al., 1795 

(2011)). The model grid resolution, and therefore the optimised surface flux estimates, have a horizontal resolution of 

5.6 x 5.6 degrees. The model has 60 vertical levels running from the surface to 0.1 hPa. For each individual year’s 

fluxes, which are optimised on a monthly basis, 30 minimisation iterations are carried out. 

Uncertainty: Uncertainties in TOMCAT-INVICAT N2O inversions are described as follows and further in Thompson 

et al., (2019). Uncertainty in the observations is calculated as the quadratic sum of the measurement and transport 1800 

uncertainties. The measurement uncertainty for each observation is assumed to be 0.4 ppb. For the transport error for 

each observation is assumed to be the mean difference between the observation grid cell and its 8 neighbours.  Prior 

flux errors are assumed to be 100% or the prior estimate, and are uncorrelated in space and time. Posterior flux 

uncertainties are not currently able to be calculated. 

 1805 

MIROC4-ACTM 

The MIROC4-ACTM time dependent inversion for 84 regions (TDI84) framework is based on Bayesian 

statistics and optimizes surface-atmosphere fluxes using the maximum probability solution (Rodgers 2000). 

Atmospheric transport is modelled using the JAMSTEC’s Model for Interdisciplinary Research on climate, version 4 

based atmospheric chemistry-transport model (MIROC4-ACTM) (Watanabe et al. 2008; Patra et al. 2018, 2022). The 1810 

Source-Receptor Matrix (SRM) is calculated by simulating unitary emissions from 84 basis regions, for which the 

fluxes are optimised. The SRM describes the relationship between the change in mole fraction at the measurement 

locations for the unitary basis region fluxes (similar to Rayner et al., 1997). The MIROC4-ACTM meteorology was 

nudged to the JMA 55-year reanalysis (JRA55) horizontal wind fields and temperature. 

The simulated mole fractions for the total a priori fluxes are subtracted from the observed concentrations 1815 

before running the inversion calculation (as in Patra et al., 2016 for CH4 inversion). In this study, the simulation have 

been updated to 2019 (Patra et al., 2022). 

Uncertainties: The posterior fluxes are subject to systematic errors primarily from: 1) errors in the modelled 

atmospheric transport; 2) aggregation errors, i.e. errors arising from the way the flux variables are discretized in space 
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(84 regions) and time (monthly-means); 3) errors in the background mole fractions (assumed to be a minor factor); 1820 

and 4) the incomplete information from the sparse observational network and hence the dependence on the prior fluxes. 

In addition, there is, to a much smaller extent, some error due to calibration offsets between observing instruments, 

which is more pertinent for N2O than for other GHGs. We have validated model transport in the troposphere using 

SF6 for the inter-hemispheric exchange time, and the using SF6 and CO2 for the age of air in the stratosphere. The 

simulated N2O concentrations are also compared with aircraft measurements in the upper troposphere and lower 1825 

stratosphere for evaluating the stratosphere-troposphere exchange rates. Comparisons with ACE-FTS vertical profiles 

in the stratosphere and mesosphere indicate good parameterisation of N2O loss by photolysis and chemical reactions, 

and thus the lifetime, which affect the global total N2O budgets. 

Random uncertainties are calculated by the inverse model depending on the prior flux uncertainties and the 

observational data density and data uncertainty. Only 37 sites are used in the inversion and thus the reduction in priori 1830 

flux uncertainties have been minimal. The net fluxes from the inversion from individual basis regions are less reliable 

compared to the anomalies in the estimated fluxes over a period of time. 

 

B1: Overview figures 

 1835 

 

Figure B1a: EU27+UK total CH4 emissions time series per sectors as reported by UNFCCC NGHGI (2021). 
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 1840 

Figure B1b: EU27+UK total N2O emissions time series per sectors as reported by UNFCCC NGHGI (2021). 

 

B2: Source specific methodology: AD, EF and uncertainties 

Table B2.1: Source specific activity data (AD), emission factors (EF) and uncertainty methodology for all current 

VERIFY and non-VERIFY 2021 data product collection. 1845 

CH4 bottom-up anthropogenic emissions 

Data source AD/Tier EFs/Tier Uncertainty 

assessment 

method 

Emission data availability  

UNFCCC NGHGI 

(2021) 

 

Country-specific 

information 

consistent with 

the IPCC GLs. 

