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Abstract 18 

To quantify the ecological consequences of recent nationwide restoration efforts in China, 19 

spatially-explicit information on forest biomass carbon stock changes over the past 20 years is 20 

critical. However, long-term biomass tracking at the national scale remains challenging as it 21 

requires continuous and high-resolution monitoring. Here, we characterize the changes in 22 

forests’ above- and belowground biomass carbon (AGBC and BGBC) in China between 2002 23 

and 2021 at 1 km spatial resolution by integrating multiple types of remote sensing observations 24 

with intensive field measurements through regression and machine learning approaches. On 25 

average, 8.6 ± 0.6 and 2.2 ± 0.1 PgC were stored in above- and belowground live forests in 26 

China. Over the last 20 years, the total forest biomass carbon pool in China has increased at a 27 

rate of 114.5 ± 16.3 TgC/yr (approximately 1.1%/yr). The most pronounced forest biomass 28 

carbon stock gains occurred in central to southern China, including the southern Loess Plateau, 29 

Qinling Mountains, southwest karsts and southeast forests. While the combined use of multi-30 

source remote sensing data provides a powerful tool to assess the forest biomass carbon changes, 31 

future research is also needed to explore the drivers of the observed woody biomass trends, and 32 

to evaluate the degree to which biomass gains will translate into biodiverse, healthy ecosystems 33 

and thus are sustainable. Annual forest above- and belowground biomass maps for China are 34 

now available at: https://doi.org/10.6084/m9.figshare.21931161.v1 (Chen, 2023). 35 

Key words: Aboveground biomass carbon pool; Belowground biomass carbon; Long-term 36 

continuous mapping; China  37 
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1 Introduction 38 

Forest biomass carbon stock contributes to over 90% of the global vegetation biomass carbon 39 

pool (Ma et al., 2021). As a net outcome of carbon gains from photosynthesis and carbon losses 40 

from respiration, mortality and disturbances, forest biomass carbon stock (approximately 50% 41 

of biomass) is a critical indicator of ecosystem function and ecosystem services, such as carbon 42 

sequestration, wood production and resource allocation (Kumar and Mutanga, 2017). Accurate 43 

forest biomass carbon stock monitoring over space and time is thus essential for assessing 44 

ecosystem management strategies and mitigation policies (Kumar and Mutanga, 2017).  45 

In recent decades, remote sensing tools have been integral in our efforts to map aboveground 46 

biomass (AGB) or carbon stock (AGBC). By combining satellite imagery (e.g., MODIS) and 47 

airborne LiDAR signals, forest cover and canopy height can be mapped across large spatial 48 

scales (Hu et al., 2016; Saatchi et al., 2011; Su et al., 2016; Tong et al., 2020; Xu et al., 2021). 49 

Apart from optical images and LiDAR signals, microwaves can provide more detailed insights 50 

into subcanopy forest structure and AGBC due to their ability to penetrate the canopy. Active 51 

microwave techniques, i.e., Synthetic Aperture Radar (SAR) backscatters, facilitate high-52 

resolution (e.g., 100 m) AGB mapping, but the temporal coverage is limited (Cartus et al., 2012; 53 

Bouvet et al., 2018). Conversely, vegetation optical depth (VOD) retrieved from multiple 54 

passive microwave sensors can be used to produce long-term continuous AGB maps (Frappart 55 

et al., 2020; Liu et al., 2011; Liu et al., 2015), yet at a coarse spatial resolution (e.g., 0.25°). 56 

Because different remote sensing techniques have their advantages and pitfalls, combining 57 
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these techniques and complementing them with direct ground measurements is integral to 58 

maximizing the accuracy and precision of biomass carbon estimations across space and time.  59 

Another source of uncertainty in vegetation biomass carbon stocks is the extent of biomass that 60 

is stored belowground as roots. While AGBC mapping is facilitated by a suite of emerging 61 

remote sensing techniques, investigating the spatiotemporal variation in belowground biomass 62 

carbon pool (BGBC) remains challenging despite the large contribution of roots to total carbon 63 

storage (Huang et al., 2021; Ma et al., 2021). To map BGBC, the commonly-used approach is 64 

to combine aboveground biomass information with vegetation type-specific ratios of BGB to 65 

