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Supplementary text 

Text S1. Reasonability of the selected predictors in the random forest for BGB estimation 20 

When forest type (FOR_T) is excluded, the BGB’s predicting R2 according to the ten-fold cross 

validation will be slightly reduced to 0.85±0.02, while the RMSE will be slightly elevated to 

7.3±0.6 t ha-1. On the other hand, if stand age information is not added as a supplementary 

predictor, the simulation R2 and RMSE of BGB in China will be 0.86±0.01 and 7.1±0.5 t ha-1, 

respectively. The seasonality of temperature and precipitation (Tsea and Psea) both have 25 

significant impacts on BGB. Without Tsea and Psea, the predicting efficiency of BGB in 

Chinese forests will be significantly reduced to 0.84±0.01 in R2 and 7.5±0.4 t ha-1 in RMSE. 

These analyses proved the reasonability of adding these predictors in the RF designed for BGB 

estimation. 

Soil properties, e.g., soil sand content are reported to have an impact on root biomass allocation 30 

(Ma et al., 2021). However, compared to the climatic impacts on woody RSR, the direct edaphic 

effect is usually much weaker (Mokany et al., 2006; Luo et al., 2012). To prove this assumption, 

here we chose the ‘soil database of China for land surface modeling’ which was derived from 

8979 soil profiles and the Soil Map of China using polygon linkage method (Shangguan et al., 

2013). The basic edaphic variables with large quantities of soil profile records are selected, 35 

including soil texture (sand and clay fractions), pH value, soil organic matter, total nitrogen and 

soil total phosphorus. After adding these six edaphic predictors, the predicting R2 and RMSE 

for BGB according to ten-fold cross validations are 0.88±0.01 and 6.5±0.5 t ha-1, respectively, 

compared to an R2 of 0.89±0.02 and an RMSE value of 6.3±0.5 t ha-1 when edaphic factors are 

excluded. Accordingly, the incorporation of soil property maps as predictors will not improve 40 

the simulation efficiency of BGB in China. As shown in Figure S13b, the contributions of 

edaphic factors are quite limited. By comparison between the contribution fractions of all 

predictors when edaphic factors are added and not added (see Figure S13), we may conclude 

that although soil conditions can slightly affect BGB, they are highly correlated with the plots’ 

climatic and biotic conditions, making the edaphic factors no longer an essential input of the 45 



 

 

random forest.  

In fact, the currently available large-scale soil property maps are interpolated from site-scale 

measurements, or estimated through machine learning with climatic variables applied as key 

predictors, rather than directly observed. So, it is supposed to have much lower quality than 

climatic background data. Hence, to avoid over-fitting by the RF model, as well as introducing 50 

errors embedded in the soil property maps, we did not incorporate edaphic factors as predictors 

of the RF model for BGB mapping in China.  

Text S2. Simplified uncertainty quantification methods 

Uncertainties of AGB calculated in this study came from four sources. First is the error within 

the improved reference AGB map for China. We quantified it as the uncertainty of the random 55 

forest intended for integrating three different AGB datasets and LiDAR-derived timber volume 

with the reference of plot-level measurements. During the ten-fold cross validation process, ten 

RF models were developed, while the AGB predicting uncertainty could be estimated as the 

relative error (the standard deviation divided by the mean value) from the ten-fold predictions. 

The extension of AGB’s time series based on the long-term integrated VOD and VCF datasets 60 

brought the second source of uncertainty, which can be estimated from the ten-fold predictions 

of the 1/12° resolution AGB over 2003~2020 mapped through the random forest approach. This 

source of uncertainty was determined annually. The third source of uncertainty arose from the 

downscaling process of annual coarse resolution AGB. Apart from the AGBs per tree cover (TC) 

and per short vegetation cover (SC), we also calculated the 95% confidence intervals of these 65 

two regression coefficients, which were subsequently calibrated using the algorithm described 

in Section 2.3. Based on the upper and lower limits of the AGB per TC and AGB per SC, we 

derived two alternatives of the downscaled AGB products. Therefore, the uncertainty related to 

the downscaling process could be estimated as the ratio of the standard deviation of these three 

downscaled AGB to the standard high-resolution AGB map for each year. The 4th uncertainty 70 

was induced by the AGB decomposition process. AGB decomposition was achieved based on 

binary linear regression as well. Therefore, we calculated the 95% confidence intervals of per-



 

 

area forestland AGB and those of per-area shrubland AGB. The lower limits and the upper limits 

of these two variables were processed, which ultimately led to two alternative estimates of the 

sum of forest’ AGB and shrublands’ AGB in every woody pixel. Then, similarly, we calculated 75 

the standard deviation of the three estimates, and the ratio of which to the mean value can 

generally stand for the uncertainty induced by the AGB decomposition. 

