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Abstract. To quantify the ecological consequences of recent nation-wide restoration efforts in China, spatially-explicit 15 

information on woody biomass changes over the 21st century is critical. However, long-term biomass tracking at the national 

scale remains challenging as it requires continuous and high-resolution monitoring. Here, we mapped above- and 

belowground biomass (AGB and BGB) for woody vegetation in China between 2003 and 2020 at ~1 km spatial resolution 

by integrating multiple types of remote sensing observations with intensive field plot measurements through machine 

learning and mixed-pixel decomposition methods. On average, 11.0 ± 0.7 and 2.8 ± 0.2 PgC are stored in above- and 20 

belowground live woody biomass in China. Over the last 18 years, the total woody biomass carbon in China has increased at 

a rate of 163.8 TgC yr-1 (0.5% yr-1). The most pronounced biomass gains occurred in central to southern China, including the 

southern Loess Plateau, Qinling Mountains, southwest karst and southeast forests. The combined use of low-frequency (L-

band, etc.) microwaves and laser remote sensing data provides a powerful tool to minimize under- or overestimation of 

biomass variation in space and time. Future research is needed to explore the drivers of the observed woody biomass trends, 25 

and to evaluate the degree to which biomass gains will translate into biodiverse, healthy ecosystems and thus are sustainable.  
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1 Introduction 

Woody (forest and shrubland) biomass contributes to over 90% of global vegetation biomass (Ma et al., 2021). As a net 

outcome of carbon gains from photosynthesis and carbon losses from respiration, mortality and disturbances, woody biomass 

is a critical indicator of ecosystem function and services, such as carbon sequestration, wood production and resource 30 

allocation (Kumar and Mutanga, 2017). Accurate biomass monitoring over space and time is thus essential for assessing 

ecosystem management strategies and mitigation policies (Kumar and Mutanga, 2017).  

In recent decades, remote sensing tools have been integral in the efforts to map aboveground biomass (AGB). By combining 

satellite imagery (e.g., MODIS) and airborne LiDAR signals, forest cover and canopy height can be mapped across large 

spatial scales (Hu et al., 2016; Saatchi et al., 2011; Su et al., 2016; Tong et al., 2020; Xu et al., 2021). Apart from imageries 35 

and LiDAR signals, microwaves can provide more detailed insights into sub-canopy forest structure and AGB due to their 

ability to penetrate the canopy. Active microwave techniques, i.e., Synthetic Aperture Radar (SAR) backscatters, facilitate 

high-resolution (e.g., 100 m) AGB mapping, but the temporal coverage is limited (Cartus et al., 2012; Bouvet et al., 2018). 

Conversely, vegetation optical depth (VOD) retrieved from multiple passive microwave sensors can be used to produce long-

term continuous AGB maps (Frappart et al., 2020; Liu et al., 2011; Liu et al., 2015), yet at a coarse spatial resolution (e.g., 40 

0.25°). Because optical, LiDAR and microwave (both active and passive) remote sensing techniques all have their 

advantages and limitations, combining these techniques and complementing them with direct ground measurements is 

integral to reducing the uncertainty in long-term continuous and high-resolution AGB mapping.  

Another source of uncertainty in vegetation biomass stocks is the extent of biomass that is stored belowground as roots. 

While AGB mapping is facilitated by the suite of emerging remote sensing techniques, investigating the spatiotemporal 45 

variation in belowground biomass (BGB) remains challenging despite the large contribution of root biomass to total carbon 

storage (Huang et al., 2021; Ma et al., 2021). To map BGB, the commonly-used approach is to combine aboveground 

biomass information with vegetation type-specific ratios of BGB to AGB (i.e., root-shoot ratio, or RSR) (Xu et al., 2021; 

Saatchi et al., 2011). Because field studies indicate a near-linear relationship between log-transformed BGB and AGB 
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(Enquist Brian and Niklas Karl, 2002), BGB variations at large scales have often been approximated using this relationship 50 

(Spawn et al., 2020). To capture the complex relationship between BGB and biotic or abiotic variables (e.g., stand age, heat 

and water availability), machine learning algorithms have been applied to map BGB (Huang et al., 2021) and root-mass 

fractions (Ma et al., 2021) globally. In mixed pixels with multiple plant functional types, BGB mapping relying on satellite-

based AGB and plot-based models is expected to be less accurate. In addition, the existing woody plots are unevenly 

distributed across the world, with limited plots in developing countries, leading to large uncertainties in BGB estimation 55 

within those regions (Huang et al., 2021). 

China has been implementing national-scale afforestation and reforestation programs since the late 1990s (Lu et al., 2018), 

promoting vegetation cover and carbon storage in the Loess Plateau and the southwest karst regions, etc. (Chen et al., 2019a; 

Niu et al., 2019; Tong et al., 2018). A spatial understanding of woody biomass trends can help evaluate the efficiency of 

ecological restoration programs. High quality, high resolution and long-term continuous woody biomass monitoring in China 60 

has remained challenging, due to difficulties in integrating different remote sensing techniques with ground-sourced 

measurements (Zhang et al., 2019; Huang et al., 2019).  

In this study, we integrate different remote sensing tools (optical, active/passive microwave and LiDAR) with large 

quantities of plot measurements through random forest approach to produce high-resolution (1 km) above- and belowground 

woody biomass maps in China during 2003–2020. This dataset could provide new insights into the spatial hotspots of woody 65 

biomass and its interannual changes over the past two decades. 

2 Materials and methods 

To map above- and belowground woody biomass in China during 2003–2020, we 1) integrated state-of-the-art satellite-

derived forest AGB and canopy height information with ground-sourced plot data; 2) developed an improved vegetation 

water content (VWC) dataset covering 2003–2020 based on the intercalibration of vegetation optical depth retrieved from 70 

various microwave sensors; 3) combined multiple sources of remote sensing and in-situ observations simultaneously 
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allowing for both high-resolution and long-term mapping; 4) built a plot data-based random forest or regression model to 

estimate BGB based on AGB information; and 5) harmonized scale differences existing between plot measurements and 

satellite observations. The basic procedure is shown in Figure 1 and described in sections 2.1–2.5. 

 75 

Figure 1: Workflow of woody AGB and BGB monitoring in China during 2003–2020. The blue rectangles are remote sensing-

based data inputs (data sources are listed in Text S3); orange rectangles are plot-level measurements; yellow rectangles represent 

the key methods; green rectangles are the intermediate results; while the purple rectangles represent the final outputs of this study. 