AGB (i.e., root-shoot ratio, or RSR) (Xu et al., 2021; Saatchi et al., 2011). Because field studies 66 

indicate a near-linear relationship between log-transformed BGB and AGB (Enquist Brian and 67 

Niklas Karl, 2002), BGB variations at large scales have often been approximated using this 68 

relationship (Spawn et al., 2020). To capture the complex relationship between BGB and biotic 69 

or abiotic variables (e.g., stand age, heat and water availability), machine learning algorithms 70 

have been applied to map BGB (Huang et al., 2021) and root-mass fractions (Ma et al., 2021) 71 

globally. However, the reference plots were unevenly distributed across the world, limited in 72 

developing countries, leading to some uncertainties in BGB and BGBC estimation within those 73 

regions (Huang et al., 2021). 74 

China has been implementing national-scale afforestation and reforestation programs since the 75 

late 1990s (Lu et al., 2018), promoting vegetation cover and carbon storage in the Loess Plateau 76 

and the southwest karst regions, etc. (Chen et al., 2019a; Niu et al., 2019; Tong et al., 2018). A 77 
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spatial understanding of forest biomass trends can help evaluate the efficiency of ecological 78 

restoration programs. High quality, high resolution and long-term continuous woody biomass 79 

monitoring in China has remained challenging (Zhang et al., 2019; Huang et al., 2019).  80 

In this study, by integrating multi-source remote sensing data with large quantities of plot 81 

measurements, we produced 1 km resolution above- and belowground forest biomass carbon 82 

pool maps for China during the past 20 years (2002–2021). This dataset, which is available at: 83 

https://doi.org/10.6084/m9.figshare.21931161.v1 could provide new insights into forest carbon 84 

stock changes in China over the past two decades. 85 

2 Materials and methods 86 

To map above- and belowground forest biomass carbon stock in China during 2002–2021, we 87 

1) calibrated a SAR-based high-resolution forest aboveground biomass map in China based on 88 

massive field measurements of AGBC during 2011–2015; 2) extended the AGBC time series to 89 

2002–2021 by referring to the tree and short vegetation cover retrieved from optical remote 90 

sensing; 3) calibrated the AGBC time series in some specific areas using a long-term integrated 91 

microwave-based VOD dataset; and 4) mapped forestlands’ BGBC through a random forest 92 

model developed based on the in-situ records in published literature. The basic procedure is 93 

shown in Figure 1 and described below. 94 

https://doi.org/10.6084/m9.figshare.21931161.v1
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 95 

Figure 1. Workflow of forest biomass carbon pool monitoring in China during 2002–2021. 96 

AGBC, BGBC: aboveground and belowground biomass carbon; VCF: vegetation continuous 97 

fields; LPDR VOD: global land parameter data record- vegetation optical depth; CLCD: China 98 

Land Cover Dataset 99 

2.1 A benchmark map of forest aboveground biomass carbon (AGBC) in China 100 

By combining multiple satellite observations of SAR backscatter, including the L-band ALOS 101 

PALSAR and C-band Envisat ASAR around the year 2010, the first global high-resolution (100 102 

m) forest AGB dataset, GlobBiomass 2010, was published through the European Space Agency 103 

(ESA)’s Data User Element project (Santoro et al., 2021), whose relative root mean square error 104 
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(RMSE) was below 30% (Mialon et al., 2020). Apart from GlobBiomass 2010, another high-105 

resolution (30 m) forest AGB for China was produced by relating the ICESat GLAS (LiDAR)-106 

derived footprint AGB to various variables derived from Landsat optical images (Huang et al., 107 

2019). Because the ICESat data in 2006 were applied as the training target of the random forest 108 

model, Huang’s dataset refers to the AGB status in 2006. According to a recent validation study, 109 

GlobBiomass and Huang’s AGB performed the best among all existing AGB datasets in China 110 

(Chang et al., 2021). Mean forest canopy heights and tree coverage are also good indicators of 111 

the spatial pattern of forest biomass. The high-resolution (30 m) forest canopy height map for 112 

China was developed by interpolating the ICESat-2 and GEDI data in 2019 through a neural 113 

network (Liu et al., 2022), while the tree cover map at the same resolution was derived from 114 

cloud-free growing season composite Landsat 7 data in around 2010 (Hansen et al., 2013). We 115 

resampled GlobBiomass from 100 m resolution (1/1125) to 1/1200 (approximately 90 m), 116 

and averaged Huang’s AGB map, canopy height map and tree cover map to the same resolution. 117 

