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Abstract. Land surface temperature (LST) plays a dominant role in the surface energy budget (SEB) and hydrological 

cycling. Thermal infrared (TIR) remote sensing is the primary method of estimating LST globally. However, cloud cover 

leaves numerous data gaps in satellite LST products, which seriously restricts their applications. Efforts have been made to 10 

produce gap-free LST products from polar-orbiting satellites (e.g., Terra and Aqua); however, satellite data from limited 

overpasses are not suitable for characterizing the diurnal temperature cycle (DTC), which is directly related to heat waves, 

plant water stress, and soil moisture. Considering the high temporal variability of LST and the importance of the DTC, we 

refined the SEB-based cloudy-sky LST recovery method by improving its feasibility and efficiency and produced a global 

hourly, 5 km, all-sky land surface temperature (GHA-LST) dataset from 2011 to 2021. The GHA-LST product was 15 

generated using TIR LST products from geostationary and polar-orbiting satellite data from the Copernicus Global Land 

Service (CGLS) and Moderate Resolution Imaging Spectroradiometer (MODIS). Based on the ground measurements at the 

201 global sites from the Surface Radiation Budget (SURFRAD), Baseline Surface Radiation Network (BSRN), Fluxnet, 

AmeriFlux, Heihe River Basin (HRB), and Tibet Plateau (TP) networks, the overall root mean square error (RMSE) of the 

hourly GHA-LST product was 3.31 K, with a bias of -0.57 K and R2 of 0.95. Thus, this product was more accurate than the 20 

clear-sky CGLS and MODIS MYD21C1 LST samples. The RMSE value of the daily mean LST was 1.76 K. Validation 

results at individual sites indicate that the GHA-LST dataset has relatively larger RMSEs for high-elevation regions, which 

can be attributed to high surface heterogeneity and input data uncertainty. Temporal and spatial analyses suggested that 

GHA-LST has satisfactory spatiotemporal continuity and reasonable variation and matches the reference data well at hourly 

and daily scales. Furthermore, the regional comparison of GHA-LST with other gap-free hourly datasets (ERA5 and Global 25 

Land Data Assimilation System, GLDAS) demonstrated that GHA-LST can provide more spatial texture information. The 

monthly anomaly analysis suggests that GHA-LST couples well with global surface air temperature datasets and other LST 

datasets at daily mean and minimum temperature scales, whereas the maximum temperature and diurnal temperature range 

of LST and air temperature (AT) have different anomalous magnitudes. The GHA-LST dataset is the first global gap-free 

LST dataset at an hourly, 5 km scale with high accuracy, and it can be used to estimate global evapotranspiration, monitor 30 
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extreme weather, and advance meteorological forecasting models. GHA-LST is freely available at 

https://doi.org/10.5281/zenodo.7487284 (Jia et al., 2022c) and glass.umd.edu/allsky_LST/GHA-LST.  

1 Introduction 

Land surface temperature (LST) is an essential component of the surface radiation budget and a dominant driving force in 

atmospheric cycling and hydrological balance (Li et al., 2022b; Li et al., 2013b). LST directly reflects the thermal feedback 35 

of various land covers towards incoming solar radiation and atmospheric longwave radiation (Liang et al., 2019), and it is 

employed as an important variable for urban heat island analysis (Liu et al., 2022), permafrost mapping (Zou et al., 2017), 

and hazard forecasting (Bhardwaj et al., 2017; Mudele et al., 2020; Quintano et al., 2015). Therefore, LST has been 

extensively utilized as a vital indicator for characterizing regional and global climate change (Zhou et al., 2012; Jin, 2004; 

Peng et al., 2014). This parameter can be obtained by ground measurements, model simulations, and remote sensing 40 

retrievals. However, given the high spatiotemporal heterogeneity caused by various land covers, soil types, topographies, and 

meteorological conditions (Zhan et al., 2013; Liu et al., 2006; Ma et al., 2021), remote sensing has become the only feasible 

solution for monitoring LST globally.  

 

LST can be retrieved using thermal infrared (TIR) observations from both polar-orbiting (Wan, 2008; Hulley and Hook, 45 

2009) and geostationary (GEO) satellites (Yu et al., 2008; Freitas et al., 2009). In comparison, GEO satellites provide sub-

hourly observations; thus, they can precisely capture the diurnal temperature cycles (DTCs) of the land surface. DTCs 

characterize the strong temporal variability of LST in a day, which is an important surface thermal property that responds to 

local environmental changes (Hansen et al., 1995; Sun et al., 2006). Studies have suggested that DTCs are directly related to 

plant water stress and soil drought (Fensholt et al., 2011; Stisen et al., 2008; Hernandez-Barrera et al., 2017); thus, such a 50 

relationship has been utilized for mapping evapotranspiration (Anderson et al., 2011) and soil moisture (Piles et al., 2016). In 

addition, it helps improve meteorological forecasting through data assimilation (Orth et al., 2017), extreme heat wave 

assessments (Hrisko et al., 2020; Jiang et al., 2015), crop yield estimations (Anderson et al., 2016), LST spatiotemporal scale 

conversions (Hu et al., 2020), orbit drift corrections of advanced very high-resolution radiometer (AVHRR) LST data (Jin 

and Treadon, 2003), and vegetation phenology analyses (Piao et al., 2015). Considering the great potential of DTCs in 55 

scientific applications and the high temporal variability of LSTs, accurate diurnal LST datasets are crucial for the research 

community and public (Chang et al., 2021; Hrisko et al., 2020; Pinker et al., 2019). 

  

TIR sensors on board GEO satellites, such as the Geostationary Operational Environmental Satellites (GOES)-R Advanced 

Baseline Imager (ABI) and the Meteosat Second Generation (MSG) Spinning Enhanced Visible and InfraRed Imager 60 

(SEVIRI), provide exceptional opportunities to record DTCs. However, two inevitable flaws occur when using GEO 

satellites to observe diurnal LST variations globally, namely, data gaps caused by cloud cover and limited spatial view fields 
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of individual GEO satellites, which seriously limit the availability of hourly all-sky LST datasets at the global scale. Methods 

of recovering hourly LSTs have been developed and comprehensively reviewed by Jia et al. (2022a). Currently available 

gap-free satellite-derived LST products are summarized in Table 1. Some gap-free LST datasets are not listed in the table, 65 

such as skin temperature from reanalysis datasets (e.g., ERA5 and MERRA2) (Muñoz-Sabater et al., 2021; Molod et al., 

2015), and the results of Coccia et al. (2015) as they assumed that the surface broadband emissivity was equal to 1. 

 
Table 1: Summary of publicly available gap-free LST products. 

Study Spatial 
coverage 

Temporal 
coverage 

Spatial 
resolution 

Temporal 
resolution 

Methodology Access 

Zhang et 
al. (2022) 

global 
land 

2003 – 2020 1 km 13:30 and 01:30 
Local Time (LT) 

spatiotemporal 
interpolation 

https://doi.org/10.25380/iastate.c
.5078492 

Hong et 
al. (2022) 

global 
land 

2003 – 2019 0.5° daily mean annual temperature 
cycle (ATC) model 
and DTC model 

https://doi.org/10.5281/zenodo.6
287052 

Yu et al. 
(2022) 

global 
land 

2002 – 2020 0.05° 01:30, 10:30, 
13:30, and 22:30 
LT 

fusion of TIR and 
reanalysis LSTs 

https://www.tpdc.ac.cn/en/data/8
e975056-a612-4a4f-b7ef-
772720145bf0/ 

Rains et 
al. (2022) 

Europe 2018 – 2019  1 km daily fusion of polar-
orbiting and SEVIRI 
LST data 

https://doi.org/10.5281/zenodo.7
026612 

Jia et al. 
(2022a) 

United 
States and 
Mexico 

2017 – 2021 2 km hourly data fusion and surface 
energy balance (SEB) 
correction 

http://glass.umd.edu/allsky_LST
/ABI/ 

Xu and 
Cheng 
(2021) 

China 2002 – 2020 1 km 13:30 and 01:30 
LT 

data fusion of TIR and 
PMW LSTs 

https://www.tpdc.ac.cn/en/data/7
e5333df-0208-4c4e-ae7e-
16dcd29e4aa7/ 

Zhang et 
al. (2021) 

mainland 
China 

2000 – 2021 1 km 13:30 and 01:30 
LT 

data fusion of TIR and 
reanalysis LSTs 

https://www.tpdc.ac.cn/en/data/2
0aa5af9-a4f8-49e5-9aa6-
3a753b4c7815/ 

Shiff et al. 
(2021) 

global 
land 

2002 – 2019 1 km 13:30 and 01:30 
LT, and daily 
mean 

fusion of TIR LST and 
modeled temperature 

https://zenodo.org/record/39526
04#.YnhyrOjMIuU 

Hong et 
al. (2021) 

global 
land 

2003 – 2019 1 km daily mean ATC model and DTC 
model 

http://www.nesdc.org.cn/sdo/det
ail?id=60f4e35e7e28173cf0c8a7
71 

Li et al. 
(2021) 

United 
States 

2000 – 2015 1 km 01:30, 10:30, 
13:30, and 22:30 
LT 

data fusion of MODIS 
TIR and reanalysis 
LSTs using random 
forest 

http://glass.umd.edu/us_allsk
y_lst_1km.html 

Zhao et al. 
(2020) 

China 2003 – 2017 0.05° monthly geographically 
weighted interpolation 
and fusion with 
ground measurement 

https://doi.org/10.5281/zenodo.3
528024 

Yan et al. 
(2020) 

North 
America 

2002 – 2018 0.05° monthly elevation-based 
interpolation 

https://doi.org/10.5281/zenodo.4
184160 

Zhang et 
al. (2019) 

Tibet 
Plateau 

2000 – 2021 1 km 13:30 and 01:30 
LT 

data fusion of TIR and 
reanalysis LSTs 

https://www.tpdc.ac.cn/en/data/7
6006ce7-b8dc-4add-bbb5-
93f36f4bd26c/ 

Martins et 
al. (2019) 

Europe 
and Africa 

2021 – now 3 km 30 min SEB-constrained 
optimization method 

https://landsaf.ipma.pt/en/produ
cts/land-surface-
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temperature/mlstas/ 

Duan et al. 
(2017) 

China 2002 – 2011 1 km 13:30 LT data fusion of TIR and 
PMW LSTs 

http://www.geodata.cn/data/data
details.html?dataguid=398357&
docId=1934 

Chen et al. 
(2017) 

global 
land 

2000 – 2020 1 km monthly mean of daytime and 
nighttime clear-sky 
LSTs 

https://www.tpdc.ac.cn/en/data/8
caced1f-e10b-41a9-87e1-
5001ab432844/ 

Metz et al. 
(2017) 

global 
land 

2003 – 2016 1 km monthly spatiotemporal 
interpolation 

https://doi.org/10.5281/zenodo.1
115666 

André et 
al. (2015) 

latitude > 
45 ° N 

2000 – 2011 25 km daily empirical retrieval 
from PMW BT 

https://doi.pangaea.de/10.1594/P
ANGAEA.833409 

Metz et al. 
(2014) 

Europe 2000 – now 250 m 01:30, 10:30, 
13:30, and 22:30 
LT 

spatiotemporal 
interpolation and 
regression-based 
downscaling 

https://www.geodati.fmach.it/eu
rolst.html 

Boukabara 
et al. 
(2011) 

global 
land 

2014 – now 0.09 – 
0.5° 

13:30 and 01:30 
LT 

iterative physical 
inversion from PMW 
observations 

https://www.avl.class.noaa.gov/s
aa/products/search?datatype_fa
mily=JPSS_SND 

 70 

Table 1 reveals that only a few hourly all-sky LST datasets are currently available, thus an all-sky hourly LST dataset at the 

global scale is urgently required. In Table 1, the products were divided into three categories based on their associated 

methodology: data fusion, mathematical interpolation, and cloudy-sky LST estimation based on the surface energy balance 

(SEB) theory.  