‘GlobBiomass’, ‘CCI’, etc. are data products’ names; ‘CDF’ = ‘cumulative distribution function’; ‘HANTS’ = ‘harmonic analysis 

of time series’; ‘VCF’ = vegetation continuous fields. Locations of the collected forest plots are shown in Figure S1a. 80 

2.1 An improved benchmark map of aboveground biomass (AGB) in China 

We used the three latest high-quality global-scale AGB datasets (GlobBiomass, CCI-Biomass and GLASS-Biomass v2) to 

derive our benchmark map. Using SAR, LiDAR and optical images, the first global high-resolution (100 m) forest AGB 

dataset for the year 2018, GlobBiomass, was published through the European Space Agency (ESA)’s Data User Element 
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(DUE) project (Santoro et al., 2021). The relative root mean square error (RMSE) was below 30%, although biomass tends 85 

to be underestimated in dense forests (Mialon et al., 2020). Subsequently, ESA’s Climate Change Initiative (CCI) published a 

global AGB map for all vegetation in 2017 using a slightly different algorithm, followed by AGB maps for 2010, 2018 and 

2019 (Santoro and Cartus, 2019, 2021). Datasets derived from different methods have their advantages in different regions. 

By referring to adequate in-situ data, we may combine the advantages of different datasets. Accordingly, integration of 

several high-quality AGB maps has become popular. The Global Land Surface Satellite (GLASS) AGB v2 was developed by 90 

fusing the AGB maps in (Hu et al., 2016), (Su et al., 2016) and (Thurner et al., 2014), etc., through the linear combination 

method. GLASS-Biomass v2 roughly represents the AGB status in the year 2000, the median period of the collected woody 

plots’ data (Zhang and Liang, 2020). 

We aggregated the GlobBiomass and CCI-Biomass maps from 1/1125° resolution to 1/120° (approximately 1 km) and 

resampled the GLASS-Biomass product from 0.01° to 1/120°. Because the biomass of herbaceous vegetation was not 95 

included in GlobBiomass and GLASS-Biomass datasets due to the high uncertainty, the study area in this study was 

determined as all the 1/120° pixels (note: the 1/120° resolution is referred to as a pixel hereinafter) for which AGB data are 

available from each of these three woody biomass datasets.  

In September 2018, ICESat-2 provided an Advanced Topographic Laser Altimeter System (ATLAS) that provides more 

accurate and denser measurements of canopy height than GLAS (Markus et al., 2017). ICESAT-2 data have been applied in 100 

canopy height estimation at large scales (Liu et al., 2022). This study selected the ATL08 land and vegetation V004 product, 

and the 98% height retrievals of all canopy photons in each 100 m segment can best represent the mean top canopy height 

(Neuenschwander et al., 2020). All ATLAS records acquired in China’s woody areas during 2018~2020 were incorporated. 

ATLAS has three strong and three weak beams. According to previous studies, the canopy heights retrieved using strong 

beams are generally more accurate than those retrieved by weak beams (Neuenschwander et al., 2020). Hence, in each 1/120° 105 

resolution pixel, we counted the numbers of valid strong beam and weak beam observations within the pixel during 

2018~2020. If the number of strong beam records exceeded 5, then only those higher quality data were used. Otherwise, if 

there were at least 5 valid observations, but the number of strong beam retrievals was not enough, all data in the pixel were 
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incorporated. Afterwards, we adopted the median absolute deviation (MAD) method to detect and eliminate outliers (Leys et 

al., 2013). For the remaining reliable canopy height retrievals in each pixel, we took the average weighted by the 110 

corresponding canopy cover fractions. Here, the top canopy cover fraction was estimated as the ratio of canopy photons to 

the number of all photons in the 100 m segment. By following the above steps, we mapped forest height over China using 

ATLAS data. Because gaps remain between the tracks of ICESAT-2, although ATLAS’s six beams enable a larger spatial 

coverage than other LiDAR instruments, the derived forest height map provides values in only 42% of all woody pixels in 

China. Because of the potentially bad LiDAR estimates, the highest 2.5% extreme values were further excluded.  115 

Another new LiDAR instrument is NASA’s Global Ecosystem Dynamics Investigation (GEDI). It is optimized for global 

canopy height estimation, and has been collecting data in China since April 2019 (Dubayah et al., 2020). However, the 

orbital gaps of GEDI are much larger than that of ICESAT-2, resulting in a quite limited spatial coverage by direct 

observation. Therefore, this study adopted the Global Forest Canopy Height 2019 dataset provided by the Global Land 

Analysis and Discover (GLAD). GLAD’s canopy height was mapped by integrating the GEDI’s forest structure 120 

measurements globally with Landsat maps through machine learning (Potapov et al., 2020). The original 30 m resolution 

data were averaged to 1/120°. GEDI does not collect data in north of 51.6°N (Dubayah et al., 2020), but the highest latitude 

of China is about 53.56°N. Therefore, we used an alternative global gridded forest height map that was developed earlier 

through machine learning, yet based on the ICESAT GLAS retrievals (Simard et al., 2011).  

Because AGB is more related to the forest volume rather than just the canopy height, we further multiplied the three different 125 

LiDAR-based canopy height maps with the percent of tree cover (hereinafter TC) acquired from MOD44B v006- dataset. 

The products of multiplications are hereinafter ATLAS-derived volume, GEDI-derived volume and GLAS-derived volume. 

None of these LiDAR-based timber volumes cover all woodland pixels in China. Specifically, without spatial interpolation 

using optical remote sensing, the ATLAS-derived volume inherited the orbital gaps of ICESAT-2, although the quality is 

expected higher than that of the other two machine learning-derived canopy heights and volumes. Thus, we designed three 130 

random forests for AGB estimation. Each of these three random forests (RFs) have four input predictors. GlobBiomass, CCI-

Biomass and GLASS-Biomass v2, are incorporated as the predictors of each RF, while the use of which LiDAR-derived 
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volume as the 4th input predictor makes the difference among the three RFs. Moreover, to reduce uncertainties in LiDAR-

derived timber volumes, the pixels with tree cover below 5% are classified as nonwoody areas and excluded. 

The training target should be a large number of high-quality 1/120° pixel-scale AGB data in China. This study collated forest 135 

or shrubland plots’ AGB calculated using allometric equations or clear-cutting methods from various published papers, 

including (Luo, 1996), (Luo et al., 2014), (Guo and Ren, 2014), (Peng et al., 2016), (Wang et al., 2014), (Guo et al., 2021), 

(Yang et al., 2017), (Liu et al., 2020) and (Nie et al., 2016). In addition to AGB, we recorded the BGB, stand age, vegetation 

species or type and location information. The spatial distributions of all these woody plots are shown in Figure S1a. Some 

records were measured in 1990~2000, whereas others were acquired during 2000~2010. Although the nominal periods of 140 

plot measurements are different from those of the remote sensing-based predictor biomass maps (i.e., 2017~2020), it is 

supposed that the spatial pattern of woody biomass at 1 km resolution would not change much from around 2000 to 

2017~2020, so the time lag problem could be ignored. However, because plots smaller than 0.05 ha are not comparable to 

satellite observations (Su et al., 2016), 10 m×10 m plots (Guo and Ren, 2014) were not included as the training target here, 

but were applicable in determining the biomass allocation rule later in section 2.5. Moreover, the understory shrub AGB was 145 

excluded, since SAR and LiDAR can observe only the canopy. The extreme values (the highest and lowest 1%) were 

excluded as well. These filters resulted in 6290 woody plots remaining. Because the plots are mainly located in woodlands, 

yet the corresponding pixel usually contains cropland, urban, waters or bare ground, whose AGB are much lower than those 

in the plots, we converted the plot-level AGB into the pixel-scale AGB by multiplying the area fraction of forestland in the 

pixel, as long as the forestland area fraction exceeds 20% and is larger than the shrubland area fraction. Here, land cover type 150 

comes from the Copernicus Global Land Service: Land Cover 100m (CGLS-LC)- epoch 2017: v3.0.1 data (Buchhorn et al., 

2020). It includes not only discrete land cover classification but also the fractions of forestland, shrubland, grassland and 

cropland at 100 m resolution. We aggregated these high-resolution land cover fractions to 1/120° to reduce the uncertainties. 

