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Abstract 19 

To quantify the ecological consequences of recent nation-widenationwide restoration efforts in 20 

China, spatially-explicit information on woodyforest biomass carbon stock changes over the 21 

21st centurypast 20 years is critical. However, long-term biomass tracking at the national scale 22 

remains challenging as it requires continuous and high-resolution monitoring. Here, we 23 

characterize the changes in forests’ above- and belowground biomass (AGBcarbon (AGBC and 24 

BGB) for woody vegetationBGBC) in China between 20032002 and 20202021 at ~1 km spatial 25 

resolution by integrating multiple types of remote sensing observations with intensive field plot 26 

measurements through regression and machine learning and mixed-pixel decomposition 27 

methods.approaches. On average, 11.8.6 ± 0 ± 0.7.6 and 2.8 ± 0.2 ± 0.1 PgC arewere stored in 28 

above- and belowground live woody biomassforests in China. Over the last 1820 years, the total 29 

woodyforest biomass carbon pool in China has increased at a rate of 163.8114.5 ± 16.3 TgC/yr 30 

(0.5approximately 1.1%/yr). The most pronounced forest biomass carbon stock gains occurred 31 

in central to southern China, including the southern Loess Plateau, Qinling Mountains, 32 

southwest karstkarsts and southeast forests. TheWhile the combined use of low-frequency 33 

microwaves and advanced lasermulti-source remote sensing data provides a powerful tool to 34 

assess the forest biomass trends, minimizing under- or overestimation of biomass variation in 35 

space and time. Futurecarbon changes, future research is also needed to explore the drivers of 36 
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the observed woody biomass trends, and to evaluate the degree to which biomass gains will 37 

translate into biodiverse, healthy ecosystems and thus are sustainable.  38 

Key words: Aboveground biomass carbon pool; Belowground biomass carbon; Long-term 39 

continuous mapping; Hotspot of amount and trend; China  40 
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1 Introduction 41 

Woody (forest and shrubland) biomass contributes to over 90% of global vegetation biomass 42 

(Ma et al. 2021). As a net outcome of carbon gains from photosynthesis and carbon losses from 43 

respiration, mortality and disturbances, woody biomass is a critical indicator of ecosystem 44 

function and services, such as carbon sequestration, wood production and resource allocation 45 

(Kumar and Mutanga 2017). Accurate biomass monitoring over space and time is thus essential 46 

for assessing ecosystem management strategies and mitigation policies (Kumar and Mutanga 47 

2017).  48 

In recent decades, remote sensing tools have been integral in our efforts to map aboveground 49 

biomass (AGB).Forest biomass carbon stock contributes to over 90% of the global vegetation 50 

biomass carbon pool (Ma et al., 2021). As a net outcome of carbon gains from photosynthesis 51 

and carbon losses from respiration, mortality and disturbances, forest biomass carbon stock 52 

(approximately 50% of biomass) is a critical indicator of ecosystem function hereinafter 53 

SVCmean rand ecosystem services, such as carbon sequestration, wood production and 54 

resource allocation (Kumar and Mutanga, 2017). Accurate forest biomass carbon stock 55 

monitoring over space and time is thus essential for assessing ecosystem management strategies 56 

and mitigation policies (Kumar and Mutanga, 2017).  57 

In recent decades, remote sensing tools have been integral in our efforts to map aboveground 58 

biomass (AGB) or carbon stock (AGBC). By combining satellite imagery (e.g., MODIS) and 59 
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airborne LiDAR signals, forest cover and canopy height can be mapped across large spatial 60 

scales (Hu et al.., 2016; Saatchi et al.., 2011; Su et al.., 2016; Tong et al.., 2020; Xu et al.., 2021). 61 

Apart from imageriesoptical images and LiDAR signals, microwaves can provide more detailed 62 

insights into sub-canopysubcanopy forest structure and AGBAGBC due to their ability to 63 

penetrate the canopy. Active microwave techniques, i.e., Synthetic Aperture Radar (SAR) 64 

backscatters, facilitate high-resolution (e.g., 100 m) AGB mapping, but the temporal coverage 65 

is limited (Bouvet et al. 2018; Cartus et al.., 2012; Bouvet et al., 2018). Conversely, vegetation 66 

optical depth (VOD) retrieved from multiple passive microwave sensors can be used to produce 67 

long-term continuous AGB maps (Frappart et al.., 2020; Liu et al.., 2011; Liu et al.., 2015), yet 68 

at a coarse spatial resolution (e.g., 0.25°). Because optical, LiDAR and microwave (both active 69 

and passive)different remote sensing techniques all have differenttheir advantages and pitfalls, 70 

combining these techniques and complementing them with direct ground measurements is 71 

integral to maximizing the accuracy and precision of biomass carbon estimations across space 72 

and time.  73 

Another source of uncertainty in vegetation biomass carbon stocks is the extent of biomass that 74 

is stored belowground as roots. While AGBAGBC mapping is facilitated by thea suite of 75 

emerging remote sensing techniques, investigating the spatiotemporal variation in belowground 76 

biomass (BGBcarbon pool (BGBC) remains challenging despite the large contribution of root 77 

biomassroots to total carbon storage (Huang et al.., 2021; Ma et al.., 2021). To map BGBBGBC, 78 

the commonly-used approach is to combine aboveground biomass information with vegetation 79 
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type-specific ratios of BGB to AGB (i.e., root-shoot ratio, or RSR) (Xu et al., 2021; Saatchi et 80 

al.., 2011; Xu et al. 2021). Because field studies indicate a near-linear relationship between log-81 

transformed BGB and AGB (Enquist Brian and Niklas Karl 2002), BGB variations at large 82 

scales have often been approximated using this relationship (Spawn et al. 2020). To capture the 83 

complex relationship between BGB and biotic or abiotic variables (e.g., stand age, heat and 84 

water availability), machine learning algorithms have been applied to map BGB (Huang et al. 85 

2021) and root-mass fractions (Ma et al. 2021) globally. In mixed pixels with multiple plant 86 

functional types, BGB mapping relying on satellite-based AGB and plot-based models is 87 

expected to be less accurate. In addition, the existing woody plots are unevenly distributed 88 

across the world, with limited plots in developing countries, leading to large uncertainties in 89 

BGB estimation within those regions (Huang et al. 2021). 90 

. Because field studies indicate a near-linear relationship between log-transformed BGB and 91 

AGB (Enquist Brian and Niklas Karl, 2002), BGB variations at large scales have often been 92 

approximated using this relationship (Spawn et al., 2020). To capture the complex relationship 93 

between BGB and biotic or abiotic variables (e.g., stand age, heat and water availability), 94 

machine learning algorithms have been applied to map BGB (Huang et al., 2021) and root-mass 95 

fractions (Ma et al., 2021) globally. However, the reference plots were unevenly distributed 96 

across the world, limited in developing countries, leading to some uncertainties in BGB and 97 

BGBC estimation within those regions (Huang et al., 2021). 98 
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China has been implementing national-scale afforestation and reforestation programs since the 99 

late 1990s (Lu et al. 2018)(Lu et al., 2018), promoting vegetation cover and carbon storage in 100 

the Loess Plateau and the southwest karst regions, etc. (Chen et al.., 2019a; Niu et al.., 2019; 101 

Tong et al.., 2018). A spatial understanding of woodyforest biomass trends can help evaluate 102 

the efficiency of ecological restoration programs. High quality, high resolution and long-term 103 

continuous woody biomass monitoring in China has remained challenging, due to difficulties 104 

in integrating different remote sensing techniques with ground-sourced measurements (Zhang 105 

et al., 2019; Huang et al. 2019; Zhang et al.., 2019).  106 

In this study, we integrate differentby integrating multi-source remote sensing tools (optical, 107 

active/passive microwave and LiDAR)data with large quantities of plot measurements through 108 

random forest approach to produce high-, we produced 1 km resolution (1 km) above- and 109 

belowground woodyforest biomass carbon pool maps infor China during 2003–2020.the past 110 

20 years (2002–2021). This dataset could provide new insights into the spatial hotspots of 111 

woody biomass and its interannualforest carbon stock changes in China over the past two 112 

decades. 113 

2 Materials and methods 114 

To map above- and belowground woody biomass in China during 2003–2020, we 1) integrated 115 

state-of-the-art satellite-derived forest AGB and canopy height information with ground-116 

sourced plot data; 2) developed an improved vegetation water content (VWC) dataset covering 117 



 

8 

 

 

2003–2020 based on the intercalibration of vegetation optical depth retrieved from various 118 

microwave sensors; 3) combined multiple sources of remote sensing and in-situ observations 119 

simultaneously allowing for both high-resolution and long-term mapping; 4) built a plot data-120 

based random forest or regression model to estimate BGB based on AGB information; and 5) 121 

harmonized scale differences existing between plot measurements and satellite observations. 122 

The basic procedure is shown in Figure 1 and described in sections 2.1–2.5. 123 

 124 

Figure 1. Workflow of woody AGB and BGB monitoring in China during 2003–2020. The blue 125 

rectangles are remote sensing-based data inputs; orange rectangles are plot-level measurements; 126 

yellow rectangles represent the key methods; while the purple rectangles represent the final 127 

output products of this study. ‘GlobBiomass’, ‘CCI’, etc. are data products’ names; ‘CDF’ = 128 

‘cumulative distribution function’; ‘HANTS’ = ‘harmonic analysis of time series’; ‘VCF’ = 129 

vegetation continuous fields. Locations of forest plots are shown in Figure S1a. 130 
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2.1 An improved benchmark map of aboveground biomass (AGB) in China 131 

We used the three latest and highest-quality global-scale AGB datasets (GlobBiomass, CCI-132 

Biomass and GLASS-Biomass v2) to derive our benchmark map. Using SAR, LiDAR and 133 

optical images, the first global high-resolution (100 m) forest AGB dataset for the year 2018, 134 

GlobBiomass, was published through the European Space Agency (ESA)’s Data User Element 135 

(DUE) project (Santoro et al. 2021). The relative root mean square error (RMSE) was below 136 

30%, although biomass tends to be underestimated in dense forests (Mialon et al. 2020). 137 