A reviewable, consistent ecosystem carbon stock inventory was conducted in China between 118 

2011 and 2015 (Tang et al., 2018). We requested the AGB carbon stock (AGBC) data at more 119 

than 5,000 3030 m sized forest plots from the authors. Due to the scale mismatch between the 120 

maps of biomass, canopy height or tree cover and the field measurements, we dropped out the 121 

data within the 1/1200 resolution grids in which the standard deviation of tree cover was 122 

greater than 15%, according to (Chang et al., 2021), leaving 2444 homogeneous forest plots 123 

remaining (see Figure 2 for the spatial distribution of these forest plots and Figure S1a~b for 124 
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the cumulative frequency curve and histogram of the AGBC records). The AGBC records in 125 

these forest plots were further multiplied by the mean fraction of forestland over 2011–2015 in 126 

the corresponding grid, which was computed from the annual 30 m resolution China Land 127 

Cover Dataset (CLCD) (Yang and Huang, 2021). By comparison, GlobBiomass 2010 AGB 128 

matches the best with the grid-scale forest AGBC derived from plot measurements, with a 129 

correlation coefficient (CC) of 0.50, followed by tree cover (CC=0.42), the product of canopy 130 

height and tree cover (CC=0.38), and finally the canopy height (0.27) and Huang’s AGB (0.25). 131 

Therefore, to obtain an improved benchmark map of forest AGBC in China for the period of 132 

2011–2015, we chose the GlobBiomass 2010 dataset as our basis, and calibrated it against the 133 

in-situ observation-based grid-scale forest AGBC. To build an equation for the calibration, we 134 

divided the grid-scale AGBC values into 16 equidistant subranges (0~15, 15~30, …, 225~240 135 

tC/ha), calculated the median of grid-scale AGBC values that are within each subrange, and 136 

then the median of GlobBiomass AGB values in the corresponding grids. According to previous 137 

studies, an exponential function would be suitable for calibrating the GlobBiomass map in a 138 

region such as China (Mialon et al., 2020). After the calibration, we averaged the benchmark 139 

AGBC map from 1/1200 to 1/120 (approximately 1 km) to further reduce the uncertainties. 140 
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  141 

Figure 2. The spatial distribution of 1) 2444 homogeneous forest plots with aboveground 142 

ground biomass carbon stock measured between 2011 and 2015; and 2) 8182 forest plots with 143 

both above- and belowground biomass records collated in this study.  144 

2.2 Temporally continuous forest AGBC mapping during 2002–2021 145 

Because the benchmark AGBC was mapped based on SAR data, the spatial pattern accuracy is 146 

guaranteed, but the temporal coverage is limited to just a few years. Hence, to create a forest 147 

AGBC time series over the past 20 years, we integrated the benchmark AGBC with long-term 148 

continuous optical and passive microwave remote sensing data. 149 

The spatial resolution of optical remote sensing is higher, and is thus preferred in this study. By 150 

adopting the MODIS vegetation continuous fields (VCF) data (MOD44B v061) which includes 151 

three ground cover components: percent tree cover, percent non-tree vegetation (i.e., short 152 
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vegetation) cover, and percent non-vegetated (Dimiceli et al., 2022), we first calculated the 153 

mean tree cover (hereinafter, TCmean) and short vegetation cover (hereinafter SVCmean) during 154 

2011–2015, and resampled them from 250 m to 1/120, the same resolution as the benchmark 155 

AGBC map for 2011–2015. Because the canopy heights of trees are usually similar within a 156 

small area, the regional AGBC per TCmean can be assumed as the same, which is referred to as 157 

the ‘homogeneous assumption’ hereinafter. Accordingly, for each grid, we searched the TCmean, 158 

SVCmean and AGBC within a 33 window (1/401/40), and then regressed the AGBC values 159 

in 9 grids against both TCmean (the primary, or key predictor of AGBC) and SVCmean (assumed 160 

as a supplementary predictor) linearly. Specifically, when the regression coefficient of SVCmean 161 

was negative or the fitting efficiency was low (R2<0.5; significance p-value>0.05), we excluded 162 

the supplementary predictor from the regression, only exploring the linear relationship between 163 