It should be noted that VCF data cannot be applied here because they indicate the fractions of pure tree cover and short 

vegetation cover, yet a forestland contains bare ground or herbs among trees.  155 

The RF model trainings were conducted in MATLAB R2021a software. After the RF trainings, three sets of simulations were 
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performed using the corresponding RF model in woody pixels where all four predictors (three existing AGB products and 

one LiDAR-derived volume) have valid data. In addition, we performed ten-fold cross-validation to assess the performance 

of each RF model, and took the averages of ten times of simulations. Finally, we combined the three sets of simulations by 

averaging that is weighted by the mean R2 of the corresponding RF model. Using above methods, we produced a spatially-160 

continuous 1/120° benchmark AGB map for China. Because most of these measurements (i.e., training targets) refer to the 

vegetation biomass status in around 2000, we expect our AGB map to represent the AGB in around 2000 (although the 

predictor AGB maps are for 2017~2020, they are just used as the indicators of the spatial variability rather than the absolute 

values). Therefore, our improved benchmark AGB map is hereinafter named ‘AGBbenchmark-2000s’. 

In addition, we exported the importance of each predictor variable in the RF models. For any variable, the measure is the 165 

increase in prediction error if the values of that variable are permuted across the out-of-bag observations. This measure is 

computed for every tree, then averaged over the entire ensemble and divided by the standard deviation of the entire ensemble. 

2.2 An improved vegetation optical depth dataset covering 2003–2020 

To derive a long time series of AGB, long-term continuous microwave VOD (i.e., vegetation opacity) data is useful (Jackson 

and Schmugge, 1991; O'neill et al., 2021). Through cumulative distribution function (CDF) matching among different VOD 170 

products, the vegetation optical depth climate archive (VODCA) was developed(Moesinger et al., 2020). The ‘C-band’ 

product which was retrieved using several C-band microwave sensors including AMSR-E, WindSat and AMSR2 and covers 

2003~2018, is a better indicator of the whole woody plants’ biomass than those retrieved using higher frequency microwave 

bands (i.e., X-band and Ku-band). However, compared to the VOD retrieved from L-band sensors such as SMOS (Wigneron 

et al., 2021) and SMAP (Konings et al., 2017), C-band VODs are still less sensitive to the biomass of trunks and branches, 175 

which contribute most to the AGB (Li et al., 2021). Therefore, C-band VODs usually have high-frequency variations due to 

the strong variation in leaf water content per biomass under rainfall or drought events (Li et al., 2021). In addition, VODCA’s 

C-band product is not perfectly continuous. Because the AMSR2 sensor does not share any temporal overlap with AMSR-E, 

the rescaling of AMSR2 data towards AMSR-E was based on the assumption that VOD remained stable over 2010~2013, i.e., 

https://doi.org/10.5194/essd-2022-286
Preprint. Discussion started: 26 September 2022
c© Author(s) 2022. CC BY 4.0 License.



 

9 

 

the last and first two years of both sensors. For China where land use cover changes were prevalent, this assumption may 180 

lead to a bias of AMSR2-based VODCA data during 2013~2018 compared to the values in this period if the retrievals from 

AMSR-E were available. Theoretically, this bias is spatially variable, and is positively correlated with local VOD changes 

from 2010 to 2013. Thus, to develop an improved VOD dataset covering 2003–2020 for China, we focused on 1) filtering 

out the high-frequency fluctuations in VODCA’s product and other C-band VOD products; 2) mapping and correcting the 

bias of AMSR2-based VODCA data during 2013~2018 compared to the AMSR-E-based VODCA VOD; 3) rescaling the C-185 

band VODs against L-band VOD data to make their spatial patterns more correlated with that of woody plants’ AGB; 4) 

extending the VODCA dataset to 2020 by using AMSR2 observations. Details are as follows. 

Due to a very high level of radio frequency interference (RFI), SMOS data are noisy and even missing in China, especially 

in eastern China (Wigneron et al., 2021), making it inapplicable to this study despite its longer time series than SMAP. 

SMAP observations have been available since April 2015, so this study utilized the data from 2016 to 2020. The dual 190 

channel algorithm (DCA) derived-VOD data included in the SMAP Enhanced L3 v5 product (O'neill et al., 2021) were 

resampled from 9 km resolution to 1/12°. For each 1/12° grid cell (note: 1/12° resolution is hereinafter called a grid cell) 

where at least 609 (i.e., 1/3 of 1827 daily maps in 5 years) valid VOD retrievals are available, we first filtered the abnormal 

values using ‘3σ denoising’ (Chen et al., 2021). Second, we virtually filled in the data in 2015 and 2021 by using those in 

2016 and 2020. Subsequently, the no-data values resulting from orbital gaps or frozen states were filled by linear 195 

interpolation, while the outputs during 2016~2020 were supposedly valid. Moreover, we also determined the average annual 

number of VOD peaks for each grid after setting the thresholds of minimum distance between two peaks, peak height and 

dominance of peaks to reasonable values. Specifically, for grid cells where woody plants exist yet without VOD data, the 

values were filled by sequentially searching and averaging nearby valid values (Chen et al., 2019b). For VODCA’s C-band 

VOD during 2003~2018, after filtering out the abnormal values and virtually filling the data in 2002 and 2019, we performed 200 

the Harmonic Analysis of Time Series (HANTS) filtering(Menenti et al., 1993; Roerink et al., 2000). Either high or low 

outliers were excluded, while the number of frequencies to be considered above zero frequency in the Fourier function was 

set to the product of the mean annual peak number detected by SMAP VOD and the number of years. 
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We then mapped the bias of AMSR2-based VODCA’s VOD compared to the AMSR-E based VODCA VOD data in 

2003~2011. Because annual VOD is closely related to the leaf area index (LAI), and is clearly affected by percent tree cover 205 

and percent nontree vegetation (i.e., crops, grass and shrubs) cover, we performed a multiple linear regression between 

annual medians of adjusted VODCA VOD data during the period of 2003~2011 and annual LAI values as well as VCF 

retrievals. This study employed LAI from two sources. First, we processed the potential cloud-affected values within the 