The uncertainty of BGB was mainly made up of the error within the AGB time series and the 

predicting uncertainty of the models which transform AGB to BGB. For forestland, the latter 

was calculated from ten-fold RF model predictions. In shrublands, to keep the consistency, we 80 

divided the whole dataset into ten parts, and then select nine of them each time to derive a set 

of regression coefficients. Ten sets of regression coefficients led to ten estimates of shrublands’ 

BGB, which can produce the relative error induced by the conversion from shrublands’ AGB 

to BGB.  

Text S3. Open data adopted in this study and the related references 85 

AGB data in (Liu et al., 2015) is available at: http://wald.anu.edu.au/data_services/data/global-

above-ground-biomass-carbon-v1-0/; 

Biomass dataset in (Xu et al., 2021) is available at: https://doi.org/10.5281/zenodo.4161694; 

GlobBiomass product is from: https://globbiomass.org/wp-content/uploads/GB_Maps; 

CCI-Biomass product is from: https://climate.esa.int/en/odp/#/project/biomass; (Santoro and 90 

Cartus, 2019) 

GLASS-Biomass v2 product is available from: http://glass.umd.edu/AGB/V02/; 

ATLAS/ICESat-2 vegetation height data is from: https://nsidc.org/data/atl08/versions/4; 

GLAS/ICESAT-derived global forest canopy height map (i.e., Simard et al.’s map) is available 

from: https://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10023; 95 

Global Land Analysis and Discover (GLAD)’s Global Forest Canopy Height 2019 data is from: 

https://glad.umd.edu/dataset/gedi; 

http://wald.anu.edu.au/data_services/data/global-above-ground-biomass-carbon-v1-0/
http://wald.anu.edu.au/data_services/data/global-above-ground-biomass-carbon-v1-0/
https://doi.org/10.5281/zenodo.4161694
https://globbiomass.org/wp-content/uploads/GB_Maps
https://climate.esa.int/en/odp/#/project/biomass
http://glass.umd.edu/AGB/V02/
https://nsidc.org/data/atl08/versions/4
https://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10023
https://glad.umd.edu/dataset/gedi


 

 

MODIS Vegetation Continuous Fields is from: https://lpdaac.usgs.gov/products/mod44bv006/; 

(Dimiceli et al., 2015) 

ESA’s 100 m global land cover data is from: https://land.copernicus.eu/global/products/lc; 100 

(Buchhorn et al., 2020) 

AMSR2/GCOM-W1’s vegetation optical depth (VOD) acquired in ascending and descending 

paths are: https://disc.gsfc.nasa.gov/datasets/LPRM_AMSR2_DS_A_SOILM3_001/summary 

and https://disc.gsfc.nasa.gov/datasets/LPRM_AMSR2_DS_D_SOILM3_001/summary; 

VODCA VOD dataset is available from: https://zenodo.org/record/2575599#.YVKEz44zaUk; 105 

SMAP 9 km VOD data are from: https://nsidc.org/data/SPL3SMP_E/versions/5; (O'neill et al., 

2021) 

ESA’s 300 m annual land cover dataset, including the major forest type are obtained from: 

http://maps.elie.ucl.ac.be/CCI/viewer/download.php; 

MODIS LAI data is from: https://lpdaac.usgs.gov/products/mod15a2hv006/; (Myneni et al., 110 

2015) 

GEOV2 LAI data is available from: https://land.copernicus.eu/global/products/lai; 

National Forest Inventory (NFI) dataset can be found at: http://www.forestdata.cn/index.html; 

WorldClim bioclimatic background is from: https://www.worldclim.org/data/worldclim21.html; 

Soil property maps for China is available at: http://globalchange.bnu.edu.cn/research/soil2; 115 

Remote sensing-based surface soil moisture (RSSSM) dataset is available from: 

https://data.tpdc.ac.cn/zh-hans/data/d4e12be6-7dbe-453d-8833-079c5c73b0ff/ or 

https://doi.org/10.1594/PANGAEA.940004; 

