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Abstract

To quantify the ecological consequences of recent ratien-widenationwide restoration efforts in
China, spatially-explicit information on weedyforest biomass carbon stock changes over the
21" eentarypast 20 years is critical. However, long-term biomass tracking at the national scale
remains challenging as it requires continuous and high-resolution monitoring. Here, we
characterize the changes in forests” above- and belowground biomass {AGBcarbon (AGBC and
BGB)ferwoedy-vegetationBGBC) in China between 26032002 and 20262021 at ~1 km spatial
resolution by integrating multiple types of remote sensing observations with intensive field plot
measurements through regression and machine learning and—mixed-pixeldecompeosition
metheds-approaches. On average, H-8.6 + 0+0-7.6 and 2.8=0-2 £ 0.1 PgC arewere stored in
above- and belowground live sweedy-biemassforests in China. Over the last 1820 years, the total
weedyforest biomass carbon pool in China has increased at a rate of +63-8114.5 + 16.3 TgCl/yr

(0-5approximately 1.1%/yr). The most pronounced forest biomass_carbon stock gains occurred

in central to southern China, including the southern Loess Plateau, Qinling Mountains,
southwest karstkarsts and southeast forests. TheWhile the combined use of lew—frequeney
mierowaves-and-advaneed-tasermulti-source remote sensing data provides a powerful tool to

assess the forest biomass

spaece-and-time—Futarecarbon changes, future research is also needed to explore the drivers of
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the observed woody biomass trends, and to evaluate the degree to which biomass gains will

translate into biodiverse, healthy ecosystems and thus are sustainable.

Key words: Aboveground biomass_carbon pool; Belowground biomass_carbon; Long-term

continuous mapping;Hetspet-efameunt-and-trend; China
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1 Introduction

biemass{AGB)-Forest biomass carbon stock contributes to over 90% of the global vegetation

biomass carbon pool (Ma et al., 2021). As a net outcome of carbon gains from photosynthesis

and carbon losses from respiration, mortality and disturbances, forest biomass carbon stock

(approximately 50% of biomass) is a critical indicator of ecosystem function hereinafter

SVCmean—rand ecosystem services, such as carbon sequestration, wood production and

resource allocation (Kumar and Mutanga, 2017). Accurate forest biomass carbon stock

monitoring over space and time is thus essential for assessing ecosystem management strategies

and mitigation policies (Kumar and Mutanga, 2017).

In recent decades, remote sensing tools have been integral in our efforts to map aboveground

biomass (AGB) or carbon stock (AGBC). By combining satellite imagery (e.g., MODIS) and
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airborne LiDAR signals, forest cover and canopy height can be mapped across large spatial
scales (Hu et al-., 2016; Saatchi et al-., 2011; Su et al-., 2016; Tong et al-.. 2020; Xu et al-., 2021).
Apart from #mageriesoptical images and LiDAR signals, microwaves can provide more detailed
insights into sub-eanepysubcanopy forest structure and AGBAGBC due to their ability to
penetrate the canopy. Active microwave techniques, i.e., Synthetic Aperture Radar (SAR)
backscatters, facilitate high-resolution (e.g., 100 m) AGB mapping, but the temporal coverage

is limited (Beuvetetal2048;-Cartus et al-., 2012; Bouvet et al., 2018). Conversely, vegetation

optical depth (VOD) retrieved from multiple passive microwave sensors can be used to produce
long-term continuous AGB maps (Frappart et al-., 2020; Liu et al-., 2011; Liu et al-.. 2015), yet
at a coarse spatial resolution (e.g., 0.25°). Because optical, LibAR-and-mierowave(bothactive
and-passive)different remote sensing techniques al-have differenttheir advantages and pitfalls,
combining these techniques and complementing them with direct ground measurements is
integral to maximizing the accuracy and precision of biomass carbon estimations across space

and time.