Subsequently, ESA’s Climate Change Initiative (CCI) published a global AGB map for all 138 

vegetation in 2017 using a slightly different algorithm, followed by AGB maps for 2010, 2018 139 

and 2019 (Santoro and Cartus 2019, 2021). Datasets derived from different methods have their 140 

advantages in different regions. By referring to adequate in-situ data, we may combine the 141 

advantages of different datasets. Accordingly, integration of several high-quality AGB maps 142 

has become popular. The Global Land Surface Satellite (GLASS) AGB v2 was developed by 143 

fusing the AGB maps in (Hu et al. 2016), (Su et al. 2016) and (Thurner et al. 2014), etc., through 144 

the linear combination method. GLASS-Biomass v2 roughly represents the AGB status in the 145 

year 2000, the median period of the collected woody plots’ data (Zhang and Liang 2020). 146 

We aggregated the GlobBiomass and CCI-Biomass maps from 1/1125° resolution to 1/120° 147 

(approximately 1 km) and resampled the GLASS-Biomass product from 0.01° to 1/120°. The 148 

study area, i.e., woody areas in China, was determined as all the 1/120° pixels (note: the 1/120° 149 
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resolution is referred to as a pixel hereinafter) for which AGB data are available from each of 150 

these three biomass datasets.  151 

In September 2018, ICESat-2 provided an Advanced Topographic Laser Altimeter System 152 

(ATLAS) that provides more accurate and denser measurements of canopy height than GLAS 153 

(Markus et al. 2017). However, the application of ICESAT-2 data in canopy height estimation 154 

at large scales is currently limited (Liu et al. 2022). This study selected the ATL08 land and 155 

vegetation V004 product, and the 98% height retrievals of all canopy photons in each 100 m 156 

segment can best represent the mean top canopy height (Neuenschwander et al. 2020). All 157 

ATLAS records acquired in China’s woody areas during 2018~2020 were incorporated. ATLAS 158 

has three strong and three weak beams. According to previous studies, the canopy heights 159 

retrieved using strong beams are generally more accurate than those retrieved by weak beams 160 

(Neuenschwander et al. 2020). Hence, in each 1/120° resolution pixel, we counted the numbers 161 

of valid strong beam and weak beam observations within the pixel during 2018~2020. If the 162 

number of strong beam records exceeded 5, then only those higher quality data were used. 163 

Otherwise, if there were at least 5 valid observations, but the number of strong beam retrievals 164 

was not enough, all data in the pixel were incorporated. Afterwards, we adopted the median 165 

absolute deviation (MAD) method to detect and eliminate outliers (Leys et al. 2013). For the 166 

remaining reliable canopy height retrievals in each pixel, we took the average weighted by the 167 

corresponding canopy cover fractions. Here, the top canopy cover fraction was estimated as the 168 

ratio of canopy photons to the number of all photons in the 100 m segment. By following the 169 
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above steps, we mapped forest height over China using ATLAS data. Because gaps remain 170 

between the tracks of ICESAT-2, although ATLAS’s six beams enable a larger spatial coverage 171 

than any other LiDAR instrument, the derived forest height map provides values in only 42% 172 

of all woody pixels in China. Because of the potentially bad LiDAR estimates, the highest 2.5% 173 

extreme values were further excluded.  174 

Another new LiDAR instrument is NASA’s Global Ecosystem Dynamics Investigation (GEDI). 175 

It is optimized for global canopy height estimation, and has been collecting data in China since 176 

April 2019 (Dubayah et al. 2020). However, the orbital gaps of GEDI are much larger than that 177 

of ICESAT-2, resulting in limited spatial coverage by direct observation. Therefore, this study 178 

adopted the Global Forest Canopy Height 2019 dataset provided by the Global Land Analysis 179 

and Discover (GLAD). GLAD’s canopy height was mapped by integrating the GEDI’s forest 180 

structure measurements globally with Landsat maps through machine learning (Potapov et al. 181 

2020). The original 30 m resolution data were averaged to 1/120°. GEDI does not collect data 182 

in north of 51.6°N (Dubayah et al. 2020), but the highest latitude of China is about 53.56°N. 183 

Therefore, we used an alternative global gridded forest height map that was developed earlier 184 

through machine learning, yet based on the ICESAT GLAS retrievals (Simard et al. 2011).  185 

Because AGB is more related to the forest volume rather than just the canopy height, we further 186 

multiplied the three different LiDAR-based canopy height maps with the percent of tree cover 187 

(hereinafter TC) acquired from MOD44B v006- dataset. The products of multiplications are 188 
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hereinafter ATLAS-derived volume, GEDI-derived volume and GLAS-derived volume. None 189 

of these LiDAR-based timber volumes cover all woodland pixels in China. Specifically, without 190 

spatial interpolation using optical remote sensing, the ATLAS-derived volume inherited the 191 

orbital gaps of ICESAT-2, although the quality is expected higher than that of the other two 192 

machine learning-derived canopy heights and volumes. Thus, we designed three random forests 193 

for AGB estimation. Each of these three random forests (RFs) have four input predictors. 194 

GlobBiomass, CCI-Biomass and GLASS-Biomass v2, are incorporated as the predictors of 195 

each RF, while the use of which LiDAR-derived volume as the 4th input predictor makes the 196 

difference among the three RFs. Moreover, to reduce uncertainties in LiDAR-derived timber 197 

volumes, the pixels with tree cover below 5% are classified as nonwoody areas and excluded. 198 

The training target should be a large number of high-quality 1/120° pixel-scale AGB data in 199 

China. This study collated forest or shrubland plots’ AGB calculated using allometric equations 200 

or clear-cutting methods from various published papers, including (Luo 1996), (Luo et al. 2014), 201 

(Guo and Ren 2014), (Peng et al. 2016), (Wang et al. 2014), (Guo et al. 2021), (Yang et al. 202 

2017), (Liu et al. 2020) and (Nie et al. 2016). In addition to AGB, we recorded the BGB, stand 203 

age, vegetation species or type and location information. The spatial distributions of all these 204 

woody plots are shown in Figure S1a. Some records were measured in 1990~2000, whereas 205 

others were acquired during 2000~2010. Because plots smaller than 0.05 ha are not comparable 206 

to satellite observations (Su et al. 2016), 10 m×10 m plots (Guo and Ren 2014) were not 207 

included as the training target here, but were applicable in determining the biomass allocation 208 
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rule later in section 2.5. Moreover, the understory shrub AGB was excluded, since SAR and 209 

LiDAR can observe only the canopy. The extreme values (the highest and lowest 1%) were 210 

excluded as well. These filters resulted in 6290 woody plots remaining. Because the plots are 211 

mainly located in woodlands, yet the corresponding pixel usually contains cropland, urban, 212 

waters or bare ground, whose AGB are much lower than those in the plots, we converted the 213 

plot-level AGB into the pixel-scale AGB by multiplying the area fraction of forestland in the 214 

pixel, as long as the forestland area fraction exceeds 20% and is larger than the shrubland area 215 

fraction. Here, land cover type comes from the Copernicus Global Land Service: Land Cover 216 

100m (CGLS-LC)- epoch 2017: v3.0.1 product (Buchhorn et al. 2020). It includes not only 217 

discrete land cover classification but also the fractions of forestland, shrubland, grassland and 218 

cropland at 100 m resolution. We aggregated these high-resolution land cover fractions to 1/120° 219 

to reduce the uncertainties. It should be noted that VCF data cannot be applied here because 220 

they indicate the fractions of pure tree cover and short vegetation cover, yet a forestland contains 221 

bare ground or herbs among trees.  222 

The RF model trainings were conducted in MATLAB R2021a software. After the RF trainings, 223 

three sets of simulations were performed using the corresponding RF model in woody pixels 224 

where all four predictors (three existing AGB products and one LiDAR-derived volume) have 225 

valid data. In addition, we performed ten-fold cross-validation to assess the performance of 226 

each RF model, and took the averages of ten times of simulations. Finally, we combined the 227 

three sets of simulations by averaging that is weighted by the mean R2 of the corresponding RF 228 
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model. Using above methods, we produced a spatially-continuous 1/120° benchmark AGB map 229 

for China. Because most of these measurements refer to the vegetation biomass status in around 230 

2000, we expect our AGB map to represent the AGB in around 2000. Therefore, our improved 231 

benchmark AGB map is hereinafter named ‘AGBbenchmark-2000s’. 232 

In addition, we exported the importance of each predictor variable in the RF models. For any 233 

variable, the measure is the increase in prediction error if the values of that variable are 234 

permuted across the out-of-bag observations. This measure is computed for every tree, then 235 

averaged over the entire ensemble and divided by the standard deviation of the entire ensemble. 236 

2.2 An improved vegetation optical depth dataset covering 2003–2020 237 

To derive a long time series of AGB, long-term continuous microwave VOD (i.e., vegetation 238 

opacity) data is useful (Jackson and Schmugge 1991; O'Neill et al. 2021). Through cumulative 239 

distribution function (CDF) matching among different VOD products, the vegetation optical 240 

depth climate archive (VODCA) was developed (Moesinger et al. 2020). The ‘C-band’ product 241 

which was retrieved using several C-band microwave sensors including AMSR-E, WindSat and 242 

AMSR2 and covers 2003~2018, is a better indicator of the whole woody plants’ biomass than 243 

those retrieved using higher frequency microwave bands (i.e., X-band and Ku-band). However, 244 

compared to the VOD retrieved from L-band sensors such as SMOS (Wigneron et al. 2021) and 245 

SMAP (Konings et al. 2017), C-band VODs are still less sensitive to the biomass of trunks and 246 

branches, which contribute most to the AGB (Li et al. 2021). Therefore, C-band VODs usually 247 
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have high-frequency variations due to the strong variation in leaf water content per biomass 248 

under rainfall or drought events (Li et al. 2021). In addition, VODCA’s C-band product is not 249 

perfectly continuous. Because the AMSR2 sensor does not share any temporal overlap with 250 

AMSR-E, the rescaling of AMSR2 data towards AMSR-E was based on the assumption that 251 

VOD remained stable over 2010~2013, i.e., the last and first two years of both sensors. For 252 

