1	High <u>1 km</u> -resolution maps reveal increases in woody above- and
2	belowground forest biomass carbon pools in China from 2003 to
3	2020 over the past 20 years
4	Yongzhe Chen ^{1,2} , Xiaoming Feng ^{1,2,*} , Bojie Fu ^{1,2} , Haozhi Ma ³ , Constantin M. Zohner ³ ,
5	Thomas W. Crowther ³ , Yuanyuan Huang ^{4,5} , Xutong Wu ⁶ , Fangli Wei ¹

6 1 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-

- 7 Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China.
- 8 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing,
- 9 PR China.
- 10 3 Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich,
- 11 Switzerland.
- 12 4 Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ,
- 13 Université Paris-Saclay, Gif-sur-Yvette, France
- 14 5 Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria,15 Australia
- 16 6 State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of

1

17 Geographical Science, Beijing Normal University, Beijing, PR China.

\neg	样式定义:	正文	
\int	样式定义: 或语法	EndNote Bibliography Title: 不检查拼写	
Y	样式定义:	EndNote Bibliography: 不检查拼写或语法	

18 *Correspondence authors: <u>fengxm@rcees.ac.cn</u>fengxm@rcees.ac.cn

19 Abstract

20 To quantify the ecological consequences of recent nation-widenationwide restoration efforts in 21 China, spatially-explicit information on woodyforest biomass carbon stock changes over the 22 21st centurypast 20 years is critical. However, long-term biomass tracking at the national scale 23 remains challenging as it requires continuous and high-resolution monitoring. Here, we 24 characterize the changes in forests' above- and belowground biomass (AGBc and 25 BGB) for woody vegetation BGBC) in China between 2003 2002 and 2020 2021 at ~1 km spatial 26 resolution by integrating multiple types of remote sensing observations with intensive field plot 27 measurements through regression and machine learning and mixed pixel decomposition 28 methods.approaches. On average, $\frac{11.8.6 \pm 0 \pm 0.7.6}{\pm 0.7.6}$ and $2.8 \pm 0.2 \pm 0.1$ PgC arewere stored in 29 above- and belowground live woody biomass forests in China. Over the last 1820 years, the total 30 woodyforest biomass carbon pool in China has increased at a rate of $\frac{163.8114.5 \pm 16.3}{163.8114.5 \pm 16.3}$ TgC/yr 31 (0.5approximately 1.1%/yr). The most pronounced forest biomass carbon stock gains occurred 32 in central to southern China, including the southern Loess Plateau, Qinling Mountains, 33 southwest karstkarsts and southeast forests. The While the combined use of low frequency microwaves and advanced laser<u>multi-source</u> remote sensing data provides a powerful tool to 34 35 assess the forest biomass trends, minimizing under- or overestimation of biomass variation in 36 space and time. Futurecarbon changes, future research is also needed to explore the drivers of

- 37 the observed woody biomass trends, and to evaluate the degree to which biomass gains will
- 38 translate into biodiverse, healthy ecosystems and thus are sustainable.
- 39 Key words: Aboveground biomass <u>carbon pool</u>; Belowground biomass <u>carbon</u>; Long-term

40 continuous mapping; Hotspot of amount and trend; China

41 **1 Introduction**

1	
42	Woody (forest and shrubland) biomass contributes to over 90% of global vegetation biomass
43	(Ma et al. 2021). As a net outcome of carbon gains from photosynthesis and carbon losses from
44	respiration, mortality and disturbances, woody biomass is a critical indicator of ecosystem
45	function and services, such as carbon sequestration, wood production and resource allocation
46	(Kumar and Mutanga 2017). Accurate biomass monitoring over space and time is thus essential
47	for assessing ecosystem management strategies and mitigation policies (Kumar and Mutanga
48	2017)
49	In recent decades, remote sensing tools have been integral in our efforts to map aboveground
50	biomass (AGB). Forest biomass carbon stock contributes to over 90% of the global vegetation
51	biomass carbon pool (Ma et al., 2021). As a net outcome of carbon gains from photosynthesis
52	and carbon losses from respiration, mortality and disturbances, forest biomass carbon stock
53	(approximately 50% of biomass) is a critical indicator of ecosystem function hereinafter
54	SVCmean rand ecosystem services, such as carbon sequestration, wood production and
55	resource allocation (Kumar and Mutanga, 2017). Accurate forest biomass carbon stock
56	monitoring over space and time is thus essential for assessing ecosystem management strategies
57	and mitigation policies (Kumar and Mutanga, 2017).
58	In recent decades, remote sensing tools have been integral in our efforts to map aboveground

59 biomass (AGB) or carbon stock (AGBC). By combining satellite imagery (e.g., MODIS) and

60	airborne LiDAR signals, forest cover and canopy height can be mapped across large spatial
61	scales (Hu et al-, 2016; Saatchi et al-, 2011; Su et al-, 2016; Tong et al-, 2020; Xu et al-, 2021).
62	Apart from imageries optical images and LiDAR signals, microwaves can provide more detailed
63	insights into sub-canopysubcanopy forest structure and AGBAGBC due to their ability to
64	penetrate the canopy. Active microwave techniques, i.e., Synthetic Aperture Radar (SAR)
65	backscatters, facilitate high-resolution (e.g., 100 m) AGB mapping, but the temporal coverage
66	is limited (Bouvet et al. 2018; Cartus et al., 2012; Bouvet et al., 2018). Conversely, vegetation
67	optical depth (VOD) retrieved from multiple passive microwave sensors can be used to produce
68	long-term continuous AGB maps (Frappart et al 2020; Liu et al 2011; Liu et al 2015), yet
69	at a coarse spatial resolution (e.g., 0.25°). Because optical, LiDAR and microwave (both active
70	and passive)different remote sensing techniques all have different their advantages and pitfalls,
71	combining these techniques and complementing them with direct ground measurements is
72	integral to maximizing the accuracy and precision of biomass <u>carbon</u> estimations across space
73	and time.
74	Another source of uncertainty in vegetation biomass <u>carbon</u> stocks is the extent of biomass that
75	is stored belowground as roots. While AGBAGBC mapping is facilitated by thea suite of
76	emerging remote sensing techniques, investigating the spatiotemporal variation in belowground
77	biomass (BGBcarbon pool (BGBC) remains challenging despite the large contribution of root
78	biomassroots to total carbon storage (Huang et al., 2021; Ma et al., 2021). To map BGBBGBC,
79	the commonly-used approach is to combine aboveground biomass information with vegetation

80	type-specific ratios of BGB to AGB (i.e., root-shoot ratio, or RSR) (Xu et al., 2021: Saatchi et
81	al 2011; Xu et al. 2021). Because field studies indicate a near-linear relationship between log-
82	transformed BGB and AGB (Enquist Brian and Niklas Karl 2002), BGB variations at large
83	scales have often been approximated using this relationship (Spawn et al. 2020). To capture the
84	complex relationship between BGB and biotic or abiotic variables (e.g., stand age, heat and
85	water availability), machine learning algorithms have been applied to map BGB (Huang et al.
86	2021) and root-mass fractions (Ma et al. 2021) globally. In mixed pixels with multiple plant
87	functional types, BGB mapping relying on satellite-based AGB and plot-based models is
88	expected to be less accurate. In addition, the existing woody plots are unevenly distributed
89	across the world, with limited plots in developing countries, leading to large uncertainties in
89 90	across the world, with limited plots in developing countries, leading to large uncertainties in BGB estimation within those regions (Huang et al. 2021).
89 90 91	across the world, with limited plots in developing countries, leading to large uncertainties in BGB estimation within those regions (Huang et al. 2021).
89 90 91 92	across the world, with limited plots in developing countries, leading to large uncertainties in BGB estimation within those regions (Huang et al. 2021). . Because field studies indicate a near-linear relationship between log-transformed BGB and AGB (Enquist Brian and Niklas Karl, 2002), BGB variations at large scales have often been
8990919293	 across the world, with limited plots in developing countries, leading to large uncertainties in BGB estimation within those regions (Huang et al. 2021). Because field studies indicate a near-linear relationship between log-transformed BGB and AGB (Enquist Brian and Niklas Karl, 2002), BGB variations at large scales have often been approximated using this relationship (Spawn et al., 2020). To capture the complex relationship
 89 90 91 92 93 94 	 across the world, with limited plots in developing countries, leading to large uncertainties in BGB estimation within those regions (Huang et al. 2021). because field studies indicate a near-linear relationship between log-transformed BGB and AGB (Enquist Brian and Niklas Karl, 2002), BGB variations at large scales have often been approximated using this relationship (Spawn et al., 2020). To capture the complex relationship between BGB and biotic or abiotic variables (e.g., stand age, heat and water availability),
 89 90 91 92 93 94 95 	 across the world, with limited plots in developing countries, leading to large uncertainties in BGB estimation within those regions (Huang et al. 2021). Because field studies indicate a near-linear relationship between log-transformed BGB and AGB (Enquist Brian and Niklas Karl, 2002), BGB variations at large scales have often been approximated using this relationship (Spawn et al., 2020). To capture the complex relationship between BGB and biotic or abiotic variables (e.g., stand age, heat and water availability), machine learning algorithms have been applied to map BGB (Huang et al., 2021) and root-mass
 89 90 91 92 93 94 95 96 	 across the world, with limited plots in developing countries, leading to large uncertainties in BGB estimation within those regions (Huang et al. 2021). Because field studies indicate a near-linear relationship between log-transformed BGB and AGB (Enquist Brian and Niklas Karl, 2002), BGB variations at large scales have often been approximated using this relationship (Spawn et al., 2020). To capture the complex relationship between BGB and biotic or abiotic variables (e.g., stand age, heat and water availability), machine learning algorithms have been applied to map BGB (Huang et al., 2021) and root-mass fractions (Ma et al., 2021) globally. However, the reference plots were unevenly distributed

98 BGBC estimation within those regions (Huang et al., 2021).

99	China has been implementing national-scale afforestation and reforestation programs since the
100	late 1990s (Lu et al. 2018)(Lu et al., 2018), promoting vegetation cover and carbon storage in
101	the Loess Plateau and the southwest karst regions, etc. (Chen et al _{$\frac{1}{24}$} 2019a; Niu et al _{$\frac{1}{24}$} 2019;
102	Tong et al _{7.1} 2018). A spatial understanding of <u>woodyforest</u> biomass trends can help evaluate
103	the efficiency of ecological restoration programs. High quality, high resolution and long-term
104	continuous woody biomass monitoring in China has remained challenging, due to difficulties
105	in integrating different remote sensing techniques with ground-sourced measurements (Zhang
106	<u>et al., 2019;</u> Huang et al . 2019; Zhang et al., 2019).
107	In this study, we integrate differentby integrating multi-source remote sensing tools (optical,
108	active/passive microwave and LiDAR)data with large quantities of plot measurements through
109	random forest approach to produce high-, we produced 1 km resolution (1 km)-above- and
110	belowground woody forest biomass carbon pool maps in for China during 2003 2020. the past
111	20 years (2002-2021). This dataset could provide new insights into the spatial hotspots of
112	woody biomass and its interannual forest carbon stock changes in China over the past two

113 decades.

114 2 Materials and methods

115 To map above- and belowground woody biomass in China during 2003 2020, we 1) integrated 116 state-of-the-art satellite-derived forest AGB and canopy height information with ground-117 sourced plot data; 2) developed an improved vegetation water content (VWC) dataset covering

123 The basic procedure is shown in Figure 1 and described in sections 2.1 2.5.

rectangles are remote sensing based data inputs; orange rectangles are plot-level measurements;
 yellow rectangles represent the key methods; while the purple rectangles represent the final
 output products of this study. 'GlobBiomass', 'CCI', etc. are data products' names; 'CDF' =
 'cumulative distribution function'; 'HANTS' = 'harmonic analysis of time series'; 'VCF' =

8

130 vegetation continuous fields. Locations of forest plots are shown in Figure S1a.

131	2.1 An improved benchmark map of aboveground biomass (AGB) in China
132	We used the three latest and highest-quality global-scale AGB datasets (GlobBiomass, CCI-
133	Biomass and GLASS-Biomass v2) to derive our benchmark map. Using SAR, LiDAR and
134	optical images, the first global high-resolution (100 m) forest AGB dataset for the year 2018,
135	GlobBiomass, was published through the European Space Agency (ESA)'s Data User Element
136	(DUE) project (Santoro et al. 2021). The relative root mean square error (RMSE) was below
137	30%, although biomass tends to be underestimated in dense forests (Mialon et al. 2020).
138	Subsequently, ESA's Climate Change Initiative (CCI) published a global AGB map for all
139	vegetation in 2017 using a slightly different algorithm, followed by AGB maps for 2010, 2018
140	and 2019 (Santoro and Cartus 2019, 2021). Datasets derived from different methods have their
141	advantages in different regions. By referring to adequate in-situ data, we may combine the
142	advantages of different datasets. Accordingly, integration of several high-quality AGB maps
143	has become popular. The Global Land Surface Satellite (GLASS) AGB v2 was developed by
144	fusing the AGB maps in (Hu et al. 2016), (Su et al. 2016) and (Thurner et al. 2014), etc., through
145	the linear combination method. GLASS-Biomass v2 roughly represents the AGB status in the
146	year 2000, the median period of the collected woody plots' data (Zhang and Liang 2020).
147	We aggregated the GlobBiomass and CCI-Biomass maps from 1/1125° resolution to 1/120°
148	(approximately 1 km) and resampled the GLASS-Biomass product from 0.01° to 1/120°. The
149	study area, i.e., woody areas in China, was determined as all the 1/120° pixels (note: the 1/120°

150	resolution is referred to as a pixel hereinafter) for which AGB data are available from each of
151	these three biomass datasets.
152	In September 2018, ICESat-2 provided an Advanced Topographic Laser Altimeter System
153	(ATLAS) that provides more accurate and denser measurements of canopy height than GLAS
154	(Markus et al. 2017). However, the application of ICESAT-2 data in canopy height estimation
155	at large scales is currently limited (Liu et al. 2022). This study selected the ATL08 land and
156	vegetation V004 product, and the 98% height retrievals of all canopy photons in each 100 m
157	segment can best represent the mean top canopy height (Neuenschwander et al. 2020). All
158	ATLAS records acquired in China's woody areas during 2018-2020 were incorporated. ATLAS
159	has three strong and three weak beams. According to previous studies, the canopy heights
160	retrieved using strong beams are generally more accurate than those retrieved by weak beams
161	(Neuenschwander et al. 2020). Hence, in each 1/120° resolution pixel, we counted the numbers
162	of valid strong beam and weak beam observations within the pixel during 2018~2020. If the
163	number of strong beam records exceeded 5, then only those higher quality data were used.
164	Otherwise, if there were at least 5 valid observations, but the number of strong beam retrievals
165	was not enough, all data in the pixel were incorporated. Afterwards, we adopted the median
166	absolute deviation (MAD) method to detect and eliminate outliers (Leys et al. 2013). For the
167	remaining reliable canopy height retrievals in each pixel, we took the average weighted by the
168	corresponding canopy cover fractions. Here, the top canopy cover fraction was estimated as the
169	ratio of canopy photons to the number of all photons in the 100 m segment. By following the