 75 

Land surface models and reanalysis datasets release simulated hourly skin temperatures continuously, which have been fused 

with satellite-retrieved LSTs to generate gap-free LSTs (Dumitrescu et al., 2020; Long et al., 2020; Marullo et al., 2014; Ma 

et al., 2022; Muñoz-Sabater et al., 2021); however, the accuracy of the recovered LSTs is highly dependent on simulation 

accuracy, especially for continuous cloudy days. In addition, passive microwave (PMW) observations can penetrate clouds 

and estimate LSTs in all-sky conditions (Zhang et al., 2019; Wu et al., 2022), and studies have explored fusing such data 80 

with TIR LSTs from sensors of polar-orbiting satellites (Zhang et al., 2020; Xu and Cheng, 2021). However, PMW data have 

limited passing times in a day; thus, they cannot match well with GEO observations. Mathematical interpolation is a popular 

method of reconstructing hourly LST because an ideal DTC can be parameterized by a harmonic function in the daytime and 

an exponential function in the nighttime (Duan et al., 2012). However, such parameterization requires at least four 

observations per day. Researchers have also tried to improve the feasibility of obtaining gap-free LSTs by combining DTC 85 

models with spatial interpolation (Liu et al., 2017) or utilizing a convolutional neural network (CNN) to predict missing 

values from neighboring clear-sky pixels and texture information (Wu et al., 2019). However, interpolating adjacent clear-

sky samples can only obtain theoretical ‘clear-sky’ LSTs because actual LSTs under clouds are impacted by frequent 

meteorological changes and cloud cooling/warming effects in the daytime/nighttime (Jin, 2000; Jia et al., 2020).  

 90 
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In comparison, cloudy-sky LST estimates based on SEB exhibit advantages in generating all-sky diurnal LST products at 

large scales. SEB-based methods include two steps. The first step is to reconstruct theoretical ‘clear-sky’ LST values for 

cloudy time points, and the second step is to superpose the cloud effect based on the SEB equation (Jin and Dickinson, 2000; 

Lu et al., 2011). However, traditional SEB-based methods have limited feasibility because of the high input requirements, 

and they can only be used during the daytime. Therefore, Jia et al. (2021) considerably improved upon these methods by 95 

incorporating modeling data into the process, and the improved methods can be applied to larger spatial scales. ERA5 

surface longwave radiation data were used to build a spatiotemporally evolving model, and the clear-sky GEO LSTs were 

assimilated to the evolving model to correct its predictions on cloudy days. Moreover, an optimization method was used to 

compute the cloud effect during both the daytime and nighttime, and complete DTCs could be recovered for hourly LSTs 

(Jia et al., 2022a).  100 

 

The latest SEB scheme has produced all-sky hourly LSTs over the contiguous US (CONUS) and Mexico from ABI data; 

however, it has a relatively lower computational efficiency owing to the spatiotemporal assimilation framework, which is not 

easy to apply globally. Furthermore, single GEO data points have a limited spatial view field, which can be solved by 

combining data from multiple GEO satellites at mid and low latitudes and polar-orbiting satellites (Terra + Aqua) at high 105 

latitudes. Two polar-orbiting satellites pass high latitudes subhourly and provide frequent observations as GEO satellites. 

This strategy has been successfully utilized to generate global hourly Clouds and Earth's Radiant Energy System (CERES) 

radiation products (Loeb et al., 2018); however, few studies have focused on estimating all-sky LSTs by combining polar-

orbiting and GEO satellites. 

 110 

In this study, we produced a global, hourly, all-sky LST dataset (GHA-LST) from 2011 to 2021 at a 5 km scale, and a 

comprehensive assessment was implemented using 201 ground sites worldwide. Global clear-sky LSTs were obtained by 

combining GEO LSTs from the Copernicus Global Land Service (CGLS) and Moderate Resolution Imaging 

Spectroradiometer (MODIS) MxD21 LST swath products, and a more efficient spatiotemporal assimilation scheme was 

proposed. It represents the first available global all-sky LST scheme on an hourly time scale with satisfactory accuracy based 115 

on global site validation; thus, it has great potential for use in analyzing global thermal dynamics, atmospheric cycling, and 

hydrological budgets.  

2 Data and Method 

2.1 Data 

The proposed GHA-LST dataset was recovered from a combination of clear-sky LST products, including the CGLS hourly 120 

LSTs, which cover mid and low latitudes, and MOD/MYD21 instantaneous swath LSTs, which cover high latitudes. ERA5 

provides dynamic surface temperature signals for building a temperature-time-evolving model, and CERES global hourly 
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surface radiation products were used to compute the cloud effect. In addition, the all-sky LST data were comprehensively 

assessed based on globally distributed sites collected from the Surface Radiation Budget (SURFRAD), Baseline Surface 

Radiation Network (BSRN), Fluxnet, AmeriFlux, Heihe River Basin (HRB), and Tibetan Plateau (TP) networks. 125 

2.1.1 Input data 

CGLS LST provides hourly clear-sky LST retrievals from a constellation of GEO satellites, including multiple generations 

of Meteosat Second Generation (MSG), Multifunctional Transport Satellite (MTSAT)/Himawari, MSG Indian Ocean Data 

Coverage (IODC), and GOES. The product is released as a global product that covers land surfaces worldwide within the 

60° S to 70° N latitudes. The generalized split window (GSW) algorithm and dual algorithm (DA) in mono- and dual-130 

channel forms were used to retrieve LST from top-of-atmosphere (TOA) brightness temperatures (BTs) in thermal infrared 

window channels (Freitas et al., 2013). Based on the ground validation, the accuracy ranges from 1.83 K to 3.70 K. 

 

MOD/MYD21 swath instantaneous LST products (Hulley et al., 2016) were used to provide LST over the rest of the land 

surface, which mainly covered high latitudes. A temperature/emissivity separation (TES) algorithm was used to retrieve the 135 

LST in the MOD/MYD21 products. It showed comparable accuracy to that of MOD/MYD11 (Wan, 2008) for most land 

cover types and performed better in bare land regions (Li et al., 2020; Yao et al., 2020). Level 3 MOD/MYD21 LST 

products provide gridded LST data in sinusoidal projection such that LST images were available four times a day and pixel 

locations were fixed. This data format is convenient for users; however, many valid retrieval values are lost at higher 

latitudes due to reprojection. In fact, dozens of times can be recorded by combining two polar-orbiting satellites, which is 140 

comparable to GEO observations at mid and low latitudes. Therefore, to fully incorporate the available clear-sky retrievals, 

MOD/MYD21 swath instantaneous LST data were used in this study. All swath images were converted to the Climate 

Modeling Grid (CMG) individually and then aggregated to the same spatial resolution as CGLS LST. The instantaneous 

observations were used for averaging only when they were within a 30-minute window centered at the CGLS recording time 

(UTC standard time). In addition, to minimize the impact of retrieval uncertainty, records with a view zenith angle greater 145 

than 40° were not used in this study (Li et al., 2014; Guillevic et al., 2013). By using this strategy, we can obtain a recording 

frequency over polar regions that is comparable to that of the CGLS LST data; however, using this strategy does not mean 

that significantly more clear-sky LST samples will be obtained because cloud cover persists at high latitudes (King et al., 

2013). This process only ensures that clear-sky LSTs at high latitudes are included in as many observations as possible. 

 150 

To obtain continuous surface thermal variational signals, surface upward longwave radiation (ULW) and downward 

longwave radiation (DLW) simulated by ERA5 were used to build the LST time-evolving model. Satellite-derived 

broadband emissivity (BBE) was obtained from the Global LAnd Surface Satellite (GLASS) (Liang et al., 2021). We 

calculated the LST series using ERA5 DLW and ULW data simulated using clear-sky scenarios, which were generated based 

on real atmospheric and meteorological conditions, although clouds were assumed to be absent. The ERA5 clear-sky 155 
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scenario was used because utilizing cloud radiative forcing calculated from global satellite data is more accurate than using 

the simulated results from the reanalysis (Wang and Dickinson, 2013). The clear-sky LST retrievals were then assimilated 

into the time-evolving model to obtain continuous LSTs without cloud gaps, and the cloud cooling/warming effect was then 

estimated and superposed from satellite radiation products. Essentially, in this revised SEB-based recovery method, the 

temperature change signals under cloud cover were divided into two parts: the evolving model provided the LST variations 160 

due to real-time meteorological changes under clouds and satellite radiation products estimated the cloud cooling and 

warming effects caused by cloud radiative forcing.  

 

Global hourly surface DLW and downward shortwave radiation (DSR) from CERES satellite products were used to estimate 

the cloud effect. To monitor cloud radiative forcing, the CERES project retrieved global, gap-free, hourly DSR and DLW in 165 

both all-sky (realistic) and theoretically cloud-free conditions (Doelling et al., 2016). CERES utilized the same strategy as 

this study to generate global hourly radiation products by combining remote sensing observations from multiple GEO 

sensors and two MODIS sensors. The CERES surface shortwave radiation and longwave radiation (Doelling et al., 2013) 

were estimated based on the Langley Fu–Liou radiative transfer theory (Fu et al., 1997), the cloud properties were obtained 

from microwave cloud products (Minnis et al., 2020), and the aerosol optical depth was based on the MODIS aerosol 170 

product (Remer et al., 2006). Surface CERES downward radiation fluxes have an overall bias (standard deviation) of 3.0 W 

m−2 (5.7%) for shortwave and −4.0 W m−2 (2.9%) for longwave radiation, which have been validated based on 85 sites 

(Rutan et al., 2015). CERES has been extensively evaluated and is generally considered a benchmark for satellite radiation 

products for assessments and inter-comparisons (Jia et al., 2018; Li et al., 2022a; Wang and Dickinson, 2013).  