China where land use cover changes were prevalent, this assumption may lead to a bias of 253 

AMSR2-based VODCA data during 2013~2018 compared to the values in this period if the 254 

retrievals from AMSR-E were available. Theoretically, this bias is spatially variable, and is 255 

positively correlated with local VOD changes from 2010 to 2013. Thus, to develop an improved 256 

VOD dataset covering 2003–2020 for China, we focused on 1) filtering out the high-frequency 257 

fluctuations in VODCA’s product and other C-band VOD products; 2) mapping and correcting 258 

the bias of AMSR2-based VODCA data during 2013~2018 compared to the AMSR-E-based 259 

VODCA VOD; 3) rescaling the C-band VODs against L-band VOD data to make their spatial 260 

patterns more correlated with that of woody plants’ AGB; 4) extending the VODCA dataset to 261 

2020 by using AMSR2 observations. Details are as follows. 262 

Due to a very high level of radio frequency interference (RFI), SMOS data are noisy and even 263 

missing in China, especially in eastern China (Wigneron et al. 2021), making it inapplicable to 264 

this study despite its longer time series than SMAP. SMAP observations have been available 265 

since April 2015, so this study utilized the data from 2016 to 2020. The dual channel algorithm 266 

(DCA) derived-VOD data included in the SMAP Enhanced L3 v5 product (O'Neill et al. 2021) 267 
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were resampled from 9 km resolution to 1/12°. For each 1/12° grid cell (note: 1/12° resolution 268 

is hereinafter called a grid cell) where at least 609 (i.e., 1/3 of 1827 daily maps in 5 years) valid 269 

VOD retrievals are available, we first filtered the abnormal values using ‘3σ denoising’ (Chen 270 

et al. 2021). Second, we virtually filled in the data in 2015 and 2021 by using those in 2016 and 271 

2020. Subsequently, the no-data values resulting from orbital gaps or frozen states were filled 272 

by linear interpolation, while the outputs during 2016~2020 were supposedly valid. Moreover, 273 

we also determined the average annual number of VOD peaks for each grid after setting the 274 

thresholds of minimum distance between two peaks, peak height and dominance of peaks to 275 

reasonable values. Specifically, for grid cells where woody plants exist yet without VOD data, 276 

the values were filled by sequentially searching and averaging nearby valid values (Chen et al. 277 

2019b). For VODCA’s C-band VOD during 2003~2018, after filtering out the abnormal values 278 

and virtually filling the data in 2002 and 2019, we performed the Harmonic Analysis of Time 279 

Series (HANTS) filtering (Menenti et al. 1993; Roerink et al. 2000). Either high or low outliers 280 

were excluded, while the number of frequencies to be considered above zero frequency in the 281 

Fourier function was set to the product of the mean annual peak number detected by SMAP 282 

VOD and the number of years. 283 

We then mapped the bias of AMSR2-based VODCA’s VOD compared to the AMSR-E based 284 

VODCA VOD data in 2003~2011. Because annual VOD is closely related to the leaf area index 285 

(LAI), and is clearly affected by percent tree cover and percent nontree vegetation (i.e., crops, 286 

grass and shrubs) cover, we performed a multiple linear regression between annual medians of 287 
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adjusted VODCA VOD data during the period of 2003~2011 and annual LAI values as well as 288 

VCF retrievals. This study employed LAI from two sources. First, we processed the potential 289 

cloud-affected values within the MODIS LAI product (MCD15A2H v006) by masking the 290 

values flagged by clouds and then performing HANTS filtering, with low outliers excluded and 291 

the number of frequencies set to 3 times the number of years. Second, for the LAI developed 292 

by the ESA- Copernicus Global Land Service (GEOV2 LAI) (Baret et al. 2013; Verger et al. 293 

2014), we harmonized the retrievals from the SPOT-VGT sensor during 2003~2013 and those 294 

from the PROBA-V sensor after 2014 using CDF matching with MODIS data applied as the 295 

reference (Cammalleri et al. 2019). The MODIS LAI, VCF and GEOV2 LAI were all averaged 296 

from their original spatial resolutions (250m~1km) to 0.25° to match the resolution of VODCA. 297 

As shown in Figure S2a~b, after the regression, the R2 values of 90% grids exceeded 0.3, and 298 

the grid-specific regression coefficients were exported. Therefore, the mean bias of AMSR2-299 

based VODCA data during 2013~2018 compared to that before 2012 could be estimated as the 300 

difference between the mean annual VOD calculated based on the above regression coefficients 301 

as well as LAI and VCF data during 2013~2018 and the mean value of the adjusted VODCA’s 302 

medians over that period. This bias was positive in most areas of China, especially afforested 303 

areas, such as northern Beijing (Figure S2c~d). Accordingly, by adding this bias to the VODCA 304 

VOD data after 2013, we improved its temporal continuity. 305 

Using SMAP’s 1/12° VOD data during 2017~2018 as the reference, we calibrated the spatial 306 

pattern of the adjusted VODCA VOD by rescaling. Notably, we revised the CDF matching 307 
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algorithm (Moesinger et al. 2020). For either the lowest or the highest 10% of the time series, 308 

a linear fitting model was designed and applied, to eliminate abnormally low or high values. 309 

Finally, to ensure a temporally-consistent VOD time series from 2003 to 2020, for 2019 and 310 

2020, we adopted the AMSR2 C-band VOD and converted it into L-band-like VOD by referring 311 

to SMAP data. Here, we chose the AMSR2/GCOM-W1 surface soil moisture (LPRM) L3 1 day 312 

10 km x 10 km descending V001 dataset, and resampled it to 1/12° resolution. Upon noticing 313 

sharp changes in AMSR2 VOD at the beginning of 2016 in many grid cells in China, this study 314 

selected the records from only 2017~2020, which were calibrated and rescaled later through 315 

improved CDF matching by referring to the SMAP’s VOD during 2017~2018. 316 

Using the temporally-continuous and spatially L-band-like VOD dataset from 2003 to 2020, we 317 

calculated both annual mean and median VOD values as two robust indicators of annual AGB. 318 

2.3 High-resolution woodland AGB mapping in China from 2003 to 2020  319 

We performed two steps to map woodland AGB in China during 2003–2020. For the first step, 320 

AGBbenchmark-2000s and VCF data in 2003 were all resampled to 1/12° resolution, the same 321 

as VOD data. Specifically, for grid cells in which less than 50% of pixels were without valid 322 

AGBbenchmark-2000s values due to limited forest cover, resampling was not performed. 323 

Because VOD is influenced by the soil water availability, we built a random forest in which the 324 

predictors include: mean and median VOD values, VCF data (i.e., TC and all vegetation cover, 325 

hereinafter denoted as VC) and the mean surface soil moisture (SSM) in 2003. Here, SSM was 326 
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derived from a long-term remote sensing-based surface soil moisture (RSSSM) developed in 327 

our previous study (Chen et al. 2021). The training target is the resampled AGBbenchmark-328 

2000s. More than 80000 grids all across China were available for the training of this RF model. 329 

Afterwards, using VOD, VCF and SSM in each year, we performed 1/12° resolution AGB 330 

simulations over 2003–2020 along with ten-fold cross-validations, and adopted the mean of ten 331 

independent simulations. We also calculated the ‘calibration factor’ which is defined as the ratio 332 

of resampled AGBbenchmark-2000 (i.e., the training target) to the simulated AGB in 2003 in 333 

every grid. Then, we multiplied the annual 1/12° resolution AGB in China during 2003–2020 334 

with the grid-specific ‘calibration factor’.  335 

For the next step, we downscaled the 1/12° resolution AGB to 1/120°. Here, it is assumed that 336 

within a grid cell, the heights of trees are similar, while the short vegetation’s heights are also 337 

similar. So, within a 1/12° grid cell, the AGB per tree cover (TC) and AGB per short vegetation 338 

cover (SC) can both be considered constants. Hence, we performed a binary linear regression 339 

between the AGBbenchmark-2000s value in each 1/120° pixel within the grid cell and the 340 

corresponding VCF (TC and SC) values. The intercept (i.e., constant term) was excluded, so 341 

the derived two regression coefficients can represent the mean values of AGB per TC and per 342 

SC in the grid cell. For more than 75% of all grid cells, the regression R2 exceed 0.5. Since 343 

VCF indicates the coverage of pure tree and non-tree vegetation, AGB per TC should be higher 344 

than that per SC. Therefore, for grid cells where the derived AGB per TC was smaller than the 345 

AGB per SC, grids where either one of the regression coefficients was negative, or those 346 
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without very significant regressions (i.e., p>0.01 or R2<0.1), the regression was considered 347 

invalid. The AGB per TC and AGB per SC in those grid cells were filled later by searching for 348 

nearby valid regression results, while the R2 values of those valid regressions were applied as 349 

the weights in averaging the nearby valid values. The maps of AGB per TC and per SC in 2003 350 

are shown in Figure S3. By integrating these data with pixel-scale VCF, we calculated the AGB 351 

of all woody vegetation in each 1/120° pixel, which was averaged to the AGB at 1/12° 352 

resolution. Accordingly, the ratio of the grid-scale AGB calculated in the first step to the 353 

aggregated AGB derived in this step can be used to further calibrate the high-resolution AGB 354 

data. Finally, by repeating the procedures, we mapped woody AGB in China at 1/120° 355 

resolution from 2003 to 2020. 356 

2.4 Mixed-pixel AGB decomposition- towards scale matching 357 

We mapped AGB in China at 1/120° pixel resolution, which is quite larger than the scale of plot 358 

measurements. The collected plot-level data usually represent the AGB and BGB per area in a 359 

forest or shrubland with basically uniform landscapes (i.e., the density of trees/shrubs is even 360 

in the plot, which can be either low or high). However, within a pixel, forests, shrubs, crops, 361 

herbs and bare ground may coexist. It is known that the relationship between BGB and AGB in 362 

forests differs from that in shrublands. Generally, shrub species have a much higher RSR than 363 

trees (Qi et al. 2019; Tang et al. 2018). Hence, we tried to solve that ‘mixed-pixel problem’ by 364 

decomposing the simulated AGB in woody regions into the AGB per forestland area and the 365 



