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Abstract. Land surface temperature (LST) plays a dominant role in the surface energy budget (SEB) and hydrological cycling. 

Thermal infrared (TIR) remote sensing is the primary method of estimating LST globally. However, cloud cover leaves 

numerous data gaps in satellite LST products, which seriously restricts their applications. Efforts have been made to produce 10 

gap-free LST products from polar-orbiting satellites (e.g., Terra and Aqua); however, satellite data from limited overpasses 

are not suitable for characterizing the diurnal temperature cycle (DTC), which is directly related to heat waves, plant water 

stress, and soil moisture. Considering the high temporal variability of LST and the importance of the DTC, we refined the 

SEB-based cloudy-sky LST recovery method by improving its feasibility and efficiency and produced a global hourly, 5 km, 

all-sky land surface temperature (GHA-LST) dataset from 2011 to 2021. The GHA-LST product was generated using TIR 15 

LST products from geostationary and polar-orbiting satellite data from the Copernicus Global Land Service (CGLS) and 

Moderate Resolution Imaging Spectroradiometer (MODIS). Based on the ground measurements at the 197 201 global sites 

from the Surface Radiation Budget (SURFRAD), Baseline Surface Radiation Network (BSRN), Fluxnet, AmeriFlux, Heihe 

River Basin (HRB), and Tibet Plateau (TP) networks, the overall root mean square error (RMSE) of the hourly GHA-LST 

product was is 3.38 31 K, with a bias of -0.53 57 K and R2 of 0.95, . Thus, this product wasand it was more accurate than the 20 

clear-sky CGLS and MODIS MYD21C1 LST samples. The RMSE value of the daily mean LST was 1.67 76 K. Validation 

results at individual sites indicate that the GHA-LST dataset has relatively larger RMSEs for high high-elevation regions, 

which can be attributed to high surface heterogeneity and input data uncertainty. Temporal and spatial analyses suggested that 

GHA-LST has satisfactory spatiotemporal continuity and reasonable variation and matches the reference data well at hourly 

and daily scales. Furthermore, the regional comparison of GHA-LST with other gap-free hourly datasets (ERA5 and Global 25 

Land Data Assimilation System, GLDAS) demonstrated that GHA-LST can provide more spatial texture information. The 

monthly anomaly analysis suggests that GHA-LST couples well with global surface air temperature datasets and other LST 

datasets at daily mean and minimum temperature scales, whereas the maximum temperature and diurnal temperature range of 

LST and air temperature (AT) have different anomalous magnitudes. The GHA-LST dataset is the first global gap-free LST 

dataset at an hourly, 5 km scale with high accuracy, and it can be used to estimate global evapotranspiration, monitor extreme 30 
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weather, and advance meteorological forecasting models. GHA-LST is freely available at 

https://doi.org/10.5281/zenodo.74872846981704 (Jia et al., 2022c) and glass.umd.edu/allsky_LST/GHA-LST.  

1 Introduction 

Land surface temperature (LST) is an essential component of the surface radiation budget and a dominant driving force in 

atmospheric cycling and hydrological balance  (Li et al., 2022b; Li et al., 2013b). LST directly reflects the thermal feedback 35 

of various land covers towards incoming solar radiation and atmospheric longwave radiation (Liang et al., 2019), and it is 

employed as an important variable for urban heat island analysis (Liu et al., 2022), permafrost mapping (Zou et al., 2017), and 

hazard forecasting (Bhardwaj et al., 2017; Mudele et al., 2020; Quintano et al., 2015). Therefore, LST has been extensively 

utilized as a vital indicator for characterizing regional and global climate change (Zhou et al., 2012; Jin, 2004; Peng et al., 

2014). This parameter can be obtained by ground measurements, model simulations, and remote sensing retrievals. However, 40 

given the high spatiotemporal heterogeneity caused by various land covers, soil types, topographies, and meteorological 

conditions (Zhan et al., 2013; Liu et al., 2006; Ma et al., 2021), remote sensing has become the only feasible solution for 

monitoring LST globally.  