170	above steps, we mapped forest height over China using ATLAS data. Because gaps remain
171	between the tracks of ICESAT-2, although ATLAS's six beams enable a larger spatial coverage
172	than any other LiDAR instrument, the derived forest height map provides values in only 42%
173	of all woody pixels in China. Because of the potentially bad LiDAR estimates, the highest 2.5%
174	extreme values were further excluded.
175	Another new LiDAR instrument is NASA's Global Ecosystem Dynamics Investigation (GEDI).
176	It is optimized for global canopy height estimation, and has been collecting data in China since
177	April 2019 (Dubayah et al. 2020). However, the orbital gaps of GEDI are much larger than that
178	of ICESAT-2, resulting in limited spatial coverage by direct observation. Therefore, this study
179	adopted the Global Forest Canopy Height 2019 dataset provided by the Global Land Analysis
180	and Discover (GLAD). GLAD's canopy height was mapped by integrating the GEDI's forest
181	structure measurements globally with Landsat maps through machine learning (Potapov et al.
182	2020). The original 30 m resolution data were averaged to 1/120°. GEDI does not collect data
183	in north of 51.6°N (Dubayah et al. 2020), but the highest latitude of China is about 53.56°N.
184	Therefore, we used an alternative global gridded forest height map that was developed earlier
185	through machine learning, yet based on the ICESAT GLAS retrievals (Simard et al. 2011)
186	Because AGB is more related to the forest volume rather than just the canopy height, we further
187	multiplied the three different LiDAR based canopy height maps with the percent of tree cover
188	(hereinafter TC) acquired from MOD44B v006- dataset. The products of multiplications are

189	hereinafter ATLAS-derived volume, GEDI-derived volume and GLAS-derived volume. None
190	of these LiDAR-based timber volumes cover all woodland pixels in China. Specifically, without
191	spatial interpolation using optical remote sensing, the ATLAS-derived volume inherited the
192	orbital gaps of ICESAT 2, although the quality is expected higher than that of the other two
193	machine learning-derived canopy heights and volumes. Thus, we designed three random forests
194	for AGB estimation. Each of these three random forests (RFs) have four input predictors.
195	GlobBiomass, CCI Biomass and GLASS Biomass v2, are incorporated as the predictors of
196	each RF, while the use of which LiDAR-derived volume as the 4 th input predictor makes the
197	difference among the three RFs. Moreover, to reduce uncertainties in LiDAR derived timber
198	volumes, the pixels with tree cover below 5% are classified as nonwoody areas and excluded.
199	The training target should be a large number of high-quality 1/120° pixel scale AGB data in
200	China. This study collated forest or shrubland plots' AGB calculated using allometric equations
201	or clear-cutting methods from various published papers, including (Luo 1996), (Luo et al. 2014),
202	(Guo and Ren 2014), (Peng et al. 2016), (Wang et al. 2014), (Guo et al. 2021), (Yang et al.
203	2017), (Liu et al. 2020) and (Nie et al. 2016). In addition to AGB, we recorded the BGB, stand
204	age, vegetation species or type and location information. The spatial distributions of all these
205	woody plots are shown in Figure S1a. Some records were measured in 1990-2000, whereas
206	others were acquired during 2000-2010. Because plots smaller than 0.05 ha are not comparable
207	to satellite observations (Su et al. 2016), 10 m×10 m plots (Guo and Ren 2014) were not
208	included as the training target here, but were applicable in determining the biomass allocation 12

209	rule later in section 2.5. Moreover, the understory shrub AGB was excluded, since SAR and
210	LiDAR can observe only the canopy. The extreme values (the highest and lowest 1%) were
211	excluded as well. These filters resulted in 6290 woody plots remaining. Because the plots are
212	mainly located in woodlands, yet the corresponding pixel usually contains cropland, urban,
213	waters or bare ground, whose AGB are much lower than those in the plots, we converted the
214	plot-level AGB into the pixel-scale AGB by multiplying the area fraction of forestland in the
215	pixel, as long as the forestland area fraction exceeds 20% and is larger than the shrubland area
216	fraction. Here, land cover type comes from the Copernicus Global Land Service: Land Cover
217	100m (CGLS-LC)- epoch 2017: v3.0.1 product (Buchhorn et al. 2020). It includes not only
218	discrete land cover classification but also the fractions of forestland, shrubland, grassland and
219	cropland at 100 m resolution. We aggregated these high-resolution land cover fractions to 1/120
220	to reduce the uncertainties. It should be noted that VCF data cannot be applied here because
221	they indicate the fractions of pure tree cover and short vegetation cover, yet a forestland contains
222	bare ground or herbs among trees.
223	The RF model trainings were conducted in MATLAB R2021a software. After the RF trainings,
224	three sets of simulations were performed using the corresponding RF model in woody pixels
225	where all four predictors (three existing AGB products and one LiDAR-derived volume) have
226	valid data. In addition, we performed ten-fold cross validation to assess the performance of
227	each RF model, and took the averages of ten times of simulations. Finally, we combined the
228	three sets of simulations by averaging that is weighted by the mean R ² of the corresponding RF

229	model. Using above methods, we produced a spatially-continuous 1/120° benchmark AGB map
230	for China. Because most of these measurements refer to the vegetation biomass status in around
231	2000, we expect our AGB map to represent the AGB in around 2000. Therefore, our improved
232	benchmark AGB map is hereinafter named 'AGBbenchmark-2000s'.
233	In addition, we exported the importance of each predictor variable in the RF models. For any
234	variable, the measure is the increase in prediction error if the values of that variable are
235	permuted across the out-of-bag observations. This measure is computed for every tree, then
236	averaged over the entire ensemble and divided by the standard deviation of the entire ensemble.
237	2.2 An improved vegetation optical depth dataset covering 2003–2020
238	
0	10 derive a long time series of AGB, long-term continuous microwave VOD (i.e., vegetation
239	opacity) data is useful (Jackson and Schmugge 1991; O'Neill et al. 2021). Through cumulative
239 240	opacity) data is useful (Jackson and Schmugge 1991; O'Neill et al. 2021). Through cumulative distribution function (CDF) matching among different VOD products, the vegetation optical
239 240 241	To derive a long time series of AGB, long term continuous microwave VOD (i.e., vegetation opacity) data is useful (Jackson and Schmugge 1991; O'Neill et al. 2021). Through cumulative distribution function (CDF) matching among different VOD products, the vegetation optical depth climate archive (VODCA) was developed (Moesinger et al. 2020). The 'C-band' product
239 240 241 242	To derive a long time series of AGB, long term continuous microwave VOD (i.e., vegetation opacity) data is useful (Jackson and Schmugge 1991; O'Neill et al. 2021). Through cumulative distribution function (CDF) matching among different VOD products, the vegetation optical depth climate archive (VODCA) was developed (Moesinger et al. 2020). The 'C-band' product which was retrieved using several C-band microwave sensors including AMSR-E, WindSat and
239 240 241 242 243	To derive a long time series of AGB, long term continuous microwave VOD (i.e., vegetation opacity) data is useful (Jackson and Schmugge 1991; O'Neill et al. 2021). Through cumulative distribution function (CDF) matching among different VOD products, the vegetation optical depth climate archive (VODCA) was developed (Moesinger et al. 2020). The 'C band' product which was retrieved using several C band microwave sensors including AMSR-E, WindSat and AMSR2 and covers 2003-2018, is a better indicator of the whole woody plants' biomass than
239 240 241 242 243 244	To derive a long time series of AGB, long term continuous microwave VOD (i.e., vegetation opacity) data is useful (Jackson and Schmugge 1991; O'Neill et al. 2021). Through cumulative distribution function (CDF) matching among different VOD products, the vegetation optical depth climate archive (VODCA) was developed (Moesinger et al. 2020). The 'C band' product which was retrieved using several C band microwave sensors including AMSR-E, WindSat and AMSR2 and covers 2003-2018, is a better indicator of the whole woody plants' biomass than those retrieved using higher frequency microwave bands (i.e., X-band and Ku band). However,
239 240 241 242 243 244 245	To derive a long time series of AGB, long term continuous microwave VOD (i.e., vegetation opacity) data is useful (Jackson and Schmugge 1991; O'Neill et al. 2021). Through cumulative distribution function (CDF) matching among different VOD products, the vegetation optical depth climate archive (VODCA) was developed (Moesinger et al. 2020). The 'C band' product which was retrieved using several C band microwave sensors including AMSR-E, WindSat and AMSR2 and covers 2003–2018, is a better indicator of the whole woody plants' biomass than those retrieved using higher frequency microwave bands (i.e., X band and Ku band). However, compared to the VOD retrieved from L-band sensors such as SMOS (Wigneron et al. 2021) and
239 240 241 242 243 244 245 246	To derive a long time series of AGB, long term continuous microwave VOD (i.e., vegetation opacity) data is useful (Jackson and Schmugge 1991; O'Neill et al. 2021). Through cumulative distribution function (CDF) matching among different VOD products, the vegetation optical depth climate archive (VODCA) was developed (Moesinger et al. 2020). The 'C band' product which was retrieved using several C band microwave sensors including AMSR-E, WindSat and AMSR2 and covers 2003–2018, is a better indicator of the whole woody plants' biomass than those retrieved using higher frequency microwave bands (i.e., X-band and Ku-band). However, compared to the VOD retrieved from L-band sensors such as SMOS (Wigneron et al. 2021) and SMAP (Konings et al. 2017), C-band VODs are still less sensitive to the biomass of trunks and

248	have high-frequency variations due to the strong variation in leaf water content per biomass
249	under rainfall or drought events (Li et al. 2021). In addition, VODCA's C-band product is not
250	perfectly continuous. Because the AMSR2 sensor does not share any temporal overlap with
251	AMSR-E, the rescaling of AMSR2 data towards AMSR-E was based on the assumption that
252	VOD remained stable over 2010-2013, i.e., the last and first two years of both sensors. For
253	China where land use cover changes were prevalent, this assumption may lead to a bias of
254	AMSR2-based VODCA data during 2013-2018 compared to the values in this period if the
255	retrievals from AMSR-E were available. Theoretically, this bias is spatially variable, and is
256	positively correlated with local VOD changes from 2010 to 2013. Thus, to develop an improved
257	VOD dataset covering 2003 2020 for China, we focused on 1) filtering out the high-frequency
258	fluctuations in VODCA's product and other C-band VOD products; 2) mapping and correcting
259	the bias of AMSR2-based VODCA data during 2013~2018 compared to the AMSR-E-based
260	VODCA VOD; 3) rescaling the C-band VODs against L-band VOD data to make their spatial
261	patterns more correlated with that of woody plants' AGB; 4) extending the VODCA dataset to
262	2020 by using AMSR2 observations. Details are as follows.
263	Due to a very high level of radio frequency interference (RFI), SMOS data are noisy and even
264	missing in China, especially in eastern China (Wigneron et al. 2021), making it inapplicable to
265	this study despite its longer time series than SMAP. SMAP observations have been available
266	since April 2015, so this study utilized the data from 2016 to 2020. The dual channel algorithm
2.67	(DCA) derived VOD data included in the SMAP Enhanced L3 v5 product (O'Neill et al. 2021)

268	were resampled from 9 km resolution to 1/12°. For each 1/12° grid cell (note: 1/12° resolution
269	is hereinafter called a grid cell) where at least 609 (i.e., 1/3 of 1827 daily maps in 5 years) valid
270	VOD retrievals are available, we first filtered the abnormal values using ' 3σ denoising' (Chen
271	et al. 2021). Second, we virtually filled in the data in 2015 and 2021 by using those in 2016 and
272	2020. Subsequently, the no-data values resulting from orbital gaps or frozen states were filled
273	by linear interpolation, while the outputs during 2016~2020 were supposedly valid. Moreover,
274	we also determined the average annual number of VOD peaks for each grid after setting the
275	thresholds of minimum distance between two peaks, peak height and dominance of peaks to
276	reasonable values. Specifically, for grid cells where woody plants exist yet without VOD data,
277	the values were filled by sequentially searching and averaging nearby valid values (Chen et al.
278	2019b). For VODCA's C-band VOD during 2003-2018, after filtering out the abnormal values
279	and virtually filling the data in 2002 and 2019, we performed the Harmonic Analysis of Time
280	Series (HANTS) filtering (Menenti et al. 1993; Roerink et al. 2000). Either high or low outliers
281	were excluded, while the number of frequencies to be considered above zero frequency in the
282	Fourier function was set to the product of the mean annual peak number detected by SMAP
283	VOD and the number of years.
284	We then mapped the bias of AMSR2-based VODCA's VOD compared to the AMSR-E based
285	VODCA VOD data in 2003-2011. Because annual VOD is closely related to the leaf area index
286	(LAI), and is clearly affected by percent tree cover and percent nontree vegetation (i.e., crops,
287	grass and shrubs) cover, we performed a multiple linear regression between annual medians of
1	16

288	adjusted VODCA VOD data during the period of 2003-2011 and annual LAI values as well as
289	VCF retrievals. This study employed LAI from two sources. First, we processed the potential
290	eloud-affected values within the MODIS LAI product (MCD15A2H v006) by masking the
291	values flagged by clouds and then performing HANTS filtering, with low outliers excluded and
292	the number of frequencies set to 3 times the number of years. Second, for the LAI developed
293	by the ESA- Copernicus Global Land Service (GEOV2 LAI) (Baret et al. 2013; Verger et al.
294	2014), we harmonized the retrievals from the SPOT-VGT sensor during 2003-2013 and those
295	from the PROBA-V sensor after 2014 using CDF matching with MODIS data applied as the
296	reference (Cammalleri et al. 2019). The MODIS LAI, VCF and GEOV2 LAI were all averaged
297	from their original spatial resolutions (250m~1km) to 0.25° to match the resolution of VODCA.
298	As shown in Figure S2a-b, after the regression, the R ² -values of 90% grids exceeded 0.3, and
299	the grid specific regression coefficients were exported. Therefore, the mean bias of AMSR2-
300	based VODCA data during 2013-2018 compared to that before 2012 could be estimated as the
301	difference between the mean annual VOD calculated based on the above regression coefficients
302	as well as LAI and VCF data during 2013~2018 and the mean value of the adjusted VODCA's
303	medians over that period. This bias was positive in most areas of China, especially afforested
304	areas, such as northern Beijing (Figure S2c-d). Accordingly, by adding this bias to the VODCA
305	VOD data after 2013, we improved its temporal continuity.
306	Using SMAP's 1/12° VOD data during 2017~2018 as the reference, we calibrated the spatial
307	pattern of the adjusted VODCA VOD by rescaling. Notably, we revised the CDF matching
	17