Another source of uncertainty in vegetation biomass carbon stocks is the extent of biomass that

is stored belowground as roots. While AGBAGBC mapping is facilitated by thea suite of
emerging remote sensing techniques, investigating the spatiotemporal variation in belowground

biomass {BGBcarbon pool (BGBC) remains challenging despite the large contribution of reet

biemassroots to total carbon storage (Huang et al-.. 2021; Ma et al-., 2021). To map BGBBGBC,

the commonly-used approach is to combine aboveground biomass information with vegetation

5
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type-specific ratios of BGB to AGB (i.e., root-shoot ratio, or RSR) (Xu et al., 2021: Saatchi et

al-., 201 1:Xuetal2021)-

. Because field studies indicate a near-linear relationship between log-transformed BGB and

AGB (Enquist Brian and Niklas Karl, 2002), BGB variations at large scales have often been

approximated using this relationship (Spawn et al., 2020). To capture the complex relationship

between BGB and biotic or abiotic variables (e.g., stand age, heat and water availability),

machine learning algorithms have been applied to map BGB (Huang et al., 2021) and root-mass

fractions (Ma et al., 2021) globally. However, the reference plots were unevenly distributed

across the world, limited in developing countries, leading to some uncertainties in BGB and

BGBC estimation within those regions (Huang et al., 2021).
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China has been implementing national-scale afforestation and reforestation programs since the
late 1990s (bu-et-al—2648)(Lu et al., 2018), promoting vegetation cover and carbon storage in
the Loess Plateau and the southwest karst regions, etc. (Chen et al-., 2019a; Niu et al-., 2019;
Tong et al-., 2018). A spatial understanding of weedyforest biomass trends can help evaluate
the efficiency of ecological restoration programs. High quality, high resolution and long-term

continuous woody biomass monitoring in China has remained challenging;-due-to-diffieulties

(Zhang

etal., 2019; Huang et al-2649:-Zhansetak., 2019).

In this study, we-intesrate-differentby integrating multi-source remote sensing teels{eptical;

aetive/passive-mierewaveand LiDAR)data with large quantities of plot measurements-through

randomforest-approach—to—produecehigh-, we produced 1 km resolution (—km)-above- and

belowground sweedsyforest biomass carbon pool maps #for China during 2603—2620-the past

20 years (2002-2021). This dataset could provide new insights into the-spatial-hetspets—of

woody—biomass—and-its—interannualforest carbon stock changes in China over the past two

decades.

2 Materials and methods
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FEinallysteTo map above- and belowground forest biomass carbon stock in China during 2002—

2021, we 1) calibrated a SAR-based high-resolution forest aboveground biomass map in China
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based on massive field measurements of AGBC during 2011-2015; 2) extended the AGBC time

series to 2002—-2021 by referring to the tree and short vegetation cover retrieved from optical

remote sensing; 3) calibrated the AGBC time series in some specific areas using a long-term

integrated microwave-based VOD dataset; and 4) mapped forestlands’ BGBC through a random

forest model developed based on the in-situ records in published literature. The basic procedure

is shown in Figure 1 and described below.

GlobBiomass 2010
(C and L-band SAR)
CLCD: Mean AGBC measurements at 2444
fraction of forestland homogeneous forest plots in
over 2011-2015 China during 2011-2015
A benchmark map of
forest AGBC in China Legend
ODIS Ve Remote sensing
Mco?ir a‘llld I:l‘lg:tee — LG dan
. (AMSR-E+AMSR2)
vegetation cover Forest plot data
Space for Time ——»¢——  Regression Method
v
Annual forest AGBC Output

during 2002-2021

8729 forest plots’ AGB and

CLCD: Annual BGB measurements in China

fraction of forestland

Forest type and stand

‘_
Random N age maps

Forest model
v

Annual forest BGBC
during 2002-2021

Figure 1. Workflow of forest biomass carbon pool monitoring in China during 2002—2021.