TCmean and AGBC. Afterwards, if the regression between TCmean and AGBC was still invalid, 164 

we enlarged the searching window size to 55, then 77, and finally 99, until the regression 165 

as well as the coefficients became valid. Then, the grid annual AGBC from 2002 to 2021 can 166 

be estimated from the TC or both TC and SVC in each year, following the regression results. If 167 

the regression failed even if the window size reached 99, we stopped expanding the searching 168 

window to avoid the ‘homogeneous assumption’ being invalid. In those grids, following a 169 

previous study (Xu et al., 2021), we divided the estimated AGBC by the TCmean during 2011–170 

2015 and then multiplied the TC in each year to obtain the AGBC time series. The above 171 

method utilized spatial information to estimate the temporal variation, and can thus be referred 172 

to as the ‘space for time’ method. 173 
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Long-term continuous microwave VOD can also reflect forest biomass changes, although the 174 

relationship was nonlinear (Jackson and Schmugge, 1991; O'neill et al., 2021; Liu et al., 2015; 175 

Wigneron et al., 1995). We selected the global land parameter data record (LPDR) v3 0.25 176 

resolution VOD product, which was generated using similar calibrated, X-band brightness 177 

temperature retrieved from the Advanced Microwave Scanning Radiometer (AMSR-E) and the 178 

Advanced Microwave Scanning Radiometer 2 (AMSR2) (Du et al., 2017). As revealed by a 179 

recent evaluation study, LPDR VOD is better correlated with AGB than other long-term VOD 180 

products, especially in less-vegetated areas (Li et al., 2021). Because X-band VODs are still 181 

more sensitive to canopy cover than stem biomass and there is a data gap between October 2010 182 

and June 2011, while the plot investigations were all conducted in summers (Tang et al., 2018), 183 

we averaged the VOD data from mid-July (the 206th day) until the end of September (the 274th 184 

day) in each year to represent the annual AGB status. We also aggregated the benchmark AGBC 185 

map as well as the VCF data (TCmean and SVCmean) to 0.25 resolution. After each round of 186 

searching, we applied the shape language modelling algorithm (D'errico, 2022) to fit the 187 

nonlinear but monotonous relationship between AGBC and VOD values within the searching 188 

window, and then fitted the bivariate linear regression between AGBC and VCF. If the nonlinear 189 

regression between AGBC and VOD is valid and the R2 is superior to the regression between 190 

AGBC and VCF data, LPDR VOD data is expected to outperform VCF in predicting the inter-191 

annual AGBC changes in the corresponding 0.25 grid. Therefore, in these areas, we calibrated 192 

the VCF-derived high (1/120) resolution annual AGBC by incorporating the ratio between the 193 

VOD-derived 0.25 AGBC and the aggregated VCF-derived AGBC in that year.  194 
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2.3 Forest belowground biomass carbon (BGBC) mapping during 2002–2021 195 

This study mapped belowground forest biomass carbon (BGBC) following the random forest  196 

(RF) model approach (Huang et al., 2021). To reveal forests’ above- and belowground biomass 197 

allocation rules in China, this study collated both AGB and BGB records at 8729 forest plots 198 

throughout China, which were obtained using allometric equations or clear-cutting methods 199 

from published papers, including (Luo, 1996), (Luo et al., 2014), (Guo and Ren, 2014), (Wang 200 

et al., 2014). Because forest stand age and tree species (forest type) information are also 201 

available at 8182 plots, while the climatic backgrounds are available from the WorldClim v2.1 202 

dataset (Fick and Hijmans, 2017), forest plots’ AGB, forest type (hereinafter FOR_T), stand 203 

age, mean annual temperature (MAT), temperature seasonality (standard deviation of monthly 204 

temperature×100, abbreviated as Tsea), mean annual precipitation (MAP) and precipitation 205 

seasonality (coefficient of variation of monthly precipitation, Psea) were applied as predictors 206 

of forest plots’ BGB. For simplicity, we distinguished all forests into 5 types: evergreen 207 

broadleaf forest (EBF), deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), 208 

deciduous needleleaf forest (DNF), and mixed forest (MF). Using the data records at these 8182 209 

plots (see Figure 2 for the locations of these forest plots and Figure S1c~f for the cumulative 210 

frequency curves and histograms of the AGB and BGB data), we trained ten-fold RF models 211 

using MATLAB R2021a®. The number of regression trees was set to 500. 212 

Because the 1/120° resolution grids where forest AGBC data were available are often mixed 213 

with forestland and some other land cover types, e.g., water bodies, bare ground, croplands, we 214 
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converted the annual grid-average AGBC into the AGBC per area forestland by incorporating 215 

the annual fraction of forestland computed from the CLCD at 30 m resolution. Considering the 216 

potential uncertainties in the forestland fraction as well as the inclusion of shrub or herbaceous 217 

plant AGB in the SAR-derived AGB, we only calculated the annual AGBC per area forestland 218 

in grids that were dominated by forestland (forestland fractions were consistently over 50%). 219 