IPCC GLs/country-

specific information for 

higher tiers. 

 

IPCC GLs 

(https://www. 

ipcc-

nggip.iges.or.jp/pu

blic/ 2006gl/, last 

access: December 

2019) for 

calculating the 

uncertainty of 

emissions based 

on the uncertainty 

of AD and EF, 

two different 

approaches: (1) 

error propagation 

and (2) Monte 

Carlo simulation. 

 

UBA-Vienna 

provided yearly 

harmonized and 

gap-filled 

uncertainties 

NGHGI official data (CRFs) are found at 

https://unfccc.int/ghg-inventories-annex-i-

parties/2021 
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EDGAR v6.0 International 

Energy Agency 

(IEA) for fuel 

combustion 

Food and 

Agricultural 

Organisation 

(FAO) for 

agriculture 

US Geological 

Survey (USGS) 

for industrial 

processes (e.g. 

cement, lime, 

ammonia and 

ferroalloys) 

GGFR/NOAA 

for gas flaring 

World Steel 

Association for 

iron and steel 

production 

International 

Fertilisers 

Association 

(IFA) for urea 

consumption 

and production 

Complete 

description of 

the data sources 

can be found in 

Janssens-

Maenhout et al. 

2019 and in 

Crippa et al. 

(2019b). 

IPCC 2006, Tier 1 or Tier 

2 depending on the sector 
Tier 1 with error 

propagation by 

sectors for CH4 

https://edgar.jrc.ec.europa.eu/dataset_

ghg60 

CAPRI Farm and 

market balances, 

economic 

parameters, crop 

areas, livestock 

population and 

yields from 

EUROSTAT, 

parameters for 

input-demand 

functions at 

regional level 

from FADN 

(EC), data on 

trade between 

world regions 

from 

FAOSTAT, 

policy variables 

from OECD. 

IPCC 2006: Tier 2 for 

emissions from enteric 

fermentation of cattle and 

from manure management 

of cattle. Tier 1 for all 

other livestock types and 

emission categories.  

N-flows through 

agricultural systems  

(including N excretion) 

calculated endogenously. 

Spatial 

uncertainties 

computed for 

2014, 2016 and 

2018 

Detailed gridded data CH4 and N2O 

emissions can be obtained by contacting 

the data provider: 

Adrian.Leip@ec.europa.eu 
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GAINS Livestock 

numbers by 

animal type 

(FAOSTAT, 

2010; 

EUROSTAT, 

2009; 

UNFCCC, 

2010) 

Growth in 

livestock 

numbers from 

FAOSTAT 

(2003), CAPRI 

model (2009) 

Rice cultivation 

Land area for 

rice cultivation 

(FAOSTAT, 

2010) 

Projections for 

EU are taken 

from the CAPRI 

Model 

Country-specific 

information and: 

Livestock - Implied EFs 

reported to UNFCCC and 

IPCC Tier 1 (2006, Vol.4, 

Ch. 10) default factors 

Rice cultivation - IPCC 

Tier 1–2 (2006, Vol. 4, p. 

5.49 

Agricultural waste 

burning - IPCC Tier 1 

(2006, Vol. 5, p. 520 

IPCC (2006, 

Vol.4, p.10.33) 

uncertainty range 

Detailed gridded data CH4 and N2O 

emissions 

can be obtained by contacting the data 

providers: 

for CH4, contact 

Lena Höglund Isaksson 

(hoglund@iiasa.ac.at); 

for N2O, contact 

Wilfried Winiwarter 

(winiwart@iiasa.ac.at). 

FAOSTAT FAOSTAT 

Crop and 

Livestock 

Production 

domains from 

country 

reporting; 

FAOSTAT 

Land Use 

Domain; 

Harmonized 

world soil; ESA 

CCI and 

Copernicus 

Global Land 

Cover Service 

(C3S) maps; 

MODIS 

MCD12Q1 v6; 

FAO Gridded 

Livestock of the 

World; MODIS 

MCD64A1.006

burned area 

products 

IPCC guidelines 

Tier 1 

IPCC (2006, 

Vol.4, p.10.33)  

Uncertainties in 

estimates of GHG 

emissions are due 

to uncertainties in 

emission factors 

and activity data. 