 175 

To improve the production efficiency, the complicated downward longwave parameterization schemes in Jia et al. (2022a) 

were replaced by directly exploiting the CERES dataset and converting its cloud radiative forcing into the corresponding 

cloud cooling/warming effect. Specifically, the CERES DSR difference between all-sky and clear-sky schemes was 

considered cloud DSR forcing, and combined with the GLASS surface albedo data, the cloud net shortwave forcing was 

computed. Cloud DLR forcing represents the difference between CERES all-sky and clear-sky DLR products, and the 180 

corresponding net longwave forcing was estimated using an optimization method (Section 2.2.4). In addition, according to 

previous studies (Wang and Dickinson, 2013; Zhang et al., 2015), the impact of the coarse spatial resolution of CERES 

downward radiation can be ignored because it has less heterogeneity than surface variables. CERES products were bilinearly 

interpolated to match the spatial scale of the CGLS LST. However, this assumption may introduce a certainty degree of 

uncertainty in areas with rugged terrain because complicated terrain in a coarse pixel may still affect the downward radiation 185 

components and increase the heterogeneity. 
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The GLASS 0.05° land surface albedo and BBE were used for the net radiation calculation (Liang et al., 2021), and the 

GLASS leaf area index (LAI) was used for computing ground heat flux from the net radiation. All input data were 

preprocessed using bilinear resampling to match the CGLS LST. The input metadata are listed in Table 2. 190 

 
Table 2: Metadata input for production. 

Product Variable Temporal Resolution (°) Spatial Resolution (°) Usage 

CGLS clear-sky LST hourly 0.045 LST for recovery 

Swath MOD/MYD21 clear-sky LST instantaneous 1 km LST for recovery 

ERA5 clear-sky DLW & 

ULW 

hourly 0.25 time-evolving 

model 

GLASS BBE 8-day 0.05 time-evolving 

model 

CERES all-sky and clear-sky 

DSR and DLW 

hourly 1 cloud effect 

GLASS surface albedo 8-day 0.05 cloud effect 

GLASS LAI daily 0.05 cloud effect 

 

2.1.2 Ground measurement 

To comprehensively assess the accuracy of the proposed GHA-LST dataset, globally distributed in situ sites must be 195 

collected for ground validation. We processed the records from SURFRAD, BSRN, Fluxnet, AmeriFlux, HRB, and TP 

networks. SURFRAD was established in 1993 and consistently provides long-term ground measurements of the surface 

radiation components over CONUS for climate research and remote sensing retrieval validation (Augustine et al., 2000). The 

BSRN is a combined network of globally distributed sites from several projects (Driemel et al., 2018), and it provides 

records with strict data quality maintenance; thus, it is usually used as a reference dataset for radiation product validation at 200 

the global scale. Fluxnet includes hundreds of ground sites that have been utilized for global LST validation and analysis 

(Xing et al., 2021). AmeriFlux measures radiation and carbon fluxes over South and North America (Novick et al., 2018). 

The HRB network is from the Chinese Heihe Watershed Allied Telemetry Experimental Research (HiWATER) project (Li 

et al., 2013a), and the TP network is from the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III) (Zhao 

et al., 2018), and these datasets have been used for LST validation at the kilometer scale (Xing et al., 2021). 205 

 

In addition, only raw observations marked as ‘good quality’ were used for validation. Site-measured ULW and DLW were 

used to compute LSTs with a GLASS BBE based on the Stefan–Boltzmann law. LST raw records within a 30-minute 
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window centered at each UTC time period were then aggregated for hourly LST validation. The daily mean LST was further 

aggregated as long as 24 hourly LSTs were available in a day, which is sufficient to represent the entire DTC based on Jia et 210 

al. (2022a). The validation period was 2011–2020. The following validation metrics are used in this study: N is the sample 

amount; bias, also called mean bias error (MBE), represents the systematic errors/differences between LST products and 

ground measurements; root-mean-square-error (RMSE) characterizes the actual uncertainty caused by bias and random error; 

and R2 indicates the overall goodness of fit based on a 1:1 line. These metrics are commonly used for LST validation. The 

standard deviation (SD) of the differences between LST products and site measurements was not used because it provides 215 

similar information as the RMSE but cannot reflect errors caused by systematic bias; thus, the SD is generally smaller than 

the RMSE. 

 

The proposed GHA-LST dataset has a spatial resolution of approximately 5 km, although some sites may not be 

representative of the corresponding pixels. To remove sites with higher heterogeneity, we utilized two removal strategies. 220 

The first is based on 30 m LSTs from the United States Geological Survey (USGS) Landsat 8 Level 2 Collection 2, in which 

clear-sky Landsat LSTs were extracted from all site locations from 2013 to 2020 and the average 30 m LSTs were extracted 

within the corresponding 5 km pixel range; then, the RMSE at each site was computed as the site representativeness using 

the 30 m LSTs paired with the averaged 5 km LSTs. One site was marked if it had a considerably larger RMSE, indicating 

that there were larger LST differences between the 30 m and 5 km scales. The second strategy considered the MYD21C1 225 

0.05° LST as a benchmark LST product on a 0.05° spatial scale. As MYD21 has been comprehensively validated and 

produces results with high and stable accuracy at a global scale (Li et al., 2020; Yao et al., 2020; Hulley, 2015), we argue 

that if one site has a significantly larger RMSE in the validation of MYD21C1 samples with good quality, then the site will 

have low representativeness at the 5 km spatial scale. Pre-processed sites detected by either of these two strategies were 

excluded from this study, and the analysis results are shown in Figure 1. The selection threshold of each strategy was equal 230 

to the average RMSE + 2 × standard deviation for all sites. 

  
Figure 1. LST site selection results based on the (a) site representativeness calculated by Landsat samples and (b) site RMSEs of 
MYD21C1. The thresholds are the black lines, and sites with RMSEs higher than the line were masked out. Abbreviations: 
SURFRAD, Surface Radiation Budget; BSRN, Baseline Surface Radiation Network; HRB, Heihe River Basin (HRB); TP, Tibetan 235 
Plateau. 
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Based on Figure 1, 201 global sites were included in this study, including five SURFRAD sites, 11 BSRN sites, 91 Fluxnet 

sites, 89 AmeriFlux sites, three HRB sites, and two TP sites. The distribution of sites is shown in Figure 2. Additionally, as 

site selection influences the final validation statistics, we also validated samples from clear-sky MYD21C1 and CGLS for 240 

accuracy comparisons, and the accuracy level of the validation results can be used as the reference for GHA-LST. 

 
Figure 2. Global distribution of the utilized 201 LST sites. Abbreviations: SURFRAD, Surface Radiation Budget; BSRN, Baseline 
Surface Radiation Network; HRB, Heihe River Basin (HRB); TP, Tibetan Plateau. 

 245 

2.2 Methods 

2.2.1 Production framework 

Jia et al. (2022a) developed a three-step framework to generate all-sky hourly LSTs on a regional scale. In this study, we 

revised this framework to improve its efficiency and feasibility worldwide. A flowchart of the framework is shown in Figure 

3. 250 
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Figure 3. Flowchart of the proposed GHA-LST dataset production. Abbreviations: DLW, downward longwave radiation; ULW, 
upward longwave radiation; DSR, downward shortwave radiation; BBE, broadband emissivity; LST, land surface temperature; 
CRE, cloud radiative effect. 

 255 

In the first step, a time-evolving model of clear-sky LSTs was designed based on the ERA5 LST series at each pixel location 

(Sect. 2.2.2). The ERA5 LST series was computed from the DLW and ULW from the clear-sky simulation scenarios, and it 

provides continuous variational information on LST without considering the cloud cooling/warming effect. Such variational 

information under clouds can be attributed to advective meteorological changes and air movement. The ERA5 skin 

temperature was not involved because we calculated the cloud effect based on satellite-derived radiation products, which are 260 

more reliable at a global scale. 

 

In the second step, the Kalman filter (KF) was used to assimilate available clear-sky LST retrievals into the time-evolving 

model to correct the predictions for times with cloud cover and then theoretical ‘clear-sky’ LSTs were reconstructed. In the 

original framework of Jia et al. (2022a), three-dimensional data assimilation was utilized to generate a spatiotemporally 265 

dynamic model; however, this process is time-consuming, particularly when working at a large spatial scale. We replaced the 

spatial module in the assimilation by linear regression, which still works well to incorporate spatially adjacent clear-sky 

retrievals (Sect. 2.2.3). After this step, hypothetical LSTs were reconstructed during times with cloud cover. The cloud effect 

was further superimposed in the final step. 

 270 

In the third step, the cloud effect was estimated from the satellite radiation products (Section 2.2.4). In the original 

framework, cloud longwave radiative forcing was computed based on a series of parameterization schemes; however, the 
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scheme was not well assessed at the global scale. Therefore, to simplify the calculation and improve the feasibility filling 

gaps over a large spatial scale, we replaced the DLW parameterization with CERES clear-sky and all-sky DLW products that 

have been assessed globally (Wang and Dickinson, 2013). The cloud effects at daytime and nighttime were determined by 275 

searching for the optimal cloud radiative effect (CRE) values to meet the SEB. The final clear-sky LSTs are the assimilated 

results at the clear-sky time, and the cloudy-sky LSTs are the reconstructed LSTs from the second step plus the optimal 

cloud effect. 

2.2.2 Time-evolving model  

A time-evolving model describes how LSTs change at a certain pixel over time, and it characterizes relative variation based 280 

on the ERA5 LST rather than absolute magnitudes. The ERA5 LST series was initially downscaled to match the CGLS LST 

using elevation (Duan et al., 2017). The evolving model can be mathematically represented by Eq. 1-2: 

𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡,𝑑𝑑 = 𝐹𝐹𝑡𝑡,𝑑𝑑 × 𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡,𝑑𝑑−1, (1) 

𝐹𝐹𝑡𝑡,𝑑𝑑 = (1 + 1
𝑍𝑍𝑡𝑡,𝑑𝑑+𝛿𝛿

) 𝑑𝑑𝑍𝑍𝑡𝑡,𝑑𝑑
𝑑𝑑𝑡𝑡

, (2) 

where LSTt,d is the LST predicted by the model on day d at hour t and Ft,d is the prediction operator, which is generated based 285 

on the temperature temporal profile Zt,d (temperature difference between d and d-1 at hour t, i.e., the difference with the LST 

24 h before), and δ = 0.01 avoids a null denominator. The model evolves from day to day for each hour of the day (HOD) 

because the modeling bias is self-correlated at the same HOD on different days (Marullo et al., 2014). The correction of the 

data assimilation can be better inherited based on the evolving structure of Eq. 1-2. In addition, only the difference 

information was used in the study, which can minimize the impact of the uncertainty of ERA5 LST, especially from its 290 

systemic bias (Nogueira et al., 2021). 