AGBC, BGBC: aboveground and belowground biomass carbon; VCF: vegetation continuous
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fields; LPDR VOD: global land parameter data record- vegetation optical depth; CLCD: China

Land Cover Dataset

2.1 A benchmark map of forest aboveground biomass carbon (AGBC) in China

By combining multiple satellite observations of SAR backscatter, including the L-band ALOS

PALSAR and C-band Envisat ASAR around the year 2010, the first global high-resolution (100

m) forest AGB dataset, GlobBiomass 2010, was published through the European Space Agency

(ESA)’s Data User Element project (Santoro et al., 2021), whose relative root mean square error

(RMSE) was below 30% (Mialon et al., 2020). Apart from GlobBiomass 2010, another high-

resolution (30 m) forest AGB for China was produced by relating the ICESat GLAS (LiDAR)-

derived footprint AGB to various variables derived from Landsat optical images (Huang et al.,

2019). Because the ICESat data in 2006 were applied as the training target of the random forest

model, Huang’s dataset refers to the AGB status in 2006. According to a recent validation study,

GlobBiomass and Huang’s AGB performed the best among all existing AGB datasets in China

(Chang et al., 2021). Mean forest canopy heights and tree coverage are also good indicators of

the spatial pattern of forest biomass. The high-resolution (30 m) forest canopy height map for

China was developed by interpolating the ICESat-2 and GEDI data in 2019 through a neural

network (Liu et al., 2022), while the tree cover map at the same resolution was derived from

cloud-free growing season composite Landsat 7 data in around 2010 (Hansen et al., 2013). We

resampled GlobBiomass from 100 m resolution (1/1125°) to 1/1200° (approximately 90 m),

and averaged Huang’s AGB map, canopy height map and tree cover map to the same resolution.
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A reviewable, consistent ecosystem carbon stock inventory was conducted in China between

2011 and 2015 (Tang et al., 2018). We requested the AGB carbon stock (AGBC) data at more

than 5.000 30x30 m sized forest plots from the authors. Due to the scale mismatch between the

maps of biomass, canopy height or tree cover and the field measurements, we dropped out the

data within the 1/1200° resolution grids in which the standard deviation of tree cover was

greater than 15%, according to (Chang et al., 2021), leaving 2444 homogeneous forest plots

remaining (see Figure 2 for the spatial distribution of these forest plots and Figure Sla~b for

the cumulative frequency curve and histogram of the AGBC records). The AGBC records in

these forest plots were further multiplied by the mean fraction of forestland over 2011-2015 in

the corresponding grid, which was computed from the annual 30 m resolution China Land

Cover Dataset (CLCD) (Yang and Huang, 2021). By comparison, GlobBiomass 2010 AGB

matches the best with the grid-scale forest AGBC derived from plot measurements, with a

correlation coefficient (CC) of 0.50, followed by tree cover (CC=0.42), the product of canopy

height and tree cover (CC=0.38), and finally the canopy height (0.27) and Huang’s AGB (0.25).

Therefore. to obtain an improved benchmark map of forest AGBC in China for the period of

20112015, we chose the GlobBiomass 2010 dataset as our basis, and calibrated it against the

in-situ observation-based grid-scale forest AGBC. To build an equation for the calibration, we

divided the grid-scale AGBC values into 16 equidistant subranges (0~15, 15~30, ..., 225~240

tC/ha), calculated the median of grid-scale AGBC values that are within each subrange, and

then the median of GlobBiomass AGB values in the corresponding grids. According to previous
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studies, an exponential function would be suitable for calibrating the GlobBiomass map in a

region such as China (Mialon et al., 2020). After the calibration, we averaged the benchmark

AGBC map from 1/1200° to 1/120° (approximately 1 km) to further reduce the uncertainties.

x Forest plots with AGB carbon measured in 2011-2015
* Forest plots with both AGB and BGB records

L L L L. R S L A AL IS OO L B O S HO SN SN BN S S B S S R S
HERESCESEWEMEIE I1M°E 1LI0PE 116°E 122°E 128°E I134°E

Figure 2. The spatial distribution of 1) 2444 homogeneous forest plots with aboveground

ground biomass carbon stock measured between 2011 and 2015; and 2) 8182 forest plots with

both above- and belowground biomass records collated in this study.

2.2 Temporally continuous forest AGBC mapping during 2002-2021

Because the benchmark AGBC was mapped based on SAR data, the spatial pattern accuracy is

guaranteed, but the temporal coverage is limited to just a few years. Hence, to create a forest

AGBC time series over the past 20 years, we integrated the benchmark AGBC with long-term
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continuous optical and passive microwave remote sensing data.