MODIS LAI product (MCD15A2H v006) by masking the values flagged by clouds and then performing HANTS filtering, 

with low outliers excluded and the number of frequencies set to 3 times the number of years. Second, for the LAI developed 210 

by the ESA- Copernicus Global Land Service (GEOV2 LAI) (Baret et al., 2013; Verger et al., 2014), we harmonized the 

retrievals from the SPOT-VGT sensor during 2003~2013 and those from the PROBA-V sensor after 2014 using CDF 

matching with MODIS data applied as the reference (Cammalleri et al., 2019). The MODIS LAI, VCF and GEOV2 LAI 

were all averaged from their original spatial resolutions (250m~1km) to 0.25° to match the resolution of VODCA. As shown 

in Figure S2a~b, after the regression, the R2 values of 90% grids exceeded 0.3, and the grid-specific regression coefficients 215 

were exported. Therefore, the mean bias of AMSR2-based VODCA data during 2013~2018 compared to that before 2012 

could be estimated as the difference between the mean annual VOD calculated based on the above regression coefficients as 

well as LAI and VCF data during 2013~2018 and the mean value of the adjusted VODCA’s medians over that period. This 

bias was positive in most areas of China, especially afforested areas, such as northern Beijing (Figure S2c~d). Accordingly, 

by adding this bias to the VODCA VOD data after 2013, we improved its temporal continuity. 220 

Using SMAP’s 1/12° VOD data during 2017~2018 as the reference, we calibrated the spatial pattern of the adjusted VODCA 

VOD by rescaling. Notably, we revised the CDF matching algorithm (Moesinger et al., 2020). For either the lowest or the 

highest 10% of the time series, a linear fitting model was designed and applied, to eliminate abnormally low or high values. 

Finally, to ensure a temporally-consistent VOD time series from 2003 to 2020, for 2019 and 2020, we adopted the AMSR2 

C-band VOD and converted it into L-band-like VOD by referring to SMAP data. Here, we chose the AMSR2/GCOM-W1 225 

surface soil moisture (LPRM) L3 1 day 10 km x 10 km descending V001 dataset, and resampled it to 1/12° resolution. Upon 

noticing sharp changes in AMSR2 VOD at the beginning of 2016 in many grid cells in China, this study selected the records 
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from only 2017~2020, which were calibrated and rescaled later through improved CDF matching by referring to the SMAP’s 

VOD during 2017~2018. 

Using the temporally-continuous and spatially L-band-like VOD dataset from 2003 to 2020, we calculated both annual mean 230 

and median VOD values as two robust indicators of annual AGB. 

2.3 High-resolution woodland AGB mapping in China from 2003 to 2020  

We performed two steps to map woodland AGB in China during 2003–2020. For the first step, AGBbenchmark-2000s and 

VCF data in 2003 were all resampled to 1/12° resolution, the same as VOD data. Specifically, for grid cells in which less 

than 50% of pixels were without valid AGBbenchmark-2000s values due to limited forest cover, resampling was not 235 

performed. Because VOD is influenced by the soil water availability, we built a random forest in which the predictors 

include: mean and median VOD values, VCF data (i.e., TC and all vegetation cover, hereinafter denoted as VC) and the 

mean surface soil moisture (SSM) in 2003. Here, SSM was derived from a long-term remote sensing-based surface soil 

moisture (RSSSM) developed in our previous study (Chen et al., 2021). The training target is the resampled 

AGBbenchmark-2000s. More than 80000 grids all across China were available for the training of this RF model. Afterwards, 240 

using VOD, VCF and SSM in each year, we performed 1/12° resolution AGB simulations over 2003–2020 along with ten-

fold cross-validations, and adopted the mean of ten independent simulations. We also calculated the ‘calibration factor’ 

which is defined as the ratio of resampled AGBbenchmark-2000 (i.e., the training target) to the simulated AGB in 2003 in 

every grid. Then, we multiplied the annual 1/12° resolution AGB in China during 2003–2020 with the grid-specific 

‘calibration factor’.  245 

For the next step, we downscaled the 1/12° resolution AGB to 1/120°. Here, it is assumed that within a grid cell, the heights 

of trees are similar, while the short vegetation’s heights are also similar. So, within a 1/12° grid cell, the AGB per tree cover 

(TC) and AGB per short vegetation cover (SC) can both be considered constants. Hence, we performed a binary linear 

regression between the AGBbenchmark-2000s value in each 1/120° pixel within the grid cell and the corresponding VCF 

(TC and SC) values. The intercept (i.e., constant term) was excluded, so the derived two regression coefficients can represent 250 
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the mean values of AGB per TC and per SC in the grid cell. For more than 75% of all grid cells, the regression R2 exceed 0.5. 

Since VCF indicates the coverage of pure tree and non-tree vegetation, AGB per TC should be higher than that per SC. 

Therefore, for grid cells where the derived AGB per TC was smaller than the AGB per SC, grids where either one of the 

regression coefficients was negative, or those without very significant regressions (i.e., p>0.01 or R2<0.1), the regression was 

considered invalid. The AGB per TC and AGB per SC in those grid cells were filled later by searching for nearby valid 255 

regression results, while the R2 values of those valid regressions were applied as the weights in averaging the nearby valid 

values. The maps of AGB per TC and per SC in 2003 are shown in Figure S3. By integrating these data with pixel-scale VCF, 

we calculated the AGB of all woody vegetation in each 1/120° pixel, which was averaged to the AGB at 1/12° resolution. 

Accordingly, the ratio of the grid-scale AGB calculated in the first step to the aggregated AGB derived in this step can be 

used to further calibrate the high-resolution AGB data. Finally, by repeating the procedures, we mapped woody AGB in 260 

China at 1/120° resolution from 2003 to 2020. 

2.4 Mixed-pixel AGB decomposition- towards scale matching 

We mapped AGB in China at 1/120° pixel resolution, which is quite larger than the scale of plot measurements. The 

collected plot-level data usually represent the AGB and BGB per area in a forest or shrubland with basically uniform 

landscapes (i.e., the density of trees/shrubs is even in the plot, which can be either low or high). However, within a pixel, 265 

forests, shrubs, crops, herbs and bare ground may coexist. It is known that the relationship between BGB and AGB in forests 

differs from that in shrublands. Generally, shrub species have a much higher RSR than trees (Qi et al., 2019; Tang et al., 

2018). Hence, we tried to solve that ‘mixed-pixel problem’ by decomposing the simulated AGB in woody regions into the 

AGB per forestland area and the AGB per shrubland area. Then, we applied the respective relationships between BGB and 

AGB to transform the decomposed per-area AGBs into per-area BGBs for different types of forests and shrublands. 270 

Afterwards, we multiplied the per-area BGBs with the corresponding area and summed the products (i.e., all forestlands’ 

BGB and shrublands’ BGB). By this method, we basically achieved scale matching between remote sensing and plot-level 

observations. 
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AGB decomposition generally followed the idea we proposed in a previous article (Chen et al., 2019b). Specifically, in 

woody grids, we counted the numbers of pixels with forests (i.e., pixels in which the forestland area percentage was >10% 275 

according to the CGLS-LC) and those with shrublands (shrubland area percentage >10%). For grid cells where there were at 

least 50 pixels with forestland and 50 pixels with shrubland, we performed a binary linear regression without intercept 

between all these pixel-scale AGB data and the area percentages of forestland and shrubland in every woody pixel. 