 

21 

 

 

AGB per shrubland area. Then, we applied the respective relationships between BGB and AGB 366 

to transform the decomposed per-area AGBs into per-area BGBs for different types of forests 367 

and shrublands. Afterwards, we multiplied the per-area BGBs with the corresponding area and 368 

summed the products (i.e., all forestlands’ BGB and shrublands’ BGB). By this method, we 369 

basically achieved scale matching between remote sensing and plot-level observations. 370 

AGB decomposition generally followed the idea we proposed in a previous article (Chen et al. 371 

2019b). Specifically, in woody grids, we counted the numbers of pixels with forests (i.e., pixels 372 

in which the forestland area percentage was >10% according to the CGLS-LC) and those with 373 

shrublands (shrubland area percentage >10%). For grid cells where there were at least 50 pixels 374 

with forestland and 50 pixels with shrubland, we performed a binary linear regression without 375 

intercept between all these pixel-scale AGB data and the area percentages of forestland and 376 

shrubland in every woody pixel. Afterwards, the average per-area BGB for forestland and 377 

shrubland in woody grid cells can be estimated as the corresponding regression coefficients. 378 

However, the regression was supposed invalid when either regression coefficient was negative, 379 

or the significance p-value exceeded 0.05, or R2 was below 0 (R2 can be negative for regressions 380 

without constants due to the potential significant bias in AGB data). For these grids, a constant 381 

term was further added to the regression if a valid result could be derived under this situation. 382 

Specifically, for 1/12° grids with less than 50 pixels with forests, but the pixels with shrubland 383 

are sufficient, we can reliably estimate the AGB per area shrubland as the ratio of grid average 384 

AGB to the mean shrubland area percentage in the grid. Similarly, the forestland per area AGB 385 
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in grids with only enough pixels with forests can be estimated by simply neglecting the few 386 

shrubs. According to Figure S4a~b, complete AGB decomposition was achieved in 36% of all 387 

grids with enough woody pixels, and the grid cells with reliable AGB estimates accounted for 388 

61%. The invalid decompositions composed only 3%, which were filled later by sequentially 389 

searching and averaging nearby valid results (88% of the valid regressions are with R2 higher 390 

than 0.5, see Figure S4c~d). Subsequently, we deleted both the highest and lowest 2.5% values 391 

of all gridded per-area AGB estimates in China, and then filled those values. Finally, a mean 392 

filter with a window size of 3×3 was applied for spatial smoothing. The final maps of AGB per 393 

area forestland and that per shrubland area in around 2017 (note: CGLS-LC data represent the 394 

land cover around 2017) are shown in Figure S5. Within a grid cell, the per-area forestland’s 395 

AGB is usually (71% in China) higher than the corresponding per-area shrubland AGB, except 396 

in mountains around the Sichuan Basin and some karst regions in southwestern China where 397 

shrubs are probably much denser than trees. Because the average forestland area percentage in 398 

woody grids in China (55%) is greater than the CGLS-LC’s mean shrubland area percentage 399 

(13%), the average forestlands’ AGB calculated based on the decomposition result (63.4 t/ha) 400 

is much larger than the mean shrublands’ AGB (11.6 t/ha in around 2017), which is reasonable. 401 

After the decomposition, some per-area AGBs were filled-in values, while some were derived 402 

from linear regressions with intercepts. Therefore, the sum of forestland AGB and shrubland 403 

AGB in approximately 2017 may not be equal to the total grid AGB at the same time before 404 

decomposition. In addition, the sum of the decomposed AGBs in 2017 was obviously different 405 
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from the pre-decomposed AGB in other years. To solve this problem, we defined and calculated 406 

another ‘calibration factor’ as the ratio of the simulated grid-scale AGB in any year from 2003 407 

to 2020 before mixed-pixel decomposition to the grid’s AGB in 2017 after the decomposition. 408 

Accordingly, by referring to the per-area forestland/shrubland AGB in 2017 and this ‘calibration 409 

factor’ in each separate year, we could decompose the annual simulated pixel-scale AGB into 410 

the 1/120° resolution AGBs of forests and shrublands and the per-area forestland/shrubland’s 411 

AGB over the whole study period.  412 

2.5 BGB mapping in China during 2003–2020 based on its relationship with AGB 413 

In this study, we collected 8729 and 302 records of both AGB and BGB in forest and shrubland 414 

plots, respectively, throughout China (section 2.1). For forest plots, the BGB~AGB relationship 415 

follows: log (BGB)=0.93×log (AGB)-0.51, while the relationship for shrubland plots follows: 416 

log (BGB)=0.96×log (AGB)-0.20, and the regression R2 are 0.92 and 0.85, respectively (Figure 417 

S6). The number of forest plots is large enough, and the forest type and stand age information 418 

are both available at 8182 plots (~94% of all forest plots). Therefore, we trained an RF model 419 

for estimating per-area forestland’s BGB annually. 420 

In the RF model, the training target is the per-area BGB at 8182 forest plots, while the predictors 421 

included not only forest plots’ per-area AGB, forest type (hereinafter FOR_T), stand age, but 422 

also mean annual temperature (MAT), temperature seasonality (standard deviation of monthly 423 

temperature×100, abbreviated as Tsea), mean annual precipitation (MAP) and precipitation 424 
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seasonality (coefficient of variation of monthly precipitation, Psea). These climatic factors can 425 

be obtained from the corresponding papers, or estimated from the WorldClim v2.1 dataset (Fick 426 

and Hijmans 2017). In this study, FOR_T includes evergreen broadleaf forest (EBF), deciduous 427 

broadleaf forest (DBF), evergreen needleleaf forest (ENF), deciduous needleleaf forest (DNF), 428 

and mixed forest (MF), and was determined based on the major tree species in the plot. After 429 

the RF training, to simulate grid-scale per-area forestland’s BGB annually, apart from importing 430 

WorldClim v2.1’s MAT, Tsea, MAP, Psea and the decomposed per-area forestland AGB in each 431 

year into the RF model, we also inputted the forest stand age map for China (Zhang et al. 2017) 432 

and the annual forest type map during 2003–2020, which was determined from the ESA CCI’s 433 

global 300 m resolution annual land cover classification v2.0.7cds~v2.1.1 (Li et al. 2018).  434 

Because shrubland plots are relatively limited, and the species and stand age information was 435 

hardly provided, we directly converted the decomposed shrublands’ per-area AGB into the per-436 

area BGB during 2003–2020 using the above regression relationship. Finally, by referring to 437 

the forestland and shrubland area percentages in the CGLS-LC dataset, we mapped the annual 438 

woody BGB in China at 1/120° resolution.  439 

In addition, we also calculated the relative errors and uncertainties of AGB and BGB in each 440 

year during 2003–2020 (see section 3.4). 441 

2.6 Data comparison and verifications 442 

Apart from cross-validations based on woody plots’ AGB and BGB measurements over China, 443 
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we further verified our AGB and BGB estimates by referring to the results of Tang et al., who 444 

established 7800 forest plots and 1200 shrubland plots throughout China and then utilized the 445 

random forest approach to spatially map AGB and BGB (Tang et al. 2018). Various statistics 446 

were reported, e.g., the AGB, BGB and RSR for each woody vegetation type. Therefore, using 447 

the discrete land cover classification map in the CGLS-LC dataset, we classified China’s woody 448 

ecosystems into six woody ecosystem types, i.e., EBF, DBF, ENF, DNF, MF and shrubland 449 

(SHR) ecosystems, according to the majority in every pixel (Figure S7). The EBF, DBF, ENF, 450 

DNF, MF and SHR ecosystems account for 59.6%, 18.4%, 15.3%, 6.1%, 0.1% and 0.5%, 451 

respectively, of the total woody area in China. Because the MF and SHR ecosystems both have 452 

very limited areas, this study just compares the AGB and BGB per area among the four major 453 

forest ecosystems in China. Similarly, the change in woody biomass or carbon stock in China 454 

can be verified by several measurements and remote sensing-based studies (Fang et al. 2018; 455 

Qiu et al. 2020; Xu et al. 2018). 456 

We also compared the calculated spatial pattern of woody biomass and its trend against that of 457 

existing global/regional long-term woody biomass datasets, including the well-received global 458 

long-term AGB between 1993~2012 (Liu et al. 2015) and an updated woody biomass dataset 459 

covering 2001~2019 (Xu et al. 2021). 460 

Finally, toTo map above- and belowground forest biomass carbon stock in China during 2002–461 

2021, we 1) calibrated a SAR-based high-resolution forest aboveground biomass map in China 462 
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based on massive field measurements of AGBC during 2011–2015; 2) extended the AGBC time 463 

series to 2002–2021 by referring to the tree and short vegetation cover retrieved from optical 464 

remote sensing; 3) calibrated the AGBC time series in some specific areas using a long-term 465 

integrated microwave-based VOD dataset; and 4) mapped forestlands’ BGBC through a random 466 

forest model developed based on the in-situ records in published literature. The basic procedure 467 

is shown in Figure 1 and described below. 468 

 469 

Figure 1. Workflow of forest biomass carbon pool monitoring in China during 2002–2021. 470 

AGBC, BGBC: aboveground and belowground biomass carbon; VCF: vegetation continuous 471 
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fields; LPDR VOD: global land parameter data record- vegetation optical depth; CLCD: China 472 

Land Cover Dataset 473 

2.1 A benchmark map of forest aboveground biomass carbon (AGBC) in China 474 

By combining multiple satellite observations of SAR backscatter, including the L-band ALOS 475 

PALSAR and C-band Envisat ASAR around the year 2010, the first global high-resolution (100 476 

m) forest AGB dataset, GlobBiomass 2010, was published through the European Space Agency 477 

(ESA)’s Data User Element project (Santoro et al., 2021), whose relative root mean square error 478 

(RMSE) was below 30% (Mialon et al., 2020). Apart from GlobBiomass 2010, another high-479 

resolution (30 m) forest AGB for China was produced by relating the ICESat GLAS (LiDAR)-480 

derived footprint AGB to various variables derived from Landsat optical images (Huang et al., 481 