They may be 

related to, inter 

alia, natural 

variability, 

partitioning 

fractions, lack of 

spatial or temporal 

coverage, or 

spatial 

aggregation. 

Agriculture total and subdomain specific 

GHG emissions are found for download at 

http://www.fao.org/faostat/en/#data/GT 

(last access: April 2022). 

CH4 bottom-up natural emissions 

Data source AD/Tier EFs/Tier Uncertainty 

assessment 

method 

Emission data availability  
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Mechanistic Stochastic 

Model CH4 emissions 

from inland waters 

Hydrosheds 15s 

(Lehner et al., 

2008) and 

Hydro1K 

(USGS, 2000) 

for river 

network, 

HYDROLAKE

S for lakes and 

reservoirs 

network and 

surface area 

(Messager et al., 

2016); 

Worldwide 

Typology of 

estuaries by 

Dürr et al. 

(2011) 

N/A  Four model 

configurations for 

CH4 

Detailed gridded data can be obtained 

by contacting the data 

providers: 

Ronny Lauerwald 

ronny.lauerwald@inrae.fr 

Pierre Regnier 

Pierre.Regnier@ulb.ac.be 

 

JSBACH-HIMMELI JSBACH 

vegetation and 

soil carbon and 

physical 

parameters 

provided to 

HIMMELI to 

simulate 

wetland 

methane fluxes   

HydroLAKES 

database 

(Messager et al., 

2016). 

CORINE land 

cover data 

VERIFY 

climate drivers  

0.1◦ × 0.1 ◦  

CH4 fluxes from peatlands 

and mineral soils 

 

the standard 

deviation and the 

resulting range in 

the annual 

emission sum 

represents a 

measure of 

uncertainty. 

 

Detailed gridded data CH4 emissions 

can be obtained by contacting the data 

providers: 

Tuula.Aalto@fmi.fi 

tiina.markkanen@fmi.fi 

 

Geological emissions, 

including marine and 

land geological)  

Areal 

distribution 

activity: 1◦ × 1 ◦ 

maps include 

the four main 

categories of 

natural geo-CH4 

emission: (a) 

onshore 

hydrocarbon 

macro-seeps, 

including mud 

volcanoes, (b) 

submarine 

(offshore) seeps, 

(c) diffuse 

microseepage 

and (d) 

geothermal 

manifestations. 

 

 

 

CH4 fluxes, measurements 

and estimates based on 

size and activity 

95% confidence 

interval of the 

median 

emission-weighted 

mean 

sum of individual 

regional values 

Etiope et al, 2019 with updated activity for 

current study) 

Detailed gridded data on geological CH4 

emissions 

can be obtained by contacting the data 

providers: 

Giuseppe Etiope: 

giuseppe.etiope@ingv.it 

Giancarlo Ciotoli 

giancarlo.ciotoli@gmail.com 
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CH4 Top-down inversions 
Regional inversions over Europe ( high transport model resolution ) 

Data source AD/Tier EFs/Tier Uncertainty 

assessment 

method 

Emission data availability  

FLEXPART - 

FLExKF 

Extended 

Kalman Filter in 

combination 

with backward 

Lagrangian 

transport 

simulations 

using the model 

FLEXPART 

Atmospheric 

observations 

ECMWF Era 

Interim 

meteorological 

fields 

FLExKF-

CAMSv19r_EMPA 

specific background 

 

The random 

uncertainties are 

represented by 

the posterior 

error covariance 

matrix provided 

by the Kalman 

Filter, which 

combines errors 

in the prior 

fluxes with 

errors in the 

observations and 

model 

representation 

(see description 

in Appendix A1) 

Detailed gridded data can be obtained by 

contacting the data provider: 

Dominik.Brunner@empa.ch 

TM5-4DVAR Global 

Eulerian 

models with a 

zoom over 

Europe, ERA-

Interim 

reanalysis 

4DVAR variational  

techniques 

Uncertainty was 

calculated as 1σ 

estimate. See 

descriptions in 

Appendix A1 

Detailed gridded data can be obtained by 

contacting the data provider: 

Peter.BERGAMASCHI@ext.ec.europa.eu 

FLEXINVERT Bayesian 

statistics 

Atmospheric 

transport is 

modelled using 

the Lagrangian 

model 

FLEXPART 

prior fluxes from LPX-

Bern DYPTOP, EDGAR 

v4.2 FT2010 

GFED v4  

Termites and ocean fluxes 

ground-based surface CH4 

observations. 