Afterwards, the average per-area BGB for forestland and shrubland in woody grid cells can be estimated as the 

corresponding regression coefficients. However, the regression was supposed invalid when either regression coefficient was 280 

negative, or the significance p-value exceeded 0.05, or R2 was below 0 (R2 can be negative for regressions without constants 

due to the potential significant bias in AGB data). For these grids, a constant term was further added to the regression if a 

valid result could be derived under this situation. Specifically, for 1/12° grids with less than 50 pixels with forests, but the 

pixels with shrubland are sufficient, we can reliably estimate the AGB per area shrubland as the ratio of grid average AGB to 

the mean shrubland area percentage in the grid. Similarly, the forestland per area AGB in grids with only enough pixels with 285 

forests can be estimated by simply neglecting the few shrubs. According to Figure S4a~b, complete AGB decomposition was 

achieved in 36% of all grids with enough woody pixels, and the grid cells with reliable AGB estimates accounted for 61%. 

The invalid decompositions composed only 3%, which were filled later by sequentially searching and averaging nearby valid 

results (88% of the valid regressions are with R2 higher than 0.5, see Figure S4c~d). Subsequently, we deleted both the 

highest and lowest 2.5% values of all gridded per-area AGB estimates in China, and then filled those values. Finally, a mean 290 

filter with a window size of 3×3 was applied for spatial smoothing. The final maps of AGB per area forestland and that per 

shrubland area in around 2017 (note: CGLS-LC data represent the land cover around 2017) are shown in Figure S5. Within a 

grid cell, the per-area forestland’s AGB is usually (71% in China) higher than the corresponding per-area shrubland AGB, 

except in mountains around the Sichuan Basin and some karst regions in southwestern China where shrubs are probably 

much denser than trees. Because the average forestland area percentage in woody grids in China (55%) is greater than the 295 

CGLS-LC’s mean shrubland area percentage (13%), the average forestlands’ AGB calculated based on the decomposition 

result (63.4 t ha-1) is much larger than the mean shrublands’ AGB (11.6 t ha-1 in around 2017), which is reasonable. 
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After the decomposition, some per-area AGBs were filled-in values, while some were derived from linear regressions with 

intercepts. Therefore, the sum of forestland AGB and shrubland AGB in approximately 2017 may not be equal to the total 

grid AGB at the same time before decomposition. In addition, the sum of the decomposed AGBs in 2017 was obviously 300 

different from the pre-decomposed AGB in other years. To solve this problem, we defined and calculated another ‘calibration 

factor’ as the ratio of the simulated grid-scale AGB in any year from 2003 to 2020 before mixed-pixel decomposition to the 

grid’s AGB in 2017 after the decomposition. Accordingly, by referring to the per-area forestland/shrubland AGB in 2017 and 

this ‘calibration factor’ in each separate year, we could decompose the annual simulated pixel-scale AGB into the 1/120° 

resolution AGBs of forests and shrublands and the per-area forestland/shrubland’s AGB over the whole study period.  305 

2.5 BGB mapping in China during 2003–2020 based on its relationship with AGB 

In this study, we collected 8729 and 302 records of both AGB and BGB in forest and shrubland plots, respectively, 

throughout China (section 2.1). For forest plots, the BGB~AGB relationship follows: log (BGB)=0.93×log (AGB)-0.51, 

while the relationship for shrubland plots follows: log (BGB)=0.96×log (AGB)-0.20, and the regression R2 are 0.92 and 0.85, 

respectively (Figure S6). The number of forest plots is large enough, and the forest type (main species) and stand age 310 

information are both available at 8182 plots (~94% of all forest plots), including both natural forest plots and plantation 

forest plots (pines, Eucalyptus, rubbers, bamboos, etc.). Therefore, we trained an RF model for estimating per-area 

forestland’s BGB annually. 

In the RF model, the training target is the per-area BGB at 8182 forest plots, while the predictors included not only forest 

plots’ per-area AGB, forest type (hereinafter FOR_T), stand age, but also mean annual temperature (MAT), temperature 315 

seasonality (standard deviation of monthly temperature×100, abbreviated as Tsea), mean annual precipitation (MAP) and 

precipitation seasonality (coefficient of variation of monthly precipitation, Psea). These climatic factors can be obtained from 

the corresponding papers, or estimated from the WorldClim v2.1 dataset (Fick and Hijmans, 2017). In this study, FOR_T 

includes evergreen broadleaf forest (EBF), deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), deciduous 

needleleaf forest (DNF), and mixed forest (MF), and was determined based on the major tree species in the plot. After the RF 320 
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training, to simulate grid-scale per-area forestland’s BGB annually, apart from importing WorldClim v2.1’s MAT, Tsea, MAP, 

Psea and the decomposed per-area forestland AGB in each year into the RF model, we also inputted the forest stand age map 

for China (Zhang et al., 2017) and the annual forest type map during 2003–2020, which was determined from the ESA CCI’s 

global 300 m resolution annual land cover classification v2.0.7cds~v2.1.1 (Li et al., 2018).  

Because shrubland plots are relatively limited, and the species and stand age information was hardly provided, we directly 325 

converted the decomposed shrublands’ per-area AGB into the per-area BGB during 2003–2020 using the above regression 

relationship. Finally, by referring to the forestland and shrubland area percentages in the CGLS-LC dataset, we mapped the 

annual woody BGB in China at 1/120° resolution.  

In addition, we also calculated the relative errors and uncertainties of AGB and BGB in each year during 2003–2020 (see 

section 3.4). 330 

2.6 Data comparison and verifications 

Apart from cross-validations based on woody plots’ AGB and BGB measurements over China, we further verified our AGB 

and BGB estimates by referring to the results of Tang et al., who conducted a methodologically consistent field campaign 

involving 7800 forest plots and 1200 shrubland plots throughout China and then utilized the random forest approach to 

spatially map AGB and BGB (Tang et al., 2018). Although the plot measurements are not publicly available, various 335 

statistics of this national official product were reported, e.g., the AGB, BGB and RSR for each woody vegetation type. 