The spatial resolution of optical remote sensing is higher, and is thus preferred in this study. By

adopting the MODIS vegetation continuous fields (VCF) data (MOD44B v061) which includes

three ground cover components: percent tree cover, percent non-tree vegetation (i.e., short

vegetation) cover, and percent non-vegetated (Dimiceli et al., 2022), we first calculated the

mean tree cover (hereinafter, TCmean) and short vegetation cover (hereinafter SVCiean) during

2011-2015, and resampled them from 250 m to 1/120°, the same resolution as the benchmark

AGBC map for 2011-2015. Because the canopy heights of trees are usually similar within a

small area, the regional AGBC per TCuean Can be assumed as the same, which is referred to as

the ‘homogeneous assumption” hereinafter. Accordingly, for each grid, we searched the TCmean,

SV Cean and AGBC within a 3x3 window (1/40°x1/40°), and then regressed the AGBC values

in 9 grids against both TCpean (the primary, or key predictor of AGBC) and SVCean (assumed

as a supplementary predictor) linearly. Specifically, when the regression coefficient of SV Cmean

was negative or the fitting efficiency was low (R?<0.5: significance p-value>0.05), we excluded

the supplementary predictor from the regression, only exploring the linear relationship between

TCmean and AGBC. Afterwards, if the regression between TCmean and AGBC was still invalid,

we enlarged the searching window size to 5x5, then 7x7, and finally 9x9, until the regression

as well as the coefficients became valid. Then, the grid annual AGBC from 2002 to 2021 can

be estimated from the TC or both TC and SVC in each year, following the regression results. If

the regression failed even if the window size reached 9x9, we stopped expanding the searching
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window to avoid the ‘homogeneous assumption’ being invalid. In those grids, following a

previous study (Xu et al., 2021), we divided the estimated AGBC by the TCmean during 2011—

2015 and then multiplied the TC in each year to obtain the AGBC time series. The above

method utilized spatial information to estimate the temporal variation, and can thus be referred

to as the ‘space for time’ method.

Long-term continuous microwave VOD can also reflect forest biomass changes, although the

relationship was nonlinear (Jackson and Schmugge, 1991; O'neill et al., 2021; Liu et al., 2015;

Wigneron et al., 1995). We selected the global land parameter data record (LPDR) v3 0.25°

resolution VOD product, which was generated using similar calibrated, X-band brightness
temperature retrieved from the Advanced Microwave Scanning Radiometer (AMSR-E) and the
Advanced Microwave Scanning Radiometer 2 (AMSR2) (Du et al., 2017). As revealed by a

recent evaluation study, LPDR VOD is better correlated with AGB than other long-term VOD

products, especially in less-vegetated areas (Li et al., 2021). Because X-band VODs are still

more sensitive to canopy cover than stem biomass and there is a data gap between October 2010

and June 2011, while the plot investigations were all conducted in summers (Tang et al., 2018)

we averaged the VOD data from mid-July (the 206" day) until the end of September (the 274%™

day) in each year to represent the annual AGB status. We also aggregated the benchmark AGBC

map as well as the VCF data (TCmean_and SVCpean) to 0.25° resolution. After each round of

searching, we applied the shape language modelling algorithm (D'errico, 2022) to fit the

nonlinear but monotonous relationship between AGBC and VOD values within the searching
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window, and then fitted the bivariate linear regression between AGBC and VCF. If the nonlinear

regression between AGBC and VOD is valid and the R? is superior to the regression between

AGBC and VCF data, LPDR VOD data is expected to outperform VCF in predicting the inter-

annual AGBC changes in the corresponding 0.25° grid. Therefore, in these areas, we calibrated

the VCF-derived high (1/120°) resolution annual AGBC by incorporating the ratio between the

VOD-derived 0.25° AGBC and the aggregated VCF-derived AGBC in that year.