 

LST can be retrieved using thermal infrared (TIR) observations from both polar-orbiting (Wan, 2008; Hulley and Hook, 2009) 45 

and geostationary (GEO) satellites (Yu et al., 2008; Freitas et al., 2009). In comparison, GEO satellites provide sub-hourly 

observations; thus, they can precisely capture the diurnal temperature cycles (DTCs) of the land surface. DTCs characterize 

the strong temporal variability of LST in a day, which is an important surface thermal property that responds to local 

environmental changes (Hansen et al., 1995; Sun et al., 2006). Studies have suggested that DTCs are directly related to plant 

water stress and soil drought (Fensholt et al., 2011; Stisen et al., 2008; Hernandez-Barrera et al., 2017); thus, such a relationship 50 

has been utilized for mapping evapotranspiration (Anderson et al., 2011) and soil moisture (Piles et al., 2016). In addition, it 

helps improve meteorological forecasting through data assimilation (Orth et al., 2017), extreme heat wave assessments (Hrisko 

et al., 2020; Jiang et al., 2015), crop yield estimations (Anderson et al., 2016), LST spatiotemporal scale conversions (Hu et 

al., 2020), orbit drift corrections of advanced very high-resolution radiometer (AVHRR) LST data (Jin and Treadon, 2003), 

and vegetation phenology analyses (Piao et al., 2015). Considering the great potential of DTCs in scientific applications and 55 

the high temporal variability of LSTs, accurate diurnal LST datasets are crucial for the research community and public (Chang 

et al., 2021; Hrisko et al., 2020; Pinker et al., 2019). 

  

TIR sensors on board GEO satellites, such as the Geostationary Operational Environmental Satellites (GOES)-R Advanced 

Baseline Imager (ABI) and the Meteosat Second Generation (MSG) Spinning Enhanced Visible and InfraRed Imager 60 

(SEVIRI), provide exceptional opportunities to record DTCs. However, there are two inevitable flaws occur while when using 

GEO satellites to observe diurnal LST variations globally: , namely, data gaps caused by cloud cover and limited spatial view 
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fields of individual GEO satellites, which seriously limit the availability of hourly all-sky LST datasets at the global scale. 

Methods of recovering hourly LSTs have been developed and comprehensively reviewed by Jia et al. (2022a). The cCurrently 

available gap-free satellite-derived LST products are summarized in Table 1. Some gap-free LST datasets are not listed in the 65 

table, such as skin temperature from reanalysis datasets (e.g., ERA5 and MERRA2) (Muñoz-Sabater et al., 2021; Molod et al., 

2015), and the results of Coccia et al. (2015) as they assumed that the surface broadband emissivity was equal to 1. 

 

Table 1: Summary of publicly available gap-free LST products. 

Study Spatial 

coverage 

Temporal 

coverage 

Spatial 

resolution 

Temporal 

resolution 

Methodology Access 

Zhang et 

al. (2022) 

global 

land 

2003 – 2020 1 km 13:30 and 01:30 

Local Time (LT) 

spatiotemporal 

interpolation 

https://doi.org/10.25380/iastate.c

.5078492 

Hong et 

al. (2022) 

global 

land 

2003 – 2019 0.5° daily mean annual temperature 

cycle (ATC) model 

and DTC model 

https://doi.org/10.5281/zenodo.6

287052 

Yu et al. 

(2022) 

global 

land 

2002 – 2020 0.05° 01:30, 10:30, 

13:30, and 22:30 

LT 

fusion of TIR and 

reanalysis LSTs 

https://www.tpdc.ac.cn/en/data/8

e975056-a612-4a4f-b7ef-

772720145bf0/ 

Rains et 

al. (2022) 

Europe 2018 – 2019  1 km daily fusion of polar-

orbiting and SEVIRI 

LST data 

https://doi.org/10.5281/zenodo.7

026612 

Jia et al. 

(2022a) 

United 

States and 

Mexico 

2017 – 2021 2 km hourly data fusion and surface 

energy balance (SEB) 

correction 

http://glass.umd.edu/allsky_LST

/ABI/ 

Xu and 

Cheng 

(2021) 

China 2002 – 2020 1 km 13:30 and 01:30 

LT 

data fusion of TIR and 

PMW LSTs 

https://www.tpdc.ac.cn/en/data/7

e5333df-0208-4c4e-ae7e-

16dcd29e4aa7/ 

Zhang et 

al. (2021) 

mainland 

China 

2000 – 2021 1 km 13:30 and 01:30 

LT 

data fusion of TIR and 

reanalysis LSTs 

https://www.tpdc.ac.cn/en/data/2

0aa5af9-a4f8-49e5-9aa6-

3a753b4c7815/ 

Shiff et al. 