 

The time-evolving model provides continuous temperature variation; however, the modeling process must be consistently 

corrected by assimilating available clear-sky retrievals. In addition, partially cloud-covered yet retrieved (‘likely cloud 

contaminated’) pixels were masked out before assimilation. The detection method follows Jia et al. (2022a). One clear-sky 295 

retrieval is excluded if it has a substantially larger absolute difference with the modeled LST (three standard deviations) than 

neighboring days within ±15 days, which assumes that modeled LSTs have fewer anomalies than directly retrieved values. It 

should be noted that some input data (e.g., CERES and reanalysis data) are not available at near real time (NRT); moreover, 

this ‘likely cloud contamination’ detection method also requires a 30-day time window for high-quality clear-sky LST 

selection, which means that the proposed cloudy-sky LST recovery method cannot be used for NRT all-sky LST production. 300 

2.2.3 Kalman filter 

The KF was used to assimilate clear-sky LST retrievals to correct the evolving model prediction because real-time retrievals 

are discontinuous while the evolving model prediction is continuous. When a retrieval value is available, a weighted average 
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is implemented between the prediction and the observation based on their individual uncertainties, and then the prediction is 

corrected. When observations are not available, the prediction will be implemented based on the updated prediction from the 305 

former step. Therefore, a continuous LST series can be generated using this iterative process. The KF can be mathematically 

represented as follows: 

𝐿𝐿�𝑡𝑡,𝑑𝑑
− = 𝐴𝐴𝑑𝑑−1𝑡𝑡 𝐿𝐿�𝑡𝑡,𝑑𝑑−1 + 𝜔𝜔𝑑𝑑−1

𝑡𝑡 , (3) 

𝐿𝐿�𝑡𝑡,𝑑𝑑 = 𝐿𝐿�𝑡𝑡,𝑑𝑑
− + 𝐾𝐾𝑑𝑑𝑡𝑡(𝐿𝐿𝑡𝑡,𝑑𝑑 − 𝐿𝐿�𝑡𝑡,𝑑𝑑

−), (4) 

𝐾𝐾𝑡𝑡,𝑑𝑑 = 𝑃𝑃−𝑡𝑡,𝑑𝑑(𝑃𝑃−𝑡𝑡,𝑑𝑑 + 𝑅𝑅)−1, (5) 310 

𝑃𝑃𝑡𝑡,𝑑𝑑 = (𝐼𝐼 − 𝐾𝐾𝑡𝑡,𝑑𝑑)𝑃𝑃−𝑡𝑡,𝑑𝑑, (6) 

where 𝐿𝐿�𝑡𝑡,𝑑𝑑
− is the temperature prediction at time t on day d from the prediction of d – 1 and 𝐴𝐴𝑑𝑑−1𝑡𝑡  is the prediction process 

(Sect. 2.2.2) with a prediction error of 𝜔𝜔𝑑𝑑−1
𝑡𝑡 . The symbol " − " next to a variable indicates that the variable is an initial 

prediction without assimilation correction. The modeling prediction is propagated to 𝑃𝑃−𝑡𝑡,𝑑𝑑 after this prediction.  

 315 

If an observation (Tt,d) is available, 𝐿𝐿�𝑡𝑡,𝑑𝑑
− will be corrected using the Kalman gain 𝐾𝐾𝑑𝑑𝑡𝑡 (Eq. 4), which was determined by the 

relative magnitude of the squared uncertainty of the model prediction 𝑃𝑃−𝑑𝑑 and the satellite retrieval R. R is the squared 

retrieval uncertainty at each pixel of CGLS and MODIS, and it is calculated based on the ‘ERRORBAR_LST’ or ‘LST_err’ 

information in the files. The initial modeling uncertainty was calculated based on a comparison between the ERA5 and 

satellite retrievals at clear-sky time in the data series. The assimilation started in October 2010, and the model prediction 320 

reached a stable status before the product release date; thus, the initial value did not affect the output. The prediction error of 

d will also be corrected to 𝑃𝑃𝑡𝑡,𝑑𝑑 (Eq. 5). The next day will then be iteratively predicted. If there are no observations, then the 

LST will be automatically predicted on day d without correction.  

 

Jia et al. (2022a) used a spatial KF module that can assimilate spatially adjacent clear-sky pixels into the evolving model; 325 

however, this process is time-consuming and impractical for global production. In this study, if an observation on d was 

available, then the time-evolving model was corrected by KF normally; otherwise, a 30 × 30 [~150 km, referred to Jia et al. 

(2022a)] spatial window was set for the time-evolving model, and clear-sky pixels and their corresponding ERA5 LST 

within the spatial window will regress a linear conversion model, and the missing LST at the center pixel on d will be 

predicted from its corresponding ERA5 LST using such a linear relationship. Essentially, a local linear relationship replaced 330 

the spatial KF module, although it still effectively incorporated the adjacent clear-sky retrieval, and the computation 

efficiency was significantly improved. After the center LST was estimated by linear regression, it was considered the 

available retrieval for KF correction on d. If the spatial window did not have available clear-sky retrievals, then the time-

evolving model predicted the LST on d based on the results on d-1. 

 335 
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2.2.4 Cloud effect estimation 

After data assimilation, the LSTs under clouds was initially predicted without considering the cloud effect. The cloud effect 

is the temperature warming/cooling effect caused by changing the SEB from clouds, which can be estimated using cloud 

radiative forcing. The SEB equation is as follows: 

𝑅𝑅𝑛𝑛 = 𝑅𝑅𝑠𝑠𝑑𝑑(1 − 𝛼𝛼) + 𝜀𝜀𝑅𝑅𝑙𝑙𝑑𝑑 −  𝜎𝜎𝜀𝜀𝐿𝐿4 = 𝐺𝐺 + 𝐿𝐿𝐿𝐿 + 𝐻𝐻, (7) 340 

where Rn is the surface net radiation, 𝑅𝑅𝑠𝑠𝑑𝑑 is the DSR, α is the surface albedo, ε is the surface broadband emissivity (BBE), 𝑅𝑅𝑙𝑙𝑑𝑑 

is the DLW, σ is the Stefan–Boltzmann constant, and T is the LST. Rn is partitioned into latent heat (LE), sensible heat (H) 

and ground heat (G). Cloud coverage changes Rn, which is called cloud radiative forcing. By following the land surface 

analysis (LSA SAF) GEO evapotranspiration product, G can be parameterized as follows: 

𝐺𝐺 = 𝑅𝑅𝑛𝑛 × 0.5𝑒𝑒𝑒𝑒𝑒𝑒 (−2.13(0.88 − 0.78𝑒𝑒𝑒𝑒𝑒𝑒 (−0.6𝐿𝐿𝐴𝐴𝐼𝐼))), (8) 345 

where the G is set to 0.15 (0.05) Rn for bare land (permanent snow/ice). Based on the conventional force-restore method (Jin 

and Dickinson, 2000), G can be represented as follows: 

𝐺𝐺 = 𝑘𝑘𝑔𝑔
𝜕𝜕𝜕𝜕
∆𝑍𝑍

= 𝑘𝑘𝑔𝑔
𝜕𝜕−𝜕𝜕𝑑𝑑
∆𝑍𝑍

, (9) 

where kg represents surface thermal conductivity (W m–1 K–1) and ΔZ is the responding surface depth, which is set to 0.1 m. 

The deep layer temperature (Td) is assumed to have little response towards SEB; thus, Eq. 9 can be rewritten as follows: 350 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑠𝑠

= 𝜕𝜕
𝜕𝜕𝜕𝜕𝑠𝑠

�𝑘𝑘𝑔𝑔
𝜕𝜕𝑠𝑠−𝜕𝜕𝑑𝑑
∆𝑍𝑍

� ≈ 𝑘𝑘𝑔𝑔
∆𝑍𝑍

, (10) 

 

Accordingly, the change in G (∂G) caused by cloud coverage can be directly converted into the variation in LST, and ∂G is 

determined by partitioned cloud radiative forcing. That is, by knowing any two of the three variables (∂G, ΔTs, and kg), the 

other can be estimated. According to Jia et al. (2022a), kg was predetermined based on a continuous temperature series from 355 

the assimilation results and corresponding radiation data: 

𝑘𝑘𝑔𝑔 = ∆ℎ 𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛���������−𝜕𝜕𝑠𝑠𝑠𝑠�����

𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛���������−𝜕𝜕𝑠𝑠𝑠𝑠���� , (11) 

where 𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛������� (𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�������) and 𝐺𝐺𝑠𝑠𝑠𝑠���� (𝐿𝐿𝑠𝑠𝑠𝑠����) are the monthly averaged ground heat (clear-sky LST) within ±15 days at noon and 

sunrise, respectively, which are considered because morning warming can mainly be attributed to the SEB. The continuous 

data series from the data assimilation step ensures sufficient sampling for the kg calculation. Monthly means were used to 360 

minimize the disturbance of daily variation. Then, the cloud radiative forcing needs to be determined to estimate ΔTs: 

𝑅𝑅𝑐𝑐 = (1 − 𝛼𝛼) (𝑅𝑅𝑠𝑠,𝑐𝑐𝑙𝑙𝑑𝑑
𝑑𝑑 − 𝑅𝑅𝑠𝑠,𝑐𝑐𝑙𝑙𝑠𝑠

𝑑𝑑 ) + 𝜀𝜀�𝑅𝑅𝑙𝑙,𝑐𝑐𝑙𝑙𝑑𝑑𝑑𝑑 − 𝜎𝜎𝐿𝐿𝑐𝑐𝑙𝑙𝑑𝑑4� − 𝜀𝜀�𝑅𝑅𝑙𝑙,𝑐𝑐𝑙𝑙𝑠𝑠𝑑𝑑 − 𝜎𝜎𝐿𝐿𝑐𝑐𝑙𝑙𝑠𝑠4 �, (12) 

where Rc is the cloud radiative forcing, 𝑅𝑅𝑠𝑠,𝑐𝑐𝑙𝑙𝑑𝑑
𝑑𝑑  (𝑅𝑅𝑠𝑠,𝑐𝑐𝑙𝑙𝑠𝑠

𝑑𝑑 ) is the cloudy-sky (clear-sky) DSR, and 𝑅𝑅𝑙𝑙,𝑐𝑐𝑙𝑙𝑑𝑑𝑑𝑑  (𝑅𝑅𝑙𝑙,𝑐𝑐𝑙𝑙𝑠𝑠𝑑𝑑 ) is the cloudy-sky 

(clear-sky) DLW. The shortwave variables, BBE, and DLW can be obtained from the global radiation products. 