2.3 Forest belowground biomass carbon (BGBC) mapping during 2002-2021

This study mapped belowground forest biomass carbon (BGBC) following the random forest

(RF) model approach (Huang et al., 2021). To reveal forests’ above- and belowground biomass

allocation rules in China, this study collated both AGB and BGB records at 8729 forest plots

throughout China, which were obtained using allometric equations or clear-cutting methods

from published papers, including (Luo, 1996). (Luo et al., 2014), (Guo and Ren, 2014), (Wang

et al., 2014). Because forest stand age and tree species (forest type) information are also

available at 8182 plots, while the climatic backgrounds are available from the WorldClim v2.1

dataset (Fick and Hijmans, 2017), forest plots’ AGB, forest type (hereinafter FOR_T), stand

age, mean annual temperature (MAT), temperature seasonality (standard deviation of monthly

temperaturex100, abbreviated as Tsea), mean annual precipitation (MAP) and precipitation

seasonality (coefficient of variation of monthly precipitation, Psea) were applied as predictors

of forest plots’ BGB. For simplicity, we distinguished all forests into 5 types: evergreen
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broadleaf forest (EBF), deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF),

deciduous needleleaf forest (DNF), and mixed forest (MF). Using the data records at these 8182

plots (see Figure 2 for the locations of these forest plots and Figure S1c~f for the cumulative

frequency curves and histograms of the AGB and BGB data), we trained ten-fold RF models

using MATLAB R2021a®. The number of regression trees was set to 500.

Because the 1/120° resolution grids where forest AGBC data were available are often mixed

with forestland and some other land cover types, e.g., water bodies, bare ground, croplands, we

converted the annual grid-average AGBC into the AGBC per area forestland by incorporating

the annual fraction of forestland computed from the CLCD at 30 m resolution. Considering the

potential uncertainties in the forestland fraction as well as the inclusion of shrub or herbaceous

plant AGB in the SAR-derived AGB, we only calculated the annual AGBC per area forestland

in grids that were dominated by forestland (forestland fractions were consistently over 50%).

In these forestland grids, we simulated the forest BGBC per area forestland during 20022021

by inputting the estimated annual AGB (approximately 2 times of the AGBC) per forestland,

annual forest type map derived from ESA CCI’s land cover classification dataset (Li et al.,

2018), forest stand age (Besnard et al., 2021) and climatic background variables into the RF

model. Afterwards, we multiplied the simulation results in every forestland grid with the annual

forestland fractions to obtain the forests’ BGB and BGBC (0.5xBGB) time series. Finally, for

grids with forests but are not dominated by forestlands, we sequentially searched for at least

five valid RSR values (the ratio of forests’ BGBC to AGBC) nearby (Chen et al., 2019b), and
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then multiplied the annual forest AGBC in the grid with the median of nearby RSR values in

each year to estimate the annual forest BGBC.

2.4 Evaluation and assessment

We compared the inter-annual trend of forest biomass carbon calculated in this study against

that of existing global/regional long-term woody biomass datasets, including the well-received

global long-term terrestrial biomass data between 1993-2012, which was developed mainly

based on a long-term integrated VOD dataset (Liu et al., 2015), as well as an updated woody

biomass dataset covering 2001-2019 whose long time series was derived from optical remote

sensing data (i.e., MODIS VCF dataset) (Xu et al., 2021).

To justify the random forest models for biemass—and-aleeationBGBC predictions, we drew
partial dependence plots (PDPs) in MATLAB R2021a® to show the marginal effect that one

predictor has on the training target (e.g., BGB at forest plots)-frem-a-machine learning-model

Hastie-et-al—2009)(Hastie et al., 2009). Here, for each predictor, we excluded the extreme

values (the lowest 1% and the highest 1%) before calculating the corresponding PDP to ensure

itsrobustress-avoid roughly extending the PDP lines to data-scarce areas. Ten-fold RF trainings

were _also performed to derive the mean PDP values as well as the standard deviations.
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3 Results and discussion

3.1 Medel-development-and-Evaluation_of forests’ AGBC and BGBC estimation
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First, according to Figure 3a, an exponential function: y=1.63 x x®73 can fit the relationship

between the actual grid-scale forest AGBC over 2011-2015 (y) and the AGB values predicted

by GlobBiomass 2010 (x). Hence, this function was applied to derive the benchmark map of

forest AGBC across China.