Therefore, using the discrete land cover classification map in the CGLS-LC dataset, we classified China’s woody ecosystems 

into six woody ecosystem types, i.e., EBF, DBF, ENF, DNF, MF and shrubland (SHR) ecosystems, according to the majority 

in every pixel (Figure S7). The EBF, DBF, ENF, DNF, MF and SHR ecosystems account for 59.6%, 18.4%, 15.3%, 6.1%, 

0.1% and 0.5%, respectively, of the total woody area in China. Because the MF and SHR ecosystems both have very limited 340 

areas, this study just compares the AGB and BGB per area among the four major forest ecosystems in China. Similarly, the 

change in woody biomass or carbon stock in China can be verified by several measurements and remote sensing-based 

studies (Fang et al., 2018; Qiu et al., 2020; Xu et al., 2018). 
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We also compared the calculated spatial pattern of woody biomass and its trend against that of existing global/regional long-

term woody biomass datasets, including the well-received global long-term AGB between 1993~2012 (Liu et al., 2015) and 345 

an updated woody biomass dataset covering 2001~2019 (Xu et al., 2021). 

Finally, to justify the random forest models for biomass and allocation predictions, we drew partial dependence plots (PDPs) 

in MATLAB R2021a® to show the marginal effect that one predictor has on the training target (e.g., BGB at forest plots) 

from a machine learning model (Hastie et al., 2009). Here, for each predictor, we excluded the extreme values (the lowest 1% 

and the highest 1%) before calculating the corresponding PDP to ensure its robustness. Ten RF trainings were performed to 350 

derive the mean PDP values as well as the standard deviations. 

3 Results and discussion 

3.1 Model development and Evaluation 

In the first step, i.e., the benchmark woodland AGB mapping, when ATLAS data-derived canopy height was applied as an 

additional predictor in the RF model apart from the three biomass datasets (see section 2.1), the number of data points 355 

available for training was 1392, and the predicted R-square (R2) according to the ten-fold cross validation was 0.49±0.06 

(mean ± standard deviation). The training efficiency is limited by the potential errors in plot-level AGB records as well as the 

CGLS-LC’s land cover fraction maps, and the scale difference between satellite and plot-level observations. Although 

introducing climatic and topographic variables as predictors could increase the R2 of ten-fold cross validation, these variables 

contain high spatial autocorrelation, and thus even an elevated R2 cannot indicate a higher predictive performance (Ploton et 360 

al., 2020). According to a test addressing the relative contribution of the four predictors, GLASS-Biomass dataset 

contributed most to the woody AGB mapping (35%), followed by GlobBiomass (24%), CCI-Biomass (22%) and ATLAS-

derived tree volume (19%). When GEDI-derived and GLAS-derived wood volumes were respectively used, the available 

data points increased to 3842 and 2286, but the mean R2 values were 0.36, because the direct observations of ICESAT-2 were 

supposed to be more accurate than the canopy heights estimated through machine learning by GLAD or Simard et al. After 365 
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combining these three sets of AGB simulations, the R2 between the resulting benchmark AGB map for China (Figure S1c) 

and the upscaled plots’ AGB was 0.56, while the RMSE was 40.38 t ha-1 (Figure S1b). When comparing the GlobBiomass, 

CCIBiomass and GLASS-Biomass datasets against the upscaled plots’ AGB, the R2 were 0.19, 0.13 and 0.18, respectively, 

while the RMSE were 69.2, 69.3 and 84.1 t ha-1. Therefore, the benchmark map of AGB in China has been significantly 

improved. 370 

In the second step, i.e., long-term continuous AGB mapping (section 2.3), with a ten-fold cross-validation, the RF model’s 

predictive R2 and RMSE were 0.79±0.01 and 16.7±0.33 t ha-1, respectively. Vegetation continuous fields (VCF) contributed 

most to the training efficiency (tree cover and all vegetation cover contributed 39% and 17%, respectively). Mean and 

median vegetation optical depth (VOD) values both contributed 17% to the training efficiency, whereas mean surface soil 

moisture accounted for 10% (methods are in section 2.3). 375 

The RF model designed for woody plots’ BGB estimation (see section 2.5) achieved a predictive R2 of 0.89±0.02, and the 

RMSE was 6.3±0.5 t ha-1. AGB explained 53% of the BGB’s variation among different woody plots. Long-term climate 

backgrounds, i.e., mean annual temperature, temperature seasonality, annual precipitation and precipitation seasonality 

accounted for 8%, 6%, 8% and 7%, respectively. Forest type and stand age also contributed 12% and 8% to the training 

efficiency, indicating that the effects of these factors are nonnegligible. The selection of predictors of BGB basically 380 

followed the existing knowledge (Huang et al., 2021), and the seasonality of temperature and precipitation made sense in the 

prediction (see Text S1). On the other hand, although previous studies incorporated many edaphic factors as predictors of 

BGB (Huang et al., 2021), by comparing the training efficiencies when whether these edaphic factors are incorporated, we 

could justify the reasonability of our simplified set of predictors (Text S1). 

We also explored how different factors influence AGB and BGB among woody plots in China. Of the biotic and abiotic 385 

factors included in our model, partial dependence plots (PDPs, Figure 2a~c) show that stand age is the main driver of AGB. 

However, with forest aging, forest growth gradually stops, conforming with common knowledge (Xu et al., 2010). Woody 

AGB also increases significantly with precipitation, but water availability does not constrain biomass in humid regions with 

annual precipitation above 1500 mm, and temperature did not significantly affect AGB at large scales. These findings are in 
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line with previous studies (Stegen et al., 2011). 390 

According to the collected woody plots’ data, AGB is a key driver of BGB (Figure 2d~g). Yet, RSR changes among different 

forest growth stages, decreasing in general as reported (Mokany et al., 2006). The overall negative impact of mean 

temperature on BGB or RSR agrees with the mechanism that higher heat promotes nutrient accessibility (Luo et al., 2012; 

Ma et al., 2021), and increases the turnover rates of roots at a higher magnitude than stems (Reich et al., 2014). The ‘U-

shaped’ relationship between precipitation and belowground biomass allocation follows the ‘optimal biomass allocation’ 395 

theory, because arid climates promote root extension yet too heavy rainfall reduces nutrient availability through leaching and 

dilution effect (Luo et al., 2012). Other factors, including temperature seasonality, precipitation seasonality and forest type, 

have supplementary effects on the biomass allocation (Figure S8). 
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Figure 2: Influence of key factors on woody plots’ above- and belowground woody biomass in China. (a~c) Partial effects of (a) 400 

forest age; (b) mean annual temperature (MAT) and (c) mean annual precipitation (MAP) on AGB in all qualified woody plots; 

(d~g) partial influences of (d) AGB; (e) stand age; (f) MAT and (g) MAP on BGB and RSR values of all qualified woody plots. The 

error bars represent the standard deviations of the ten-fold trainings. We did not draw the PDP for the impact of AGB on RSR, 

since the dividend of RSR calculation is AGB. 
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3.2 Total woody biomass, allocation and change in China 405 

Between 2003 to 2020, the total woody biomass in forestlands and shrublands in China were 28.4 (mean) ±1.8 (standard 

deviation) Pg and 2.3±0.2 Pg dry matter (DM), respectively (Table 1), while the total woody AGB and BGB were 24.4±1.6 

Pg and 6.2±0.4 Pg. The mean RSR for forests (0.24) and that of all woody areas in China (0.26) are both slightly lower than 

the global average values of approximately 0.25 and 0.3, respectively (Ma et al., 2021; Huang et al., 2021). Separated by 

forest types, evergreen conifer forest (ENF) occupies the highest woody total biomass per unit area (175.1 t ha-1), followed 410 

by 136.4 t ha-1 in the evergreen broadleaf forest (EBF), whereas deciduous forests (DBF and DNF) harbor 119.7 and 122.3 t 

ha-1, respectively (Figure 3a). By contrast, deciduous forests in northern China (see Figure S7 for the distribution of forest 

ecosystems) occupy higher mean RSR values (Figure 3a).  