(2021) 

global 

land 

2002 – 2019 1 km 13:30 and 01:30 

LT, and daily 

mean 

fusion of TIR LST and 

modeled temperature 

https://zenodo.org/record/39526

04#.YnhyrOjMIuU 

Hong et 

al. (2021) 

global 

land 

2003 – 2019 1 km daily mean ATC model and DTC 

model 

http://www.nesdc.org.cn/sdo/det

ail?id=60f4e35e7e28173cf0c8a7

71 

Li et al. 

(2021) 

United 

States 

2000 – 2015 1 km 01:30, 10:30, 

13:30, and 22:30 

LT 

data fusion of MODIS 

TIR and reanalysis 

LSTs using random 

forest 

http://glass.umd.edu/us_allsk

y_lst_1km.html 

Zhao et al. 

(2020) 

China 2003 – 2017 0.05° monthly geographically 

weighted interpolation 

and fusion with 

ground measurement 

https://doi.org/10.5281/zenodo.3

528024 

Yan et al. 

(2020) 

North 

America 

2002 – 2018 0.05° monthly elevation-based 

interpolation 

https://doi.org/10.5281/zenodo.4

184160 

Zhang et 

al. (2019) 

Tibet 

Plateau 

2000 – 2021 1 km 13:30 and 01:30 

LT 

data fusion of TIR and 

reanalysis LSTs 

https://www.tpdc.ac.cn/en/data/7

6006ce7-b8dc-4add-bbb5-

93f36f4bd26c/ 
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Martins et 

al. (2019) 

Europe 

and Africa 

2021 – now 3 km 30 min SEB- constrained 

optimization method 

https://landsaf.ipma.pt/en/produ

cts/land-surface-

temperature/mlstas/ 

Duan et al. 

(2017) 

China 2002 – 2011 1 km 13:30 LT data fusion of TIR and 

PMW LSTs 

http://www.geodata.cn/data/data

details.html?dataguid=398357&

docId=1934 

Chen et al. 

(2017) 

global 

land 

2000 – 2020 1 km monthly mean of daytime and 

nighttime clear-sky 

LSTs 

https://www.tpdc.ac.cn/en/data/8

caced1f-e10b-41a9-87e1-

5001ab432844/ 

Metz et al. 

(2017) 

global 

land 

2003 – 2016 1 km monthly spatiotemporal 

interpolation 

https://doi.org/10.5281/zenodo.1

115666 

André et 

al. (2015) 

latitude > 

45 ° N 

2000 – 2011 25 km daily empirical retrieval 

from PMW BT 

https://doi.pangaea.de/10.1594/P

ANGAEA.833409 

Metz et al. 

(2014) 

Europe 2000 – now 250 m 01:30, 10:30, 

13:30, and 22:30 

LT 

spatiotemporal 

interpolation and 

regression-based 

downscaling 

https://www.geodati.fmach.it/eu

rolst.html 

Boukabara 

et al. 

(2011) 

global 

land 

2014 – now 0.09 – 

0.5° 

13:30 and 01:30 

LT 

iterative physical 

inversion from PMW 

observations 

https://www.avl.class.noaa.gov/s

aa/products/search?datatype_fa

mily=JPSS_SND 

 70 

Table 1 reveals that only a few hourly all-sky LST datasets are currently available, and thus an all-sky hourly LST dataset at 

the global scale is urgently required. In Table 1, the products were divided into three categories based on their associated 

methodologiesmethodology: data fusion, mathematical interpolation, and cloudy-sky LST estimation based on the surface 

energy balance (SEB) theory.  