In these forestland grids, we simulated the forest BGBC per area forestland during 2002–2021 220 

by inputting the estimated annual AGB (approximately 2 times of the AGBC) per forestland, 221 

annual forest type map derived from ESA CCI’s land cover classification dataset (Li et al., 222 

2018), forest stand age (Besnard et al., 2021) and climatic background variables into the RF 223 

model. Afterwards, we multiplied the simulation results in every forestland grid with the annual 224 

forestland fractions to obtain the forests’ BGB and BGBC (0.5BGB) time series. Finally, for 225 

grids with forests but are not dominated by forestlands, we sequentially searched for at least 226 

five valid RSR values (the ratio of forests’ BGBC to AGBC) nearby (Chen et al., 2019b), and 227 

then multiplied the annual forest AGBC in the grid with the median of nearby RSR values in 228 

each year to estimate the annual forest BGBC. 229 

2.4 Evaluation and assessment 230 

We compared the inter-annual trend of forest biomass carbon calculated in this study against 231 

that of existing global/regional long-term woody biomass datasets, including the well-received 232 

global long-term terrestrial biomass data between 1993–2012, which was developed mainly 233 

based on a long-term integrated VOD dataset (Liu et al., 2015), as well as an updated woody 234 
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biomass dataset covering 2001–2019 whose long time series was derived from optical remote 235 

sensing data (i.e., MODIS VCF dataset) (Xu et al., 2021). 236 

To justify the random forest models for BGBC predictions, we drew partial dependence plots 237 

(PDPs) in MATLAB R2021a® to show the marginal effect that one predictor has on the training 238 

target (e.g., BGB at forest plots) (Hastie et al., 2009). Here, for each predictor, we excluded the 239 

extreme values (the lowest 1% and the highest 1%) before calculating the corresponding PDP 240 

to avoid roughly extending the PDP lines to data-scarce areas. Ten-fold RF trainings were also 241 

performed to derive the mean PDP values as well as the standard deviations. 242 

3 Results and discussion 243 

3.1 Evaluation of forests’ AGBC and BGBC estimation 244 

First, according to Figure 3a, an exponential function: y=1.63  x0.73 can fit the relationship 245 

between the actual grid-scale forest AGBC over 2011–2015 (y) and the AGB values predicted 246 

by GlobBiomass 2010 (x). Hence, this function was applied to derive the benchmark map of 247 

forest AGBC across China. 248 

Second, when using the spatial information of tree cover and short vegetation cover to estimate 249 

the temporal variation of AGBC in each grid, the spatial searching window was at its minimum 250 

of 33 in most (53%) grids with forests. Across China, the temporal extension of AGBC in only 251 

15% of all grids with forest cannot be achieved even when the searching window was enlarged 252 

to 99 (Figure 3b).  253 
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Next, as shown in Figure 3c and 3d, the grids where LPDR X-band VOD performed better than 254 

MODIS VCF in predicting the temporal change in forest AGBC are usually located in regions 255 

with low tree cover. These grids account for just 10.4% of all grids with forests, and may suffer 256 

from high uncertainty within the optical-based variation in tree cover. Therefore, microwave-257 

based VOD is supposed to be more suitable for estimating the forests’ AGBC changes in these 258 

regions. 259 

 260 

Figure 3. Evaluation of the forest AGBC and BGBC mapping in this study. (a) The regression 261 

relationship between the grid-scale forest AGB carbon stock derived from plot measurements 262 

during 2011–2015 and the GlobBiomass AGB dataset for 2010; (b) the minimum searching 263 

window sizes of every 1/120 grid when the spatial variation in MODIS VCF was applied as 264 
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the predictor of AGBC changes; (c) the spatial pattern of the relative performances of MODIS 265 