Second, when using the spatial information of tree cover and short vegetation cover to estimate

the temporal variation of AGBC in each grid, the spatial searching window was at its minimum

of 3x3 in most (53%) grids with forests. Across China, the temporal extension of AGBC in only

15% of all grids with forest cannot be achieved even when the searching window was enlarged

to 9x9 (Figure 3b).

Next, as shown in Figure 3¢ and 3d, the grids where LPDR X-band VOD performed better than

MODIS VCF in predicting the temporal change in forest AGBC are usually located in regions

with low tree cover. These grids account for just 10.4% of all grids with forests, and may suffer

from high uncertainty within the optical-based variation in tree cover. Therefore, microwave-

based VOD is supposed to be more suitable for estimating the forests’ AGBC changes in these
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of AGBC and the grids where VCF data were the better predictor.

The RF model designed for woeedyplots*forest plot BGB estimation (see section 2.53) achieved
a predictive R of 0.89+0.02, while the RMSE was 6.3+0.5 t/ha. AGB explained 53% of the
variation in BGB’s-variatien among different weedyplots. Long-term climate backgrounds, i.e.,
mean annual temperature, temperature seasonality, annual precipitation and precipitation
seasonality accounted for 8%, 6%, 8% and 7%, respectively. Forest type and stand age also
contributed 12% and 8% to the training efficiency, indicating that the effects of these factors
are nonnegligible. The selection of predictors of BGB basically followed the existing

knowledge (Huangetal2021(Huang et al., 2021), and the seasonality of temperature and

precipitation made sense in the prediction (see Text S1). On the other hand, although previous

studies incorporated many edaphic factors as predictors of BGB (Huangetal—2021by

S1).
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According to the collected woody plots’ data, AGB is a key driver of BGB (Figure 2d~g4). Yet,

RSR changes among different forest growth stages, decreasing in general as reported Mekany

etal2006)(Mokany et al., 2006). The overall negative impact of mean temperature on BGB

or RSR agrees with the mechanism that higher heat promotes nutrient accessibility (Luo et al-.,
2012; Ma et al-.. 2021), and increases the turnover rates of roots at a higher magnitude than
stems (Reich-et-al-2014)-(Reich et al., 2014). The ‘U-shaped’ relationship between precipitation
and belowground biomass allocation follows the ‘optimal biomass allocation’ theory, because
arid climates promote root extension, yet too heavy rainfall reduces nutrient availability through
leaching and dilution effeeteffects Hono-etak2042)(Luo et al., 2012). Other factors, including
temperature seasonality, precipitation seasonality and forest type, have supplementary effects

on the-biomass allocation (Figure S8S2).
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Figure 24. Influence of key factors on woeedyplets—abeove—and-forest belowground woedy
biomass (BGB) and root-shoot ratio (RSR) in China._Subfigures (a~e)Partial-effeets—of(a)
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weedyforest plots. The error bars represent the standard deviations of the ten-fold trainings. We
did not draw the PDP for the impact of AGB on RSR, since the dividend of RSR calculation is
AGB.
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Between 2002 to 2021, the forest above- and belowground biomass carbon (AGBC and BGBC)

pools in China were 8.6 = 0.6 and 2.2 + 0.1 PgC, respectively (Table 1). The mean RSR for all

forests was 0.25, basically equal to the global average (Huang et al., 2021). Separated by forest

type, evergreen conifer forests (ENF) occupy the highest biomass carbon pool per unit area,

mainly because ENF are mainly located in southwestern China and are more mature and natural

(Yu et al., 2020; Zhang et al., 2017). Deciduous forests (DBF & DNF) in northern China (see

Figure S3 for the distribution of different forest ecosystems) harbor less biomass carbon but

higher BGBC (Figure 5a), which can be attributed to the higher RSR values (Table 1).

The forest biomass carbon stock in China increased at an average rate of 114.5+16.3 TgC/yr

(p<0.01) during 2002—2021, and the annual biomass carbon gains were the greatest from 2014

to 2015, reaching 736 TgC (Figure 5b). Changes in AGB and BGB accounted for 81.9% and

18.1%, respectively, of the forest carbon stock gains over the past 20 years.

Our estimates of the forest biomass carbon pool, forest RSR and the recent inter-annual trend

of forest biomass carbon are generally consistent with previous estimates based on massive

field investigations (Table 1).