 75 

Land surface models and reanalysis datasets release simulated hourly skin temperatures continuously, which have been fused 

with satellite-retrieved LSTs to generate gap-free LSTs (Dumitrescu et al., 2020; Long et al., 2020; Marullo et al., 2014; Ma 

et al., 2022; Muñoz-Sabater et al., 2021); however, the accuracy of the recovered LSTs is highly dependent on simulation 

accuracy, especially for continuous cloudy days. In addition, passive microwave (PMW) observations can penetrate clouds 

and estimate LSTs in all-sky conditions (Zhang et al., 2019; Wu et al., 2022), and studies have explored fusing such data with 80 

TIR LSTs from sensors of polar-orbiting satellites (Zhang et al., 2020; Xu and Cheng, 2021). However, PMW data have limited 

passing times in a day; thus, they cannot match well with GEO observations. Mathematical interpolation is a popular method 

of reconstructing hourly LST because an ideal DTC can be parameterized by a harmonic function in the daytime and an 

exponential function in the nighttime (Duan et al., 2012). However, such parameterization requires at least four observations 

per day. Researchers have also tried to improve the feasibility of obtaining gap-free LSTs by combining DTC models with 85 

spatial interpolation (Liu et al., 2017) or utilizing a convolutional neural network (CNN) to predict missing values from 

neighboring clear-sky pixels and texture information (Wu et al., 2019). However, interpolating adjacent clear-sky samples can 

only obtain theoretical ‘clear-sky’ LSTs, whereas because actual LSTs under clouds are impacted by frequent meteorological 

changes and cloud cooling/warming effects in the daytime/nighttime (Jin, 2000; Jia et al., 2020).  

 90 
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In comparison, cloudy-sky LST estimates based on SEB exhibit advantages in generating all-sky diurnal LST products at large 

scales. SEB-based methods include two steps. The first step is to reconstruct theoretical ‘clear-sky’ LST values for cloudy time 

points, and the second step is to superpose the cloud effect based on the SEB equation (Jin and Dickinson, 2000; Lu et al., 

2011). However, traditional SEB-based methods have limited feasibility because of the high input requirements, and they can 

only be used during the daytime. Therefore, Jia et al. (2021) considerably improved upon these methods by incorporating 95 

modeling data into the process, and the improved methods can be applied to larger spatial scales. ERA5 surface longwave 

radiation data were used to build a spatiotemporally evolving model, and the clear-sky GEO LSTs were assimilated to the 

evolving model to correct its predictions on cloudy days. Moreover, an optimization method was used to compute the cloud 

effect during both the daytime and nighttime, and complete DTCs could be recovered for hourly LSTs (Jia et al., 2022a).  

 100 

The latest SEB scheme has produced all-sky hourly LSTs over the contiguous US (CONUS) and Mexico from ABI data; 

however, it has a relatively lower computational efficiency owing to the spatiotemporal assimilation framework, which is not 

easy to apply globally. Furthermore, single GEO data points have a limited spatial view field, which can be solved by 

combining data from multiple GEO satellites at mid and low latitudes and polar-orbiting satellites (Terra + Aqua) at high 

latitudes. Two polar-orbiting satellites pass high latitudes subhourly and provide frequent observations as GEO satellites. This 105 

strategy has been successfully utilized to generate global hourly Clouds and Earth's Radiant Energy System (CERES) radiation 

products (Loeb et al., 2018); however, few studies have focused on estimating all-sky LSTs by combining polar-orbiting and 

GEO satellites. 

 

In this study, we produced a global, hourly, all-sky LST dataset (GHA-LST) from 2011 to 2021 at a 5 km scale, and a 110 

comprehensive assessment was implemented using 197 201 ground sites worldwide. Global clear-sky LSTs were obtained by 

combining GEO LSTs from the Copernicus Global Land Service (CGLS) and Moderate Resolution Imaging Spectroradiometer 

(MODIS) MxD21 LST swath products, and a more efficient spatiotemporal assimilation scheme was proposed. It represents 

the first available global all-sky LST scheme on an hourly time scale with satisfactory accuracy based on global site validation; 

thus, it has great potential for use in analyzing global thermal dynamics, atmospheric cycling, and hydrological budgets.  115 

2 Data and Method 

2.1 Data 

The proposed GHA-LST dataset was recovered from a combination of clear-sky LST products, including the CGLS hourly 

LSTs, which cover mid and low latitudes, and MOD/MYD21 instantaneous swath LSTs, which cover high latitudes. ERA5 

provides dynamic surface temperature signals for building a temperature-time-evolving model, and CERES global hourly 120 

surface radiation products were used to compute the cloud effect. In addition, the all-sky LST data were comprehensively 
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assessed based on globally distributed sites collected from the Surface Radiation Budget (SURFRAD), Baseline Surface 

Radiation Network (BSRN), Fluxnet, AmeriFlux, Heihe River Basin (HRB), and Tibetan Plateau (TP) networks. 