Forest age map in China is provided by Yuan Zhang et al. (Mapping spatial distribution of forest 

age in China. Earth Space Sci., 4, 108-116) 120 

  

https://lpdaac.usgs.gov/products/mod44bv006/
https://land.copernicus.eu/global/products/lc
https://disc.gsfc.nasa.gov/datasets/LPRM_AMSR2_DS_A_SOILM3_001/summary
https://disc.gsfc.nasa.gov/datasets/LPRM_AMSR2_DS_D_SOILM3_001/summary
https://zenodo.org/record/2575599#.YVKEz44zaUk
https://nsidc.org/data/SPL3SMP_E/versions/5
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
https://lpdaac.usgs.gov/products/mod15a2hv006/
https://land.copernicus.eu/global/products/lai
http://www.forestdata.cn/index.html
https://www.worldclim.org/data/worldclim21.html
http://globalchange.bnu.edu.cn/research/soil2
https://data.tpdc.ac.cn/zh-hans/data/d4e12be6-7dbe-453d-8833-079c5c73b0ff/
https://doi.org/10.1594/PANGAEA.940004
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Supplementary Figures 

 

Figure S1. Improved aboveground biomass (AGB) mapping in China based on in-situ measurements: (a) the spatial distribution of the collated 

woodland plots with AGB (or both AGB and BGB) calculated using allometric equations or clear-cutting method. The different uses of data are 

distinguished by different symbols. ‘RF’ represents random forest model. (b) the overall quality of the improved reference AGB map in China 

when compared with 1 km pixel AGB upscaled from the data records at forest plots, indicated by R-square (R2) and root mean square error (RMSE) 

of the linear regression; (c) The improved reference AGB map in China; (d) regional classification map for China. 
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Figure S2. Correction of the bias of AMSR2 based VODCA VOD against AMSR-E based VODCA VOD. (a) spatial pattern of the R2 of regression 

between AMSR-E based VODCA VOD during 2003~2011 and annual LAI as well as VCF data; (b) the cumulative frequency curve for (a); (c) 

the map of the calculated bias of AMSR2 based VODCA VOD in 2013~2018 against the AMSR-E based VOD; (d) the histogram for (c). 
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Figure S3. The 1/12° grid resolution aboveground biomass (a) per tree cover and (b) AGB per non-tree vegetation (short vegetation) cover derived 

from the binary linear regression in the AGB downscaling process. 



 

 

 

Figure S4. Reliability of AGB decomposition in China: (a) the spatial distribution of grid cells where AGB decomposition is invalid, those with 

reliable estimates of AGB per area forestland or shrubland and those with complete AGB decomposition through valid multiple linear regressions; 

(b) the pie chart showing the percentages of three types of grid cells in (a); (c) the spatial pattern of the R2 of the valid multiple linear regressions 

intended for AGB decomposition; (d) the histogram of the R2 of the valid binary linear regressions. 



 

 

 

 

Figure S5. Mixed pixel AGB decomposition result in China: (a~b) maps of the decomposition-derived (a) AGB per-area forestland and (b) AGB 

per-area shrubland in China in around 2017, the nominal year of the Copernicus Global Land Service: Land Cover 100m (CGLS-LC): version 3. 

 

 

Figure S6. Relationship between woody vegetation’s BGB and AGB in China: (a) the scatter plot between log (BGB) and log (AGB) in the 

collected forest plots; (b) the relationship between log (BGB) and log (AGB) in the collected shrubland plots. 



 

 

 

 

Figure S7. Classification of woody vegetation ecosystems in China. (a) the map of the distribution of six different woody ecosystems in China 

(EBF: evergreen broadleaf forest ecosystem; DBF: deciduous broadleaf forest ecosystem; ENF: evergreen needleleaf forest ecosystem; DNF: 

deciduous needleleaf forest ecosystem; MF: mixed forest ecosystem; SHR: shrubland ecosystem); (b) the basic climatic backgrounds of four major 

woody ecosystems in China, indicated by mean annual temperature and mean annual precipitation of 10000 1/120° pixels that are randomly chosen. 

 

 

Figure S8. The partial dependence plots (PDP) between BGB or RSR and some supplementary predictors: (a) the PDP for temperature seasonality; 

(b) the PDP for precipitation seasonality; (c) the PDP for forest type (the partial impact of forest type on BGB or RSR). The lines are the mean 

PDP values, while the error bars are the standard deviation values of the ten-fold trainings. 