Background fields based 

on nudged FLEXPART-

CTM simulations (Groot 

Zwaaftink et al., 2018) 

 Detailed gridded data CH4 emissions can 

be obtained by contacting the data 

provider: 

Christine Groot Zwaaftink 

cgz@nilu.no 

 

InTEM-NAME Atmospheric 

Lagrangian 

trans port 

model analysis 

3-D 

meteo rology 

from the UK 

Met Office 

Unified Model. 

(a) the UK National 

Atmospheric Emissions 

Inventory (NAEI) 2015 

within the UK. (b) 

Outside the UK – EDGAR 

2010 emissions distributed 

uni formly over land 

(excluding the UK). 

Derived from the 

variability of the 

observations 

within each 2 h 

period: a) 40 %; b) 

50 %. 

Detailed gridded data can be ob tained by 

contacting the data provider: Alistair 

Manning (alistair.manning@ 

metoffice.gov.uk). 

CTE-FMI Ensemble 

Kalman filter 

Eulerian 

transport model 

TM5 

ECMWF ERA-

Interim 

meteorological 

data 

prior fluxes from LPX-

Bern DYPTOP, EDGAR 

v4.2 FT2010 

GFED v4  

Termites and ocean fluxes 

ground-based surface CH4 

observations 

GOSAT XCH4 retrievals 

from NIES v2.72 

The prior 

uncertainty is 

assumed to be a 

Gaussian 

probability 

distribution 

function 

The posterior 

uncertainty is 

Detailed gridded data can be obtained by 

contacting the data provider: 

aki.tsuruta@fmi.fi 
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 calculated as 

standard deviation 

of the ensemble 

members, where 

the posterior error 

covariance matrix 

are driven by the 

ensemble Kalman 

filter. 

InGOS 18 European 

monitoring 

stations 

EDGARv4.2FT-

InGOS 

wetland 

inventory of 

J.Kaplan and 

LPX-Bern v1.0 

ERA-Interim 

reanalysis 

Met Office 

Unified Model 

For Priors please see 

Table B4 

The uncertainty of 

the model 

ensemble was 

calculated as 1σ 

estimate. 

Individual models 

use Bayes’ 

theorem to 

calculate the 

reduction of 

assumed a priori 

emission 

uncertainties by 

assimilating 

measurements. 

Detailed gridded data can be obtained by 

contacting the data provider: 

Peter.BERGAMASCHI@ext.ec.europa.eu 

Global inversions from the Global Carbon Project CH4 budget (Saunois et al. 2020) 

GCP-CH4 2019 

anthropogenic and 

natural partitions from 

inversions 

ensemble of 

inversions 

gathering 

various 

chemistry 

transport models 

surface or 

satellite data 

For Priors please see 

Table B4 

Uncertainties are 

reported as 

minimum and 

maximum values 

of the available 

studies, as the 

range of available 

mean estimates, 

i.e., the standard 

error across 

measurements/met

hodologies 

considered. 

Posterior 

uncertainty mostly 

use Monte Carlo 

methods 

Detailed gridded data can be obtained by 

contacting the data provider: 

Marielle Saunois 

marielle.saunois@lsce.ipsl.fr 

 

N2O bottom-up anthropogenic emissions 

Data source AD/Tier EFs/Tier Uncertainty 

assessment 

method 

Emission data availability  

UNFCCC NGHGI (2021), EDGAR v6.0, CAPRI, GAINS and FAOSTAT see above 

 

ECOSSE The model is a 

point model, 

which provides 

spatial results by 

using spatial 

distributed input 

data (lateral 

fluxes are not 

considered). The 

model is a TIER 

3 approach that 

is applied on 

IPCC 2006: Tier 3 

The simulation results will 

be allocated due to the 

available information (size 

of spatial unit, 

representation of 

considered land use, etc.). 