2019). Because the ICESat data in 2006 were applied as the training target of the random forest 482 

model, Huang’s dataset refers to the AGB status in 2006. According to a recent validation study, 483 

GlobBiomass and Huang’s AGB performed the best among all existing AGB datasets in China 484 

(Chang et al., 2021). Mean forest canopy heights and tree coverage are also good indicators of 485 

the spatial pattern of forest biomass. The high-resolution (30 m) forest canopy height map for 486 

China was developed by interpolating the ICESat-2 and GEDI data in 2019 through a neural 487 

network (Liu et al., 2022), while the tree cover map at the same resolution was derived from 488 

cloud-free growing season composite Landsat 7 data in around 2010 (Hansen et al., 2013). We 489 

resampled GlobBiomass from 100 m resolution (1/1125) to 1/1200 (approximately 90 m), 490 

and averaged Huang’s AGB map, canopy height map and tree cover map to the same resolution. 491 



 

28 

 

 

A reviewable, consistent ecosystem carbon stock inventory was conducted in China between 492 

2011 and 2015 (Tang et al., 2018). We requested the AGB carbon stock (AGBC) data at more 493 

than 5,000 3030 m sized forest plots from the authors. Due to the scale mismatch between the 494 

maps of biomass, canopy height or tree cover and the field measurements, we dropped out the 495 

data within the 1/1200 resolution grids in which the standard deviation of tree cover was 496 

greater than 15%, according to (Chang et al., 2021), leaving 2444 homogeneous forest plots 497 

remaining (see Figure 2 for the spatial distribution of these forest plots and Figure S1a~b for 498 

the cumulative frequency curve and histogram of the AGBC records). The AGBC records in 499 

these forest plots were further multiplied by the mean fraction of forestland over 2011–2015 in 500 

the corresponding grid, which was computed from the annual 30 m resolution China Land 501 

Cover Dataset (CLCD) (Yang and Huang, 2021). By comparison, GlobBiomass 2010 AGB 502 

matches the best with the grid-scale forest AGBC derived from plot measurements, with a 503 

correlation coefficient (CC) of 0.50, followed by tree cover (CC=0.42), the product of canopy 504 

height and tree cover (CC=0.38), and finally the canopy height (0.27) and Huang’s AGB (0.25). 505 

Therefore, to obtain an improved benchmark map of forest AGBC in China for the period of 506 

2011–2015, we chose the GlobBiomass 2010 dataset as our basis, and calibrated it against the 507 

in-situ observation-based grid-scale forest AGBC. To build an equation for the calibration, we 508 

divided the grid-scale AGBC values into 16 equidistant subranges (0~15, 15~30, …, 225~240 509 

tC/ha), calculated the median of grid-scale AGBC values that are within each subrange, and 510 

then the median of GlobBiomass AGB values in the corresponding grids. According to previous 511 
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studies, an exponential function would be suitable for calibrating the GlobBiomass map in a 512 

region such as China (Mialon et al., 2020). After the calibration, we averaged the benchmark 513 

AGBC map from 1/1200 to 1/120 (approximately 1 km) to further reduce the uncertainties. 514 

  515 

Figure 2. The spatial distribution of 1) 2444 homogeneous forest plots with aboveground 516 

ground biomass carbon stock measured between 2011 and 2015; and 2) 8182 forest plots with 517 

both above- and belowground biomass records collated in this study.  518 

2.2 Temporally continuous forest AGBC mapping during 2002–2021 519 

Because the benchmark AGBC was mapped based on SAR data, the spatial pattern accuracy is 520 

guaranteed, but the temporal coverage is limited to just a few years. Hence, to create a forest 521 

AGBC time series over the past 20 years, we integrated the benchmark AGBC with long-term 522 
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continuous optical and passive microwave remote sensing data. 523 

The spatial resolution of optical remote sensing is higher, and is thus preferred in this study. By 524 

adopting the MODIS vegetation continuous fields (VCF) data (MOD44B v061) which includes 525 

three ground cover components: percent tree cover, percent non-tree vegetation (i.e., short 526 

vegetation) cover, and percent non-vegetated (Dimiceli et al., 2022), we first calculated the 527 

mean tree cover (hereinafter, TCmean) and short vegetation cover (hereinafter SVCmean) during 528 

2011–2015, and resampled them from 250 m to 1/120, the same resolution as the benchmark 529 

AGBC map for 2011–2015. Because the canopy heights of trees are usually similar within a 530 

small area, the regional AGBC per TCmean can be assumed as the same, which is referred to as 531 

the ‘homogeneous assumption’ hereinafter. Accordingly, for each grid, we searched the TCmean, 532 

SVCmean and AGBC within a 33 window (1/401/40), and then regressed the AGBC values 533 

in 9 grids against both TCmean (the primary, or key predictor of AGBC) and SVCmean (assumed 534 

as a supplementary predictor) linearly. Specifically, when the regression coefficient of SVCmean 535 

was negative or the fitting efficiency was low (R2<0.5; significance p-value>0.05), we excluded 536 

the supplementary predictor from the regression, only exploring the linear relationship between 537 

TCmean and AGBC. Afterwards, if the regression between TCmean and AGBC was still invalid, 538 

we enlarged the searching window size to 55, then 77, and finally 99, until the regression 539 

as well as the coefficients became valid. Then, the grid annual AGBC from 2002 to 2021 can 540 

be estimated from the TC or both TC and SVC in each year, following the regression results. If 541 

the regression failed even if the window size reached 99, we stopped expanding the searching 542 
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window to avoid the ‘homogeneous assumption’ being invalid. In those grids, following a 543 

previous study (Xu et al., 2021), we divided the estimated AGBC by the TCmean during 2011–544 

2015 and then multiplied the TC in each year to obtain the AGBC time series. The above 545 

method utilized spatial information to estimate the temporal variation, and can thus be referred 546 

to as the ‘space for time’ method. 547 

Long-term continuous microwave VOD can also reflect forest biomass changes, although the 548 

relationship was nonlinear (Jackson and Schmugge, 1991; O'neill et al., 2021; Liu et al., 2015; 549 

Wigneron et al., 1995). We selected the global land parameter data record (LPDR) v3 0.25 550 

resolution VOD product, which was generated using similar calibrated, X-band brightness 551 

temperature retrieved from the Advanced Microwave Scanning Radiometer (AMSR-E) and the 552 

Advanced Microwave Scanning Radiometer 2 (AMSR2) (Du et al., 2017). As revealed by a 553 

recent evaluation study, LPDR VOD is better correlated with AGB than other long-term VOD 554 

products, especially in less-vegetated areas (Li et al., 2021). Because X-band VODs are still 555 

more sensitive to canopy cover than stem biomass and there is a data gap between October 2010 556 

and June 2011, while the plot investigations were all conducted in summers (Tang et al., 2018), 557 

we averaged the VOD data from mid-July (the 206th day) until the end of September (the 274th 558 

day) in each year to represent the annual AGB status. We also aggregated the benchmark AGBC 559 

map as well as the VCF data (TCmean and SVCmean) to 0.25 resolution. After each round of 560 

searching, we applied the shape language modelling algorithm (D'errico, 2022) to fit the 561 

nonlinear but monotonous relationship between AGBC and VOD values within the searching 562 
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window, and then fitted the bivariate linear regression between AGBC and VCF. If the nonlinear 563 

regression between AGBC and VOD is valid and the R2 is superior to the regression between 564 

AGBC and VCF data, LPDR VOD data is expected to outperform VCF in predicting the inter-565 

annual AGBC changes in the corresponding 0.25 grid. Therefore, in these areas, we calibrated 566 

the VCF-derived high (1/120) resolution annual AGBC by incorporating the ratio between the 567 

VOD-derived 0.25 AGBC and the aggregated VCF-derived AGBC in that year.  568 

2.3 Forest belowground biomass carbon (BGBC) mapping during 2002–2021 569 

This study mapped belowground forest biomass carbon (BGBC) following the random forest  570 

(RF) model approach (Huang et al., 2021). To reveal forests’ above- and belowground biomass 571 

allocation rules in China, this study collated both AGB and BGB records at 8729 forest plots 572 

throughout China, which were obtained using allometric equations or clear-cutting methods 573 

from published papers, including (Luo, 1996), (Luo et al., 2014), (Guo and Ren, 2014), (Wang 574 

et al., 2014). Because forest stand age and tree species (forest type) information are also 575 

available at 8182 plots, while the climatic backgrounds are available from the WorldClim v2.1 576 

dataset (Fick and Hijmans, 2017), forest plots’ AGB, forest type (hereinafter FOR_T), stand 577 

age, mean annual temperature (MAT), temperature seasonality (standard deviation of monthly 578 

temperature×100, abbreviated as Tsea), mean annual precipitation (MAP) and precipitation 579 

seasonality (coefficient of variation of monthly precipitation, Psea) were applied as predictors 580 

of forest plots’ BGB. For simplicity, we distinguished all forests into 5 types: evergreen 581 
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broadleaf forest (EBF), deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), 582 

deciduous needleleaf forest (DNF), and mixed forest (MF). Using the data records at these 8182 583 

plots (see Figure 2 for the locations of these forest plots and Figure S1c~f for the cumulative 584 

frequency curves and histograms of the AGB and BGB data), we trained ten-fold RF models 585 

using MATLAB R2021a®. The number of regression trees was set to 500. 586 

Because the 1/120° resolution grids where forest AGBC data were available are often mixed 587 

with forestland and some other land cover types, e.g., water bodies, bare ground, croplands, we 588 

converted the annual grid-average AGBC into the AGBC per area forestland by incorporating 589 

the annual fraction of forestland computed from the CLCD at 30 m resolution. Considering the 590 

potential uncertainties in the forestland fraction as well as the inclusion of shrub or herbaceous 591 

plant AGB in the SAR-derived AGB, we only calculated the annual AGBC per area forestland 592 

in grids that were dominated by forestland (forestland fractions were consistently over 50%). 593 

In these forestland grids, we simulated the forest BGBC per area forestland during 2002–2021 594 

by inputting the estimated annual AGB (approximately 2 times of the AGBC) per forestland, 595 

annual forest type map derived from ESA CCI’s land cover classification dataset (Li et al., 596 