VCF and LPDR VOD data in predicting the variation in AGBC; (d) comparison of the mean 266 

tree cover between the grids where VOD data were more suitable for predicting the variation 267 

of AGBC and the grids where VCF data were the better predictor. 268 

The RF model designed for forest plot BGB estimation (see section 2.3) achieved a predictive 269 

R2 of 0.89±0.02, while the RMSE was 6.3±0.5 t/ha. AGB explained 53% of the variation in 270 

BGB among different plots. Long-term climate backgrounds, i.e., mean annual temperature, 271 

temperature seasonality, annual precipitation and precipitation seasonality accounted for 8%, 272 

6%, 8% and 7%, respectively. Forest type and stand age also contributed 12% and 8% to the 273 

training efficiency, indicating that the effects of these factors are nonnegligible. The selection 274 

of predictors of BGB basically followed the existing knowledge (Huang et al., 2021), and the 275 

seasonality of temperature and precipitation made sense in the prediction (see Text S1). On the 276 

other hand, although previous studies incorporated many edaphic factors as predictors of BGB 277 

(Huang et al., 2021), by comparing the training efficiencies when whether these edaphic factors 278 

are incorporated or not, we could justify the reasonability of our simplified set of predictors 279 

(Text S1). 280 

According to the collected woody plots’ data, AGB is a key driver of BGB (Figure 4). Yet, RSR 281 

changes among different forest growth stages, decreasing in general as reported (Mokany et al., 282 

2006). The overall negative impact of mean temperature on BGB or RSR agrees with the 283 

mechanism that higher heat promotes nutrient accessibility (Luo et al., 2012; Ma et al., 2021), 284 
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and increases the turnover rates of roots at a higher magnitude than stems (Reich et al., 2014). 285 

The ‘U-shaped’ relationship between precipitation and belowground biomass allocation follows 286 

the ‘optimal biomass allocation’ theory, because arid climates promote root extension, yet too 287 

heavy rainfall reduces nutrient availability through leaching and dilution effects (Luo et al., 288 

2012). Other factors, including temperature seasonality, precipitation seasonality and forest 289 

type, have supplementary effects on biomass allocation (Figure S2). 290 

 291 

Figure 4. Influence of key factors on forest belowground biomass (BGB) and root-shoot ratio 292 

(RSR) in China. Subfigures (a~d) show partial influences of (a) AGB; (b) stand age; (c) MAT 293 

and (d) MAP on BGB and RSR values of all forest plots. The error bars represent the standard 294 

deviations of the ten-fold trainings. We did not draw the PDP for the impact of AGB on RSR, 295 

since the dividend of RSR calculation is AGB. 296 
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3.2 Forest biomass carbon pool, allocation and change in China 297 

Between 2002 to 2021, the forest above- and belowground biomass carbon (AGBC and BGBC) 298 

pools in China were 8.6 ± 0.6 and 2.2 ± 0.1 PgC, respectively (Table 1). The mean RSR for all 299 

forests was 0.25, basically equal to the global average (Huang et al., 2021). Separated by forest 300 

type, evergreen conifer forests (ENF) occupy the highest biomass carbon pool per unit area, 301 

mainly because ENF are mainly located in southwestern China and are more mature and natural 302 

(Yu et al., 2020; Zhang et al., 2017). Deciduous forests (DBF & DNF) in northern China (see 303 

Figure S3 for the distribution of different forest ecosystems) harbor less biomass carbon but 304 

higher BGBC (Figure 5a), which can be attributed to the higher RSR values (Table 1). 305 

The forest biomass carbon stock in China increased at an average rate of 114.5±16.3 TgC/yr 306 

(p<0.01) during 2002–2021, and the annual biomass carbon gains were the greatest from 2014 307 

to 2015, reaching 736 TgC (Figure 5b). Changes in AGB and BGB accounted for 81.9% and 308 

18.1%, respectively, of the forest carbon stock gains over the past 20 years. 309 

Our estimates of the forest biomass carbon pool, forest RSR and the recent inter-annual trend 310 

of forest biomass carbon are generally consistent with previous estimates based on massive 311 

field investigations (Table 1). 312 

Table 1. Agreement of the estimated various forest RSR and the trend of forest biomass carbon 313 

in China with existing studies. 314 

Variables Our estimate Previous estimates Reference 

Forests’ AGBC 
8.6 ± 0.6 (2002–2021) 