2.1.1 Input data 

CGLS LST provides hourly clear-sky LST retrievals from a constellation of GEO satellites, including multiple generations of 125 

Meteosat Second Generation (MSG), Multifunctional Transport Satellite (MTSAT)/Himawari, MSG Indian Ocean Data 

Coverage (IODC), and GOES. The product is released as a global product that covers land surfaces worldwide within the -60° 

S to 70° N latitudes. The generalized split window (GSW) algorithm and dual algorithm (DA) in mono- and dual-channel 

forms were used to retrieve LST from top-of-atmosphere (TOA) brightness temperatures (BTs) in thermal infrared window 

channels (Freitas et al., 2013). Based on the ground validation, the accuracy ranges from 1.83 K to 3.70 K. 130 

 

MOD/MYD21 swath instantaneous LST products (Hulley et al., 2016) were used to provide LST over the rest of the land 

surface, which mainly covered high latitudes. A temperature/emissivity separation (TES) algorithm was used to retrieve the 

LST in the MOD/MYD21 products. It showed comparable accuracy to that of MOD/MYD11 (Wan, 2008) for most land cover 

types and performed better in bare land regions (Li et al., 2020; Yao et al., 2020). Level 3 MOD/MYD21 LST products provide 135 

gridded LST data in sinusoidal projection such that LST images were available four times a day and pixel locations were fixed. 

This data format is convenient for users; however, the mostmany valid retrieval values are lost at higher latitudes due to 

reprojection. In fact, dozens of times can be recorded by combining two polar-orbiting satellites, which is comparable to GEO 

observations at mid and low latitudes. Therefore, to fully incorporate the available clear-sky retrievals, MOD/MYD21 swath 

instantaneous LST data were used in this study. All swath images were converted to the Climate Modeling Grid (CMG) 140 

individually and then aggregated to the same spatial resolution as CGLS LST. The instantaneous observations were used for 

averaging only when they were within a 30-minute window centered at the CGLS recording time (UTC standard time). In 

addition, to minimize the impact of retrieval uncertainty, records with a view zenith angle greater than 40° were not used in 

this study (Li et al., 2014; Guillevic et al., 2013). By using this strategy, we can obtain a recording frequency over polar regions 

that is comparable to that of the CGLS LST data; however, using this strategy does not mean that significantly more clear-sky 145 

LST samples will be obtained because cloud cover persists at high latitudes (King et al., 2013). This process only ensures that 

clear-sky LSTs at high latitudes are included in as many observations as possible. 

 

To obtain continuous surface thermal variational signals, surface upward longwave radiation (ULW) and downward longwave 

radiation (DLW) simulated by ERA5 were used to build the LST time-evolving model. Satellite-derived broadband emissivity 150 

(BBE) was obtained from the Global LAnd Surface Satellite (GLASS) (Liang et al., 2021). We calculated the LST series using 

ERA5 DLW and ULW data simulated using clear-sky scenarios, which were generated based on real atmospheric and 

meteorological conditions, although clouds were assumed to be absent. The ERA5 clear-sky scenario was used because 

utilizing cloud radiative forcing calculated from global satellite data is more accurate than using the simulated results from the 
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reanalysis (Wang and Dickinson, 2013). The clear-sky LST retrievals were then assimilated into the time-evolving model to 155 

obtain continuous LSTs without cloud gaps, and the cloud cooling/warming effect was then estimated and superposed from 

satellite radiation products. Essentially, in this revised SEB-based recovery method, the temperature change signals under 

cloud cover were divided into two parts: the evolving model provided the LST variations due to real-time meteorological 

changes under clouds, and satellite radiation products estimated the cloud cooling and warming effects caused by cloud 

radiative forcing.  160 

 

Global hourly surface DLW and downward shortwave radiation (DSR) from CERES satellite products were used to estimate 

the cloud effect. To analyze monitor cloud radiative forcing, the CERES datasetsproject retrieved global, gap-free, hourly DSR 

and DLW in both all-sky (realistic) and theoretically cloud-free conditions (Doelling et al., 2016). CERES utilized the same 

strategy as this study to generate global hourly radiation products by combining remote sensing observations from multiple 165 