Table 1. Agreement of the estimated various forest RSR and the trend of forest biomass carbon

in China with existing studies.
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Figure 3-—Weedy5. Forest biomass allocation and biomass change in China during 2603—
20202002-2021: (a) per-areaAGB-and BGB;-as—well-as RSRsaboveground biomass carbon

(AGBC) and belowground biomass carbon (BGBC) density of different forest ecosystems in

in—China; (b) the interannualinter-annual changes of tetalforestland AGB—(AGB-forest);

AGBC and BGBC in China. Total

forest); shrubland BGB(BGB-shrubland)-Biemass biomass carbon stock changes (ABiomass)
inforests—and-shrublands—from the previous to the current year are represented by blue-and

purple-green columns.
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3.3 Updated—spatial hetspotsSpatial pattern of weedythe forest biomass ameunt

andcarbon stock trend in China

The highest per-area-weedlandforest biomass iscarbon pools during 2002-2021 were observed

in theseuthwest—efnortheastern and southwestern China, especially seuthsouthern Tibet.

WoedyForest biomass iscarbon stocks were also high in parts—efthe natural or semi-natural

forests in the Qinling Mountains, Hengduan Mountains, Hainan and Taiwan islands-(Figure 4a)-

lowest-in-the-mid-latitudes; 3840 N-(Figure-4b).6a). Above- and belowground woeedsyforest

biomass allocation varies significantly among regions. RSR is highest in northeastern

deciduous conifer forests and northern China’s deciduous forest-The-southwestkarsts-also-have

of0-2-0-3-(Figure4d)-broadleaf forests but low in southern China (Figure 6b). The strongest

forest biomass_carbon increases were found in central to southern China, including the seuthern

part-of-the-Loess Plateau, the-Qinling Mountains, the-southwest karst region and southeastern
forests. PeelinesSlight declines in weedyforest biomass carbon only occurred in some mature
and natural forests, e.g., those in the Greater Khingan Mountain, Hengduan Mountains and

South Tibet (Figure 4e)-59-8%6c). A total of weedy-areas40.3% of all forests in China showed

significant biomass carbon stock gains (Figare-4fover the past 20 years, whereas only 3.3% of

forests experienced significant biomass carbon losses (Figure 6d).
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Figure 46. Maps of wweedyforest biomass ameuntcarbon pool, allocation and trend in China

during 2663-26262002-2021.
latitudinal pattern of

(a) Spatial-pattern-olwoody—total-biomass—in-China—thi-the

biomass carbon pool in China; (b) all forestland pixels’ RSR; (c) map of the forest biomass

carbon stock trend from 2002 to 2021, with shaded areas representing statistically significant

trends at the 95% confidence level;-while-the-; (d) histogram and basic statistics of all weedy
pixels’forest biomass ameunt—andcarbon stock trend—are—labeled—in—the—subfigures—with
histograms.
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and-forest-inventory-data-4 Discussion

4.1 Comparison of the estimated forest biomass carbon pool change in this study against

the existing datasets

Although with potential overestimation, the inter-annual variation in forest AGBC in China

according to Liu et al. (2015) and that of total biomass carbon according to Xu et al. (2021) are

both highly correlated with our results (R*= 0.65 and 0.88). Liu et al. predicted a forest AGBC

increase rate of 102.2 + 35.8 Tg/yr (p<0.01), slightly higher than our estimate of 80.8 + 25.1

Tg/yr during 2002—2012: while Xu et al. indicated a biomass carbon stock trend 0f 99.4 +23.2

Tg/yr (p<0.01) from 2002 to 2019, slightly lower than the rate of 115.6 = 20.2 Tg/yr in this

study (Figure 7a~b). The spatial maps of the forest biomass carbon trends estimated by Xu et
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al. and Liu et al. were slightly patchy (Figure 7c~d). Compared to this study, the two existing

datasets (i.e., Liu et al. (2015) and Xu et al. (2021)’s datasets) predicted higher biomass carbon

stock trends in the Qinling Mountains and the mature deciduous conifer forests in northeast

China. Meanwhile, they predicted lower carbon sinks in southern China (Figure 7c~f), where

reforestation and forest management-induced short term extensive carbon uptake (Tong et al.,

2020) have been confirmed by atmospheric inversions (Wang et al., 2020; Yang et al., 2021).