8.7 ± 0.3 (2011–2015) 
8.4 ± 1.6 (2011–2015) 

(Tang et al., 2018) 

Forests’ BGBC 2.2 ± 0.1 (2002–2021) 2.1 ± 0.4 (2011–2015) 
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2.2 ± 0.1 (2011–2015) 

EBF’s RSR 0.27±0.07 0.22±0.11 

(Tang et al., 2018) 
DBF’s RSR 0.31±0.05 0.28±0.15 

ENF’s RSR 0.22±0.04 0.24±0.11 

DNF’s RSR 0.29±0.10 0.31±0.13 

Annual forest carbon 

stock increase 

114.5 ± 16.3 TgC/yr 

(2002–2021) 

105.1 ± 42.2 TgC/yr 

(2002–2010) 

116.7 TgC/yr  

(2000–2010) 
(Fang et al., 2018) 

 315 

Figure 5. Forest biomass allocation and biomass change in China during 2002–2021: (a) 316 

aboveground biomass carbon (AGBC) and belowground biomass carbon (BGBC) density of 317 

different forest ecosystems in China; (b) the inter-annual changes of forest AGBC and BGBC 318 

in China. Total forest biomass carbon stock changes from the previous to the current year are 319 

represented by green columns. 320 

3.3 Spatial pattern of the forest biomass carbon stock trend in China 321 

The highest forest biomass carbon pools during 2002–2021 were observed in northeastern and 322 

southwestern China, especially southern Tibet. Forest biomass carbon stocks were also high in 323 

the natural or semi-natural forests in the Qinling Mountains, Hengduan Mountains, Hainan and 324 

Taiwan (Figure 6a). Above- and belowground forest biomass allocation varies significantly 325 
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among regions. RSR is highest in northeastern deciduous conifer forests and northern China’s 326 

deciduous broadleaf forests but low in southern China (Figure 6b). The strongest forest biomass 327 

carbon increases were found in central to southern China, including the Loess Plateau, Qinling 328 

Mountains, southwest karst region and southeastern forests. Slight declines in forest biomass 329 

carbon only occurred in some mature and natural forests, e.g., those in the Greater Khingan 330 

Mountain, Hengduan Mountains and South Tibet (Figure 6c). A total of 40.3% of all forests in 331 

China showed significant biomass carbon stock gains over the past 20 years, whereas only 3.3% 332 

of forests experienced significant biomass carbon losses (Figure 6d). 333 

 334 

Figure 6. Maps of forest biomass carbon pool, allocation and trend in China during 2002–2021. 335 

(a) Spatial pattern of the forest biomass carbon pool in China; (b) all forestland pixels’ RSR; 336 

(c) map of the forest biomass carbon stock trend from 2002 to 2021, with shaded areas 337 

representing statistically significant trends at the 95% confidence level; (d) histogram and basic 338 
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statistics of all forest biomass carbon stock trend.  339 

4 Discussion 340 

4.1 Comparison of the estimated forest biomass carbon pool change in this study against 341 

the existing datasets 342 

Although with potential overestimation, the inter-annual variation in forest AGBC in China 343 

according to Liu et al. (2015) and that of total biomass carbon according to Xu et al. (2021) are 344 

both highly correlated with our results (R2= 0.65 and 0.88). Liu et al. predicted a forest AGBC 345 

increase rate of 102.2 ± 35.8 Tg/yr (p<0.01), slightly higher than our estimate of 80.8 ± 25.1 346 

Tg/yr during 2002–2012; while Xu et al. indicated a biomass carbon stock trend of 99.4 ± 23.2 347 

Tg/yr (p<0.01) from 2002 to 2019, slightly lower than the rate of 115.6 ± 20.2 Tg/yr in this 348 

study (Figure 7a~b). The spatial maps of the forest biomass carbon trends estimated by Xu et 349 

al. and Liu et al. were slightly patchy (Figure 7c~d). Compared to this study, the two existing 350 

datasets (i.e., Liu et al. (2015) and Xu et al. (2021)’s datasets) predicted higher biomass carbon 351 

stock trends in the Qinling Mountains and the mature deciduous conifer forests in northeast 352 