 365 
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The cloudy-sky LST (Tcld) equals the reconstructed LST (Tclr) plus the cloud effect (ΔTs), and Tclr is reconstructed from step 

two. ΔTs is unknown for the radiative forcing calculation and represents the ultimate target of this step. Therefore, the 

optimal ΔTs must be determined based on the optimization method to satisfy the SEB. Following Jia et al. (2022a), 𝛥𝛥𝐿𝐿𝑠𝑠 was 

initially assumed to be 0 K and the initial Rc was obtained based on Eq. 12. After energy partitioning through the LAI, G is 

computed and the updated ΔTs is estimated using kg; thus, Rc can be recomputed. By iteratively comparing the Rc differences 370 

and adjusting ΔTs (step = 0.05 K), the surface energy budget is balanced (|ΔCRE| < 20 W·m-2, see Figure 3). The threshold of 

20 W·m-2 is the current accuracy level of the longwave radiation products (Wang et al., 2020). 

3 Results and discussion 

3.1 Overall assessment 

Based on all paired samples from the proposed GHA-LST dataset and 201 sites from 2011-2020, the overall RMSE of the 375 

all-sky GHA-LST is 3.31 K, with a bias of -0.57 K and R2 of 0.95. As site selection may influence the accuracy statistics, the 

accuracy of GHA-LST was also compared with that of the CGLS and MYD21C1 data (Figure 4). Figure 4a shows the 

extracted clear-sky samples from the CGLS, whereas the corresponding clear-sky results from GHA-LST are shown in 

Figure 4b, which has the same sampling amount as Figure 4a. The recovered cloudy-sky LST at the corresponding CGLS 

cloudy time of Figure 4a was validated in Figure 4c. Such an accuracy comparison between the GHA-LST and CGLS data is 380 

sufficiently fair; thus, we also compared the accuracies between GHA-LST and MYD21C1 (Figure 4d-4f). Because 

MYD21C1 may have a slightly different observation time (< 0.5 h) relative to GHA-LST, it was converted to the nearest 

UTC o’clock based on the diurnal cycle recorded by site observations to match the GHA-LST recording time.  
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 385 
Figure 4. Density scatterplots of hourly LST samples from (a) CGLS clear-sky retrievals, (b) GHA-LST clear-sky samples 
corresponding to (a), (c) GHA-LST cloudy-sky samples corresponding to CGLS cloudy time, (d) MYD21C1 clear-sky retrievals, 
(e) GHA-LST clear-sky samples corresponding to (d), and (f) GHA-LST cloudy-sky samples corresponding to MYD21C1 cloudy 
time. 

 390 

The proposed GHA-LST dataset had better accuracy than the CGLS and MYD21C1 data under both clear-sky and cloudy-

sky conditions (Figure 4). Compared to the CGLS (Figure 4a), the clear-sky GHA-LST had a similar RMSE (3.35 K, Figure 

4b), which is reasonable because most of the clear-sky GHA-LST samples were derived from clear-sky retrievals from the 

CGLS. The partially cloud-contaminated samples were marked during production (Section 2.2.2) and considered cloudy 

pixels. The results of MYD21C1 (Figure 4d) only utilized samples that were marked as ‘good quality’ and passed a cloud 395 

contamination test (Section 3.6 in Ma et al. (2020)). In comparison, GHA-LST produced similar accuracy with high-quality 

MODIS samples (Figure 4e) and represented a stable accuracy (RMSE = ~3.3 K with few biases) under both clear-sky and 

cloud-sky conditions. Based on the sampling amount (Figure 4a–c), the number of cloudy pixels was nearly 1.5 times higher 

than the number of clear-sky pixels, indicating the importance and necessity of the proposed GHA-LST dataset. As 

MYD21C1 (Figure 4d–f) only includes samples from noon and midnight, it has significantly fewer samples than the CGLS 400 

group (Figure 4a–c). Studies on similar topics, such as the recovery of all-sky MSG/SEVIRI LST (Martins et al., 2019), 

produced RMSEs of 2.1~3.7 K at 3 sites. However, direct comparisons of the validation statistics are difficult because 

substantially different sites and sampling amounts were utilized in this study.  

 
Figure 5 illustrates that the GHA-LST process has a considerably higher performance in obtaining daily mean LSTs. GHA-405 

LST has a similar RMSE to the daily mean CGLS, with 24 values in a day retrieved by satellites (Figure 5a and b); however, 

GHA-LST has substantially more available samples than the CGLS clear-sky results. In comparison, the daily mean 

computed from the average of the paired daytime/nighttime MYD21C1 has the largest RMSE, with a clear bias of 2.41 K. 

However, MODIS LSTs have been more widely used than GEO LSTs, and many studies have obtained daily mean LSTs by 

simply averaging two instantaneous Aqua retrievals at noon and midnight (Ouyang et al., 2012; Chen et al., 2017; Zou et al., 410 

2017). This study suggests that the proposed GHA-LST dataset can significantly improve the accuracy and data availability 

of the daily mean LST. 
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Figure 5. Density scatterplots of the daily mean LST samples from (a) GHA-LST, (b) CGLS, and (c) average daytime and 
nighttime MYD21C1 pairs. 415 

 

To demonstrate the accuracy and stability of the GHA-LST under different surface conditions, the hourly samples were 

further differentiated based on land cover types. Land cover data are obtained from the MCD12Q1 International Geosphere-

Biosphere Programme (IGBP) classification. The validation statistics are listed in Table 3. 
Table 3: Validation statistics for different land cover types. 420 

Land Cover Clear-sky Samples Cloudy-sky Samples 

 Bias (K) RMSE 

(K) 

R2 N Bias (K) RMSE 

(K) 

R2 N 

Evergreen needleleaf 

forests 

0.03 3.29 0.90 187,100 0.50 2.78 0.89 281,421 

Evergreen broadleaf forests 0.22 3.03 0.89 37,907 1.34 2.27 0.95 39,350 

Deciduous broadleaf 

forests 

-1.26 3.26 0.94 190,753 -0.54 2.61 0.94 275,551 

Mixed forests -1.03 2.97 0.96 90,369 0.19 2.83 0.95 176,405 

Closed shrublands 1.19 3.80 0.94 21,781 0.61 3.21 0.91 12,760 

Open shrublands -0.49 2.87 0.97 124,904 -0.28 4.07 0.96 184,840 

Woody savannas -0.20 3.26 0.93 263,142 0.34 3.63 0.94 602,743 

Savannas -0.56 3.06 0.95 182,085 0.06 3.03 0.96 318,231 

Grasslands -0.25 3.66 0.84 571,722 0.19 3.95 0.92 552,178 

Permanent wetlands 1.29 3.81 0.91 11,265 0.13 3.35 0.96 72,375 

Croplands -0.28 3.10 0.95 522,715 0.15 2.72 0.94 790,227 

Urban  -0.61 3.80 0.94 59,698 -0.44 3.11 0.92 88,839 

Barren -2.01 4.02 0.98 3,925 -1.95 4.59 0.94 4,812 
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Table 3 indicates that the GHA-LST has stable accuracy under both clear-sky and cloudy-sky conditions for various land 

cover types. However, some clear biases were found for the forest and barren land cover types, which could be caused by 

split-window retrieval errors under clear-sky conditions due to the large emissivity uncertainty (Li et al., 2022b). In 

comparison, high R2 values in these regions reflect the ability of the GHA-LST to capture regional temperature variations. 425 

3.2 Individual site validation 

Considering that 201 global sites were utilized, the RMSEs at individual sites can reflect the spatial pattern of GHA-LST 

accuracy; therefore, site RMSE maps under clear-sky and cloudy-sky conditions are illustrated in Figure 6. 

 
Figure 6. Global RMSE statistics at individual sites under (a) clear-sky and (b) cloudy-sky conditions. 430 
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The GHA-LST had similar accuracy patterns under both clear-sky and cloudy-sky conditions, and it had lower RMSEs (< 

3.5 K) in eastern America, Europe, and Australia but variable RMSEs from 3.5 to 5 K in western America and the TP. The 

median site RMSE under clear-sky conditions was 3.18 K, with a standard deviation of 0.81 K, and the median site RMSE 

under cloudy-sky conditions was 2.97 K, with a standard deviation of 1.01 K, indicating that cloudy-sky results had a 435 

slightly larger spatial variance of accuracy. Validation statistics for each site are listed in the Appendix.  

3.3 Temporal and spatial analysis 

To evaluate the temporal continuity of the proposed GHA-LST dataset, the temporal LST variations from GHA-LST, CGLS, 

and corresponding ground measurements were compared at hourly and daily mean scales. In Figure 7, four global sites are 

shown as the representative sites from SURFRAD (SXF, 43.74° N, -96.62° W), BSRN (CAB, 51.97° N, 4.93° E), Fluxnet 440 

(AU-Rig, -36.65° S, 145.58° E), and AmeriFlux (US-Ro1, 44.71° N, -93.09° W). The study period was randomly chosen for 

different years. 

 
 
 445 
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 450 

 
Figure 7. Temporal variation of (a - d) hourly LST and (e - h) daily mean LST at four sites: (a, e) SURFRAD SXF, (b, f) BSRN 
CAB, (c, g) Fluxnet AU-Rig, and (d, h) AmeriFlux US-Ro1. Abbreviations: SURFRAD SXF, Surface Radiation Budget Sioux 
Falls; BSRN CAB, Baseline Surface Radiation Network Cabauw; AU-Rig, Australia- Riggs Creek; US-Ro1, United States-Ro1; 
GHAT, global hourly, 5 km, all-sky land surface temperature; CGLS, Copernicus Global Land Service.  455 

 
The GHA-LST data have satisfactory temporal continuity and correspond to the ground measurements at hourly and daily 

mean scales. At the hourly scale, the hourly LST exhibits harmonic diurnal variations under clear-sky conditions, especially 

at Fluxnet AU-Rig (Figure 7c), where the climate is dry and cloud cover is low. In comparison, a more complicated temporal 

pattern of LSTs is observed for continuous cloudy time (e.g., BSRN CAB, Figure 7b), indicating that the harmonic function-460 

based DTC models may not work well in these cases. The GHA-LST data can capture the DTCs under both clear-sky and 

cloudy-sky conditions and correspond to the ground measurements and clear-sky CGLS. Certain clear-sky CGLS points are 

scattered and have a clear negative bias (Figure 7a) because they were detected as partially covered pixels; thus, they were 

not used in the data assimilation. At AmeriFlux US-Ro1 (Figure 7d), GHA-LST is more consistent with CGLS than the 

ground measurements on clear-sky days; thus, we infer that US-Ro1 has a larger heterogeneity issue than the other sites.  465 

 

After temporal aggregation, the daily mean LST variation in different years also demonstrated the continuity and stable 

accuracy of the GHA-LST. The relatively larger differences between the satellite datasets and ground measurements at noon 

(hourly scale) and during summer (daily mean scale) can be explained by site representativeness. A temporal variation 

analysis of accuracy (Jia et al., 2022a) suggests that ground measurements generally have the lowest representativeness at 470 

noon and the RMSE statistics of hourly LST products can increase by more than 1 K from nighttime to noon. As solar 

radiation increases in the morning, LST has distinct warming responses over different land cover types in a pixel; thus, the 

spatial heterogeneity of the pixel is enhanced during daytime.  
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Figure 8. Global LST maps of (a) GHA-LST annual mean in 2021, (b) CGLS + MYD/MOD21 annual mean in 2021; hourly LST 475 
maps at 02:00 UTC on September 07, 2021, of (c) GHA-LST and (d) CGLS + MYD/MOD21. Abbreviations: GHA-LST, global 
hourly, 5 km, all-sky land surface temperature; CGLS, Copernicus Global Land Service. 