Finally, by comparing Figure 7e and 7f, we could also notice that the hotspot of forest biomass

carbon gains has moved from the Loess Plateau over the first decade of our study period (2002—

2012) to southern China (e.q., Guangxi Province) later. This change was probably due to the

large-scale implementation of the ‘Grain for Green’ project on the Loess Plateau (HuangLiu et

(#ETHER

al—2bo=5u,, 2020; Wu et al26+6,, 201 9)—with-theeorrelationcoctiietents-bothreachine b5+
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3 4 Uneertaintiesof the-woody biemass-dataset—_before 2012, and the massive plantation of

fast-growing trees in southern China after 2010 (Tong et al., 2020).
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Figure 7. Comparison of the estimated forest biomass carbon pool change in this study against

two existing datasets. (a) Comparison of the inter-annual variation of forest biomass carbon in

this study against the estimate by Xu et al. during 2002-2019; (b) comparison of the inter-
annual variation of forest AGBC calculated in this study against the estimate by Liu et al. over

2002-2012; (c¢) map of the inter-annual trend of forest biomass carbon stock in China during

2003-2019 according to Xu et al; (d) map of the forest AGBC trend in China during 20032012

according to Liu et al; (¢) map of the estimated trend of forest biomass carbon stock over 2002—
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2019 in this study; (f) map of the estimated forest AGBC trend over 2002—2012 in this study.

4.2 Some uncertainties of the forest biomass carbon dataset and future prospects
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Next—the-During benchmark AGBC mapping, we converted the in-situ AGBC data at forest

plots into the grid-scale average AGBC by multiplying by the fraction of forestland during the

time period of field investigation. Considering the overall high-quality of the China's land-

use/cover datasets developed via human—computer interactive interpretation of Landsat images

(Liu et al., 2014; Yang and Huang, 2021), and that the producer’s accuracy (PA) and user’s

accuracy (UA) for forestland classification in the CLCD dataset used in this study were 73%

and 85% respectively, the errors within the benchmark AGBC mapping induced by the scale

conversion based on the forestland area fraction were generally limited.

The variation in climatic conditions in athe short term may have subtle influences on that in the
BGB, but explicit knowledge on this effect is lacking. Instead, woody vegetation BGB is much
more driven by AGB (vegetation density), as indicated by the very strong relationship between

BGB and AGB (R*>0.85). Moreover, the long-term climatic background is expected to have a

(BBTHR: Tk

stronger influence on the RSR of perennial woody plants than the meteorological conditions in

only a few years, since above- and belowground biomass allocation is the result of plants’ long-
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term adjustment to the environment (Qi-et-al26019Aeecordinghy(Qi et al.. 2019). Therefore, it

is reasonable not to consider the influence of the specific climatic conditions in a year on the

variation in BGB.

In_the near future, P-band microwave sensors, which have higher penetrability into the canopy
than L-band microwaves, will further improve the-AGB mapping. For example, BIOMASS, a
fully polarimetric P-band SAR, is scheduled to be launched in 2022 e-Foan-etak20+H(Le
Toan etal.,2011). Therefore, in the future the relationship between P-band microwave retrievals
and biomass should be addressed, as well as the calibration of historical AGB datasets (e.g., the
long-term AGB dataset in this study) against the P-band SAR-based AGB benchmark map to

extend the time series. In addition, an inter-calibration between the AMSR-E-based VOD and

the AMSR2-based VOD will further reduce the potential bias within the long-term integrated

VOD datasets (Wang et al., 2021a; Wang et al., 2021b). On the other hand, more in-situ AGB

and BGB measurements in larger plots are needed to further improve the estimation of

belowground biomass allocation.

Data availability

Annual forest above- and belowground biomass maps in China between 2002 and 2021 are now

available at: https://doi.org/10.6084/m9.figshare.21931161.v1l. This dataset will also be

available on the National Tibetan Plateau/Third Pole Environment Data Center and PANGAEA

soon (under checking now).
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