2018), forest stand age (Besnard et al., 2021) and climatic background variables into the RF 597 

model. Afterwards, we multiplied the simulation results in every forestland grid with the annual 598 

forestland fractions to obtain the forests’ BGB and BGBC (0.5BGB) time series. Finally, for 599 

grids with forests but are not dominated by forestlands, we sequentially searched for at least 600 

five valid RSR values (the ratio of forests’ BGBC to AGBC) nearby (Chen et al., 2019b), and 601 
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then multiplied the annual forest AGBC in the grid with the median of nearby RSR values in 602 

each year to estimate the annual forest BGBC. 603 

2.4 Evaluation and assessment 604 

We compared the inter-annual trend of forest biomass carbon calculated in this study against 605 

that of existing global/regional long-term woody biomass datasets, including the well-received 606 

global long-term terrestrial biomass data between 1993–2012, which was developed mainly 607 

based on a long-term integrated VOD dataset (Liu et al., 2015), as well as an updated woody 608 

biomass dataset covering 2001–2019 whose long time series was derived from optical remote 609 

sensing data (i.e., MODIS VCF dataset) (Xu et al., 2021). 610 

To justify the random forest models for biomass and allocationBGBC predictions, we drew 611 

partial dependence plots (PDPs) in MATLAB R2021a® to show the marginal effect that one 612 

predictor has on the training target (e.g., BGB at forest plots) from a machine learning model 613 

(Hastie et al. 2009).(Hastie et al., 2009). Here, for each predictor, we excluded the extreme 614 

values (the lowest 1% and the highest 1%) before calculating the corresponding PDP to ensure 615 

its robustness.avoid roughly extending the PDP lines to data-scarce areas. Ten-fold RF trainings 616 

were also performed to derive the mean PDP values as well as the standard deviations. 617 
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3 Results and discussion 618 

3.1 Model development and Evaluation of forests’ AGBC and BGBC estimation 619 

In the first step, i.e., the benchmark woodland AGB mapping, when ATLAS data-derived 620 

canopy height was applied as an additional predictor in the RF model apart from the three 621 

biomass datasets (see section 2.1), the number of data points available for training was 1392, 622 

and the predicted R-square (R2) according to the ten-fold cross validation was 0.49±0.06 (mean 623 

± standard deviation). The training efficiency is limited by the potential errors in plot-level AGB 624 

records as well as the CGLS-LC’s land cover fraction maps, and the scale difference between 625 

satellite and plot-level observations. Although introducing climatic and topographic variables 626 

as predictors could increase the R2 of ten-fold cross validation, these variables contain high 627 

spatial autocorrelation, and thus even an elevated R2 cannot indicate a higher predictive 628 

performance (Ploton et al. 2020). According to a test addressing the relative contribution of the 629 

four predictors, GLASS-Biomass dataset contributed most to the woody AGB mapping (35%), 630 

followed by GlobBiomass (24%), CCI-Biomass (22%) and ATLAS-derived tree volume (19%). 631 

When GEDI-derived and GLAS-derived wood volumes were respectively used, the available 632 

data points increased to 3842 and 2286, but the mean R2 values were both reduced to 0.36. After 633 

combining these three sets of AGB simulations, the R2 between the resulting benchmark AGB 634 

map for China (Figure S1c) and the upscaled plots’ AGB was 0.56 (Figure S1b). 635 

In the second step, i.e., long-term continuous AGB mapping (see section 2.3), with a ten-fold 636 
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cross-validation, the RF model’s predictive R2 and RMSE were 0.79±0.01 and 16.7±0.33 t/ha, 637 

respectively. Vegetation continuous fields (VCF) contributed most to the training efficiency 638 

(tree cover and all vegetation cover contributed 39% and 17%, respectively). Mean and median 639 

vegetation optical depth (VOD) values both contributed 17% to the training efficiency, whereas 640 

mean surface soil moisture accounted for 10% (methods are in section 2.3). 641 

First, according to Figure 3a, an exponential function: y=1.63  x0.73 can fit the relationship 642 

between the actual grid-scale forest AGBC over 2011–2015 (y) and the AGB values predicted 643 

by GlobBiomass 2010 (x). Hence, this function was applied to derive the benchmark map of 644 

forest AGBC across China. 645 

Second, when using the spatial information of tree cover and short vegetation cover to estimate 646 

the temporal variation of AGBC in each grid, the spatial searching window was at its minimum 647 

of 33 in most (53%) grids with forests. Across China, the temporal extension of AGBC in only 648 

15% of all grids with forest cannot be achieved even when the searching window was enlarged 649 

to 99 (Figure 3b).  650 

Next, as shown in Figure 3c and 3d, the grids where LPDR X-band VOD performed better than 651 

MODIS VCF in predicting the temporal change in forest AGBC are usually located in regions 652 

with low tree cover. These grids account for just 10.4% of all grids with forests, and may suffer 653 

from high uncertainty within the optical-based variation in tree cover. Therefore, microwave-654 

based VOD is supposed to be more suitable for estimating the forests’ AGBC changes in these 655 
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regions. 656 

 657 

Figure 3. Evaluation of the forest AGBC and BGBC mapping in this study. (a) The regression 658 

relationship between the grid-scale forest AGB carbon stock derived from plot measurements 659 

during 2011–2015 and the GlobBiomass AGB dataset for 2010; (b) the minimum searching 660 

window sizes of every 1/120 grid when the spatial variation in MODIS VCF was applied as 661 

the predictor of AGBC changes; (c) the spatial pattern of the relative performances of MODIS 662 

VCF and LPDR VOD data in predicting the variation in AGBC; (d) comparison of the mean 663 

tree cover between the grids where VOD data were more suitable for predicting the variation 664 
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of AGBC and the grids where VCF data were the better predictor. 665 

The RF model designed for woody plots’forest plot BGB estimation (see section 2.53) achieved 666 

a predictive R2 of 0.89±0.02, while the RMSE was 6.3±0.5 t/ha. AGB explained 53% of the 667 

variation in BGB’s variation among different woody plots. Long-term climate backgrounds, i.e., 668 

mean annual temperature, temperature seasonality, annual precipitation and precipitation 669 

seasonality accounted for 8%, 6%, 8% and 7%, respectively. Forest type and stand age also 670 

contributed 12% and 8% to the training efficiency, indicating that the effects of these factors 671 

are nonnegligible. The selection of predictors of BGB basically followed the existing 672 

knowledge (Huang et al. 2021)(Huang et al., 2021), and the seasonality of temperature and 673 

precipitation made sense in the prediction (see Text S1). On the other hand, although previous 674 

studies incorporated many edaphic factors as predictors of BGB (Huang et al. 2021), by 675 

comparing the training efficiencies when whether these edaphic factors are incorporated(Huang 676 

et al., 2021), by comparing the training efficiencies when whether these edaphic factors are 677 

incorporated or not, we could justify the reasonability of our simplified set of predictors (Text 678 

S1). 679 

We also explored how different factors influence AGB and BGB among woody plots in China. 680 

Of the biotic and abiotic factors included in our model, partial dependence plots (PDPs, Figure 681 

2a~c) show that stand age is the main driver of AGB. However, with forest aging, forest growth 682 

gradually stops, conforming with common knowledge (Xu et al. 2010). Woody AGB also 683 
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increases significantly with precipitation, but water availability does not constrain biomass in 684 

humid regions with annual precipitation above 1500 mm, and temperature did not significantly 685 

affect AGB at large scales. These findings are in line with previous studies (Stegen et al. 2011). 686 

According to the collected woody plots’ data, AGB is a key driver of BGB (Figure 2d~g4). Yet, 687 

RSR changes among different forest growth stages, decreasing in general as reported (Mokany 688 

et al. 2006).(Mokany et al., 2006). The overall negative impact of mean temperature on BGB 689 

or RSR agrees with the mechanism that higher heat promotes nutrient accessibility (Luo et al.., 690 

2012; Ma et al.., 2021), and increases the turnover rates of roots at a higher magnitude than 691 

stems (Reich et al. 2014).(Reich et al., 2014). The ‘U-shaped’ relationship between precipitation 692 

and belowground biomass allocation follows the ‘optimal biomass allocation’ theory, because 693 

arid climates promote root extension, yet too heavy rainfall reduces nutrient availability through 694 

leaching and dilution effecteffects (Luo et al. 2012).(Luo et al., 2012). Other factors, including 695 

temperature seasonality, precipitation seasonality and forest type, have supplementary effects 696 

on the biomass allocation (Figure S8S2). 697 
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 699 

Figure 24. Influence of key factors on woody plots’ above- and forest belowground woody 700 

biomass (BGB) and root-shoot ratio (RSR) in China. Subfigures (a~c) Partial effects of (a) 701 

forest age; (b) mean annual temperature (MAT) and (c) mean annual precipitation (MAP) on 702 

AGB in all qualified woody plots; (d~g)) show partial influences of (a) AGB; (b) stand age; (c) 703 

MAT and (d) AGB; (e) stand age; (f) MAT and (g) MAP on BGB and RSR values of all qualified 704 

woodyforest plots. The error bars represent the standard deviations of the ten-fold trainings. We 705 

did not draw the PDP for the impact of AGB on RSR, since the dividend of RSR calculation is 706 

AGB. 707 

3.2 Total woodyForest biomass carbon pool, allocation and change in China 708 

Between 2003 to 2020, the total woody biomass in forestlands and shrublands in China were 709 

28.4±1.8 Pg and 2.3±0.2 Pg, respectively (Table 1), while the total woody AGB and BGB were 710 

24.4±1.6 Pg and 6.2±0.4 Pg. The mean RSR for forests (0.24) and that of all woody areas in 711 
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China (0.26) are both slightly lower than the global average values of approximately 0.25 and 712 