 

A global all-sky LST map was analyzed to demonstrate the spatial continuity of the proposed GHA-LST dataset. The global 

annual mean maps of all-sky LST from GHA-LST and clear-sky LST from CGLS+MYD/MOD21 were compared (Figure 480 

8). Overall, the GHA-LST data exhibit high spatial continuity across the globe at different time scales. The annual mean 

GHA-LST for 2021 (Figure 8a) illustrates a reasonable spatial pattern. The annual LSTs from CGLS+MYD/MOD21 (Figure 

8b) present a systematic clear-sky bias (Ermida et al., 2019), especially in the connection regions of the CGLS and MODIS 

data (southwestern Canada and Siberia), where clear artificial lines are shown. In comparison, assimilating the clear-sky 

results to the time-evolving model can produce more spatially consistent LST maps.  485 

 

At the hourly scale, the GHA-LST map (Figure 8c) can also produce the reasonable spatial variation in LST. Compared with 

the clear-sky pixels in Figure 8d, the cloudy-sky pixels of the GHA-LST data (Figure 8c) were well recovered. It should be 

noted that the clear-sky map (Figure 8b) had more spatial textures than the all-sky annual mean map (Figure 8a) because 

clear-sky LSTs have higher spatial heterogeneity due to solar heating. Furthermore, the various numbers of available clear-490 

sky days in different locations may cause spurious spatial textures (e.g., lines at the connection region of CGLS and 

MODIS). Additionally, the GHA-LST spatiotemporally filtered clear-sky satellite LSTs using the simulated model series, 

which may sacrifice spatial textures for data fusion. 

 

To evaluate the ability of GHA-LST to capture spatial textures at regional scales, the GHA-LST annual means in the Alaska 495 

and TP regions are shown in Figure 9. These two areas were selected because they are hot spot regions in terms of their 
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response to climate change (Kuang and Jiao, 2016; Melvin et al., 2017), and GHA-LST was recovered in these two regions 

from MODIS and CGLS, respectively. The corresponding annual mean skin temperatures of ERA5 and the Global Land 

Data Assimilation System (GLDAS) were also included for comparison. ERA5 and GLDAS were employed because global 

hourly all-sky LST is currently only available from reanalysis datasets and both are widely used in the relevant research 500 

(Muñoz-Sabater et al., 2021; Rodell et al., 2004). GHA-LST has a spatial pattern similar to that of the two reanalysis datasets 

but produces many more spatial details. GHA-LST has a spatial resolution of ~5 km; therefore, it can provide more spatial 

texture information than the ERA5 (0.1°) and GLDAS (0.25°) data. GLDAS data have invalid pixels, mainly because it 

ignores all inland lakes. 

 505 
Figure 9. Temporally averaged all-sky LST maps in 2021 from (a, b) GHA-LST, (c, d) ERA5, and (e, f) GLDAS (a, c, e) over the 
Tibetan Plateau and (b, d, f) Alaska. Abbreviations: GHA-LST, global hourly, 5 km, all-sky land surface temperature; GLDAS, 
Global Land Data Assimilation System. 
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3.4 Global anomaly analysis 510 

To justify the potential use of LST in climate warming-related issues, the relationship between LST and surface air 

temperature (AT) has recently been discussed. However, previous studies have either focused on local site scales (Hachem et 

al., 2012; Good, 2016; Sohrabinia et al., 2015; Mutiibwa et al., 2015) or ignored the clear-sky LST bias (Good et al., 2017). 

In comparison, the proposed GHA-LST provides an exceptional opportunity to spatiotemporally upscale the all-sky hourly 

LST to allow for comparisons with AT climate datasets. Monthly anomaly variations in global LST and AT are shown in 515 

Figure 10 by removing the seasonal cycle in the daily mean (Tmean), daily minimum temperature (Tmin), daily maximum 

temperature (Tmax), and diurnal temperature range (DTR).  

 

Berkeley Earth Surface Temperatures (BEST, Rohde et al. (2013)), NASA Goddard Institute for Space Studies Surface 

Temperature Analysis version 4 (GISTEMP v4, Lenssen et al. (2019)), and Climatic Research Unit Temperature, version 4 520 

(CRUTEM4, Osborn and Jones (2014)) were used to characterize the AT variation (Figure 10a). Other all-sky LST datasets 

were averaged and shown to verify the GHA-LST anomaly, including two MODIS-derived gap-free results, as shown in 

Table 1 (Hong et al., 2022; Zhang et al., 2022), and the ERA5-Land reanalysis skin temperature. Only BEST and GHA-LST 

can provide Tmax and Tmin; thus, they were used in Figure 10 b-d. The reference time period was 2015-2017, and the 

uncertainty shadow in Figure 10a is the standard deviation of the averaged LST/AT datasets. 525 
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Figure 10. Monthly anomaly variation of globally geographical weighted LST and land surface air temperature (AT) at different 530 
scales: (a) mean temperature (Tmean), (b) maximum temperature (Tmax), (c) minimum temperature (Tmin), and (d) diurnal 
temperature range (DTR). Abbreviations: GHA-LST, global hourly, 5 km, all-sky land surface temperature; BEST, Berkeley 
Earth Surface Temperatures. 

 

The LST anomaly couples well with the global AT anomaly at the Tmean and Tmin scales, and LST has a slightly larger 535 

amplitude than AT, whereas the Tmax and DTR of the two variables can only match the anomalous direction and the 

magnitude is quite different. At the Tmean scale, anomalies of GHA-LST and other LSTs have very similar variations with 

the AT datasets, even though they have completely different data sources (Figure 10a). These findings are consistent with the 

trend comparison between the ERA5-Land skin temperature and AT (Wang et al., 2022). Both datasets have limited 

uncertainty (shadowed areas), indicating that they can accurately characterize the land surface thermal dynamics. In 540 

comparison, LST had a slightly larger anomaly amplitude than AT, which was mainly caused by the daytime LST. Solar 

heating increases the temperature difference between LSTs and ATs over different surface land cover types (Good et al., 

2017). Accordingly, Tmax exhibited the largest difference (Figure 10b), especially in years with large anomalies, thus 

indicating that LST Tmax had a stronger response to heat anomalies. Tmin showed a higher correlation between the two 

variables (Figure 10c). LST has a considerably stronger DTR disturbance than AT owing to the difference in Tmax (Figure 545 

10d). We did not quantify the trend magnitude because the time span was only 11 years and the overall trend was affected by 

the value in one specific year. This analysis demonstrates the potential usefulness of GHA-LST in climate studies and global 

hourly AT estimates.  

 

4 Discussion 550 

The site RMSE statistics were compared with the corresponding site elevations and latitudes to detect the potential factors 

that impact the accuracy of the results (Figure 11). 
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 555 
Figure 11. Scatter plots between the site RMSE and (a, b) elevation and (c, d) latitude under (a, c) clear-sky and (b, d) cloudy-sky 
conditions. The significant linear relationship (p-values < 0.01) is drawn (a, b). 

 

The RMSE statistics at each site were mainly affected by the site elevation (Figure 11). The scatterplots of site RMSE and 

site elevation under clear-sky and cloud-sky conditions (Figures 7a and b) show that the linear relationship was statistically 560 

significant (p-value < 0.01). We suppose that increasing elevation will decrease the spatial representativeness of the sites; 

therefore, the RMSEs of the clear-sky results showed an increasing trend. In addition, the cloudy-sky results had a larger 

slope (Figure 11b), indicating that they were more sensitive to elevation variations. Thus, we inferred that elevation was an 

essential factor affecting LST recovery. In these regions with high elevation, clear-sky LSTs with larger RMSEs were 

assimilated in the time-evolving model, thus affecting the cloudy-sky results. In addition, modeled temperature series include 565 

higher uncertainty in these regions, and a relevant ‘cool bias’ issue in highlands was found in regional simulation models and 

global reanalysis datasets (Jia et al., 2022b; Meng et al., 2018). Although the relationship between the site RMSE and site 
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latitude was not statistically significant (Figure 11c and d), the GHA-LST data at higher latitudes produced higher RMSEs 

than the data at lower latitudes, especially under cloudy-sky conditions; thus, we inferred that high latitudes were frequently 

covered by clouds and fewer clear-sky LSTs could be used in the data assimilation. In addition, sites at higher latitudes are 570 

usually located in coastal areas (Figure 6a), which may limit their spatial representativeness at the 5 km scale.  

 

Furthermore, the spatial continuity at regional scale was evaluated. A detailed mapping examination suggests that no 

artificial textures occurred under most conditions at mid- and low latitudes; however, at high latitudes where MODIS swath 

data are the basic input data, swath edges are observed on the map in some cases (Figure 12). 575 

 
Figure 12. Case showing the artificial texture (middle of the image) at Northwestern Canada at 05:00 UTC on January 02, 2012.  

 

Such spatial discontinuity occurs when the clear-sky LST retrievals within a swath have considerable temperature 

differences compared to that of spatially neighboring pixels that are not covered by the swath. Regions at high latitude 580 

experience longer cloud durations than those at lower latitudes; thus, pixels that are not covered by the swath might 

accumulate high uncertainties compared to the adjacent clear-sky retrievals. Therefore, an artificial texture remained after the 

data assimilation. Based on the literature review, spatial continuity is also a major issue for current MODIS LST products 

due to substantially different view zenith angles and view times of neighboring swaths after reprojection (Figures 14 and 17 

in Li et al. (2022b)). To address such discontinuity issues, machine learning methods that incorporate additional variables for 585 

estimating cloudy-sky LST can be used in the future (Zhao et al., 2019). 

5 Data Availability 

The GHA-LST dataset from 2011 to 2021 is freely available at https://doi.org/10.5281/zenodo.7487284 (Jia et al., 2022c), 

and the full dataset is also accessible from glass.umd.edu/allsky_LST/GHA-LST. Quality Check (QC) flags are also 
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included: the Bit 0 indicates the sky condition mask (1: clear-sky, 0: cloudy-sky), and the Bit 1 is the cloud duration that 590 

represents the uncertainty level (0: <=10 days, 1: >10 days). The algorithm produced a stable accuracy within 10 days as 

indicated by Jia et al. (2022a). 

6 Conclusions 

LST is an essential driving factor in the surface radiation budget and hydrological cycling, and TIR-based satellite retrieval 

is the primary method used to obtain LST globally. However, TIR-derived LST has numerous data gaps, mainly due to cloud 595 

cover, which seriously restricts the application of current LST products. Studies have focused on producing all-sky LST 

products; nevertheless, global all-sky LSTs on an hourly scale are still unavailable. Considering the high temporal variability 

of LST and the importance of the DTC in ET estimation, drought detection, and heatwave monitoring, we produced a global 

hourly, 5 km, all-sky land surface temperature dataset (GHA-LST) from 2011 to 2021. The data are recovered using CGLS 

LST products from geostationary satellites and the MYD/MOD21 products from polar-orbiting satellites. Moreover, GHA-600 

LST represents the first global gap-free LST product at an hourly scale, and it has been comprehensively validated by in situ 

measurements at 201 global sites in this study. 