Woody biomass across China increased by an average rate of 363.9±11.2 Tg yr-1 (DM) during 2003–2020, equaling a 

vegetation carbon sink of approximately 163.8±5.9 TgC yr-1 (assuming a carbon density to biomass ratio of 0.45 (Xu et al., 415 

2018)). Changes in forestland AGB, forestland BGB, shrubland AGB and shrubland BGB account for 73.8%, 7.1%, 15.5% 

and 3.6%, respectively, of the total woody biomass trend. Apart from visible declines from 2010 to 2011 and from 2016 to 

2017, China has undergone a continuous increase in woody biomass (p<0.01) during 2003–2020, and the biomass gains were 

the greatest from 2014 to 2016 (Figure 3b). 

Our estimates of woody biomass and its trend are generally consistent with previous results in China obtained using both 420 

satellite observation and massive field measurements (Table 1). Yet, differences occur in some aspects. For example, as the 

grass-dominated pixels are excluded in this study, the mean RSR for Chinese shrubs (including those in grass-dominated 

pixels) was reported as 0.71 (Tang et al. 2018), slightly higher than our estimate of 0.53 for shrubland ecosystems in China. 

Moreover, regarding trees’ occurrence in shrublands, the shrublands’ woody biomass and RSR values in this study refer to a 

mosaic of shrubs and some trees. 425 

Table 1. Basic statistics of the calculated woody biomass in China and the agreement with those reported previously (the ratio of 

carbon density to biomass is set to 0.45 (Xu et al., 2018)). 
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Variables related to woody 

biomass 

Our estimate (mean 

value in 2003–2020) 
Previous high-quality estimates Reference 

Forestland AGB in China 22.9 Pg 18.7 Pg 

(Tang et al., 2018) 
Forestland BGB in China 5.5 Pg 4.6 Pg 

Shrubland AGB in China 1.5 Pg 0.9 Pg 

Shrubland BGB in China 0.8 Pg 0.7 Pg 

Woody biomass in China 30.7 Pg 24.9~26.4 Pg 
(Tang et al., 2018; Xu et 

al., 2018) 

Forestland RSR in China 0.24 0.23~0.25 
(Jiang and Wang, 2017; 

Tang et al., 2018) 

Shrubland RSR in China 0.53 0.71 (Tang et al., 2018) 

ENF’s per-area AGB 143.5 t ha-1 ~122 t ha-1 

(Tang et al., 2018) 
EBF’s per-area AGB 109.5 t ha-1 ~109 t ha-1 

DBF’s per-area AGB 92.2 t ha-1 ~87 t ha-1 

DNF’s per-area AGB 91.5 t ha-1 ~98 t ha-1 

All forests’ per-area AGB 109.3 t ha-1 99~112 t ha-1 
(Tang et al., 2018; Yin et 

al., 2015) 

Forests’ per-area total 

biomass 
137.3 t ha-1 124~144 t ha-1 

(Tang et al., 2018; Yao et 

al., 2018) 

ENF’s RSR 0.22±0.03 0.24 (Tang et al., 2018) 

EBF’s RSR 0.25±0.04 0.22 

 DBF’s RSR 0.30±0.03 0.28 

DNF’s RSR 0.34±0.04 0.31 

Annual woody carbon 

stock increase 
163.8±5.9 TgC yr-1 

120.2 TgC yr-1 (2000~2010) (Fang et al., 2018) 

178 TgC yr-1 (2020~2030) (Tang et al., 2018) 

170 TgC yr-1 (2000s~2040s) (Yao et al., 2018) 

Annual forests’ carbon 

stock increase 
146.2~163.8 TgC yr-1 153.6 TgC yr-1 (2003–2020) (Qiu et al., 2020) 
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Figure 3. Woody biomass allocation and biomass change in China during 2003–2020: (a) per-area AGB and BGB, as well as RSRs 

of different forest ecosystems in China. The blue, red and green error bars are the standard deviations of AGB, BGB and RSR in 430 

China; (b) the interannual changes of total forestland’ AGB (AGB-forest), shrubland’ AGB (AGB-shrubland), forestland’ BGB 

(BGB-forest), shrubland’ BGB (BGB-shrubland). Biomass changes (ΔBiomass) in forests and shrublands from the previous to the 

current year are represented by blue and purple columns. 

3.3 Updated spatial hotspots of woody biomass amount and trend in China 

The highest per-area woodland biomass is observed in the southwest of China, especially south Tibet. Woody biomass is also 435 

high in parts of the Qinling Mountains, Hengduan Mountains, Hainan and Taiwan islands (Figure 4a). Hence, woody 

biomass was highest in the south < 34°N, followed by the northeast forests, and lowest in the mid-latitudes, 38–40°N (Figure 

4b). Above- and belowground woody biomass allocation varies significantly among regions. RSR is highest in northeastern 

conifer forests and northern China’s deciduous forest. The southwest karsts also have higher RSR than its surroundings due 

to high shrubland biomass (Figure 4c and Figure S5b). Woody pixels’ RSR ranges from 0.17 to 0.42 across China, with 67% 440 

of pixels having a RSR of 0.2–0.3 (Figure 4d). The strongest biomass increases were found in central to southern China, 

including the southern part of the Loess Plateau, the Qinling Mountains, the southwest karst region and southeastern forests. 

Declines in woody biomass only occurred in some mature natural forests, e.g., those in the Greater Khingan Mountain, 

Hengduan Mountains and South Tibet (Figure 4e). 59.8% of woody areas in China showed significant biomass gains (Figure 

4f). 445 
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Figure 4. Maps of woody biomass amount, allocation and trend in China during 2003–2020. (a) Spatial pattern of woody total 

biomass in China; (b) the latitudinal pattern of per-area woody AGB, BGB and total woody area in China (woody areas below 

22°N are limited); (c~d) map of woody vegetation’s RSR and its histogram; (e~f) map of the woody biomass trend and its 

histogram. Shaded areas in trend maps indicate statistically significant at the 95% confidence level, while the basic statistics of all 450 

woody pixels’ biomass amount and trend are labelled in the subfigures (Sig/Nonsig: significant/nonsignificant trends at the 95% 

confidence level).  