N/A Detailed gridded data can be obtained by 

contacting the data provider: 

Kuhnert, Matthias 

matthias.kuhnert@abdn.ac.uk 
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grid map data, 

polygon 

organized input 

data or study 

sites. 

DayCent Spatial explicit 

simulations at 

point level, up-

scaled at 1km 

for agricultural 

areas. 

Tier 3; Land management 

and input factors for the 

cropland remaining 

cropland category based 

on datasets covering the 

2005-2015 period. 

Monte Carlo  Detailed gridded data can be obtained by 

contacting the data provider: 

Emanuele.LUGATO@ec.europa.eu 

N2O bottom-up natural emissions 

Mechanistic Stochastic 

Model for N2O 

emissions from inland 

waters 

Hydrosheds 15s 

(Lehner et al., 

2008) and 

Hydro1K 

(USGS, 2000) 

for river 

network, 

HYDROLAKE

S for lakes and 

reservoirs 

network and 

surface area 

(Messager et al., 

2016); 

Worldwide 

Typology of 

estuaries by 

Dürr et al. 

(2011); 

terrestrial N and 

P loads by 

Global‐NEWS 

(Van Drecht et 

al., 2009; 

Bouwman et al., 

2009), 

resdistributed at 

0.5° resolution 

by Maavara et 

al., 2019. 

EFs applied to 

denitrification and 

nitrification rates for N2O 

emissions. Values 

constrained from the 

range reported in Beaulieu 

et al., 2011.  

Upscaled emission 

estimates from 

RECCAP2 

Detailed gridded data can be obtained by 

contacting the data 

providers: 

Ronny Lauerwald 

ronny.lauerwald@inrae.fr 

Pierre Regnier 

Pierre.Regnier@ulb.ac.be 

 

Regional N2O inversions over Europe ( high transport model resolution ) 

FLEXINVERT Bayesian 

statistics 

Atmospheric 

transport is 

modelled using 

the Lagrangian 

model 

FLEXPART 

background mole fractions Random 

uncertainties are 

calculated from a 

Monte Carlo 

ensemble of 

inversions 

Detailed gridded N2O data can be obtained 

by contacting the data provider: 

Rona Thompson 

rlt@nilu.no  

Global N2O inversions over Europe from GN2OB (Tian et al., 2020) 

CAMS-N2O 

 

Bayesian 

inversion 

method 

observations of 

atmospheric 

mixing ratios 

fluxes from 

ground-based 

Fires emission factors 

from Akagi et al., 2011 

 

Uncertainty in the 

observation space 

is calculated as the 

quadratic sum of 

the measurement 

and transport 

uncertainties. 

Detailed gridded N2O data can be obtained 

by contacting the data provider: 

Rona Thompson 

rlt@nilu.no 
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sites, ship and 

aircraft transects 

soil fluxes 

OCN-v1.2  

ocean 

biogeochemistry 

model 

PlankTOM-

v10.2  

GFED-v4.1s  

EDGAR-4.32 

ECMWF ERA 

interim 

For the error in 

each land grid cell, 

the maximum 

magnitude of the 

flux in the cell of 

interest and its 8 

neighbours is 

used; for ocean 

grid cells the 

magnitude of the 

cell of interest 

only is used. 

TOMCAT-INVICAT Variational 

Bayesian 

inverse model 

assimilating 

surface flask 

observations of 

atmospheric 

mixing ratios. 

ECMWF ERA-

Interim 

meteorological 

driving data.  

Prior emissions estimates 

are from OCN-v1.1 model 

(soils), 

EDGARv4.2FT2010 

(anthro. non-soil), 

PlankTOM5 (oceans) and 

GFEDv4.1s (biomass 

burning). 

Uncertainty in the 

observation space 

is calculated as the 

quadratic sum of 

the measurement 

and transport 

uncertainties. 

For the error in 

each land grid cell, 

the maximum 

magnitude of the 

flux in the cell of 

interest and its 8 

neighbours is 

used. Prior 

emission 

uncertainties are 

100% and 

uncorrelated. 