 

Based on the ground measurements from the SURFRAD, BSRN, Fluxnet, AmeriFlux, HRB, and TP networks, the overall 

RMSE of GHA-LST is 3.31 K, with a bias of -0.57 K and R2 of 0.95. The comparisons of individual accuracy suggest that 605 

the proposed GHA-LST dataset has better accuracy than the CGLS and MYD21C1 data under both clear-sky and cloudy-sky 

conditions. In addition, the accuracy is stable under both clear-sky and cloudy-sky conditions (RMSEs = ~3.3 K with few 

biases based on different sampling groups). The overall sampling amount was more than 5 million, and we suppose that the 

overall validation can represent the general accuracy of GHA-LST globally. In addition, after temporal aggregation to the 

daily mean scale, the GHA-LST dataset produced an RMSE of 1.76 K and significantly improved the accuracy and data 610 

availability of the global daily mean LST. The individual site validation indicated that the GHA-LST dataset has similar 

accuracy in terms of spatial patterns under different sky conditions. In comparison, the cloudy-sky results had a larger spatial 

variance in accuracy.  

 

Temporal analyses were performed for four representative sites, and the GHA-LST dataset had a high temporal continuity 615 

and was consistent with the ground measurements at hourly and daily mean scales. The temporal variation in hourly LST 

also illustrated that mathematically predictable DTCs cannot be obtained for locations with continuous cloudy days, thus 

highlighting the advantage of the time-evolving model-based method used for the GHA-LST product. Spatial analysis 

suggested that the GHA-LST dataset has satisfactory spatial continuity over clear-sky and cloudy-sky regions, and artificial 

textures were not observed. Regional mapping analysis of the TP and Alaska regions demonstrated that GHA-LST can 620 

capture greater spatial details than reanalysis datasets, which were the only data source for obtaining hourly gap-free LSTs 
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before this study. The monthly anomaly analysis indicated that the GHA-LST anomalies are consistent with global AT 

datasets and other LST datasets at the Tmean and Tmin scales, whereas the Tmax and DTR of the LSTs and ATs are only 

consistent with the anomalous direction when the magnitudes are different. 

 625 

In the future, additional clear-sky LST products, such as the visible infrared imaging radiometer suite (VIIRS) and advanced 

very high-resolution radiometer (AVHRR), can also be assimilated to increase the time span and spatial resolution of the 

proposed dataset. Machine learning can be employed to effectively incorporate information from ground measurements, 

spatial textures, and related factors (e.g., elevation, soil moisture, land cover, and wind speed). GHA-LST represents the first 

gap-free LST dataset at an hourly, 5 km scale over the globe, and it has satisfactory accuracy and great potential for use in 630 

estimating global plant water stress, monitoring extreme weather, and advancing meteorological forecasting models. 

 

Appendix 

Table: Validation statistics of each site. 

Network Site Clear-sky Samples Cloudy-sky Samples 

bias RMSE R2 N bias RMSE R2 N 

SURFRAD BND -0.34 2.34 0.97 36983 0.90 2.32 0.96 50266 

FPK -1.17 2.94 0.97 36910 -0.17 2.93 0.96 50501 

GWN 0.64 2.80 0.95 42136 0.64 2.85 0.91 44621 

PSU -0.81 2.75 0.96 34317 -0.50 2.23 0.96 52809 

SXF -0.42 2.32 0.98 37649 0.39 2.48 0.96 49400 

BSRN bar 0.11 2.69 0.97 25941 -0.12 3.33 0.94 48341 

bud 0.87 3.66 0.94 4942 -0.92 3.49 0.91 7939 

cab -0.53 2.18 0.95 22129 0.28 1.84 0.93 40650 

dar -2.38 4.66 0.86 14516 -1.18 3.89 0.48 20617 

e13 -0.31 2.39 0.97 37930 0.93 2.93 0.94 35193 

pay 0.79 2.26 0.96 29785 -0.42 2.36 0.92 54290 

sel -1.55 3.38 0.90 3605 -2.95 3.99 0.84 4843 
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spo 0.45 3.61 0.92 2681 0.22 3.81 0.91 5810 

tat 0.01 3.35 0.95 36718 0.03 2.51 0.93 50949 

tik 0.05 3.55 0.97 12411 -0.65 4.28 0.94 57405 

tor -1.13 3.53 0.95 12559 -0.80 2.87 0.93 70797 

Fluxnet AU-ASM 1.59 3.80 0.94 21781 0.61 3.21 0.90 12760 

AU-Cpr 0.20 3.55 0.96 19103 1.74 3.27 0.93 14607 

AU-DaP 3.36 4.98 0.89 11696 3.95 4.81 0.80 11099 

AU-DaS 0.59 3.37 0.89 17051 1.07 2.49 0.85 16929 

AU-Dry -1.96 3.63 0.92 14357 -2.27 3.48 0.86 11939 

AU-Emr 0.94 2.99 0.95 13603 0.95 2.85 0.89 8054 

AU-Gin 0.50 2.44 0.95 15637 0.45 3.42 0.87 9008 

AU-GWW 0.71 3.13 0.98 6328 1.70 4.04 0.92 3712 

AU-RDF 0.23 3.01 0.91 7611 0.17 2.67 0.83 6871 

AU-Rig -0.01 2.53 0.96 17709 0.28 2.39 0.92 12438 

AU-Rob -0.15 2.79 0.73 4762 0.54 1.33 0.88 3864 

AU-Stp 0.92 2.99 0.94 18748 0.50 3.34 0.84 14097 

AU-Whr 0.50 3.17 0.94 14734 0.25 1.67 0.95 12076 

AU-Wom 0.35 3.47 0.89 16156 1.04 1.91 0.93 17560 

AU-Ync 0.64 2.44 0.97 10896 1.26 3.21 0.92 7989 

BE-Lon -0.60 2.35 0.94 9418 0.55 1.70 0.95 24109 

CA-Gro -0.86 2.40 0.98 10517 0.85 1.99 0.98 19025 

CH-Cha 2.15 3.48 0.94 5909 -0.41 2.73 0.92 11457 

CH-Dav -0.63 4.14 0.90 4289 -0.55 4.88 0.77 4412 

CH-Fru 3.50 5.85 0.75 368 3.21 4.64 0.85 90 

CN-Sw2 1.31 2.37 0.97 36 -0.29 2.23 0.46 11 

CZ-BK1 0.02 2.64 0.94 9109 1.16 2.86 0.91 20696 
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CZ-wet 1.64 4.06 0.88 7983 0.27 3.19 0.86 11327 

DE-Akm 0.54 1.94 0.96 9771 1.21 1.95 0.96 20507 

DE-Geb -0.28 2.66 0.94 9599 -0.18 2.59 0.92 25439 

DE-Gri 2.31 4.18 0.92 9857 0.94 2.54 0.93 24950 

DE-Hai -0.77 3.42 0.89 4910 0.80 2.62 0.90 12100 

DE-Kli -0.96 3.66 0.89 9558 0.18 2.72 0.90 24733 

DE-Lnf -0.71 3.97 0.84 4835 0.74 2.63 0.89 11927 

DE-Obe -1.56 3.30 0.93 10758 0.60 2.86 0.89 23689 

DE-RuR 0.02 2.39 0.93 7775 0.17 1.69 0.95 22683 

DE-RuS 0.22 2.77 0.92 5938 0.30 1.84 0.94 16662 

DE-SfN 0.70 2.86 0.94 5497 -1.18 2.70 0.92 15626 

DE-Spw -0.50 2.35 0.95 9326 1.01 1.86 0.97 23628 

DE-Tha -1.68 3.18 0.94 9873 0.20 2.25 0.93 25184 

DE-Zrk -1.33 2.86 0.91 4559 0.00 1.95 0.93 9525 

DK-Sor -0.94 3.02 0.91 7224 1.09 3.22 0.84 17380 

FI-Hyy -0.65 1.29 0.99 24 -0.38 1.74 0.97 264 

FR-Pue 1.41 3.35 0.92 14666 0.24 2.25 0.92 17435 

GF-Guy -0.16 2.89 0.33 7675 0.95 1.66 0.41 9819 

GH-Ank 0.50 2.40 0.57 9314 2.86 3.62 0.49 8107 

IT-CA1 -0.61 2.55 0.96 12906 -1.64 2.81 0.92 11233 

IT-Isp -0.17 2.67 0.93 7082 -1.10 2.54 0.91 10436 

IT-Ren 2.31 4.63 0.87 9756 2.95 5.88 0.71 12239 

IT-SR2 3.21 4.27 0.91 3492 1.56 2.71 0.90 17518 

NL-Hor 0.55 2.81 0.86 2969 0.32 1.79 0.92 5737 

NL-Loo -0.69 2.99 0.90 9372 0.76 1.77 0.95 15435 

RU-Fyo -0.46 2.05 0.96 238 0.77 2.22 0.96 7008 
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RU-Sam -0.76 2.88 0.98 1644 0.81 3.97 0.95 9583 

RU-SkP -3.05 5.34 0.97 864 -1.63 3.30 0.98 1971 

US-AR1 -1.31 3.49 0.96 10508 -0.24 3.03 0.95 6996 

US-AR2 -0.83 3.79 0.95 7432 -0.11 2.97 0.96 5464 

US-CRT -0.83 2.78 0.96 10347 0.43 2.07 0.97 15745 

US-Los -0.08 2.70 0.97 3021 0.15 2.17 0.97 4542 

US-Me2 0.34 2.75 0.95 12973 0.23 3.51 0.90 19078 

US-Ne1 0.92 3.13 0.96 10294 2.62 3.83 0.95 10852 

US-NR1 -1.02 3.66 0.92 16549 0.47 3.92 0.86 18482 

US-Oho -0.40 3.67 0.95 10223 1.16 2.70 0.96 16047 

US-Prr 1.73 4.60 0.93 863 0.11 3.86 0.94 3674 

US-SRC -0.58 2.43 0.98 15668 -0.47 3.85 0.91 11042 

US-SRG 2.25 3.81 0.95 21746 2.24 4.64 0.89 12345 

US-Syv -2.01 3.01 0.98 7748 -0.66 2.18 0.97 11231 

US-Tw1 2.85 4.50 0.92 14013 2.39 3.39 0.92 7556 

US-UMB -1.62 3.11 0.97 11318 0.48 2.28 0.97 20943 

US-Var -1.56 4.09 0.94 21334 -1.75 3.66 0.92 13087 

US-WCr -2.47 4.86 0.95 220 -1.56 4.52 0.95 2110 

US-Whs -1.15 2.31 0.98 19711 -0.19 3.79 0.92 14735 

US-Wkg -0.98 3.04 0.97 20263 -0.26 3.96 0.91 13703 

US-WPT -2.00 3.51 0.95 10666 -0.21 2.02 0.96 14589 

BR-Npw 0.76 2.40 0.91 8409 2.01 3.24 0.72 12547 

CA-SCB 0.86 3.04 0.96 18819 0.49 4.05 0.93 26292 

DE-Dgw -1.49 3.75 0.87 6103 -0.36 2.81 0.87 17270 

FI-Sii -1.14 4.39 0.87 655 -0.44 4.55 0.88 19230 

FR-LGt 2.16 4.04 0.91 3863 1.50 3.06 0.90 6792 
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ID-Pag 1.29 2.73 0.61 1361 0.66 1.74 0.65 3877 