China. Meanwhile, they predicted lower carbon sinks in southern China (Figure 7c~f), where 353 

reforestation and forest management-induced short term extensive carbon uptake (Tong et al., 354 

2020) have been confirmed by atmospheric inversions (Wang et al., 2020; Yang et al., 2021).  355 

Finally, by comparing Figure 7e and 7f, we could also notice that the hotspot of forest biomass 356 

carbon gains has moved from the Loess Plateau over the first decade of our study period (2002–357 

2012) to southern China (e.g., Guangxi Province) later. This change was probably due to the 358 
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large-scale implementation of the ‘Grain for Green’ project on the Loess Plateau (Liu et al., 359 

2020; Wu et al., 2019) before 2012, and the massive plantation of fast-growing trees in southern 360 

China after 2010 (Tong et al., 2020).  361 

 362 

Figure 7. Comparison of the estimated forest biomass carbon pool change in this study against 363 

two existing datasets. (a) Comparison of the inter-annual variation of forest biomass carbon in 364 

this study against the estimate by Xu et al. during 2002–2019; (b) comparison of the inter-365 

annual variation of forest AGBC calculated in this study against the estimate by Liu et al. over 366 

2002–2012; (c) map of the inter-annual trend of forest biomass carbon stock in China during 367 



 

23 

 

2003–2019 according to Xu et al; (d) map of the forest AGBC trend in China during 2003–2012 368 

according to Liu et al; (e) map of the estimated trend of forest biomass carbon stock over 2002–369 

2019 in this study; (f) map of the estimated forest AGBC trend over 2002–2012 in this study. 370 

4.2 Some uncertainties of the forest biomass carbon dataset and future prospects 371 

During benchmark AGBC mapping, we converted the in-situ AGBC data at forest plots into the 372 

grid-scale average AGBC by multiplying by the fraction of forestland during the time period of 373 

field investigation. Considering the overall high-quality of the China's land-use/cover datasets 374 

developed via human–computer interactive interpretation of Landsat images (Liu et al., 2014; 375 

Yang and Huang, 2021), and that the producer’s accuracy (PA) and user’s accuracy (UA) for 376 

forestland classification in the CLCD dataset used in this study were 73% and 85% respectively, 377 

the errors within the benchmark AGBC mapping induced by the scale conversion based on the 378 

forestland area fraction were generally limited. 379 

The variation in climatic conditions in the short term may have subtle influences on that in the 380 

BGB, but explicit knowledge on this effect is lacking. Instead, woody vegetation BGB is much 381 

more driven by AGB (vegetation density), as indicated by the very strong relationship between 382 

BGB and AGB (R2≥0.85). Moreover, the long-term climatic background is expected to have a 383 

stronger influence on the RSR of perennial woody plants than the meteorological conditions in 384 

only a few years, since above- and belowground biomass allocation is the result of plants’ long-385 

term adjustment to the environment (Qi et al., 2019). Therefore, it is reasonable not to consider 386 

the influence of the specific climatic conditions in a year on the variation in BGB. 387 
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In the near future, P-band microwave sensors, which have higher penetrability into the canopy 388 

than L-band microwaves, will further improve AGB mapping. For example, BIOMASS, a fully 389 

polarimetric P-band SAR, is scheduled to be launched in 2022 (Le Toan et al., 2011). Therefore, 390 

in the future the relationship between P-band microwave retrievals and biomass should be 391 

addressed, as well as the calibration of historical AGB datasets (e.g., the long-term AGB dataset 392 

in this study) against the P-band SAR-based AGB benchmark map to extend the time series. In 393 

addition, an inter-calibration between the AMSR-E-based VOD and the AMSR2-based VOD 394 

will further reduce the potential bias within the long-term integrated VOD datasets (Wang et al., 395 

2021a; Wang et al., 2021b). On the other hand, more in-situ AGB and BGB measurements in 396 

larger plots are needed to further improve the estimation of belowground biomass allocation. 397 

Data availability 398 

Annual forest above- and belowground biomass maps in China between 2002 and 2021 are now 399 

available at: https://doi.org/10.6084/m9.figshare.21931161.v1. This dataset will also be 400 

available on the National Tibetan Plateau/Third Pole Environment Data Center and PANGAEA 401 

soon (under checking now). Other open datasets that made this research possible and the related 402 

references are attached in Supplementary Information- Text S2. 403 
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