GEO sensors and two MODIS sensors. The CERES surface shortwave radiation and longwave radiation (Doelling et al., 2013) 

were estimated based on the Langley Fu–Liou radiative transfer theory (Fu et al., 1997), the cloud properties were obtained 

from microwave cloud products (Minnis et al., 2020), and the aerosol optical depth was based on the MODIS aerosol product 

(Remer et al., 2006). Surface CERES downward radiation fluxes have an overall bias (standard deviation) of 3.0 W m−2 (5.7%) 

for shortwave and −4.0 W m−2 (2.9%) for longwave radiation, which have been validated based on 85 sites (Rutan et al., 2015). 170 

CERES has been extensively evaluated and is generally considered a benchmark for satellite radiation products for assessments 

and inter-comparisons (Jia et al., 2018; Li et al., 2022a; Wang and Dickinson, 2013). To analyze cloud radiative forcing, 

CERES datasets retrieved global gap-free DSR and DLW in both all-sky (realistic) and theoretical cloud-free conditions. 

Therefore,  

 175 

To improve the production efficiency, we the complicated downward longwave parameterization schemes in Jia et al. (2022a) 

were replaced by directly exploited exploiting the CERES dataset and converted converting the its cloud radiative forcing into 

the corresponding cloud cooling/warming effect. Specifically, the CERES DSR difference between all-sky and clear-sky 

schemes was considered cloud DSR forcing, and combined with the GLASS surface albedo data, the cloud net shortwave 

forcing was computed. Cloud DLR forcing represents the difference between CERES all-sky and clear-sky DLR products, and 180 

the corresponding net longwave forcing was estimated using an optimization method (Section 2.2.4). In addition, according to 

previous studies (Wang and Dickinson, 2013; Zhang et al., 2015), the impact of the coarse spatial resolution of CERES 

downward radiation can be ignored because it has less heterogeneity than surface variables. CERES products were bilinearly 

interpolated to match the spatial scale of the CGLS LST. However, this assumption may introduce a certainty degree of 

uncertainty in areas with rugged terrain because complicated terrain in a coarse pixel may still affect the downward radiation 185 

components and increase the heterogeneity. 
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The GLASS 0.05° land surface albedo and BBE were used for the net radiation calculation (Liang et al., 2021), and the GLASS 

leaf area index (LAI) was used for computing ground heat flux from the net radiation (Liang et al., 2021). All input data were 

preprocessed using bilinear resampling to match the CGLS LST. The input metadata are listed in Table 2. 190 

 

Table 2: Metadata input for production. 

Product Variable Temporal Resolution (°) Spatial Resolution (°) Usage 

CGLS clear-sky LST hourly 0.045 LST for recovery 

Swath MOD/MYD21 clear-sky LST instantaneous 1 km LST for recovery 

ERA5 clear-sky DLW & 

ULW 

hourly 0.25 time-evolving 

model 

GLASS BBE 8-day 0.05 time-evolving 

model 

CERES all-sky and clear-sky 

DSR and DLW 

hourly 1 cloud effect 

GLASS surface albedo 8-day 0.05 cloud effect 

GLASS LAI daily 0.05 cloud effect 

 

2.1.2 Ground measurement 

To comprehensively assess the accuracy of the proposed GHA-LST dataset, globally distributed in situ sites must be collected 195 

for ground validation. We processed the records from SURFRAD, BSRN, Fluxnet, AmeriFlux, HRB, and TP networks. 

SURFRAD was established in 1993 and consistently provides long-term ground measurements of the surface radiation 

components over CONUS for climate research and remote sensing retrieval validation (Augustine et al., 2000). The BSRN is 

a combined network of globally distributed sites from several projects (Driemel et al., 2018), and it provides records with strict 

data quality maintenance; thus, it is usually used as a reference dataset for radiation product validation at the global scale. 200 

Fluxnet includes hundreds of ground sites that have been utilized for global LST validation and analysis (Xing et al., 2021). 