JP-BBY 0.25 3.05 0.95 10928 0.27 2.92 0.94 23698 

JP-Mse -0.27 3.48 0.94 3501 0.69 2.20 0.95 5199 

JP-SwL -2.00 4.45 0.84 3522 -1.53 4.39 0.77 4334 

KR-CRK -0.87 3.03 0.95 16752 -0.79 2.31 0.96 15019 

NZ-Kop -0.50 2.53 0.90 16963 0.72 2.36 0.88 18010 

PH-RiF -2.70 3.91 0.75 2213 -0.35 1.96 0.72 6215 

US-Bi1 2.98 4.49 0.90 12504 2.92 4.30 0.84 8264 

US-BZB 2.51 5.48 0.93 8946 1.45 4.86 0.92 23668 

US-EML -0.98 4.01 0.93 4492 -0.81 3.96 0.92 19278 

US-Ho1 -1.28 2.38 0.98 23048 0.81 1.96 0.97 30691 

US-HRA -0.01 3.36 0.78 1582 0.39 2.71 0.73 1645 

US-MRM 1.63 3.74 0.90 851 1.28 3.58 0.91 8514 

US-NC4 -0.14 1.96 0.95 6969 0.29 1.73 0.94 7481 

US-NGC 1.05 5.21 0.45 1226 -1.40 4.49 0.65 4598 

US-Sne 2.23 4.80 0.88 13559 1.92 3.38 0.90 9069 

US-Uaf 2.23 4.43 0.95 21801 1.87 4.86 0.93 69880 

AmeriFlux CA-ARB -0.74 2.91 0.98 14549 1.34 3.88 0.95 26437 

CA-Ca3 0.45 2.86 0.98 22291 1.05 2.57 0.89 80737 

CA-Cbo -0.10 2.99 0.96 30675 1.55 2.80 0.96 53145 

CA-DB2 1.34 3.92 0.91 2069 -0.29 3.14 0.84 9357 

CA-HPC 2.12 4.75 0.92 1246 0.43 3.96 0.90 5235 

CA-LP1 -0.84 3.82 0.93 21152 -0.76 4.14 0.91 85705 

CA-SMC 1.44 3.98 0.94 1584 -0.50 4.29 0.92 6376 

CA-TVC 0.77 4.31 0.96 597 0.44 4.23 0.93 7059 

CR-Fsc -1.69 2.83 0.89 4375 -1.10 2.21 0.79 5075 
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MX-Aog 0.68 4.09 0.82 13245 -0.40 3.47 0.76 9890 

MX-Ray -0.81 4.30 0.82 1696 -0.58 4.19 0.74 1369 

PR-xGU -1.30 3.01 0.84 8677 0.99 3.04 0.64 5644 

US-A32 0.58 2.54 0.97 8069 1.23 3.07 0.94 7247 

US-A74 0.47 2.53 0.96 5684 1.46 3.21 0.91 5129 

US-ALQ 0.24 4.24 0.92 6691 0.02 3.16 0.93 9417 

US-Aud 1.54 2.99 0.98 3896 2.09 4.49 0.88 2342 

US-Br1 -0.45 2.88 0.96 3189 0.85 2.67 0.96 4219 

US-BRG 1.03 3.22 0.94 15519 0.98 2.72 0.94 21042 

US-CPk -0.70 4.79 0.86 9156 -0.19 4.44 0.85 11985 

US-CS1 -0.04 2.55 0.97 2503 0.56 2.32 0.97 4840 

US-Cwt -0.34 3.44 0.87 18318 -2.15 2.98 0.93 21479 

US-DFC -0.87 2.82 0.96 4238 0.22 2.39 0.95 6946 

US-HB2 0.19 1.77 0.96 3965 0.63 1.65 0.95 4221 

US-HBK -2.43 3.30 0.97 8713 -1.81 2.99 0.95 12407 

US-HWB -1.67 3.04 0.95 11420 -1.09 2.26 0.96 15504 

US-Jo1 -1.30 2.85 0.98 30406 -0.74 4.02 0.92 24292 

US-KFS 0.12 3.97 0.91 25297 1.03 4.36 0.87 29666 

US-KM4 0.96 3.44 0.93 33623 1.31 2.66 0.96 48132 

US-Kon 0.11 4.76 0.89 12873 0.84 4.11 0.89 14146 

US-MC2 0.91 3.82 0.84 1515 -0.88 3.16 0.80 1551 

US-MH1 2.40 4.13 0.91 864 3.32 5.50 0.87 1469 

US-Mj1 0.77 3.10 0.93 903 0.91 3.76 0.85 818 

US-MOz -1.07 3.09 0.95 32259 0.46 1.99 0.97 38554 

US-Mpj 1.14 4.84 0.93 49525 2.19 5.86 0.87 36528 

US-MRf 0.37 2.52 0.91 1220 1.38 2.93 0.84 2455 
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US-MSR 0.72 4.99 0.82 1056 0.20 5.37 0.72 1383 

US-MVF 0.65 2.54 0.97 1237 -0.14 3.83 0.89 1807 

US-MWA -1.89 3.74 0.93 7021 -0.32 2.05 0.97 13027 

US-MWF -1.28 2.85 0.95 6609 0.01 1.62 0.98 12025 

US-MWW -2.13 4.02 0.91 7136 -1.70 2.80 0.95 11146 

US-NC1 1.91 2.86 0.96 8453 1.84 2.77 0.94 9058 

US-ONA -0.41 2.35 0.93 20058 0.85 2.34 0.89 19570 

US-PFb 0.49 2.61 0.80 839 2.72 3.64 0.84 846 

US-PFk -0.89 1.70 0.94 845 1.44 2.03 0.96 885 

US-PHM -1.02 3.29 0.90 11040 -0.16 3.78 0.77 25556 

US-Rls 0.47 3.99 0.93 24093 -0.39 4.58 0.86 27506 

US-Ro1 0.08 2.96 0.96 18488 0.00 2.46 0.96 24116 

US-Rpf -0.48 3.34 0.95 2054 0.28 3.59 0.94 63663 

US-Seg -0.31 2.35 0.98 46399 -0.20 4.04 0.92 38404 

US-Skr 1.46 3.14 0.77 3282 3.46 4.84 0.65 2707 

US-Slt -0.30 1.91 0.97 8329 1.59 2.48 0.96 9199 

US-TrB -3.27 4.06 0.93 2256 -2.62 3.43 0.94 2715 

US-Tur -1.52 4.31 0.71 509 -0.19 4.21 0.68 1687 

US-UiA 1.49 3.14 0.96 3830 1.01 2.33 0.96 4907 

US-Vcm 0.10 3.76 0.90 45014 0.64 4.60 0.80 34198 

US-Vcs -1.09 3.81 0.90 24731 -1.23 4.69 0.79 18661 

US-Wgr 0.14 3.17 0.92 3108 -0.35 2.45 0.90 4191 

US-Wjs 0.59 4.62 0.93 42573 1.16 5.29 0.88 34057 

US-Wpp 1.26 4.86 0.77 2723 0.82 4.43 0.70 3381 

US-Wrc -0.80 3.05 0.92 13709 -1.57 2.54 0.93 25363 

US-xAB -0.32 2.30 0.94 9821 -0.19 1.96 0.91 18766 
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US-xAE -2.71 4.41 0.94 15088 -0.99 3.14 0.94 13825 

US-xBL -1.88 3.04 0.96 12366 -1.01 2.33 0.96 17532 

US-xBR -3.18 3.95 0.97 14553 -2.78 3.59 0.96 20114 

US-xCP -2.19 3.05 0.98 15172 -0.96 4.59 0.90 18990 

US-xDC -2.22 3.41 0.97 12281 -1.30 2.74 0.97 16593 

US-xDJ -0.72 3.62 0.94 1186 -1.59 4.03 0.94 32892 

US-xDL -0.55 2.78 0.91 14189 1.05 2.56 0.92 17607 

US-xDS -1.30 2.64 0.94 16311 -0.71 2.34 0.88 17426 

US-xGR -1.52 3.33 0.91 11223 -2.71 3.79 0.91 16486 

US-xHA -2.01 2.86 0.97 13716 -0.65 2.07 0.96 18138 

US-xJE -1.73 3.80 0.88 15472 -0.20 2.65 0.90 16721 

US-xJR -1.19 3.06 0.97 17076 -0.54 4.09 0.92 11774 

US-xKA -2.16 3.57 0.96 13431 -0.84 2.79 0.95 14802 

US-xLE -1.53 3.11 0.92 11741 0.34 1.98 0.94 13226 

US-xMB -2.54 3.61 0.98 15039 -2.31 4.81 0.93 13100 

US-xML -1.75 3.37 0.92 12540 -0.63 3.50 0.87 16124 

US-xNG -1.91 3.35 0.97 10233 -0.15 2.85 0.96 16173 

US-xNQ -1.90 3.36 0.97 13902 -1.44 4.63 0.91 14718 

US-xRM -1.61 3.38 0.93 14558 -1.59 4.45 0.84 16957 

US-xSB -1.61 2.64 0.94 15547 -1.02 2.25 0.90 17909 

US-xSC -1.32 3.70 0.91 13934 -1.00 2.67 0.94 20575 

US-xSE -0.91 2.36 0.96 14088 -0.11 1.74 0.96 18191 

US-xSL -1.83 3.52 0.96 14314 -0.63 4.39 0.89 15042 

US-xSP -3.52 4.13 0.96 16381 -2.63 3.88 0.90 10012 

US-xST -2.19 2.95 0.98 10986 -0.55 2.08 0.97 17499 

US-xTA -3.32 4.01 0.94 13180 -0.40 2.05 0.94 15434 
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US-xUN -2.53 3.12 0.98 13573 -1.09 2.13 0.98 20054 

US-xWD -1.76 2.99 0.98 11784 -0.53 2.44 0.97 17020 

HRB ArouCJZ -0.26 4.43 0.93 3624 -0.65 5.76 0.79 5111 

BajitanGB -2.72 4.03 0.98 3925 -2.35 4.70 0.93 4812 

DamanCJZ -0.03 2.95 0.96 3815 1.62 5.07 0.89 4729 

TP biru -0.76 4.89 0.89 3451 -0.45 4.72 0.87 3584 

namucuo -0.23 4.01 0.90 3321 0.12 4.22 0.90 3412 
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