308	algorithm (Moesinger et al. 2020). For either the lowest or the highest 10% of the time series,
309	a linear fitting model was designed and applied, to eliminate abnormally low or high values.
310	Finally, to ensure a temporally-consistent VOD time series from 2003 to 2020, for 2019 and
311	2020, we adopted the AMSR2 C-band VOD and converted it into L-band-like VOD by referring
312	to SMAP data. Here, we chose the AMSR2/GCOM-W1 surface soil moisture (LPRM) L3 1 day
313	10 km x 10 km descending V001 dataset, and resampled it to 1/12° resolution. Upon noticing
314	sharp changes in AMSR2 VOD at the beginning of 2016 in many grid cells in China, this study
315	selected the records from only 2017-2020, which were calibrated and rescaled later through
316	improved CDF matching by referring to the SMAP's VOD during 2017-2018.
317	Using the temporally-continuous and spatially L-band-like VOD dataset from 2003 to 2020, we
318	calculated both annual mean and median VOD values as two robust indicators of annual AGB.
319	2.3 High-resolution woodland AGB mapping in China from 2003 to 2020-
320	We performed two steps to map woodland AGB in China during 2003-2020. For the first step,
321	AGBbenchmark-2000s and VCF data in 2003 were all resampled to 1/12° resolution, the same
322	as VOD data. Specifically, for grid cells in which less than 50% of pixels were without valid
323	AGBbenchmark-2000s values due to limited forest cover, resampling was not performed.
324	Because VOD is influenced by the soil water availability, we built a random forest in which the
325	predictors include: mean and median VOD values, VCF data (i.e., TC and all vegetation cover,
326	hereinafter denoted as VC) and the mean surface soil moisture (SSM) in 2003. Here, SSM was

327	derived from a long-term remote sensing-based surface soil moisture (RSSSM) developed in
328	our previous study (Chen et al. 2021). The training target is the resampled AGBbenchmark-
329	2000s. More than 80000 grids all across China were available for the training of this RF model.
330	Afterwards, using VOD, VCF and SSM in each year, we performed 1/12° resolution AGB
331	simulations over 2003–2020 along with ten-fold cross-validations, and adopted the mean of ten
332	independent simulations. We also calculated the 'calibration factor' which is defined as the ratio
333	of resampled AGBbenchmark-2000 (i.e., the training target) to the simulated AGB in 2003 in
334	every grid. Then, we multiplied the annual 1/12° resolution AGB in China during 2003–2020
335	with the grid-specific 'calibration factor'.
336	For the next step, we downscaled the 1/12° resolution AGB to 1/120°. Here, it is assumed that
337	within a grid cell, the heights of trees are similar, while the short vegetation's heights are also
338	similar. So, within a 1/12° grid cell, the AGB per tree cover (TC) and AGB per short vegetation
339	cover (SC) can both be considered constants. Hence, we performed a binary linear regression
340	between the AGBbenchmark 2000s value in each 1/120° pixel within the grid cell and the
341	corresponding VCF (TC and SC) values. The intercept (i.e., constant term) was excluded, so
342	the derived two regression coefficients can represent the mean values of AGB per TC and per
343	SC in the grid cell. For more than 75% of all grid cells, the regression R ² -exceed 0.5. Since
344	VCF indicates the coverage of pure tree and non-tree vegetation, AGB per TC should be higher
345	than that per SC. Therefore, for grid cells where the derived AGB per TC was smaller than the
346	AGB per SC, grids where either one of the regression coefficients was negative, or those 19

347	without very significant regressions (i.e., $p>0.01$ or $R^2<0.1$), the regression was considered
348	invalid. The AGB per TC and AGB per SC in those grid cells were filled later by searching for
349	nearby valid regression results, while the R ² -values of those valid regressions were applied as
350	the weights in averaging the nearby valid values. The maps of AGB per TC and per SC in 2003
351	are shown in Figure S3. By integrating these data with pixel-scale VCF, we calculated the AGB
352	of all woody vegetation in each 1/120° pixel, which was averaged to the AGB at 1/12°
353	resolution. Accordingly, the ratio of the grid scale AGB calculated in the first step to the
354	aggregated AGB derived in this step can be used to further calibrate the high-resolution AGB
355	data. Finally, by repeating the procedures, we mapped woody AGB in China at 1/120°
356	resolution from 2003 to 2020.

357 2.4 Mixed-pixel AGB decomposition- towards scale matching

ī

We mapped AGB in China at 1/120° pixel resolution, which is quite larger than the scale of plot 358 359 measurements. The collected plot-level data usually represent the AGB and BGB per area in a 360 forest or shrubland with basically uniform landscapes (i.e., the density of trees/shrubs is even 361 in the plot, which can be either low or high). However, within a pixel, forests, shrubs, crops, herbs and bare ground may coexist. It is known that the relationship between BGB and AGB in 362 forests differs from that in shrublands. Generally, shrub species have a much higher RSR than 363 364 trees (Qi et al. 2019; Tang et al. 2018). Hence, we tried to solve that 'mixed-pixel problem' by 365 decomposing the simulated AGB in woody regions into the AGB per forestland area and the

366	AGB per shrubland area. Then, we applied the respective relationships between BGB and AGB
367	to transform the decomposed per area AGBs into per-area BGBs for different types of forests
368	and shrublands. Afterwards, we multiplied the per-area BGBs with the corresponding area and
369	summed the products (i.e., all forestlands' BGB and shrublands' BGB). By this method, we
370	basically achieved scale matching between remote sensing and plot-level observations.
371	AGB decomposition generally followed the idea we proposed in a previous article (Chen et al.
372	2019b). Specifically, in woody grids, we counted the numbers of pixels with forests (i.e., pixels
373	in which the forestland area percentage was >10% according to the CGLS-LC) and those with
374	shrublands (shrubland area percentage >10%). For grid cells where there were at least 50 pixels
375	with forestland and 50 pixels with shrubland, we performed a binary linear regression without
376	intercept between all these pixel-scale AGB data and the area percentages of forestland and
377	shrubland in every woody pixel. Afterwards, the average per-area BGB for forestland and
378	shrubland in woody grid cells can be estimated as the corresponding regression coefficients.
379	However, the regression was supposed invalid when either regression coefficient was negative,
380	or the significance p-value exceeded 0.05, or \mathbb{R}^2 -was below 0 (\mathbb{R}^2 -can be negative for regressions
381	without constants due to the potential significant bias in AGB data). For these grids, a constant
382	term was further added to the regression if a valid result could be derived under this situation.
383	Specifically, for 1/12° grids with less than 50 pixels with forests, but the pixels with shrubland
384	are sufficient, we can reliably estimate the AGB per area shrubland as the ratio of grid average
385	AGB to the mean shrubland area percentage in the grid. Similarly, the forestland per area AGB 21

i i	
386	in grids with only enough pixels with forests can be estimated by simply neglecting the few
387	shrubs. According to Figure S4a-b, complete AGB decomposition was achieved in 36% of all
388	grids with enough woody pixels, and the grid cells with reliable AGB estimates accounted for
389	61%. The invalid decompositions composed only 3%, which were filled later by sequentially
390	searching and averaging nearby valid results (88% of the valid regressions are with R ² higher
391	than 0.5, see Figure S4c~d). Subsequently, we deleted both the highest and lowest 2.5% values
392	of all gridded per-area AGB estimates in China, and then filled those values. Finally, a mean
393	filter with a window size of 3×3 was applied for spatial smoothing. The final maps of AGB per
394	area forestland and that per shrubland area in around 2017 (note: CGLS-LC data represent the
395	land cover around 2017) are shown in Figure S5. Within a grid cell, the per-area forestland's
396	AGB is usually (71% in China) higher than the corresponding per-area shrubland AGB, except
397	in mountains around the Sichuan Basin and some karst regions in southwestern China where
398	shrubs are probably much denser than trees. Because the average forestland area percentage in
399	woody grids in China (55%) is greater than the CGLS-LC's mean shrubland area percentage
400	(13%), the average forestlands' AGB calculated based on the decomposition result (63.4 t/ha)
401	is much larger than the mean shrublands' AGB (11.6 t/ha in around 2017), which is reasonable.
402	After the decomposition, some per-area AGBs were filled in values, while some were derived
403	from linear regressions with intercepts. Therefore, the sum of forestland AGB and shrubland
404	AGB in approximately 2017 may not be equal to the total grid AGB at the same time before
405	decomposition. In addition, the sum of the decomposed AGBs in 2017 was obviously different 22

406	from the pre-decomposed AGB in other years. To solve this problem, we defined and calculated
407	another 'calibration factor' as the ratio of the simulated grid scale AGB in any year from 2003
408	to 2020 before mixed pixel decomposition to the grid's AGB in 2017 after the decomposition.
409	Accordingly, by referring to the per-area forestland/shrubland AGB in 2017 and this 'calibration
410	factor' in each separate year, we could decompose the annual simulated pixel-scale AGB into
411	the 1/120° resolution AGBs of forests and shrublands and the per-area forestland/shrubland's
412	AGB over the whole study period.
413	2.5 BGB mapping in China during 2003–2020 based on its relationship with AGB
414	In this study, we collected 8729 and 302 records of both AGB and BGB in forest and shrubland
415	plots, respectively, throughout China (section 2.1). For forest plots, the BGB-AGB relationship
416	follows: log (BGB)=0.93×log (AGB)=0.51, while the relationship for shrubland plots follows:
417	log (BGB)=0.96×log (AGB)=0.20, and the regression R ² are 0.92 and 0.85, respectively (Figure
418	S6). The number of forest plots is large enough, and the forest type and stand age information
419	are both available at 8182 plots (-94% of all forest plots). Therefore, we trained an RF model
420	for estimating per-area forestland's BGB annually.
421	In the RF model, the training target is the per-area BGB at 8182 forest plots, while the predictors
422	included not only forest plots' per-area AGB, forest type (hereinafter FOR_T), stand age, but
423	also mean annual temperature (MAT), temperature seasonality (standard deviation of monthly
424	temperature×100, abbreviated as Tsea), mean annual precipitation (MAP) and precipitation

425	seasonality (coefficient of variation of monthly precipitation, Psea). These climatic factors can
426	be obtained from the corresponding papers, or estimated from the WorldClim v2.1 dataset (Fick
427	and Hijmans 2017). In this study, FOR_T includes evergreen broadleaf forest (EBF), deciduous
428	broadleaf forest (DBF), evergreen needleleaf forest (ENF), deciduous needleleaf forest (DNF),
429	and mixed forest (MF), and was determined based on the major tree species in the plot. After
430	the RF training, to simulate grid-scale per-area forestland's BGB annually, apart from importing
431	WorldClim v2.1's MAT, Tsea, MAP, Psea and the decomposed per-area forestland AGB in each
432	year into the RF model, we also inputted the forest stand age map for China (Zhang et al. 2017)
433	and the annual forest type map during 2003 2020, which was determined from the ESA CCI's
434	global 300 m resolution annual land cover classification v2.0.7cds-v2.1.1 (Li et al. 2018)
435	Because shrubland plots are relatively limited, and the species and stand age information was
436	hardly provided, we directly converted the decomposed shrublands' per-area AGB into the per-
437	area BGB during 2003-2020 using the above regression relationship. Finally, by referring to
438	the forestland and shrubland area percentages in the CGLS-LC dataset, we mapped the annual
439	woody BGB in China at 1/120° resolution.
440	In addition, we also calculated the relative errors and uncertainties of AGB and BGB in each
441	year during 2003–2020 (see section 3.4).
442	2.6 Data comparison and verifications

443 Apart from cross-validations based on woody plots' AGB and BGB measurements over China,

444	we further verified our AGB and BGB estimates by referring to the results of Tang et al., who
445	established 7800 forest plots and 1200 shrubland plots throughout China and then utilized the
446	random forest approach to spatially map AGB and BGB (Tang et al. 2018). Various statistics
447	were reported, e.g., the AGB, BGB and RSR for each woody vegetation type. Therefore, using
448	the discrete land cover classification map in the CGLS-LC dataset, we classified China's woody
449	ecosystems into six woody ecosystem types, i.e., EBF, DBF, ENF, DNF, MF and shrubland
450	(SHR) ecosystems, according to the majority in every pixel (Figure S7). The EBF, DBF, ENF,
451	DNF, MF and SHR ecosystems account for 59.6%, 18.4%, 15.3%, 6.1%, 0.1% and 0.5%,
452	respectively, of the total woody area in China. Because the MF and SHR ecosystems both have
453	very limited areas, this study just compares the AGB and BGB per area among the four major
454	forest ecosystems in China. Similarly, the change in woody biomass or carbon stock in China
455	can be verified by several measurements and remote sensing based studies (Fang et al. 2018;
456	Qiu et al. 2020; Xu et al. 2018).
457	We also compared the calculated spatial pattern of woody biomass and its trend against that of
458	existing global/regional long term woody biomass datasets, including the well-received global
459	long-term AGB between 1993-2012 (Liu et al. 2015) and an updated woody biomass dataset
460	covering 2001~2019 (Xu et al. 2021).
461	Finally, to To map above- and belowground forest biomass carbon stock in China during 2002-

462 <u>2021, we 1) calibrated a SAR-based high-resolution forest aboveground biomass map in China</u>

468 is shown in Figure 1 and described below.