Detailed gridded N2O data can be obtained 

by contacting the data provider: 

Christopher Wilson [GEO] 

C.Wilson@leeds.ac.uk 

MIROC4-ACTM Matrix inversion 

for calculation 

of fluxes from 

53 and 84 

partitions of the 

globe for CH4 

and N2O, 

respectively. 

Forward model 

transport is 

nudged to JRA-

55 horizontal 

winds and 

temperature. 

Fire emissions for CH4 are 

taken from GFEDv4s 

A posteriori 

uncertainties are 

obtained from the 

Bayesian statistics 

model. A priori 

emissions 

uncertainties are 

uncorrelated.   

Detailed gridded data can be obtained by 

contacting the data provider: 

Prabir Patra 

prabir@jamstec.go.jp 

 

Table B2.2: Biogeochemical models that computed wetland emissions used in this study. Runs were performed for the 

whole period 2000-2017. Models run with prognostic (using their own calculation of wetland areas) and/or diagnostic 

(using WAD2M) wetland surface areas (see Sect 3.2.1) From Saunois et al., 2020. 

 1850 

Model Institution Prognostic Diagnostic References 
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CLASS-CTEM Environment and 

Climate Change 

Canada 

y y Arora, Melton and 

Plummer (2018) 

Melton and Arora 

(2016) 

DLEM Auburn University n y Tian et al., 

(2010;2015) 

ELM Lawrence Berkeley 

National Laboratory 

y y  
Riley et al. (2011) 

JSBACH MPI n y Kleinen et al. (2019) 

JULES UKMO y y Hayman et al. (2014) 

LPJ GUESS Lund University n y McGuire et al. 

(2012)  

LPJ MPI MPI n y Kleinen et al. (2012) 

LPJ-WSL NASA GSFC y y Zhang et al. (2016b) 

LPX-Bern University of Bern y y Spahni et al. (2011) 

ORCHIDEE LSCE y y Ringeval et al. 

(2011) 

TEM-MDM Purdue University n y Zhuang et al. (2004) 

TRIPLEX_GHG UQAM n y Zhu et al., 

(2014;2015) 

VISIT NIES y y Ito and Inatomi 

(2012) 

 

Table B2.3: Top-down studies used in our new analysis, with their contribution to the decadal and yearly estimates 

noted. For decadal means, top down studies have to provide at least 8 years of data over the decade to contribute to 

the estimate, from Saunois et al., 2020 

Model Institution Observation 

used 

Time 

period 

Number of 

inversions 

References 

Carbon Tracker-

Europe CH4 

FMI Surface stations 2000-2017 1 Tsuruta et al. (2017) 

Carbon Tracker-

Europe CH4 

FMI GOSAT NIES 

L2 v2.72 

2010-2017 1 Tsuruta et al. (2017) 

GELCA NIES Surface stations 2000-2015 1 Ishizawa et al. (2016) 

LMDz-PYVAR LSCE/CEA Surface stations 2010-2016 2 Yin et al. (2019) 

LMDz-PYVAR LSCE/CEA GOSAT 

Leicester v7.2 

2010-2016 4 Yin et al. (2019) 
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LMDz-PYVAR LSCE/CEA GOSAT 

Leicester v7.2 

2010-2017 2 Zheng et al. (2018a, 2018b) 

MIROC4-

ACTM 

JAMSTEC Surface stations 2000-2016 1 Patra et al. (2016; 2018) 

NICAM-TM NIES Surface stations 2000-2017 1 Niwa et al. (2017a; 2017b) 

NIES-TM-

FLEXPART-

VAR 

(NTFVAR) 

NIES Surface stations 2000-2017 1 Maksyutov et al. (2020); 

Wang et al. (2019b) 

NIES-TM-

FLEXPART-

VAR 

(NTFVAR) 

NIES GOSAT NIES 

L2 v2.72 

2010-2017 1 Maksyutov et al. (2020); 

Wang et al., (2019b) 

TM5-CAMS TNO/VU Surface stations 2000-2017 1 Segers and Houweling 

(2018); Bergamaschi et al. 

(2010; 2013), Pandey et al. 