AmeriFlux measures radiation and carbon fluxes over South and North America (Novick et al., 2018). The HRB network is 

from the Chinese Heihe Watershed Allied Telemetry Experimental Research (HiWATER) project (Li et al., 2013a), and the 

TP network is from the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III) (Zhao et al., 2018), and these 

datasets have been used for LST validation at the kilometer scale (Xing et al., 2021). 205 

 

In addition, only raw observations marked as ‘good quality’ were used for validation. Site-measured ULW and DLW were 

used to compute LSTs with a GLASS BBE based on the Stefan–Boltzmann law. LST raw records within a 30-minute window 
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centered at each UTC time period were then aggregated for hourly LST validation. The daily mean LST was further aggregated 

as long as 24 hourly LSTs were available in a day, which is sufficient to represent the entire DTC based on Jia et al. (2022a). 210 

The validation period was 2011–2020. The following validation metrics are used in this study: N is the sample amount; bias, 

also called mean bias error (MBE), represents the systematic errors/differences between LST products and ground 

measurements; root-mean-square-error (RMSE) characterizes the actual uncertainty caused by bias and random error; and R2 

indicates the overall goodness of fit based on a 1:1 line. These metrics are commonly used for LST validation. The standard 

deviation (SD) of the differences between LST products and site measurements was not used because it provides similar 215 

information as the RMSE but cannot reflect errors caused by systematic bias; thus, the SD is generally smaller than the 

RMSE.Jia et al. (2018b, 2018a) 

 

The proposed GHA-LST dataset has a spatial resolution of approximately 5 km, although some sites may not be representative 

of the corresponding pixels. To remove sites with higher heterogeneity, we utilized two removal strategies. The first is based 220 

on 30 m LSTs from the United States Geological Survey (USGS) Landsat 8 Level 2 Collection 2, in which clear-sky Landsat 

LSTs were extracted from all site locations from 2013 to 2020 and the average 30 m LSTs were extracted within the 

corresponding 5 km pixel range; then, the root-mean-square-error (RMSE) at each site was computed as the site 

representativeness using the 30 m LSTs paired with the averaged 5 km LSTs. One site was marked if it had a considerably 

larger RMSE, indicating that there were larger LST differences between the 30 m and 5 km scales. The second strategy 225 

considered the MYD21C1 0.05° LST as a benchmark LST product on a 0.05° spatial scale. As MYD21 has been 

comprehensively validated and produces results with high and stable accuracy at a global scale (Li et al., 2020; Yao et al., 

2020; Hulley, 2015), we argue that if one site has a significantly larger RMSE in the validation of MYD21C1 samples with 

good quality, then it the site will have low representativeness at the 5 km spatial scale. Pre-processed sites detected by either 

of these two strategies were excluded from this study, and the analysis results are shown in Figure 1. The selection threshold 230 

of each strategy was equal to the average RMSE + 2 × standard deviation for all sites. 
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Figure 1. LST site selection results based on the (a) site representativeness calculated by Landsat samples and (b) site RMSEs of 

MYD21C1. The thresholds are the black lines, and sites with RMSEs higher than the line were masked out. Abbreviations: 235 
SURFRAD, Surface Radiation Budget; BSRN, Baseline Surface Radiation Network; HRB, Heihe River Basin (HRB); TP, Tibetan 

Plateau. 

 

Based on Figure 1, 197 201 global sites were included in this study, including five SURFRAD sites, 11 BSRN sites, 90 91 

Fluxnet sites, 86 89 AmeriFlux sites, three HRB sites, and two TP sites. The distribution of sites is shown in Figure 2. 240 

Additionally, as site selection influences the final validation statistics, we also validated samples from clear-sky MYD21C1 

and CGLS for accuracy comparisons, and the accuracy level of the validation results can be used as the reference for GHA-

LST. 
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 245 

Figure 2. Global distribution of the utilized 197 201 LST sites. Abbreviations: SURFRAD, Surface Radiation Budget; BSRN, 

Baseline Surface Radiation Network; HRB, Heihe River Basin (HRB); TP, Tibetan Plateau. 

 

2.2 Methods 

2.2.1 Production framework 250 

Jia et al. (2022a) developed a three-step framework to generate all-sky hourly LSTs on a regional scale. In this study, we 

revised this framework to improve its efficiency and feasibility worldwide. A flowchart of the framework is shown in Figure 

3. 
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Figure 3. Flowchart of the proposed GHA-LST dataset production. Abbreviations: DLW, downward longwave radiation; ULW, 255 
upward longwave radiation; DSR, downward shortwave radiation; BBE, broadband emissivity; LST, land surface temperature; 

CRE, cloud radiative effect. 