471 <u>AGBC, BGBC: aboveground and belowground biomass carbon; VCF: vegetation continuous</u>

472	fields; LPDR VOD: global land parameter data record- vegetation optical depth; CLCD: China
473	Land Cover Dataset
474	2.1 A benchmark map of forest aboveground biomass carbon (AGBC) in China
475	By combining multiple satellite observations of SAR backscatter, including the L-band ALOS
476	PALSAR and C-band Envisat ASAR around the year 2010, the first global high-resolution (100
477	m) forest AGB dataset, GlobBiomass 2010, was published through the European Space Agency
478	(ESA)'s Data User Element project (Santoro et al., 2021), whose relative root mean square error
479	(RMSE) was below 30% (Mialon et al., 2020). Apart from GlobBiomass 2010, another high-
480	resolution (30 m) forest AGB for China was produced by relating the ICESat GLAS (LiDAR)-
481	derived footprint AGB to various variables derived from Landsat optical images (Huang et al.,
482	2019). Because the ICESat data in 2006 were applied as the training target of the random forest
483	model, Huang's dataset refers to the AGB status in 2006. According to a recent validation study,
484	GlobBiomass and Huang's AGB performed the best among all existing AGB datasets in China
485	(Chang et al., 2021). Mean forest canopy heights and tree coverage are also good indicators of
486	the spatial pattern of forest biomass. The high-resolution (30 m) forest canopy height map for
487	China was developed by interpolating the ICESat-2 and GEDI data in 2019 through a neural
488	network (Liu et al., 2022), while the tree cover map at the same resolution was derived from
489	cloud-free growing season composite Landsat 7 data in around 2010 (Hansen et al., 2013). We
490	resampled GlobBiomass from 100 m resolution (1/1125°) to 1/1200° (approximately 90 m),
491	and averaged Huang's AGB map, canopy height map and tree cover map to the same resolution.

492	A reviewable, consistent ecosystem carbon stock inventory was conducted in China between
493	2011 and 2015 (Tang et al., 2018). We requested the AGB carbon stock (AGBC) data at more
494	than 5,000 30×30 m sized forest plots from the authors. Due to the scale mismatch between the
495	maps of biomass, canopy height or tree cover and the field measurements, we dropped out the
496	data within the 1/1200° resolution grids in which the standard deviation of tree cover was
497	greater than 15%, according to (Chang et al., 2021), leaving 2444 homogeneous forest plots
498	remaining (see Figure 2 for the spatial distribution of these forest plots and Figure S1a~b for
499	the cumulative frequency curve and histogram of the AGBC records). The AGBC records in
500	these forest plots were further multiplied by the mean fraction of forestland over 2011–2015 in
501	the corresponding grid, which was computed from the annual 30 m resolution China Land
502	Cover Dataset (CLCD) (Yang and Huang, 2021). By comparison, GlobBiomass 2010 AGB
503	matches the best with the grid-scale forest AGBC derived from plot measurements, with a
504	correlation coefficient (CC) of 0.50, followed by tree cover (CC=0.42), the product of canopy
505	height and tree cover (CC=0.38), and finally the canopy height (0.27) and Huang's AGB (0.25).
506	Therefore, to obtain an improved benchmark map of forest AGBC in China for the period of
507	2011–2015, we chose the GlobBiomass 2010 dataset as our basis, and calibrated it against the
508	in-situ observation-based grid-scale forest AGBC. To build an equation for the calibration, we
509	divided the grid-scale AGBC values into 16 equidistant subranges (0~15, 15~30,, 225~240
510	tC/ha), calculated the median of grid-scale AGBC values that are within each subrange, and
511	then the median of GlobBiomass AGB values in the corresponding grids. According to previous

.....

523	continuous optical and passive microwave remote sensing data.
524	The spatial resolution of optical remote sensing is higher, and is thus preferred in this study. By
525	adopting the MODIS vegetation continuous fields (VCF) data (MOD44B v061) which includes
526	three ground cover components: percent tree cover, percent non-tree vegetation (i.e., short
527	vegetation) cover, and percent non-vegetated (Dimiceli et al., 2022), we first calculated the
528	mean tree cover (hereinafter, TC _{mean}) and short vegetation cover (hereinafter SVC _{mean}) during
529	<u>2011–2015</u> , and resampled them from 250 m to $1/120^{\circ}$, the same resolution as the benchmark
530	AGBC map for 2011–2015. Because the canopy heights of trees are usually similar within a
531	small area, the regional AGBC per TC _{mean} can be assumed as the same, which is referred to as
532	the 'homogeneous assumption' hereinafter. Accordingly, for each grid, we searched the TC _{mean} ,
533	<u>SVC_{mean} and AGBC within a 3×3 window (1/40$^{\circ}$×1/40$^{\circ}$), and then regressed the AGBC values</u>
534	in 9 grids against both TC _{mean} (the primary, or key predictor of AGBC) and SVC _{mean} (assumed
535	as a supplementary predictor) linearly. Specifically, when the regression coefficient of SVC _{mean}
536	was negative or the fitting efficiency was low ($R^2 < 0.5$; significance <i>p</i> -value>0.05), we excluded
537	the supplementary predictor from the regression, only exploring the linear relationship between
538	TC _{mean} and AGBC. Afterwards, if the regression between TC _{mean} and AGBC was still invalid,
539	we enlarged the searching window size to 5×5, then 7×7, and finally 9×9, until the regression
540	as well as the coefficients became valid. Then, the grid annual AGBC from 2002 to 2021 can
541	be estimated from the TC or both TC and SVC in each year, following the regression results. If
542	the regression failed even if the window size reached 9×9, we stopped expanding the searching 30

543	window to avoid the 'homogeneous assumption' being invalid. In those grids, following a
544	previous study (Xu et al., 2021), we divided the estimated AGBC by the TC _{mean} during 2011-
545	2015 and then multiplied the TC in each year to obtain the AGBC time series. The above
546	method utilized spatial information to estimate the temporal variation, and can thus be referred
547	to as the 'space for time' method.
548	Long-term continuous microwave VOD can also reflect forest biomass changes, although the
549	relationship was nonlinear (Jackson and Schmugge, 1991; O'neill et al., 2021; Liu et al., 2015;
550	Wigneron et al., 1995). We selected the global land parameter data record (LPDR) v3 0.25°
551	resolution VOD product, which was generated using similar calibrated, X-band brightness
552	temperature retrieved from the Advanced Microwave Scanning Radiometer (AMSR-E) and the
553	Advanced Microwave Scanning Radiometer 2 (AMSR2) (Du et al., 2017). As revealed by a
554	recent evaluation study, LPDR VOD is better correlated with AGB than other long-term VOD
555	products, especially in less-vegetated areas (Li et al., 2021). Because X-band VODs are still
556	more sensitive to canopy cover than stem biomass and there is a data gap between October 2010
557	and June 2011, while the plot investigations were all conducted in summers (Tang et al., 2018),
558	we averaged the VOD data from mid-July (the 206 th day) until the end of September (the 274 th
559	day) in each year to represent the annual AGB status. We also aggregated the benchmark AGBC
560	map as well as the VCF data (TC _{mean} and SVC _{mean}) to 0.25° resolution. After each round of
561	searching, we applied the shape language modelling algorithm (D'errico, 2022) to fit the
562	nonlinear but monotonous relationship between AGBC and VOD values within the searching
	31

563	window, and then fitted the bivariate linear regression between AGBC and VCF. If the nonlinear
564	regression between AGBC and VOD is valid and the R^2 is superior to the regression between
565	AGBC and VCF data, LPDR VOD data is expected to outperform VCF in predicting the inter-
566	annual AGBC changes in the corresponding 0.25° grid. Therefore, in these areas, we calibrated
567	the VCF-derived high (1/120°) resolution annual AGBC by incorporating the ratio between the
568	VOD-derived 0.25° AGBC and the aggregated VCF-derived AGBC in that year.
569	2.3 Forest belowground biomass carbon (BGBC) mapping during 2002–2021
570	This study mapped belowground forest biomass carbon (BGBC) following the random forest
571	(RF) model approach (Huang et al., 2021). To reveal forests' above- and belowground biomass
572	allocation rules in China, this study collated both AGB and BGB records at 8729 forest plots
573	throughout China, which were obtained using allometric equations or clear-cutting methods
574	from published papers, including (Luo, 1996), (Luo et al., 2014), (Guo and Ren, 2014), (Wang
575	et al., 2014). Because forest stand age and tree species (forest type) information are also
576	available at 8182 plots, while the climatic backgrounds are available from the WorldClim v2.1
577	dataset (Fick and Hijmans, 2017), forest plots' AGB, forest type (hereinafter FOR_T), stand
578	age, mean annual temperature (MAT), temperature seasonality (standard deviation of monthly
579	temperature×100, abbreviated as Tsea), mean annual precipitation (MAP) and precipitation
580	seasonality (coefficient of variation of monthly precipitation, Psea) were applied as predictors
581	of forest plots' BGB. For simplicity, we distinguished all forests into 5 types: evergreen

582	broadleaf forest (EBF), deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF),
583	deciduous needleleaf forest (DNF), and mixed forest (MF). Using the data records at these 8182
584	plots (see Figure 2 for the locations of these forest plots and Figure S1c~f for the cumulative
585	frequency curves and histograms of the AGB and BGB data), we trained ten-fold RF models
586	using MATLAB R2021a [®] . The number of regression trees was set to 500.
587	Because the 1/120° resolution grids where forest AGBC data were available are often mixed
588	with forestland and some other land cover types, e.g., water bodies, bare ground, croplands, we
589	converted the annual grid-average AGBC into the AGBC per area forestland by incorporating
590	the annual fraction of forestland computed from the CLCD at 30 m resolution. Considering the
591	potential uncertainties in the forestland fraction as well as the inclusion of shrub or herbaceous
592	plant AGB in the SAR-derived AGB, we only calculated the annual AGBC per area forestland
593	in grids that were dominated by forestland (forestland fractions were consistently over 50%).
594	In these forestland grids, we simulated the forest BGBC per area forestland during 2002-2021
595	by inputting the estimated annual AGB (approximately 2 times of the AGBC) per forestland,
596	annual forest type map derived from ESA CCI's land cover classification dataset (Li et al.,
597	2018), forest stand age (Besnard et al., 2021) and climatic background variables into the RF
598	model. Afterwards, we multiplied the simulation results in every forestland grid with the annual
599	forestland fractions to obtain the forests' BGB and BGBC (0.5×BGB) time series. Finally, for
600	grids with forests but are not dominated by forestlands, we sequentially searched for at least
601	five valid RSR values (the ratio of forests' BGBC to AGBC) nearby (Chen et al., 2019b), and
	33

602	then multiplied the annual forest AGBC in the grid with the median of nearby RSR values in
603	each year to estimate the annual forest BGBC.

604 2.4 Evaluation and assessment

We compared the inter-annual trend of forest biomass carbon calculated in this study against that of existing global/regional long-term woody biomass datasets, including the well-received global long-term terrestrial biomass data between 1993–2012, which was developed mainly based on a long-term integrated VOD dataset (Liu et al., 2015), as well as an updated woody biomass dataset covering 2001–2019 whose long time series was derived from optical remote sensing data (i.e., MODIS VCF dataset) (Xu et al., 2021).

partial dependence plots (PDPs) in MATLAB R2021a[®] to show the marginal effect that one predictor has on the training target (e.g., BGB at forest plots) from a machine learning model (Hastie et al. 2009).(Hastie et al., 2009). Here, for each predictor, we excluded the extreme values (the lowest 1% and the highest 1%) before calculating the corresponding PDP to ensure its robustness-avoid roughly extending the PDP lines to data-scarce areas. Ten-fold RF trainings were also performed to derive the mean PDP values as well as the standard deviations.

3 Results and discussion

619	3.1 Model development and Evaluation of forests' AGBC and BGBC estimation
620	In the first step, i.e., the benchmark woodland AGB mapping, when ATLAS data-derived
621	canopy height was applied as an additional predictor in the RF model apart from the three
622	biomass datasets (see section 2.1), the number of data points available for training was 1392,
623	and the predicted R-square (\mathbb{R}^2) according to the ten-fold cross validation was 0.49±0.06 (mean
624	\pm standard deviation). The training efficiency is limited by the potential errors in plot-level AGB
625	records as well as the CGLS-LC's land cover fraction maps, and the scale difference between
626	satellite and plot-level observations. Although introducing climatic and topographic variables
627	as predictors could increase the R ² -of ten-fold cross validation, these variables contain high
628	spatial autocorrelation, and thus even an elevated R^2 cannot indicate a higher predictive
629	performance (Ploton et al. 2020). According to a test addressing the relative contribution of the
630	four predictors, GLASS-Biomass dataset contributed most to the woody AGB mapping (35%),
631	followed by GlobBiomass (24%), CCI-Biomass (22%) and ATLAS-derived tree volume (19%).
632	When GEDI-derived and GLAS-derived wood volumes were respectively used, the available
633	data points increased to 3842 and 2286, but the mean R^2 values were both reduced to 0.36. After
634	combining these three sets of AGB simulations, the R ² -between the resulting benchmark AGB
635	map for China (Figure S1c) and the upscaled plots' AGB was 0.56 (Figure S1b).

In the second step, i.e., long term continuous AGB mapping (see section 2.3), with a ten-fold

637	cross-validation, the RF model's predictive R^2 and RMSE were 0.79±0.01 and 16.7±0.33 t/ha,
638	respectively. Vegetation continuous fields (VCF) contributed most to the training efficiency
639	(tree cover and all vegetation cover contributed 39% and 17%, respectively). Mean and median
640	vegetation optical depth (VOD) values both contributed 17% to the training efficiency, whereas
641	mean surface soil moisture accounted for 10% (methods are in section 2.3).
642	First, according to Figure 3a, an exponential function: $y=1.63 \times x^{0.73}$ can fit the relationship
643	between the actual grid-scale forest AGBC over 2011–2015 (y) and the AGB values predicted
644	by GlobBiomass 2010 (x). Hence, this function was applied to derive the benchmark map of
645	forest AGBC across China.
646	Second, when using the spatial information of tree cover and short vegetation cover to estimate
647	the temporal variation of AGBC in each grid, the spatial searching window was at its minimum
648	of 3×3 in most (53%) grids with forests. Across China, the temporal extension of AGBC in only
649	15% of all grids with forest cannot be achieved even when the searching window was enlarged
649 650	15% of all grids with forest cannot be achieved even when the searching window was enlarged to 9×9 (Figure 3b).
649 650 651	15% of all grids with forest cannot be achieved even when the searching window was enlarged to 9×9 (Figure 3b). Next, as shown in Figure 3c and 3d, the grids where LPDR X-band VOD performed better than
649 650 651 652	15% of all grids with forest cannot be achieved even when the searching window was enlarged to 9×9 (Figure 3b). Next, as shown in Figure 3c and 3d, the grids where LPDR X-band VOD performed better than MODIS VCF in predicting the temporal change in forest AGBC are usually located in regions
649 650 651 652 653	15% of all grids with forest cannot be achieved even when the searching window was enlarged to 9×9 (Figure 3b). Next, as shown in Figure 3c and 3d, the grids where LPDR X-band VOD performed better than MODIS VCF in predicting the temporal change in forest AGBC are usually located in regions with low tree cover. These grids account for just 10.4% of all grids with forests, and may suffer

based VOD is supposed to be more suitable for estimating the forests' AGBC changes in these

regions.

of AGBC and the grids where VCF data were the better predictor.