(2016) 

TM5-CAMS TNO/VU GOSAT 

ESA/CCI 

v2.3.8 

(combined with 

surface 

observations) 

2010-2017 1 Segers and Houweling 

(2018,report); Bergamaschi 

et al. (2010; 2013), Pandey et 

al. (2016)  

TM5-4DVAR EC-JRC Surface stations 2000-2017 2 Bergamaschi et al. (2013, 

2018) 

TM5-4DVAR EC-JRC GOSAT OCPR 

v7.2 

(combined with 

surface 

observations) 

2010-2017 2 Bergamaschi et al. (2013, 

2018) 

TOMCAT Uni. of Leeds Surface stations 2003-2015 1 McNorton et al. (2018) 

 1855 

Table B2.4: List of prior datasets for natural CH4 emissions used by all inverse models 

Project Model Prior 

  Wetlands Geological Fire Termites Soil sink Ocean/La

kes 

Wild 

animals 

VERIFY CTE_FMI LPX-Bern 

DYPTOP (Stocker 

et al., 2014) 

 GFED4s Ito and Inatomi 

2012 

LPX-Bern 

DYPTOP 

(Stocker et 

al., 2014) 

Tsuruta et 

al., 2017 

 

VERIFY FLEXPART(F

LExKF-

CAMSv19r)_E

MPA 

JSBACH-

HIMMELI 

  GCP Ridgwell 

/GCP 

GCP/ULB  
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VERIFY FLEXINVERT LPX-Bern 

DYPTOP (Stocker 

et al., 2014)      

 GFED4s Ito and Inatomi,  

2012      

LPX-Bern 

DYPTOP 

(Stocker et 

al., 2014) 

Tsuruta et 

al., 2017      

 

VERIFY TM5_4DVAR 

JRC 

GCP_CH4_2019 GCP_CH4 

2019 (global 

total: 15 Tg 

CH4 yr-1) 

 GCP_CH4_2019 GCP_CH4_

2019 

GCP_CH4_

2019 

 

InGOS INGOS-CTE-

S4_EC 

LPX-Bern v1.0 

(Spahni et al., 

2013) 

 GFED Ito and Inatomi 

2012 

LPX-Bern 

v1.0 

(Spahni et 

al., 2013) 

Tsuruta et 

al., 2015 

 

InGOS INGOS-

LMDZEU-

S4_EC 

wetland inventory 

of J. Kaplan 

(Bergamaschi et 

al., 2007) 

      

InGOS INGOS-

TM3STILT-

S4_EC 

wetland inventory 

of J. Kaplan 

(Bergamaschi et 

al., 2007) 

      

InGOS INGOS-

TM5VAR-

S4_EC 

wetland inventory 

of J. Kaplan 

(Bergamaschi et 

al., 2007) 

  Sanderson /GCP Ridgwell 

/GCP 

Lambert 

/GCP 

Oslson 

climatology 

InGOS INGOS-

NAME-S4_EC 

wetland inventory 

of J. Kaplan 

(Bergamaschi et 

al., 2007) 

      

GCP GELCA-

SURF_NIES 

VISIT  (Ito and 

Inatomi, 2012) 

n/a GFEDv3.1 then 

GFAS v1.2 after 

2011 

Sanderson 

(TransCom-CH4 

/ GCP) 

VISIT (Ito 

and 

Inatomi, 

2012) 

n/a  

GCP MIROCv4-

SURF_JAMA

STEC 

VISIT  (Ito and 

Inatomi, 2012) 

(global total range : 

173-197 Tg CH4 

yr-1) 

Etiope and 

Milkov, 2004 

(global total: 

7.5 Tg CH4 yr-

1) 

GFEDv4s 

(global total 

range : 14-35 Tg 

CH4 yr-1) 

Sanderson 

(TransCom-

CH4) (global 

total: 20.5 Tg 

CH4 yr-1) 

VISIT (Ito 

and 

Inatomi, 

2012) 

Lambert/H

ouweling 

(TransCom

-CH4) 

(global 

total: 18.5 

Tg CH4 yr-

1) 
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GCP NICAM-

SURF_NIES 

VISIT  (Ito and 

Inatomi, 2012) 

GCP based on 

Etiope 2015 

GFEDv4s / GCP Sanderson 

(TransCom-CH4 

/ GCP) 

VISIT (Ito 

and 

Inatomi, 

2012) 

Lambert/H

ouweling 

(TransCom

-CH4 / 

GCP) 

 

GCP TOMCAT-

SURF_ECMW

F 

JULES emissions 

from Mc Norton 

2016a 

Tomcat 2006 GFED V4 Matthews and 

Fung 2006 

Patra et al. 