0.3, respectively (Huang et al. 2021; Ma et al. 2021). Separated by forest types, evergreen 713 

conifer forest (ENF) occupies the highest woody biomass per unit area (143.5 t/ha), followed 714 

by 109.5 t/ha in the evergreen broadleaf forest (EBF), whereas deciduous forests (DBF & DNF) 715 

harbor 92 t/ha (Figure 3a). By contrast, deciduous forests in northern China (see Figure S7 for 716 

the distribution of forest ecosystems) occupy higher mean RSR values (Figure 3a).  717 

Woody biomass across China increased by an average rate of 363.9±11.2 Tg/yr during 2003–718 

2020, equaling a vegetation carbon sink of approximately 163.8±5.9 TgC/yr (assuming a carbon 719 

density to biomass ratio of 0.45 (Xu et al. 2018)). Changes in forestland AGB, forestland BGB, 720 

shrubland AGB and shrubland BGB account for 73.8%, 7.1%, 15.5% and 3.6%, respectively, 721 

of the total woody biomass trend. Apart from visible declines from 2010 to 2011 and from 2016 722 

to 2017, China has undergone a continuous increase in woody biomass (p<0.01) during 2003–723 

2020, and the biomass gains were the greatest from 2014 to 2016 (Figure 3b). 724 

Our estimates of woody biomass and its trend are generally consistent with previous results in 725 

China obtained using both satellite observation and massive field measurements (Table 1). Yet, 726 

differences occur in some aspects. For example, as the grass-dominated pixels are excluded in 727 

this study, the mean RSR for Chinese shrubs (including those in grass-dominated pixels) was 728 

reported as 0.71 (Tang et al. 2018), slightly higher than our estimate of 0.53 for shrubland 729 

ecosystems in China. Moreover, regarding trees’ occurrence in shrublands, the shrublands’ 730 
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woody biomass and RSR values in this study refer to a mosaic of shrubs and some trees. 731 

Table 1. Basic statistics of the calculated woody biomass in China and the agreement with those 732 

reported previously (the ratio of carbon density to biomass is set to 0.45 (Xu et al. 2018)). 733 

Between 2002 to 2021, the forest above- and belowground biomass carbon (AGBC and BGBC) 734 

pools in China were 8.6 ± 0.6 and 2.2 ± 0.1 PgC, respectively (Table 1). The mean RSR for all 735 

forests was 0.25, basically equal to the global average (Huang et al., 2021). Separated by forest 736 

type, evergreen conifer forests (ENF) occupy the highest biomass carbon pool per unit area, 737 

mainly because ENF are mainly located in southwestern China and are more mature and natural 738 

(Yu et al., 2020; Zhang et al., 2017). Deciduous forests (DBF & DNF) in northern China (see 739 

Figure S3 for the distribution of different forest ecosystems) harbor less biomass carbon but 740 

higher BGBC (Figure 5a), which can be attributed to the higher RSR values (Table 1). 741 

The forest biomass carbon stock in China increased at an average rate of 114.5±16.3 TgC/yr 742 

(p<0.01) during 2002–2021, and the annual biomass carbon gains were the greatest from 2014 743 

to 2015, reaching 736 TgC (Figure 5b). Changes in AGB and BGB accounted for 81.9% and 744 

18.1%, respectively, of the forest carbon stock gains over the past 20 years. 745 

Our estimates of the forest biomass carbon pool, forest RSR and the recent inter-annual trend 746 

of forest biomass carbon are generally consistent with previous estimates based on massive 747 

field investigations (Table 1). 748 

Table 1. Agreement of the estimated various forest RSR and the trend of forest biomass carbon 749 

in China with existing studies. 750 



 

44 

 

 

Variables related to 

woody biomass 

Our estimate (mean 

value in 2003–2020) 

Previous high-quality 

estimates 
Reference 

Forestland AGB in 

China 
22.9 Pg 18.7 Pg 

(Tang et al. 2018) Forestland BGB in 

China 
5.5 Pg 4.6 Pg 

Shrubland AGB in China 1.5 Pg 0.9 Pg 

Shrubland BGB in 

ChinaForests’ AGBC 

0.8 Pg8.6 ± 0.6 

(2002–2021) 

8.7 ± 0.3 (2011–2015) 

0.7 Pg8.4 ± 1.6 (2011–

2015) 
(Tang et al., 2018) 

Woody biomass in China 30.7 Pg 24.9~26.4 Pg 
(Tang et al. 2018; Xu 

et al. 2018) 

Forestland RSR in 

ChinaForests’ BGBC 

0.242.2 ± 0.1 (2002–

2021) 

2.2 ± 0.1 (2011–2015) 

0.23~0.252.1 ± 0.4 (2011–

2015) 

(Jiang and Wang 

2017; Tang et al. 

2018) 

Shrubland RSR in China 0.53 0.71 

(Tang et al. 2018) 

ENF’s per-area AGB 143.5 t/ha ~122 t/ha 

EBF’s per-area AGB 109.5 t/ha ~109 t/ha 

DBF’s per-area AGB 92.2 t/ha ~87 t/ha 

DNF’s per-area AGB 91.5 t/ha ~98 t/ha 

All forests’ per-area 

AGB 
109.3 t/ha 99~112 t/ha 

(Tang et al. 2018; Yin 

et al. 2015) 

Forests’ per-area total 

biomass 
137.3 t/ha 124~144 t/ha 

(Tang et al. 2018; Yao 

et al. 2018) 

ENF’sEBF’s RSR 0.2227±0.0307 0.2422±0.11 
(Tang et al. 

2018)(Tang et al., 

2018) 

EBF’sDBF’s RSR 0.2531±0.0405 0.2228±0.15 

DBF’sENF’s RSR 0.3022±0.0304 0.2824±0.11 

DNF’s RSR 0.3429±0.0410 0.31±0.13 

Annual woodyforest 

carbon stock increase 

163.8±114.5.9 ± 16.3 

TgC/yr 

(2002–2021) 

105.1 ± 42.2 TgC/yr 

(2002–2010) 

120.2116.7 TgC/yr  

(2000~–2010) 

(Fang et al. 

2018)(Fang et al., 

2018) 

  178 TgC/yr (2020~2030) (Tang et al. 2018) 

  
170 TgC/yr 

(2000s~2040s) 
(Yao et al. 2018) 

Annual forests’ carbon 

stock increase 
146.2~163.8 TgC/yr 153.6 TgC/yr (2003–2020) (Qiu et al. 2020) 
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 751 

 752 

Figure 3. Woody5. Forest biomass allocation and biomass change in China during 2003–753 

20202002–2021: (a) per-area AGB and BGB, as well as RSRsaboveground biomass carbon 754 

(AGBC) and belowground biomass carbon (BGBC) density of different forest ecosystems in 755 

China. The blue, red and green error bars are the standard deviations of AGB, BGB and RSR 756 

in China; (b) the interannualinter-annual changes of total forestland’ AGB (AGB-forest), 757 

shrubland’ AGB (AGB-shrubland), forestland’ BGB (BGB- AGBC and BGBC in China. Total 758 

forest), shrubland’ BGB (BGB-shrubland). Biomass biomass carbon stock changes (ΔBiomass) 759 

in forests and shrublands from the previous to the current year are represented by blue and 760 

purple green columns. 761 
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3.3 Updated spatial hotspotsSpatial pattern of woodythe forest biomass amount 762 

andcarbon stock trend in China 763 

The highest per-area woodlandforest biomass iscarbon pools during 2002–2021 were observed 764 

in the southwest ofnortheastern and southwestern China, especially southsouthern Tibet. 765 

WoodyForest biomass iscarbon stocks were also high in parts ofthe natural or semi-natural 766 

forests in the Qinling Mountains, Hengduan Mountains, Hainan and Taiwan islands (Figure 4a). 767 

Hence, woody biomass was highest in the south < 34°N, followed by the northeast forests, and 768 

lowest in the mid-latitudes, 38–40°N (Figure 4b).6a). Above- and belowground woodyforest 769 

biomass allocation varies significantly among regions. RSR is highest in northeastern 770 

deciduous conifer forests and northern China’s deciduous forest. The southwest karsts also have 771 

higher RSR than its surroundings due to high shrubland biomass (Figure 4c and Figure S5b). 772 

Woody pixels’ RSR ranges from 0.17 to 0.42 across China, with 67% of pixels having a RSR 773 

of 0.2–0.3 (Figure 4d).broadleaf forests but low in southern China (Figure 6b). The strongest 774 

forest biomass carbon increases were found in central to southern China, including the southern 775 

part of the Loess Plateau, the Qinling Mountains, the southwest karst region and southeastern 776 

forests. DeclinesSlight declines in woodyforest biomass carbon only occurred in some mature 777 

and natural forests, e.g., those in the Greater Khingan Mountain, Hengduan Mountains and 778 

South Tibet (Figure 4e). 59.8%6c). A total of woody areas40.3% of all forests in China showed 779 

significant biomass carbon stock gains (Figure 4fover the past 20 years, whereas only 3.3% of 780 

forests experienced significant biomass carbon losses (Figure 6d). 781 
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 783 

Figure 46. Maps of woodyforest biomass amountcarbon pool, allocation and trend in China 784 

during 2003–20202002–2021. (a) Spatial pattern of woody total biomass in China; (b) the 785 

latitudinal pattern of per-area woody AGB, BGB and total woody area in China (woody areas 786 

below 22°N are limited); (c~d) map of woody vegetation’s RSR and its histogram; (e~f) map 787 

of the woody biomass trend and its histogram. Shaded areas in trend maps indicatethe forest 788 

biomass carbon pool in China; (b) all forestland pixels’ RSR; (c) map of the forest biomass 789 

carbon stock trend from 2002 to 2021, with shaded areas representing statistically significant 790 

trends at the 95% confidence level, while the ; (d) histogram and basic statistics of all woody 791 

pixels’forest biomass amount andcarbon stock trend are labelled in the subfigures with 792 

histograms.  793 
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In agreement with our results (AGB: 24.4±1.6 Pg, total biomass: 30.7±2.0 Pg), 794 

previous studies estimated a total woody AGB in China of 23.4±0.6 Pg after 795 

2003 (Liu et al. 2015) and a total woody biomass of 29.4±1.1 Pg during 796 

2003~2019 (Xu et al. 2021). However, the spatial pattern inferred here 797 

markedly differ compared with these previous estimates. We predict higher 798 

woody biomass in the central-south and southwest China but lower biomass 799 

values in the northern and northwest regions (Figure S9a~f). The spatial 800 

pattern of our AGB map agrees well with that of recent high-quality China’s 801 

forest AGB maps which were developed by integrating Lidar, P-band SAR 802 

and forest inventory data 4 Discussion 803 

4.1 Comparison of the estimated forest biomass carbon pool change in this study against 804 

the existing datasets 805 

Although with potential overestimation, the inter-annual variation in forest AGBC in China 806 

according to Liu et al. (2015) and that of total biomass carbon according to Xu et al. (2021) are 807 

both highly correlated with our results (R2= 0.65 and 0.88). Liu et al. predicted a forest AGBC 808 

increase rate of 102.2 ± 35.8 Tg/yr (p<0.01), slightly higher than our estimate of 80.8 ± 25.1 809 