The RF model designed for woody plots' forest plot BGB estimation (see section 2.53) achieved 666 667 a predictive R^2 of 0.89±0.02, while the RMSE was 6.3±0.5 t/ha. AGB explained 53% of the 668 variation in BGB's variation among different woody plots. Long-term climate backgrounds, i.e., 669 mean annual temperature, temperature seasonality, annual precipitation and precipitation 670 seasonality accounted for 8%, 6%, 8% and 7%, respectively. Forest type and stand age also 671 contributed 12% and 8% to the training efficiency, indicating that the effects of these factors 672 are nonnegligible. The selection of predictors of BGB basically followed the existing 673 knowledge (Huang et al. 2021)(Huang et al., 2021), and the seasonality of temperature and 674 precipitation made sense in the prediction (see Text S1). On the other hand, although previous 675 studies incorporated many edaphic factors as predictors of BGB (Huang et al. 2021), by 676 comparing the training efficiencies when whether these edaphic factors are incorporated(Huang 677 et al., 2021), by comparing the training efficiencies when whether these edaphic factors are 678 incorporated or not, we could justify the reasonability of our simplified set of predictors (Text 679 S1). 680 We also explored how different factors influence AGB and BGB among woody plots in China.

681 Of the biotic and abiotic factors included in our model, partial dependence plots (PDPs, Figure 682 2a~c) show that stand age is the main driver of AGB. However, with forest aging, forest growth 683 gradually stops, conforming with common knowledge (Xu et al. 2010). Woody AGB also **设置了格式:**字体:倾斜

684	increases significantly with precipitation, but water availability does not constrain biomass in
685	humid regions with annual precipitation above 1500 mm, and temperature did not significantly
686	affect AGB at large scales. These findings are in line with previous studies (Stegen et al. 2011).
687	According to the collected woody plots' data, AGB is a key driver of BGB (Figure 2d-g4). Yet,
688	RSR changes among different forest growth stages, decreasing in general as reported (Mokany
689	et al. 2006). (Mokany et al., 2006). The overall negative impact of mean temperature on BGB
690	or RSR agrees with the mechanism that higher heat promotes nutrient accessibility (Luo et al-
691	2012; Ma et al-2021), and increases the turnover rates of roots at a higher magnitude than
692	stems (Reich et al. 2014). (Reich et al., 2014). The 'U-shaped' relationship between precipitation
693	and belowground biomass allocation follows the 'optimal biomass allocation' theory, because
694	arid climates promote root extension, yet too heavy rainfall reduces nutrient availability through
695	leaching and dilution effecteffects (Luo et al. 2012).(Luo et al., 2012). Other factors, including
696	temperature seasonality, precipitation seasonality and forest type, have supplementary effects
697	on the biomass allocation (Figure <u>\$8\$2</u>).

Figure 24. Influence of key factors on woody plots' above- and forest belowground woody 700 701 biomass (BGB) and root-shoot ratio (RSR) in China. Subfigures (a~c) Partial effects of (a) 702 forest age; (b) mean annual temperature (MAT) and (c) mean annual precipitation (MAP) on 703 AGB in all qualified woody plots; (d-g) show partial influences of (a) AGB; (b) stand age; (c) 704 MAT and (d) AGB; (e) stand age; (f) MAT and (g) MAP on BGB and RSR values of all qualified 705 woodyforest plots. The error bars represent the standard deviations of the ten-fold trainings. We 706 did not draw the PDP for the impact of AGB on RSR, since the dividend of RSR calculation is 707 AGB.

708 **3.2 Total woody Forest** biomass carbon pool, allocation and change in China

Between 2003 to 2020, the total woody biomass in forestlands and shrublands in China were
28.4±1.8 Pg and 2.3±0.2 Pg, respectively (Table 1), while the total woody AGB and BGB were
24.4±1.6 Pg and 6.2±0.4 Pg. The mean RSR for forests (0.24) and that of all woody areas in
41

712	China (0.26) are both slightly lower than the global average values of approximately 0.25 and
713	0.3, respectively (Huang et al. 2021; Ma et al. 2021). Separated by forest types, evergreen
714	conifer forest (ENF) occupies the highest woody biomass per unit area (143.5 t/ha), followed
715	by 109.5 t/ha in the evergreen broadleaf forest (EBF), whereas deciduous forests (DBF & DNF)
716	harbor 92 t/ha (Figure 3a). By contrast, deciduous forests in northern China (see Figure S7 for
717	the distribution of forest ecosystems) occupy higher mean RSR values (Figure 3a)
718	Woody biomass across China increased by an average rate of 363.9±11.2 Tg/yr during 2003-
719	2020, equaling a vegetation carbon sink of approximately 163.8±5.9 TgC/yr (assuming a carbon
720	density to biomass ratio of 0.45 (Xu et al. 2018)). Changes in forestland AGB, forestland BGB,
721	shrubland AGB and shrubland BGB account for 73.8%, 7.1%, 15.5% and 3.6%, respectively,
722	of the total woody biomass trend. Apart from visible declines from 2010 to 2011 and from 2016
723	to 2017, China has undergone a continuous increase in woody biomass (p<0.01) during 2003-
724	2020, and the biomass gains were the greatest from 2014 to 2016 (Figure 3b).
725	Our estimates of woody biomass and its trend are generally consistent with previous results in
726	China obtained using both satellite observation and massive field measurements (Table 1). Yet,
727	differences occur in some aspects. For example, as the grass-dominated pixels are excluded in
728	this study, the mean RSR for Chinese shrubs (including those in grass-dominated pixels) was
729	reported as 0.71 (Tang et al. 2018), slightly higher than our estimate of 0.53 for shrubland
730	ecosystems in China. Moreover, regarding trees' occurrence in shrublands, the shrublands'

731	woody biomass and RSR values in this study refer to a mosaic of shrubs and some trees.
732	Table 1. Basic statistics of the calculated woody biomass in China and the agreement with those
733	reported previously (the ratio of carbon density to biomass is set to 0.45 (Xu et al. 2018)).
734	Between 2002 to 2021, the forest above- and belowground biomass carbon (AGBC and BGBC)
735	pools in China were 8.6 \pm 0.6 and 2.2 \pm 0.1 PgC, respectively (Table 1). The mean RSR for all
736	forests was 0.25, basically equal to the global average (Huang et al., 2021). Separated by forest
737	type, evergreen conifer forests (ENF) occupy the highest biomass carbon pool per unit area,
738	mainly because ENF are mainly located in southwestern China and are more mature and natural
739	(Yu et al., 2020; Zhang et al., 2017). Deciduous forests (DBF & DNF) in northern China (see
740	Figure S3 for the distribution of different forest ecosystems) harbor less biomass carbon but
741	higher BGBC (Figure 5a), which can be attributed to the higher RSR values (Table 1).
742	The forest biomass carbon stock in China increased at an average rate of 114.5±16.3 TgC/yr
743	(p<0.01) during 2002–2021, and the annual biomass carbon gains were the greatest from 2014
744	to 2015, reaching 736 TgC (Figure 5b). Changes in AGB and BGB accounted for 81.9% and
745	18.1%, respectively, of the forest carbon stock gains over the past 20 years.
746	Our estimates of the forest biomass carbon pool, forest RSR and the recent inter-annual trend
747	of forest biomass carbon are generally consistent with previous estimates based on massive
748	field investigations (Table 1).
749	Table 1. Agreement of the estimated various forest RSR and the trend of forest biomass carbon
750	in China with existing studies.
1	43

Variables related to- woody biomass	Our estimate (mean- value in 2003–2020)	Previous high-quality estimates	Reference	格式化表格
Forestland AGB in - China	22.9 Pg	18.7 Pg		
Forestland BGB in China	5.5 Pg	4.6 Pg	(Tang et al. 2018)	
Shrubland AGB in China	1.5 Pg	0.9 Pg		
Shrubland BGB in- ChinaForests' AGBC	$\frac{0.8 \text{ Pg} 8.6 \pm 0.6}{(2002 - 2021)}$ 8.7 ± 0.3 (2011 - 2015)	0.7 Pg8.4 ± 1.6 (2011– <u>2015)</u>	(Tang et al., 2018)	格式化表格 合并的单元格
Woody biomass in China	30.7 Pg	24.9~26.4 Pg	(Tang et al. 2018; Xu et al. 2018)	
Forestland RSR in	0.24<u>2.2 ± 0.1</u> (2002–	$\frac{0.23-0.25}{2.1+0.4}$	(Jiang and Wang	合并的单元格
ChinaForests' BGBC	$\frac{2021)}{2.2 \pm 0.1 (2011 - 2015)}$	<u>2015)</u>	2017; Tang et al. 2018)	格式化表格
Shrubland RSR in China	0.53	0.71		
ENF's per-area AGB	143.5 t/ha	~ 122 t/ha		
EBF's per-area AGB	109.5 t/ha	~109 t/ha	(Tang et al. 2018)	
DBF's per-area AGB	92.2 t/ha	~87 t/ha		
DNF's per-area AGB	91.5 t/ha	~98 t/ha		
All forests' per-area AGB	109.3 t/ha	99~112 t/ha	(Tang et al. 2018; Yin et al. 2015)	
Forests' per-area total- biomass	137.3 t/ha	124~144 t/ha	(Tang et al. 2018; Yao et al. 2018)	
ENF'sEBF's RSR	0. <u>2227</u> ±0. <u>0307</u>	0.2422 ± 0.11	(Tong et al	格式化表格
EBF'sDBF's RSR	0. <u>2531</u> ±0. <u>0405</u>	0. 22 28±0.15	$\frac{1}{2018}$ (Tang et al	
DBF'sENF's RSR	0.3022±0.0304	0.2824 ± 0.11	2010) <u>(Tung et un,</u> 2018)	
DNF's RSR	0. 34<u>29</u>±0.04<u>10</u>	0.31 <u>±0.13</u>		
	$\frac{163.8 \pm 114.5.9 \pm 16.3}{163.8 \pm 114.5.9 \pm 16.3}$			拆分的单元格
Annual woodyforest	TgC/yr	120.2116.7 TgC/yr	(Fang et al.	拆分的单元格
carbon stock increase	(2002–2021)	(20002010)	2018)(Fang et al.,	
	105.1 ± 42.2 TgC/yr		<u>2018)</u>	
	<u>(2002–2010)</u>	178 ToC/are (2020, 2020)	$(T_{ang} \text{ at } c1, 2019)$	
		170 TaC/yr	(1411g ct al. 2010)	
		170 1gC/yr (2000s~2040s)	(Yao et al. 2018)	
Annual forests' carbon stock increase	146.2~163.8 TgC/yr	153.6 TgC/yr (2003-2020)	(Qiu et al. 2020)	

762 3.3 Updated spatial hotspotsSpatial pattern of woodythe forest biomass amount 763 andcarbon stock trend in China 764 The highest per area woodlandforest biomass iscarbon pools during 2002-2021 were observed 765 in the southwest of northeastern and southwestern China, especially southsouthern Tibet. 766 WoodyForest biomass iscarbon stocks were also high in parts of the natural or semi-natural 767 forests in the Qinling Mountains, Hengduan Mountains, Hainan and Taiwan islands (Figure 4a). 768 Hence, woody biomass was highest in the south < 34°N, followed by the northeast forests, and 769 lowest in the mid-latitudes, 38-40°N (Figure 4b).6a). Above- and belowground woodyforest 770 biomass allocation varies significantly among regions. RSR is highest in northeastern 771 deciduous conifer forests and northern China's deciduous forest. The southwest karsts also have higher RSR than its surroundings due to high shrubland biomass (Figure 4c and Figure S5b). 772 773 Woody pixels' RSR ranges from 0.17 to 0.42 across China, with 67% of pixels having a RSR 774 of 0.2 0.3 (Figure 4d). broadleaf forests but low in southern China (Figure 6b). The strongest 775 forest biomass carbon increases were found in central to southern China, including the southern 776 part of the Loess Plateau, the Qinling Mountains, the southwest karst region and southeastern 777 forests. DeclinesSlight declines in woodyforest biomass carbon only occurred in some mature 778 and natural forests, e.g., those in the Greater Khingan Mountain, Hengduan Mountains and 779 South Tibet (Figure 4e). 59.8% (6c). A total of woody areas 40.3% of all forests in China showed 780 significant biomass carbon stock gains (Figure 4fover the past 20 years, whereas only 3.3% of 781 forests experienced significant biomass carbon losses (Figure 6d).

Figure 46. Maps of woodyforest biomass amountcarbon pool, allocation and trend in China 784 785 during 2003 202020202-2021. (a) Spatial-pattern of woody total biomass in China; (b) the latitudinal pattern of per-area woody AGB, BGB and total woody area in China (woody areas 786 below 22°N are limited); (c-d) map of woody vegetation's RSR and its histogram; (e-f) map 787 788 of the woody biomass trend and its histogram. Shaded areas in trend maps indicatethe forest 789 biomass carbon pool in China; (b) all forestland pixels' RSR; (c) map of the forest biomass 790 carbon stock trend from 2002 to 2021, with shaded areas representing statistically significant 791 trends at the 95% confidence level, while the; (d) histogram and basic statistics of all woody 792 pixels'forest biomass amount and carbon stock trend are labelled in the subfigures with 793 histograms.