In agreement with our results (AGB: 24.4±1.6 Pg, total biomass: 30.7±2.0 Pg), previous studies estimated a total woody 

AGB in China of 23.4±0.6 Pg after 2003 (Liu et al., 2015) and a total woody biomass of 29.4±1.1 Pg during 2003~2019 (Xu 

et al., 2021). However, the spatial pattern inferred here markedly differ compared with these previous estimates. We predict 455 

higher woody biomass in the central-south and southwest China but lower biomass values in the northern and northwest 

regions (Figure S9a~f). The spatial pattern of our AGB map agrees well with that of recent high-quality China’s forest AGB 

maps which were developed by integrating Lidar, P-band SAR and forest inventory data (Su et al., 2016; Huang et al., 2019), 

with the correlation coefficients both reaching 0.73. For Liu et al. (2015)’s and Xu et al. (2021)’s dataset, the spatial pattern 

correlations with those improved AGB maps are 0.35~0.50 and 0.27~0.37, respectively (Figure S10). The mean woody AGB 460 

in eight provinces of southern China was 92~104 t ha-1 (Tong et al., 2020), close to our estimate of 85~110 t ha-1. Forest 

inventory indicated a tree biomass of 1.92 Pg in Tibet (Sun et al., 2016) where our result was 1.86 Pg yet the two existing 

long-term datasets predicted 1.26~1.52 Pg. Moreover, the reduced spatial variation in biomass estimated in this study 

compared to Liu et al. (Figure S9a) indicate much lower random noises. 

The interannual variation in woody AGB in China according to Liu et al. (2015) and that of total woody biomass according 465 

to Xu et al. (2021) are both highly correlated with our results (r= 0.76 and 0.95). Liu et al. predicted a woody AGB 

increasing rate of 186±79.6 Tg yr-1 (p<0.01), similar to our estimate of 236±117 Tg yr-1 over 2003~2012; while Xu et al. 

indicated a biomass trend of 219.4±79.6 Tg yr-1 (p<0.01) from 2003 to 2019, lower than the rate of 368±69.9 Tg yr-1 in this 

study (Figure S11a, c). Spatially, this study predicted an obviously faster biomass gains in southern China than their datasets 

(Figure S11). Reforestation and forest management led to a short term extensive carbon sequestration in southern China, 470 

which was estimated as 220±100 Tg AGB yr-1 during 2002~2017 by developing a regional RF model between MODIS 
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reflectance data and a global benchmark AGB map (Tong et al., 2020), close to our estimate of 200±58 Tg AGB yr-1. The 

high ecosystem carbon sink in central to south China and southwestern China has been shown by atmospheric inversions as 

well (Wang et al., 2020; Yang et al., 2021). 

Accordingly, by fusing low-frequency active, passive microwaves and the advanced LiDAR-derived canopy heights under 475 

the reference of extensive field measurements, this study could generate updated estimates on the spatial hotspots of woody 

biomass and its trends in China. 

3.4 Uncertainties of the woody biomass dataset and future prospects 

The uncertainties of AGB in this study came from four sources: 1) the improved benchmark AGB map for China; 2) the 

extension of AGB time series based on the long-term integrated VOD and high/short vegetation coverage datasets; 3) 480 

downscaling of coarse resolution AGB; and 4) the AGB decomposition process. The uncertainty in BGB was composed of 

the error within the AGB time series and the prediction uncertainty of the models that transform AGB to BGB. The details 

for the calculation of each source of error are in Text S2. Finally, the annual AGB and BGB’s relative error can be calculated 

as the square root of the sum of squares of all relative errors, which is referred to as the ‘error propagation rule’ when 

assuming that each error is independent and random (Huang et al., 2021). By multiplying the annual AGB or BGB map with 485 

the corresponding relative error, we mapped the AGB and BGB’s uncertainties in China annually during 2003–2020. As 

shown in Figure S12, the spatial patterns of the relative errors of AGB and BGB are similar. Relative errors were lower in the 

pure forests located in northeast China and the south Tibet, and high in the mixed forest and shrublands in the southwest 

karst regions and part of North China. 

A recent study revealed that the variation in VODs is correlated with not only biomass, but also soil moisture availability 490 

(Konings et al., 2021). To alleviate this source of uncertainty as much as possible, we have incorporated the satellite-based 

surface soil moisture dataset to account for the impact from the interannual variation in water content per biomass. In 

addition, we have included optical-based vegetation continuous fields in predicting the interannual variation in woody 

biomass, which turned out to be the variable with the highest contribution (56%). In fact, the interannual variation in Chinese 
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woody biomass according to this study is highly correlated (r=0.95) with that calculated independent of microwave-based 495 

VOD (Xu et al., 2021). 

Next, the variation in climatic conditions in a short term may have some influences on that in BGB, but explicit knowledge 

on this effect is lacking. Instead, woody vegetation BGB is much more driven by AGB (vegetation density), as indicated by 

the very strong relationship between BGB and AGB (R2≥0.85). Moreover, the long-term climatic background is expected to 

have a stronger influence on the RSR of perennial woody plants than the meteorological conditions in only a few years, since 500 

above- and belowground biomass allocation is the result of plants’ long-term adjustment to the environment (Qi et al., 2019). 

Accordingly, it is reasonable not to consider the impact of the specific climatic conditions in a year on the variation in BGB. 

The collected plot AGB measurements span many years, mostly between 1990 and 2010. So, it is assumed that the machine 

learning-derived benchmark AGB map roughly stand for the AGB status around 2000 (see section 2.1), and thus we linked it 

to the VOD in 2003, the first year of our study period, rather than that in any other year (section 2.3). This assumption may 505 

contribute to some uncertainties in the absolute values of annual AGB in some parts of China, but will not have much impact 

on the spatial pattern and temporal variation of woody biomass. 

In near future, P-band microwave sensors, which have higher penetrability into the canopy than L-band microwaves, will 

further improve the AGB mapping. For example, BIOMASS, a fully polarimetric P-band SAR, is scheduled to be launched 

in 2022 (Le Toan et al., 2011). Therefore, in the future the relationship between P-band microwave retrievals and biomass 510 

should be addressed, as well as the calibration of historical AGB datasets (e.g., the long-term AGB dataset in this study) 

against the P-band SAR-based AGB benchmark map to extend the time series. On the other hand, more in-situ AGB and 

BGB measurements in larger plots and in approximate years are needed to further improve the estimation of belowground 

biomass allocation. 

Data availability 515 

Annual maps of woodland AGB and BGB in China is available at https://doi.pangaea.de/10.1594/PANGAEA.936276 (Chen, 
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2021). Other datasets that made this research possible and the related references are attached in Supplementary Information- 

Text S3. 
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