2011 

Tomcat 

2006 

Matthews 

and Fung 

1987 - all 

emissions 

total 

rescaled to 

Schwietzke 

et al. 2016 

 

GCP NTFVAR-

GOSAT_NIES 

VISIT  (Ito and 

Inatomi, 2012) 

Etiope and 

Milkov, 2004 

GFAS v1.2 Ito and Inatomi 

2012 

VISIT (Ito 

and 

Inatomi, 

2012) 

TransCom-

CH4 

 

GCP NTFVAR-

SURF_NIES 

VISIT  (Ito and 

Inatomi, 2012) 

Etiope and 

Milkov, 2004 

GFAS v1.2 Ito and Inatomi 

2012 

VISIT (Ito 

and 

Inatomi, 

2012) 

TransCom-

CH4 

 

GCP LMDZ-

GOSAT1_LSC

E 

Bloom 2017 n/a GFED V41s Sanderson /GCP Ridgwell 

/GCP 

Lambert 

/GCP 

 

GCP LMDZ-

GOSAT2_LSC

E 

GCP - ensemble 

mean ESSD 

Saunois et al . 2016 

GCP based on 

Etiope 2015 

GFED V41s Sanderson /GCP Ridgwell 

/GCP 

Lambert 

/GCP 

 

GCP  

LMDZ-GOSAT3_CALTECH 

LMDZ-GOSAT4_CALTECH 

LMDZ-GOSAT5_CALTECH 

LMDZ-GOSAT6_CALTECH 

LMDZ-SURF1_CALTECH 

LMDZ-SURF2_CALTECH 
 

Kaplan 2002 

rescaled by 

Bergamaschi 2007 

n/a GFED V41 Sanderson 1996 

/GCP 

Ridgwell 

/GCP 

Lambert 

and 

Schmidt 

1993 

 

GCP TM5-CAMS-

GOSAT_TNO 

Kaplan 

climatology 

n/a GFED V31 

climatology 

after 2011 

Sanderson /GCP Ridgwell 

/GCP 

Lambert 

/GCP 

Oslson 

climatology 
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GCP TM5-

GOSAT1_EC 

WETCHIMP 

ensemble mean; 

GCP_CH4 

2019 (global 

total: 15 Tg 

CH4 yr-1) 

 Sanderson /GCP Ridgwell 

/GCP 

Lambert 

/GCP 

Oslson 

climatology 

GCP TM5-

GOSAT2_EC 

GCP_CH4_2019 GCP_CH4 

2019 (global 

total: 15 Tg 

CH4 yr-1) 

GCP_CH4_2019 GCP_CH4_2019 GCP_CH4

_2019 

GCP_CH4_

2019 

 

GCP TM5-

SURF1_EC 

WETCHIMP 

ensemble mean; 

GCP_CH4 

2019 (global 

total: 15 Tg 

CH4 yr-1) 

 Sanderson /GCP Ridgwell 

/GCP 

Lambert 

/GCP 

Oslson 

climatology 

GCP TM5-

SURF2_EC 

GCP_CH4_2019 GCP_CH4 

2019 (global 

total: 15 Tg 

CH4 yr-1) 

GCP_CH4_2019 GCP_CH4_2019 GCP_CH4_

2019 

GCP_CH4_

2019 

 

GCP CTE-

GOSAT_FMI 

GCP_CH4_2019 Etiope 2015 GCP_CH4_2019 

(=GFED4s) 

GCP_CH4_2019 GCP_CH4_

2019 

GCP_CH4_

2019 

 

GCP CTE-

SURF_FMI 

GCP_CH4_2019 Etiope 2015 GCP_CH4_2019 

(=GFED4s) 

GCP_CH4_2019 GCP_CH4_

2019 

GCP_CH4_

2019 

 

 NAME-

SURF_MetOff

ice 
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