794	In agreement with our results (AGB: 24.4±1.6 Pg, total biomass: 30.7±2.0 Pg),
795	previous studies estimated a total woody AGB in China of 23.4±0.6 Pg after
796	2003 (Liu et al. 2015) and a total woody biomass of 29.4±1.1 Pg during
797	2003~2019 (Xu et al. 2021). However, the spatial pattern inferred here
798	markedly differ compared with these previous estimates. We predict higher
799	woody biomass in the central-south and southwest China but lower biomass
800	values in the northern and northwest regions (Figure S9a~f). The spatial
801	pattern of our AGB map agrees well with that of recent high-quality China's
802	forest AGB maps which were developed by integrating Lidar, P-band SAR
803	and forest inventory data <u>4 Discussion</u>
804	4.1 Comparison of the estimated forest biomass carbon pool change in this study against
805	the existing datasets
806	
	Although with potential overestimation, the inter-annual variation in forest AGBC in China
807	Although with potential overestimation, the inter-annual variation in forest AGBC in China according to Liu et al. (2015) and that of total biomass carbon according to Xu et al. (2021) are
807 808	Although with potential overestimation, the inter-annual variation in forest AGBC in China according to Liu et al. (2015) and that of total biomass carbon according to Xu et al. (2021) are both highly correlated with our results (R^2 = 0.65 and 0.88). Liu et al. predicted a forest AGBC
807 808 809	Although with potential overestimation, the inter-annual variation in forest AGBC in China according to Liu et al. (2015) and that of total biomass carbon according to Xu et al. (2021) are both highly correlated with our results (R^2 = 0.65 and 0.88). Liu et al. predicted a forest AGBC increase rate of 102.2 ± 35.8 Tg/yr (p<0.01), slightly higher than our estimate of 80.8 ± 25.1
807 808 809 810	Although with potential overestimation, the inter-annual variation in forest AGBC in China according to Liu et al. (2015) and that of total biomass carbon according to Xu et al. (2021) are both highly correlated with our results (R^2 = 0.65 and 0.88). Liu et al. predicted a forest AGBC increase rate of 102.2 ± 35.8 Tg/yr (p<0.01), slightly higher than our estimate of 80.8 ± 25.1 Tg/yr during 2002–2012; while Xu et al. indicated a biomass carbon stock trend of 99.4 ± 23.2
807 808 809 810 811	Although with potential overestimation, the inter-annual variation in forest AGBC in China according to Liu et al. (2015) and that of total biomass carbon according to Xu et al. (2021) are both highly correlated with our results (R^2 = 0.65 and 0.88). Liu et al. predicted a forest AGBC increase rate of 102.2 ± 35.8 Tg/yr (p<0.01), slightly higher than our estimate of 80.8 ± 25.1 Tg/yr during 2002–2012; while Xu et al. indicated a biomass carbon stock trend of 99.4 ± 23.2 Tg/yr (p<0.01) from 2002 to 2019, slightly lower than the rate of 115.6 ± 20.2 Tg/yr in this

813	al. and Liu et al. were slightly patchy (Figure 7c~d). Compared to this study, the two existing
814	datasets (i.e., Liu et al. (2015) and Xu et al. (2021)'s datasets) predicted higher biomass carbon
815	stock trends in the Qinling Mountains and the mature deciduous conifer forests in northeast
816	China. Meanwhile, they predicted lower carbon sinks in southern China (Figure 7c~f), where
817	reforestation and forest management-induced short term extensive carbon uptake (Tong et al.,
818	2020) have been confirmed by atmospheric inversions (Wang et al., 2020; Yang et al., 2021).
819	Finally, by comparing Figure 7e and 7f, we could also notice that the hotspot of forest biomass
820	carbon gains has moved from the Loess Plateau over the first decade of our study period (2002-
821	2012) to southern China (e.g., Guangxi Province) later. This change was probably due to the
822	large-scale implementation of the 'Grain for Green' project on the Loess Plateau (HuangLiu et
823	al. 2019; Su., 2020; Wu et al. 2016., 2019), with the correlation coefficients both reaching 0.73.
824	For Liu et al. (2015)'s and Xu et al. (2021)'s dataset, the spatial pattern correlations with those
825	improved AGB maps are 0.35-0.50 and 0.27-0.37, respectively (Figure S10). The average
826	woody AGB in eight provinces of southern China was 92-104 t/ha (Tong et al. 2020), close to
827	our estimate of 85~110 t/ha. Forest inventory indicated a tree biomass of 1.92 Pg in Tibet (Sun
828	et al. 2016) where our result was 1.86 Pg yet the two existing long term datasets predicted
829	1.26~1.52 Pg
830	The interannual variation in woody AGB in China according to Liu et al. (2015) and that of

total woody biomass according to Xu et al. (2021) are both highly correlated with our results

设置了格式

832	(r=0.76 and 0.95). Liu et al. predicted a woody AGB increasing rate of 186±79.6 Tg/yr (p<0.01),
833	similar to our estimate of 236±117 Tg/yr during 20032012; while Xu et al. indicated a biomass
834	trend of 219.4±79.6 Tg/yr (p<0.01) from 2003 to 2019, lower than the rate of 368±69.9 Tg/yr
835	in this study (Figure S11a, c). Spatially, this study predicted an obviously faster biomass
836	increases in southern China than their datasets (Figure S11). Reforestation and forest
837	management led to a short term extensive carbon sequestration in southern China, which was
838	estimated as 220±100 Tg AGB/yr during 2002-2017 by developing a regional RF model
839	between MODIS reflectance data and a global benchmark AGB map (Tong et al. 2020), close
840	to our estimate of 200±58 Tg AGB/yr. The high ecosystem carbon sink in central to south China
841	and southwestern China has been shown by atmospheric inversions as well (Wang et al. 2020;
842	Yang et al. 2021).
843	Accordingly, by fusing low-frequency active, passive microwaves and the advanced LiDAR-
844	derived canopy heights under the reference of extensive field measurements, this study could
845	generate updated estimates on the spatial hotspots of woody biomass and its trends in China.
846	3.4 Uncertainties of the woody biomass dataset _ before 2012, and the massive plantation of
847	fast-growing trees in southern China after 2010 (Tong et al., 2020).

856	2019 in this study; (f) map of the estimated forest AGBC trend over 2002–2012 in this study.
857	4.2 Some uncertainties of the forest biomass carbon dataset and future prospects
858	The uncertainties of AGB in this study came from four sources: 1) the improved benchmark
859	AGB map for China; 2) the extension of AGB time series based on the long term integrated
860	VOD and high/short vegetation coverage datasets; 3) downscaling of coarse resolution AGB;
861	and 4) the AGB decomposition process. The uncertainty in BGB was composed of the error
862	within the AGB time series and the prediction uncertainty of the models that transform AGB to
863	BGB. The details for the calculation of each source of error are in Text S2. Finally, the annual
864	AGB and BGB's relative error can be calculated as the square root of the sum of squares of all
865	relative errors, which is referred to as the 'error propagation rule' when assuming that each error
866	is independent and random (Huang et al. 2021). By multiplying the annual AGB or BGB map
867	with the corresponding relative error, we mapped the AGB and BGB's uncertainties in China
868	annually during 2003–2020. As shown in Figure S12, the spatial patterns of the relative errors
869	of AGB and BGB are similar. Relative errors were lower in the pure forests located in northeast
870	China and the south Tibet, and high in the mixed forest and shrublands in the southwest karst
871	regions and part of North China.
872	A recent study revealed that the variation in VODs is correlated with not only biomass, but also
873	soil moisture availability (Konings et al. 2021). To alleviate this source of uncertainty as much
874	as possible, we have incorporated the satellite based surface soil moisture dataset to account

875	for the impact from the interannual variation in water content per biomass. In addition, we have
876	included optical based vegetation continuous fields in predicting the spatiotemporal variation
877	in biomass, which turned out to be the variable with the highest contribution (56%). In fact, the
878	interannual variation in Chinese woody biomass according to this study is highly correlated
879	(r=0.95) with that calculated independent of microwave-based VOD (Xu et al. 2021).
880	Next, the-During benchmark AGBC mapping, we converted the in-situ AGBC data at forest
881	plots into the grid-scale average AGBC by multiplying by the fraction of forestland during the
882	time period of field investigation. Considering the overall high-quality of the China's land-
883	use/cover datasets developed via human-computer interactive interpretation of Landsat images
884	(Liu et al., 2014; Yang and Huang, 2021), and that the producer's accuracy (PA) and user's
885	accuracy (UA) for forestland classification in the CLCD dataset used in this study were 73%
886	and 85% respectively, the errors within the benchmark AGBC mapping induced by the scale
887	conversion based on the forestland area fraction were generally limited.
888	<u>The</u> variation in climatic conditions in <u>athe</u> short term may have subtle influences on that in <u>the</u>
889	BGB, but explicit knowledge on this effect is lacking. Instead, woody vegetation BGB is much
890	more driven by AGB (vegetation density), as indicated by the very strong relationship between
891	BGB and AGB ($R^2 \ge 0.85$). Moreover, the long-term climatic background is expected to have a
892	stronger influence on the RSR of perennial woody plants than the meteorological conditions in
893	only a few years, since above- and belowground biomass allocation is the result of plants' long-

设置了格式:字体:倾斜

term adjustment to the environment (Qi et al. 2019). Accordingly(Qi et al., 2019). Therefore, it
is reasonable not to consider the influence of the specific climatic conditions in a year on the
variation in BGB.

897 In the near future, P-band microwave sensors, which have higher penetrability into the canopy 898 than L-band microwaves, will further improve the AGB mapping. For example, BIOMASS, a 899 fully polarimetric P-band SAR, is scheduled to be launched in 2022 (Le Toan et al. 2011)(Le 900 Toan et al., 2011). Therefore, in the future the relationship between P-band microwave retrievals 901 and biomass should be addressed, as well as the calibration of historical AGB datasets (e.g., the 902 long-term AGB dataset in this study) against the P-band SAR-based AGB benchmark map to 903 extend the time series. In addition, an inter-calibration between the AMSR-E-based VOD and 904 the AMSR2-based VOD will further reduce the potential bias within the long-term integrated 905 VOD datasets (Wang et al., 2021a; Wang et al., 2021b). On the other hand, more in-situ AGB 906 and BGB measurements in larger plots are needed to further improve the estimation of 907 belowground biomass allocation.

908 Data availability

1

909	Annual forest above- and belowground biomass maps in China between 2002 and 2021 are now
910	available at: https://doi.org/10.6084/m9.figshare.21931161.v1. This dataset will also be
911	available on the National Tibetan Plateau/Third Pole Environment Data Center and PANGAEA
912	soon (under checking now). Annual AGB and BGB in China will be available on the National

913 Tibetan Plateau/Third Pole Environment Data Center and PANGAEA: . Other open datasets 914 that made this research possible and the related references are attached in Supplementary 915 Information- Text S3S2.

916 Funding and acknowledgements

917 This work was supported by the National KeyCAS Project for Young Scientists in Basic

918 Research and Development Program of China (2017YFA0604700), National Science

919 Foundation of China (41991233) and the Chinese Academy of Sciences (OYZDY-SSW-

920 DQC025).(YSBR-037). We are grateful to all the data contributors, especially Yuan ZhangXuli

921 Tang for sharing in-situ measurements of forest aboveground biomass carbon stock across

922 China, and Huabing Huang for sharing the forest stand age map and his forest aboveground

923 biomass map-in-China to us.

Conflict of interests 924

925 The authors declare no conflict of interest.

926 **Credit author statement**

- 927 Y.C designed and conducted the research. B.F and X.F funded the research. Y.Z wrote the draft
- 928 of the manuscript; X.F and all other authors read and revised the manuscript.

929 References

- 930 Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., & Smets, B. (2013). GEOV1: LAI
- 931 and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: 932 Principles of development and production. Remote. Sens. Environ., 137, 299-309
- 933 Besnard, S., Koirala, S., Santoro, M., Weber, U., Nelson, J., Gütter, J., Herault, B., Kassi, J., N'Guessan, A., Neigh,
- 934 C., Poulter, B., Zhang, T., and Carvalhais, N.: Mapping global forest age from forest inventories, biomass and 935
- climate data, Earth Syst. Sci. Data, 13, 4881-4896, https://doi.org/10.5194/essd-13-4881-2021, 2021.
 - 56

936	Bouvet, A., Mermoz, S., Le Toan, T., Villard, L., Mathieu, R., Naidoo, L., & And Asner, G. P. (2018): An above-	带格式的: 段落间距段前: 8.15 磅,段后: 0 磅
937	ground biomass map of African savannahs and woodlands at 25m resolution derived from ALOS PALSAR ₇₂	
938	Remote Sens. Environ., 206, 156-173, https://doi.org/10.1016/j.rse.2017.12.030, 2018.	
939	Buchhorn, M., Lesiv, M., Tsendbazar, NE., Herold, M., Bertels, L., & Smets, B. (2020). Copernicus Global Land	
940	Cover Layers Collection 2. Remote Sens., 12	
941	Cammalleri, C., Verger, A., Lacaze, R., & Vogt, J.V. (2019). Harmonization of GEOV2 fAPAR time series through	
942	MODIS data for global drought monitoring. Int. J. Appl. Earth Obs., 80, 1-12	
943	Cartus, O., Santoro, M., & and Kellndorfer, J. (2012): Mapping forest aboveground biomass in the Northeastern	带格式的: 段落间距段前:8.15 磅,段后:0 磅
944	United States with ALOS PALSAR dual-polarization L-band-, Remote Sens. Environ., 124, 466-478,	
945	https://doi.org/10.1016/j.rse.2012.05.029, 2012.	
946	Chang 7 Hobeichi S. Wang VP. Tang X. Abramowitz G. Chen V. Cao, N. Yu, M. Huang H. Zhou, G.	
947	Wang G Ma K Du S Li S Han S Ma Y Wigneron L-P Fan L Saatchi S S and Van L: New Forest	
948	Aboveground Biomass Mans of China Integrating Multiple Datasets Remote Sens 13	
949	https://doi.org/10.3390/rs13152892.2021.	
050		
950	Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R., K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R.,	带格式的: 段落间距段前: 8.15 磅, 段后: 0 磅
951	Tømmervik, H., Bala, G., Zhu, Z., Nemani, R. R., & and Myneni, R. B. (2019a) China and India lead in greening	
952	of the world through land-use management π_{a} Nat. Sustain., 2, 122-129,	
953	https://doi.org/10.1029/2018EF00089010.1038/s41893-019-0220-7, 2019a.	
954	Chen, Y., Feng, X., & Fu, B. (2021). An improved global remote-sensing-based surface soil moisture (RSSSM)	
955	dataset covering 2003–2018. Earth Syst. SeiData, 13, 1-31	
956	Chen, Y., Feng, X., Fu, B., Shi, W., Yin, L., & and Lv, Y. (2019b) Recent Global Cropland Water Consumption	带格式的: 段落间距段前: 8.15 磅,段后: 0 磅
957	Constrained by Observations ₇ , Water Resour. Res., 55, 3708-3738, http://doi.org/10.1029/2018WR023573, 2019b.	
958	Dubayah, R., Blair, J.B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, G., Kellner, J.,	
959	Lutheke, S., Armston, J., Tang, H., Duncanson, L., Hancock, S., Jantz, P., Marselis, S., Patterson, P.L., Qi, W., &	
960	Silva, C. (2020). The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth's	
961	forests and topography. Sci. Remote Sens., 1, 100002	
962	D'Errico, J.: SLM - Shape Language Modeling MATLAB Central File Exchange [code], 2022.	
963	DiMiceli, C., Sohlberg, R., and Townshend, J.: MODIS/Terra Vegetation Continuous Fields Yearly L3 Global	
964	250m SIN Grid V061. [dataset], https://doi.org/10.5067/MODIS/MOD44B.061, 2022.	
965	Du, J., Kimball, J. S., Jones, L. A., Kim, Y., Glassy, J., and Watts, J. D.: A global satellite environmental data record	
966	derived from AMSR-E and AMSR2 microwave Earth observations, Earth Syst. Sci. Data, 9, 791-808,	
967	https://doi.org/10.5194/essd-9-791-2017, 2017.	
968	Enquist Brian, J., &, and Niklas Karl, J. (2002).: Global Allocation Rules for Patterns of Biomass Partitioning in	带格式的: 段落间距段前:8.15 磅.段后:0 磅
969	Seed Plants-, Science, 295, 1517-1520, https://doi.org/10.1029/2018EF00089010.1126/science.1066360, 2002.	
970	Fang, J., Yu, G., Liu, L., Hu, S., & and Chapin, F. S. (2018): Climate change, human impacts, and carbon	