Tg/yr during 2002–2012; while Xu et al. indicated a biomass carbon stock trend of 99.4 ± 23.2 810 

Tg/yr (p<0.01) from 2002 to 2019, slightly lower than the rate of 115.6 ± 20.2 Tg/yr in this 811 

study (Figure 7a~b). The spatial maps of the forest biomass carbon trends estimated by Xu et 812 
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al. and Liu et al. were slightly patchy (Figure 7c~d). Compared to this study, the two existing 813 

datasets (i.e., Liu et al. (2015) and Xu et al. (2021)’s datasets) predicted higher biomass carbon 814 

stock trends in the Qinling Mountains and the mature deciduous conifer forests in northeast 815 

China. Meanwhile, they predicted lower carbon sinks in southern China (Figure 7c~f), where 816 

reforestation and forest management-induced short term extensive carbon uptake (Tong et al., 817 

2020) have been confirmed by atmospheric inversions (Wang et al., 2020; Yang et al., 2021).  818 

Finally, by comparing Figure 7e and 7f, we could also notice that the hotspot of forest biomass 819 

carbon gains has moved from the Loess Plateau over the first decade of our study period (2002–820 

2012) to southern China (e.g., Guangxi Province) later. This change was probably due to the 821 

large-scale implementation of the ‘Grain for Green’ project on the Loess Plateau (HuangLiu et 822 

al. 2019; Su., 2020; Wu et al. 2016., 2019), with the correlation coefficients both reaching 0.73. 823 

For Liu et al. (2015)’s and Xu et al. (2021)’s dataset, the spatial pattern correlations with those 824 

improved AGB maps are 0.35~0.50 and 0.27~0.37, respectively (Figure S10). The average 825 

woody AGB in eight provinces of southern China was 92~104 t/ha (Tong et al. 2020), close to 826 

our estimate of 85~110 t/ha. Forest inventory indicated a tree biomass of 1.92 Pg in Tibet (Sun 827 

et al. 2016) where our result was 1.86 Pg yet the two existing long-term datasets predicted 828 

1.26~1.52 Pg.  829 

The interannual variation in woody AGB in China according to Liu et al. (2015) and that of 830 

total woody biomass according to Xu et al. (2021) are both highly correlated with our results 831 
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(r= 0.76 and 0.95). Liu et al. predicted a woody AGB increasing rate of 186±79.6 Tg/yr (p<0.01), 832 

similar to our estimate of 236±117 Tg/yr during 2003~2012; while Xu et al. indicated a biomass 833 

trend of 219.4±79.6 Tg/yr (p<0.01) from 2003 to 2019, lower than the rate of 368±69.9 Tg/yr 834 

in this study (Figure S11a, c). Spatially, this study predicted an obviously faster biomass 835 

increases in southern China than their datasets (Figure S11). Reforestation and forest 836 

management led to a short term extensive carbon sequestration in southern China, which was 837 

estimated as 220±100 Tg AGB/yr during 2002~2017 by developing a regional RF model 838 

between MODIS reflectance data and a global benchmark AGB map (Tong et al. 2020), close 839 

to our estimate of 200±58 Tg AGB/yr. The high ecosystem carbon sink in central to south China 840 

and southwestern China has been shown by atmospheric inversions as well (Wang et al. 2020; 841 

Yang et al. 2021). 842 

Accordingly, by fusing low-frequency active, passive microwaves and the advanced LiDAR-843 

derived canopy heights under the reference of extensive field measurements, this study could 844 

generate updated estimates on the spatial hotspots of woody biomass and its trends in China. 845 

3.4 Uncertainties of the woody biomass dataset  before 2012, and the massive plantation of 846 

fast-growing trees in southern China after 2010 (Tong et al., 2020).  847 
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 848 

Figure 7. Comparison of the estimated forest biomass carbon pool change in this study against 849 

two existing datasets. (a) Comparison of the inter-annual variation of forest biomass carbon in 850 

this study against the estimate by Xu et al. during 2002–2019; (b) comparison of the inter-851 

annual variation of forest AGBC calculated in this study against the estimate by Liu et al. over 852 

2002–2012; (c) map of the inter-annual trend of forest biomass carbon stock in China during 853 

2003–2019 according to Xu et al; (d) map of the forest AGBC trend in China during 2003–2012 854 

according to Liu et al; (e) map of the estimated trend of forest biomass carbon stock over 2002–855 
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2019 in this study; (f) map of the estimated forest AGBC trend over 2002–2012 in this study. 856 

4.2 Some uncertainties of the forest biomass carbon dataset and future prospects 857 

The uncertainties of AGB in this study came from four sources: 1) the improved benchmark 858 

AGB map for China; 2) the extension of AGB time series based on the long-term integrated 859 

VOD and high/short vegetation coverage datasets; 3) downscaling of coarse resolution AGB; 860 

and 4) the AGB decomposition process. The uncertainty in BGB was composed of the error 861 

within the AGB time series and the prediction uncertainty of the models that transform AGB to 862 

BGB. The details for the calculation of each source of error are in Text S2. Finally, the annual 863 

AGB and BGB’s relative error can be calculated as the square root of the sum of squares of all 864 

relative errors, which is referred to as the ‘error propagation rule’ when assuming that each error 865 

is independent and random (Huang et al. 2021). By multiplying the annual AGB or BGB map 866 

with the corresponding relative error, we mapped the AGB and BGB’s uncertainties in China 867 

annually during 2003–2020. As shown in Figure S12, the spatial patterns of the relative errors 868 

of AGB and BGB are similar. Relative errors were lower in the pure forests located in northeast 869 

China and the south Tibet, and high in the mixed forest and shrublands in the southwest karst 870 

regions and part of North China. 871 

A recent study revealed that the variation in VODs is correlated with not only biomass, but also 872 

soil moisture availability (Konings et al. 2021). To alleviate this source of uncertainty as much 873 

as possible, we have incorporated the satellite-based surface soil moisture dataset to account 874 
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for the impact from the interannual variation in water content per biomass. In addition, we have 875 

included optical-based vegetation continuous fields in predicting the spatiotemporal variation 876 

in biomass, which turned out to be the variable with the highest contribution (56%). In fact, the 877 

interannual variation in Chinese woody biomass according to this study is highly correlated 878 

(r=0.95) with that calculated independent of microwave-based VOD (Xu et al. 2021). 879 

Next, the During benchmark AGBC mapping, we converted the in-situ AGBC data at forest 880 

plots into the grid-scale average AGBC by multiplying by the fraction of forestland during the 881 

time period of field investigation. Considering the overall high-quality of the China's land-882 

use/cover datasets developed via human–computer interactive interpretation of Landsat images 883 

(Liu et al., 2014; Yang and Huang, 2021), and that the producer’s accuracy (PA) and user’s 884 

accuracy (UA) for forestland classification in the CLCD dataset used in this study were 73% 885 

and 85% respectively, the errors within the benchmark AGBC mapping induced by the scale 886 

conversion based on the forestland area fraction were generally limited. 887 

The variation in climatic conditions in athe short term may have subtle influences on that in the 888 

BGB, but explicit knowledge on this effect is lacking. Instead, woody vegetation BGB is much 889 

more driven by AGB (vegetation density), as indicated by the very strong relationship between 890 

BGB and AGB (R2≥0.85). Moreover, the long-term climatic background is expected to have a 891 

stronger influence on the RSR of perennial woody plants than the meteorological conditions in 892 

only a few years, since above- and belowground biomass allocation is the result of plants’ long-893 
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term adjustment to the environment (Qi et al. 2019). Accordingly(Qi et al., 2019). Therefore, it 894 

is reasonable not to consider the influence of the specific climatic conditions in a year on the 895 

variation in BGB. 896 

In the near future, P-band microwave sensors, which have higher penetrability into the canopy 897 

than L-band microwaves, will further improve the AGB mapping. For example, BIOMASS, a 898 

fully polarimetric P-band SAR, is scheduled to be launched in 2022 (Le Toan et al. 2011)(Le 899 

Toan et al., 2011). Therefore, in the future the relationship between P-band microwave retrievals 900 

and biomass should be addressed, as well as the calibration of historical AGB datasets (e.g., the 901 

long-term AGB dataset in this study) against the P-band SAR-based AGB benchmark map to 902 

extend the time series. In addition, an inter-calibration between the AMSR-E-based VOD and 903 

the AMSR2-based VOD will further reduce the potential bias within the long-term integrated 904 

VOD datasets (Wang et al., 2021a; Wang et al., 2021b). On the other hand, more in-situ AGB 905 

and BGB measurements in larger plots are needed to further improve the estimation of 906 

belowground biomass allocation. 907 

Data availability 908 

Annual forest above- and belowground biomass maps in China between 2002 and 2021 are now 909 

available at: https://doi.org/10.6084/m9.figshare.21931161.v1. This dataset will also be 910 

available on the National Tibetan Plateau/Third Pole Environment Data Center and PANGAEA 911 

soon (under checking now). Annual AGB and BGB in China will be available on the National 912 

https://doi.org/10.6084/m9.figshare.21931161.v1
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Tibetan Plateau/Third Pole Environment Data Center and PANGAEA: . Other open datasets 913 

that made this research possible and the related references are attached in Supplementary 914 

Information- Text S3S2. 915 
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