 



 

 

 

Figure S9. Spatial pattern comparison of the woody biomass calculated in this study against the existing long-term biomass datasets. (a) 

Comparison of per-area AGB calculated in different regions of China against those estimated by Liu et al. during the common period of 2003~2012. 

(b) Comparison of total AGB calculated in different regions of China against those estimated by Liu et al. during 2003~2012. NE: north-eastern 

region, NO: northern region, EA: eastern region, CS: central-south region, NW: north-western region and SW: south-western region. See Figure 

S1d for the locations of these geographical regions. (c) Comparison of per-area total biomass calculated in different regions of China against those 

estimated by Xu et al. during the common period of 2003~2019. (d) Comparison of total AGB calculated in different regions against those estimated 

by Xu et al. during 2003~2019. (e) Average annual woody AGB map in China according to Liu et al. (f) The map of average annual woody biomass 

according to Xu et al. In subfigures (a) and (c), the bottom, middle and top band of the boxes represent the 25th, 50th (median) and 75th percentiles, 

and the ends of the whiskers represent the 5th and 95th percentile for all corresponding grid cells, while the mean values are labelled by ‘×’. In 

subfigures (b) and (d), the error bars represent the standard deviations of annual AGBs and total biomass. 
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Figure S10. Spatial pattern comparison of the mean annual woody AGB in this study (AGB-This study), forest biomass estimated by Xu et al., 

(Biomass-Xu) and the mean annual AGB estimated by Liu et al. (AGB-Liu) against the high-quality AGB maps for China developed by integrating 

Lidar, P-band SAR and forest inventory data (i.e., Su et al.’s AGB map and Huang et al.’s AGB map, denoted by AGB-Su and AGB-Huang, 

respectively). (a) the correlation coefficient matrix among the spatial patterns of five woody biomass datasets; (b) the scatter plot and linear 

regression between the mean annual AGB calculated in this study and the Chinese forests’ AGB dataset developed by Huang et al. 

a b



 

 

 

Figure S11. Temporal pattern comparison of the woody biomass calculated in this study against the existing long-term biomass datasets: (a) the 

comparison of the interannual variation of Chinese woody AGB in this study against that estimated by Liu et al. during 2003~2012; (b) the 

comparison of the interannual trends of woody AGB calculated in different regions of China against those estimated by Liu et al. during the 
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common period of 2003~2012; (c) the comparison of the interannual variation of Chinese woody biomass in this study against that estimated by 

Xu et al. during 2003~2019; (d) the comparison of the interannual trends of woody biomass calculated in different regions of China against those 

estimated by Xu et al. during the common period of 2003~2019; (d) the spatial map of the interannual trends of woody AGB in China during 

2003~2012 according to Liu et al.; (f) the map of the trend of woody AGB in China during 2003~2012 according to this study; (g) the map of the 

interannual trend of woody biomass during 2003~2019 according to Xu et al.; (h) calculated spatial pattern of woody biomass trend in China over 

2003~2020. The interannual variations in subfigures (a) and (c) are fitted using linear lines. In subfigures (b) and (d), NE: north-eastern region, 

NO: northern region, EA: eastern region, CS: central-south region, NW: north-western region and SW: south-western region, see Figure S1d for 

the regional classification map. The error bars stand for the 95% confidence intervals of the trends, while one and two asterisks indicate statistically 

significant at the 95% and 99% confidence levels, respectively. The shaded areas in (e~h) represent the regions with significant trends at the 95% 

confidence level during the corresponding period.  

 

Figure S12. The spatial pattern of the uncertainties of woody vegetation’s AGB and BGB in China: (a) the relative error of AGB; (b) the relative 

error of BGB; (c) the uncertainty of AGB and (d) the uncertainty of BGB averaged during 2003~2020. 



 

 

 

 

Figure S13. Each predictor’s contribution to the simulation efficiency of BGB based on random forest model. (a) The contribution fraction of each 

climatic or biotic factor when soil property factors are not incorporated; (b) the contribution factions of all predictors when biotic, climatic, and 

edaphic factors are all incorporated. Abbreviations to some predictors: Tsea: temperature seasonality; Psea: precipitation seasonality; CLAY: soil 

clay fraction; SAND: soil sand fraction; PH: soil pH; SOM: soil organic matter content; TN: soil total nitrogen; TP: soil total phosphorus.  

 