971 972	sequestration in China ₅ , P. Natl. Acad. Sci. USA, 115, 4015, https://doi.org/10.1029/2018EF00089010.1073/pnas.1700304115, 2018.	
973 974	Fick, S. E., & and Hijmans, R. J. (2017): WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas ₇ . Int. J. Climatol., 37, 4302-4315, https://doi.org/10.1029/2018EF00089010.1002/joc.5086, 2017.	
975 976 977 978 979 980	 Frappart, F., Wigneron, JP., Li, X., Liu, X., Al-Yaari, A., Fan, L., Wang, M., Moisy, C., Le Masson, E., Aoulad Lafkih, Z., Vallé, C., Ygorra, B., & and Baghdadi, N-(2020). Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review-a Remote Sens., 12, https://doi.org/10.1029/2018EF00089010.3390/rs12182915, 2020. Guo, J., Guo, Y., Chai, Y., Liu, X., & Yue, M. (2021). Shrubland biomass and root-shoot allocation along a climate gradient in China. Plant Ecol. Evol., 154, 5-14 	
981 982	Guo, Q., & and Ren, H. (2014) Productivity as related to diversity and age in planted versus natural forests. Global Ecol. Biogeogr., 23, 1461-1471, https://doi.org/10.1111/geb.12238, 2014.	带格式的: 段落间距段前: 8.15 磅,段后:0 磅
983 984 985 986	 Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R. G.: High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 342, 850-853, https://doi.org/10.1126/science.1244693, 2013. 	
987 988	Hastie, T., Tibshirani, R., & and Friedman, J. (2009): The Elements of Statistical Learning Data Mining, Inference, and Prediction, Second Edition, Section 10.13.2. Springer, Springer2009.	带格式的: 段落间距段前: 8.15 磅,段后:0 磅
989 990 991	Hu, T., Su, Y., Xue, B., Liu, J., Zhao, X., Fang, J., <u>∧</u> Guo, Q. (2016): Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data. <u>Remote Sens., 8, Remote Sens.,</u> 8, https://doi.org/10.1029/2018EF00089010.3390/rs8070565, 2016.	
992 993 994	Huang, H., Liu, C., Wang, X., Zhou, X., & and Gong, P. (2019): Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote. Sens. Environ., 221, 225-234, https://doi.org/10.1016/j.rse.2018.11.017, 2019.	
995 996 997	Huang, Y., Ciais, P., Santoro, M., Makowski, D., Chave, J., Schepaschenko, D., Abramoff, R. Z., Goll, D. S., Yang, H., Chen, Y., Wei, W., ∧ Piao, S-(2021). A global map of root biomass across the world's forests- Earth Syst. Sci. Data, 13, 4263-4274. https://doi.org/10.1029/2018EF00089010.5194/essd-13-4263-2021, 2021.	
998 999 1000 1001	Jackson, T. J., &, and Schmugge, T. J. (1991): Vegetation effects on the microwave emission of soils. Remote. Sens. Environ., 36, 203-212, https://doi.org/10.1016/0034-4257(91)90057-D, 1991. Jiang, Y., & Wang, L. (2017). Pattern and control of biomass allocation across global forest ecosystems. Ecol. Evol., 7, 5493-5501	
1002 1003	Konings, A.G., Holtzman, N.M., Rao, K., Xu, L., & Saatchi, S.S. (2021). Interannual Variations of Vegetation Optical Depth are Due to Both Water Stress and Biomass Changes. Geophys. Res. Lett., 48, e2021GL095267	
1004 1005	Konings, A.G., Piles, M., Das, N., & Entekhabi, D. (2017). L-band vegetation optical depth and effective scattering albedo estimation from SMAP. Remote. Sens. Environ., 198, 460-470	

1006 1007	Kumar, L., &. and Mutanga, O. (2017): Remote Sensing of Above-Ground Biomass., Remote Sens., 9.4 https://doi.org/10.1029/2018EF00089010.3390/rs9090935, 2017.	带格式的: 段落间距段前: 8.15 磅,段后: 0 磅
1008 1009 1010 1011 1012 1013	Le Toan, T., Quegan, S., Davidson, M. W.J., Balzter, H., Paillou, P., Papathanassiou, K., Plummer, S., Rocca, F., Saatchi, S., Shugart, H., <u>∧</u> Ulander, L. (2011), The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle _{7a} Remote. Sens. Environ., 115, 2850-2860, <u>https://doi.org/10.1016/j.rse.2011.03.020, 2011.</u> Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol., 49, 764-766	
1014 1015 1016 1017	Li, W., MacBean, N., Ciais, P., Defourny, P., Lamarche, C., Bontemps, S., Houghton, R.A., <u>& and</u> Peng, S. (2018) Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data, 10, 219-234. <u>https://doi.org/10.1029/2018EF00089010.5194/essd-10- 219-2018, 2018.</u>	带格式的: 段落间距段前: 8.15 磅,段后:0 磅
1018 1019 1020 1021 1022 1023	Li, X., Wigneron, JP., Frappart, F., Fan, L., Ciais, P., Fensholt, R., Entekhabi, D., Brandt, M., Konings, AG., Liu, X., Wang, M., Al-Yaari, A., <u>∧</u> Moisy, C . (2021): Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products ₇ . Remote. Sens. Environ., 253, 112208, <u>https://doi.org/10.1016/j.rse.2020.112208, 2021.</u> Liu, M., Li, D., Hu, J., Liu, D., Ma, Z., Cheng, X., Zhao, C., & Liu, Q. (2020). Altitudinal pattern of shrub biomass allocation in Southwest China. PLoS One, 15, e0240861	
1024 1025 1026	Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., Zhou, W., Zhang, S., Li, R., Yan, C., Wu, S., Shi, X., Jiang, N., Yu, D., Pan, X., and Chi, W.: Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s, Dili Xuebao/Acta Geogr. Sin., 69, 3-14, https://doi.org/10.11821/dlxb201401001, 2014.	
1027 1028 1029	Liu, X., Su, Y., Hu, T., Yang, Q., Liu, B., Deng, Y., Tang, H., Tang, Z., Fang, J., & and Guo, Q. (2022): Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data-, Remote. Sens. Environ., 269, 112844, <u>https://doi.org/10.1016/j.rse.2021.112844</u> , 2022.	(带格式的: 段落间距段前: 8.15 磅,段后: 0 磅
1030 1031 1032	Liu, Y. Y., de Jeu, R. A. M., McCabe, M. F., Evans, J. P., <u>& and</u> van Dijk, A. I. J. M. (2011), Global long-term passive microwave satellite-based retrievals of vegetation optical depth ₇ . Geophys. Res. Lett., 38, <u>https://doi.org/10.1029/2011GL048684, 2011.</u>	
1033 1034 1035	Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M., Canadell, J. G., McCabe, M. F., Evans, J. P., & and Wang, G- (2015): Recent reversal in loss of global terrestrial biomass Nat. Clim. Change, 5, 470-474. https://doi.org/10.1029/2018EF00089010.1038/nclimate2581, 2015.	
1036 1037 1038	Liu, Z., Wang, J., Wang, X., and Wang, Y.: Understanding the impacts of 'Grain for Green' land management practice on land greening dynamics over the Loess Plateau of China, Land Use Policy, 99, 105084, https://doi.org/10.1016/j.landusepol.2020.105084, 2020.	带格式的: 段落间距段前: 8.15 磅,段后: 0 磅
1039 1040	Lu, F., Hu, H., Sun, W., Zhu, J., Liu, G., Zhou, W., Zhang, Q., Shi, P., Liu, X., Wu, X., Zhang, L., Wei, X., Dai, L., Zhang, K., Sun, Y., Xue, S., Zhang, W., Xiong, D., Deng, L., Liu, B., Zhou, L., Zhang, C., Zheng, X., Cao, J.,	

1041 1042	Huang, Y., He, N., Zhou, G., Bai, Y., Xie, Z., Tang, Z., Wu, B., Fang, J., Liu, G., & and Yu, G. (2018): Effects of	
1042 1043	USA, 115, 4039-4044 <u>, https://doi.org/10.1029/2018EF00089010.1073/pnas.1700294115, 2018</u> .	
1044	Luo, T. (1996) Patterns of net primary productivity for Chinese major forest types and their mathematical models.	
1045	In: Chinese Academy of Sciences, 1996.	
1046	Luo, Y., Zhang, X., Wang, X., and Lu, F.: Biomass and its allocation of Chinese forest ecosystems, Ecology, 95,	
1047	2026-2026, https://doi.org/10.1890/13-2089.1, 2014.	
1048	Luo, Y., Wang, X., Zhang, X., Booth, TH., & and Lu, F-(2012): Root:shoot ratios across China's forests: Forest	带格式的: 段落间距段前: 8.15 磅,段后: 0 磅
1049	type and climatic effects ₇ . Forest Ecol. Manag., 269, 19-25, https://doi.org/10.1016/j.foreco.2012.01.005, 2012.	
1050	Luo, Y., Zhang, X., Wang, X., & Lu, F. (2014). Biomass and its allocation of Chinese forest ecosystems. Ecology,	
1051	95, 2026-2026	
1052	Ma, H., Mo, L., Crowther, T. W., Maynard, D. S., van den Hoogen, J., Stocker, B. D., Terrer, C., & and Zohner, C.	带格式的: 段落间距段前: 8.15 磅, 段后: 0 磅
1053	$M_{\frac{2021}{2}}$. The global distribution and environmental drivers of above ground versus below ground plant biomass.	
1054	Nat. Ecol. Evol., https://doi.org/10.1038/s41559-021-01485-1, 2021.	
1055	Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., Farrell, S., Fricker, H., Gardner, A.,	
1056	Harding, D., Jasinski, M., Kwok, R., Magruder, L., Lubin, D., Lutheke, S., Morison, J., Nelson, R.,	
1057	Neuenschwander, A., Palm, S., Popescu, S., Shum, C.K., Schutz, B.E., Smith, B., Yang, Y., & Zwally, J. (2017).	
1058	The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation.	
1059	Remote. Sens. Environ., 190, 260-273	
1060	Menenti, M., Azzali, S., Verhoef, W., & van Swol, R. (1993). Mapping agroecological zones and time lag in	
1061	vegetation growth by means of fourier analysis of time series of NDVI images. Advances in Space Research, 13,	
1062	233-237	
1063	Mialon, A., Rodríguez-Fernández, N. J., Santoro, M., Saatchi, S., Mermoz, S., Bousquet, E., ∧ Kerr, Y. H.+	带格式的: 段落间距段前: 8.15 磅, 段后: 0 磅
1064	(2020) Evaluation of the Sensitivity of SMOS L-VOD to Forest Above-Ground Biomass at Global Scale	
1065	Remote Sens., 12, 1450, https://doi.org/10.3390/rs12091450, 2020.	
1066	Moesinger, L., Dorigo, W., de Jeu, R., van der Schalie, R., Scanlon, T., Teubner, I., & Forkel, M. (2020). The global	
1067	long term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth Syst. Sci. Data, 12, 177-196	
1068	Mokany, K., Raison, R. J., & and Prokushkin, A. S. (2006).; Critical analysis of root; shoot ratios in terrestrial*	带格式的: 段落间距段前: 8,15 磅,段后: 0 磅
1069	biomes-, Global Change Biol., 12, 84-96, https://doi.org/10.1111/j.1365-2486.2005.001043.x, 2006.	
1070	Neuenschwander, A., Guenther, E., White, J.C., Duncanson, L., & Montesano, P. (2020). Validation of ICESat-2	
1071	terrain and canopy heights in boreal forests. Remote. Sens. Environ., 251, 112110	
1072	Nie, X., Yang, Y., Yang, L., & Zhou, G. (2016). Above- and Belowground Biomass Allocation in Shrub Biomes	
1073	across the Northeast Tibetan Plateau. PLoS One, 11, e0154251	
1074	Niu, Q., Xiao, X., Zhang, Y., Qin, Y., Dang, X., Wang, J., Zou, Z., Doughty, R. B., Brandt, M., Tong, X., Horion,	带格式的: 段落间距段前: 8.15 磅,段后: 0 磅
1075	S., Fensholt, R., Chen, C., Myneni, R. B., Xu, W., Di, G., & and Zhou, X. (2019) Ecological engineering projects	
1076	increased vegetation cover, production, and biomass in semiarid and subhumid Northern China-, Land Degrad.	
1		

1077	Dev., 30, 1620-1631, https://doi.org/10.1002/ldr.3351, 2019.	
1078	O'Neill, P. E., Chan, S., Njoku, E. G., Jackson, T., Bindlish, R., <u>& and</u> Chaubell, J. (2021): SMAP Enhanced L3	
1079	Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 5. In. Boulder, Colorado USA .: NASA	
1080	National Snow and Ice Data Center Distributed Active Archive Center. [dataset],	
1081	https://doi.org/10.5067/4DQ54OUIJ9DL., 2021.	
1082	Peng, S., Wen, D., He, N., Yu, G., Ma, A., & Wang, Q. (2016). Carbon storage in China's forest ecosystems:	
1083	estimation by different integrative methods. Ecol. Evol., 6, 3129-3145	
1084	Ploton, P., Mortier, F., Réjou-Méchain, M., Barbier, N., Picard, N., Rossi, V., Dormann, C., Cornu, G., Viennois,	
1085	G., Bayol, N., Lyapustin, A., Gourlet-Fleury, S., & Pélissier, R. (2020). Spatial validation reveals poor predictive	
1086	performance of large-scale ecological mapping models. Nat. Commun., 11, 4540	
1087	Potapov, P., Hansen, M.C., Kommareddy, I., Kommareddy, A., Turubanova, S., Pickens, A., Adusei, B., Tyukavina,	
1088	A., & Ying, Q. (2020). Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping.	
1089	Remote Sens., 12	
1090	Oi, Y., Wei, W., Chen, C., & and Chen, L. (2019). Plant root-shoot biomass allocation over diverse biomes: A	带格式的: 段落间距段前: 8,15 磅,段后:0 磅
1091	global synthesis ₅ , Glob Ecol. Conserv., 18, e00606, https://doi.org/10.1016/j.gecco.2019.e00606, 2019.	
1092	Qiu, Z., Feng, Z., Song, Y., Li, M., & Zhang, P. (2020). Carbon sequestration potential of forest vegetation in China	
1093	from 2003 to 2050: Predicting forest vegetation growth based on climate and the environment. J. Clean. Prod.,	
1094	252, 119715	
1095	Reich, P. B., Luo, Y., Bradford, J. B., Poorter, H., Perry, C. H., ∧ Oleksyn, J. (2014): Temperature drives	带格式的: 段落间距段前: 8.15 磅,段后:0 磅
1096	global patterns in forest biomass distribution in leaves, stems, and roots ₇ , P. Natl. Acad. Sci. USA, 111, 13721,	
1097	https://doi.org/10.1073/pnas.1216053111, 2014.	
1098	Roerink, G.J., Menenti, M., & Verhoef, W. (2000). Reconstructing cloudfree NDVI composites using Fourier	
1099	analysis of time series. International Journal of Remote Sensing, 21, 1911-1917	
1100	Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., Zutta, B. R., Buermann, W.,	带格式的: 段落间距段前: 8.15 磅,段后: 0 磅
1101	Lewis, S. L., Hagen, S., Petrova, S., White, L., Silman, M., & and Morel, A. (2011) Benchmark map of forest	
1102	carbon stocks in tropical regions across three continents, P. Natl. Acad. Sci. USA, 108, 9899,	
1103	https://doi.org/10.1073/pnas.1019576108, 2011.	
1104	Santoro, M., & Cartus, O. (2019). ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest	
1105	above-ground biomass for the year 2017, v1. In. Centre for Environmental Data Analysis	
1106	Santoro, M., & Cartus, O. (2021). ESA Biomass Climate Change Initiative (Biomass_eei): Global datasets of forest	
1107	above-ground biomass for the years 2010, 2017 and 2018, v3. In. Centre for Environmental Data Analysis	
1108	Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, DM.A., Avitabile, V., Araza, A., de Bruin, S., Herold, M.,	带格式的: 段落间距段前: 8.15 磅,段后: 0 磅
1109	Quegan, S., Rodríguez-Veiga, P., Balzter, H., Carreiras, J., Schepaschenko, D., Korets, M., Shimada, M., Itoh, T.,	
1110	Moreno Martínez, Á., Cavlovic, J., Cazzolla Gatti, R., da Conceição Bispo, P., Dewnath, N., Labrière, N., Liang,	
1111	J., Lindsell, J., Mitchard, E. T. A., Morel, A., Pacheco Pascagaza, A. M., Ryan, C. M., Slik, F., Vaglio Laurin, G.,	
1112	Verbeeck, H., Wijaya, A., ∧ Willcock, S. (2021): The global forest above-ground biomass pool for 2010	
1113	estimated from high-resolution satellite observations. Earth Syst. Sci. Data, 13, 3927-3950,	

1114	https://doi.org/10.5194/essd-13-3927-2021, 2021.	
1115	Simard, M., Pinto, N., Fisher, J.B., & Baccini, A. (2011). Mapping forest canopy height globally with spaceborne	
1116	lidar. J. Geophys. ResBiogeo., 116	
1117	Spawn, S. A., Sullivan, C. C., Lark, T. J., & Gibbs, H. K. (2020).: Harmonized global maps of above and	带格式的: 段落间距段前:8.15 磅,段后:0 磅
1118	belowground biomass carbon density in the year 2010 ₅ Sci. Data, 7, 112, https://doi.org/10.1038/s41597-020-	
1119	0444-4, 2020.	
1120	Stegen, J.C., Swenson, N.G., Enquist, B.J., White, E.P., Phillips, O.L., Jørgensen, P.M., Weiser, M.D., Monteagudo	
1121	Mendoza, A., & Núñez Vargas, P. (2011). Variation in above-ground forest biomass across broad climatic gradients.	
1122	Global Ecol. Biogeogr., 20, 744-754	
1123	Su, Y., Guo, Q., Xue, B., Hu, T., Alvarez, O., Tao, S., & and Fang, J. (2016) Spatial distribution of forest	带格式的: 段落间距段前: 8.15 磅, 段后: 0 磅
1124	aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest	
1125	inventory data-, Remote. Sens. Environ., 173, 187-199, https://doi.org/10.1016/j.rse.2015.12.002, 2016.	
1126	Sun, X., Wang, G., Huang, M., Chang, R., & Ran, F. (2016). Forest biomass carbon stocks and variation in Tibet's	
1127	carbon-dense forests from 2001 to 2050. Sci. Rep., 6, 34687	
1128	Tang, X., Zhao, X., Bai, Y., Tang, Z., Wang, W., Zhao, Y., Wan, H., Xie, Z., Shi, X., Wu, B., Wang, G., Yan, J., Ma,	带格式的: 段落间距段前: 8.15 磅,段后:0 磅
1129	K., Du, S., Li, S., Han, S., Ma, Y., Hu, H., He, N., Yang, Y., Han, W., He, H., Yu, G., Fang, J., & and Zhou, G-	
1130	(2018): Carbon pools in China's terrestrial ecosystems: New estimates based on an intensive field survey. P. Natl.	
1131	Acad. Sci. USA, 115, 4021, https://doi.org/10.1073/pnas.1700291115, 2018.	
1132	Thurner, M., Beer, C., Santoro, M., Carvalhais, N., Wutzler, T., Schepaschenko, D., Shvidenko, A., Kompter, E.,	
1133	Ahrens, B., Levick, S.R., & Schmullius, C. (2014). Carbon stock and density of northern boreal and temperate	
1134	forests. Global Ecol. Biogeogr., 23, 297-310	
1135	Tong, X., Brandt, M., Yue, Y., Horion, S., Wang, K., Keersmaecker, W. D., Tian, F., Schurgers, G., Xiao, X., Luo,	
1136	Y., Chen, C., Myneni, R., Shi, Z., Chen, H., and Fensholt, R.: Increased vegetation growth and carbon stock in	
1137	China karst via ecological engineering, Nat. Sustain., 1, 44-50, https://doi.org/10.1038/s41893-017-0004-x, 2018.	
1138	Tong, X., Brandt, M., Yue, Y., Ciais, P., Rudbeck Jepsen, M., Penuelas, J., Wigneron, JP., Xiao, X., Song, XP.,	带格式的: 段落间距段前: 8.15 磅,段后: 0 磅
1139	Horion, S., Rasmussen, K., Saatchi, S., Fan, L., Wang, K., Zhang, B., Chen, Z., Wang, Y., Li, X., & and Fensholt,	
1140	R. (2020).:: Forest management in southern China generates short term extensive carbon sequestration. Nat.	
1141	Commun., 11, 129, https://doi.org/10.1038/s41467-019-13798-8, 2020.	
1142	Tong, X., Brandt, M., Yue, Y., Horion, S., Wang, K., Keersmaecker, W.D., Tian, F., Schurgers, G., Xiao, X., Luo,	
1143	Y., Chen, C., Myneni, R., Shi, Z., Chen, H., & Fensholt, R. (2018). Increased vegetation growth and carbon stock	
1144	in China karst via ecological engineering. Nat. Sustain., 1, 44-50	
1145	Verger, A., Baret, F., & Weiss, M. (2014). Near Real-Time Vegetation Monitoring at Global Scale. IEEE Journal	
1146	of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 3473-3481	
1147	Wang, J., Feng, L., Palmer, P. I., Liu, Y., Fang, S., Bösch, H., O'Dell, C. W., Tang, X., Yang, D., Liu, L., & and Xia,	带格式的: 段落间距段前: 8.15 磅,段后: 0 磅
1148	C(2020): Large Chinese land carbon sink estimated from atmospheric carbon dioxide data-, Nature, 586, 720-	
1149	723, https://doi.org/10.1038/s41586-020-2849-9, 2020.	

1150	Wang, L., Li, L., Chen, X., Tian, X., Wang, X., & and Luo, G. (2014) Biomass Allocation Patterns across China's	
1151	Terrestrial Biomes-, PLoS One, 9, e93566, https://doi.org/10.1371/journal.pone.0093566, 2014.	
1152	Wigneron, JP., Li, XWang, M., Fan, L., Frappart, F., Fan, L., Al-Yaari, A., De Lannoy, G., Liu, X., Ciais, P., Sun,	
1153	R., Liu, Y., Li, X., Liu, X., Moisy, C., and Wigneron, JP.: An alternative AMSR2 vegetation optical depth for	
1154	monitoring vegetation at large scales, Remote. Sens. Environ., 263, 112556,	
1155	https://doi.org/10.1016/j.rse.2021.112556, 2021a.	
1156	Wang, M., Le Masson, E., & Wigneron, JP., Sun, R., Fan, L., Frappart, F., Tao, S., Chai, L., Li, X., Liu, X., Ma,	
1157	H., Moisy, C. (2021). SMOS-IC data., and Ciais, P.: A consistent record of vegetation optical depth retrieved from	
1158	the AMSR-E and AMSR2 X-band observations, Int. J. Appl. Earth Obs., 105, 102609,	
1159	https://doi.org/10.1016/j.jag.2021.102609, 2021b.	
1160	Wigneron L-P Chanzy A Calvet L-C and Bruguier N: A simple algorithm to retrieve soil moisture and L-4	豊松式的・ 段茲间距段前・8 15 磅 段后・0 磅
1161	VOD: Historical development, applications and perspectives vegetation biomass using passive microwave	
1162	measurements over crop fields, Remote. Sens. Environ., 254, 112238Sens. Environ., 51, 331-341.	
1163	https://doi.org/10.1016/0034-4257(94)00081-W, 1995.	
1164	Xu, B., Guo, Z., Piao, S., & Fang, J. (2010). Biomass carbon stocks in China's forests between 2000 and 2050: A	
1165	prediction based on forest biomass-age relationships. Science China Life Sciences, 53, 776-783	
1166	Wu, X., Wang, S., Fu, B., Feng, X., and Chen, Y.: Socio-ecological changes on the Loess Plateau of China after	
1167	Grain to Green Program, Sci. Total Environ., 678, 565-573, https://doi.org/10.1016/j.scitotenv.2019.05.022, 2019.	
168	Xu, L., Saatchi, S. S., Yang, Y., Yu, Y., Pongratz, J., Bloom, A. A., Bowman, K., Worden, J., Liu, J., Yin, Y., Domke,	带格式的: 段落间距段前: 8,15 磅,段后: 0 磅
169	G. McRoberts, R. E., Woodall, C., Nabuurs, GJ., de-Miguel, S., Keller, M., Harris, N., Maxwell, S., ∧	
1170	Schimel, D. (2021).: Changes in global terrestrial live biomass over the 21st century. Sci. Adv., 7, eabe9829.	
171	https://doi.org/10.1126/sciadv.abe9829, 2021.	
172	Xu, L., Yu, G., He, N., Wang, Q., Gao, Y., Wen, D., Li, S., Niu, S., & Ge, J. (2018). Carbon storage in China's	
173	terrestrial ecosystems: A synthesis. Sci. Rep., 8, 2806	
174	Yang, D., Liu, Y., Feng, L., Wang, J., Yao, L., Cai, Z., Zhu, S., Lu, N., & and Lvu, D. (2021). The First Global	带格式的: 段落间距段前: 8,15 磅,段后: 0 磅
1175	Carbon Dioxide Flux Map Derived from TanSat Measurements-, Ad. Atmos. Sci., 38, 1433-1443,	
1176	https://doi.org/10.1007/s00376-021-1179-7, 2021.	
1177	Yang, X., Guo, Y., Mohhamot, A., Liu, H., Ma, W., Yu, S., & Tang, Z. (2017). Distribution of biomass in relation	
1178	to environments in shrublands of temperate China. Chinese Journal of Plant Ecology, 41, 22-30	
1179	Yao, Y., Piao, S., & Wang, T. (2018). Future biomass carbon sequestration capacity of Chinese forests. Sci. Bull.,	
1180	63, 1108-1117	
181	Yin, G., Zhang, Y., Sun, Y., Wang, T., Zeng, Z., & Piao, S. (2015). MODIS Based Estimation of Forest	
182	Aboveground Biomass in China. PLoS One, 10, e0130143-	
1183	Yang, J. and Huang, X.: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019, Earth	
184	Syst. Sci. Data, 13, 3907-3925, https://doi.org/10.5194/essd-13-3907-2021, 2021.	

- 1185 <u>Yu, Z., Zhao, H., Liu, S., Zhou, G., Fang, J., Yu, G., Tang, X., Wang, W., Yan, J., Wang, G., Ma, K., Li, S., Du, S.,</u>
- 186 Han, S., Ma, Y., Zhang, D., Liu, J., Liu, S., Chu, G., Zhang, Q., and Li, Y.: Mapping forest type and age in China's
- 1187 plantations, Sci. Total Environ., 744, 140790, https://doi.org/10.1016/j.scitotenv.2020.140790, 2020.
- 1 88 Zhang, R., Zhou, X., Ouyang, Z., Avitabile, V., Qi, J., Chen, J., &and Giannico, V. (2019)...: Estimating
- 1/189 aboveground biomass in subtropical forests of China by integrating multisource remote sensing and ground data-
- 1190 Remote. Sens. Environ., 232, 111341, https://doi.org/10.1016/j.rse.2019.111341, 2019.
- 1191 Zhang, Y., & Liang, S. (2020). Fusion of Multiple Gridded Biomass Datasets for Generating a Global Forest

- 1 192 Aboveground Biomass Map. Remote Sens., 12
- 1193 Zhang, Y., Yao, Y., Wang, X., Liu, Y., & and Piao, S. (2017)..: Mapping spatial distribution of forest age in China... **带格式的:** 段落间距段前: 8.15 磅, 段后: 0 磅

带格式的:段落间距段前:8.15 磅,段后:0 磅

- 1194 Earth Space Sci., 4, 108-116, https://doi.org/10.1002/2016EA000177, 2017.
- 1195