 

FirstIn the first step, a time-evolving model of clear-sky LSTs was designed based on the ERA5 LST series at each pixel 

location (Sect. 2.2.2). The ERA5 LST series was computed from the DLW and ULW from the clear-sky simulation scenarios, 260 

and it provides continuous variational information on LST without considering the cloud cooling/warming effect. Such 

variational information under clouds can be attributed to advective meteorological changes and air movement. The ERA5 skin 

temperature was not involved because we calculated the cloud effect based on satellite-derived radiation products, which are 

more reliable at a global scale. 

 265 

In the second step, the Kalman filter (KF) was used to assimilate available clear-sky LST retrievals into the time-evolving 

model to correct the predictions for times with cloud cover and then theoretical ‘clear-sky’ LSTs were reconstructed. In the 

original framework of Jia et al. (2022a), three-dimensional data assimilation was utilized to generate a spatiotemporally 

dynamic model; however, this process is time-consuming, particularly when working at a large spatial scale. We replaced the 

spatial module in the assimilation by linear regression, which still works well to incorporate spatially adjacent clear-sky 270 

retrievals (Sect. 2.2.3). After this step, hypothetical LSTs were reconstructed during times with cloud cover. The cloud effect 

was further superimposed in the final step. 

 

In the third step, the cloud effect was estimated from the satellite radiation products (Section 2.2.4). In the original framework, 

cloud longwave radiative forcing was computed based on a series of parameterization schemes; however, the scheme was not 275 
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well assessed at the global scale. Therefore, to simplify the calculation and improve the feasibility filling gaps over a large 

spatial scale, we replaced the DLW parameterization with CERES clear-sky and all-sky DLW products that have been assessed 

globally (Wang and Dickinson, 2013). The cloud effects at daytime and nighttime were determined by searching for the optimal 

cloud radiative effect (CRE) values to meet the SEB. The final clear-sky LSTs are the assimilated results at the clear-sky time, 

and the cloudy-sky LSTs are the reconstructed LSTs from the second step plus the optimal cloud effect. 280 

2.2.2 Time-evolving model  

A time-evolving model describes how LSTs change at a certain pixel over time, and it . This model characterizes relative 

variation based on the ERA5 LST rather than the absolute magnitudes. The ERA5 LST series was initially downscaled to 

match the CGLS LST using elevation (Duan et al., 2017). The evolving model can be mathematically represented by Eq. 1-2: 

𝐿𝑆𝑇𝑡,𝑑 = 𝐹𝑡,𝑑 × 𝐿𝑆𝑇𝑡,𝑑−1, (1) 285 

𝐹𝑡,𝑑 = (1 +
1

𝑍𝑡,𝑑+𝛿
)

𝑑𝑍𝑡,𝑑

𝑑𝑡
, (2) 

where LSTt,d is the LST predicted by the model on day d at hour t and Ft,d is the prediction operator, which is generated based 

on the temperature temporal profile Zt,d (temperature difference between d and d-1 at hour t, i.e., the difference with the LST 

24 h before), and δ = 0.01 avoids a null denominator. The model evolves from day to day for each hour of the day (HOD) 

because the modeling bias is self-correlated at the same HOD on different days (Marullo et al., 2014). The correction of the 290 

data assimilation can be better inherited based on the evolving structure of Eq. 1-2. In addition, only the difference information 

was used in the study, which can minimize the impact of the uncertainty of ERA5 LST, especially from its systemic bias 

(Nogueira et al., 2021). 

 

The time-evolving model provides continuous temperature variation; however, the modeling process must be consistently 295 

corrected by assimilating available clear-sky retrievals. In addition, partially cloud-covered yet retrieved (‘likely cloud 

contaminated’) pixels were masked out before assimilation. The detection method follows Jia et al. (2022a). One clear-sky 

retrieval is excluded if it has a substantially larger absolute difference with the modeled LST (three standard deviations) than 

neighboring days within ±15 days, which assumes that modeled LSTs have fewer anomalies than directly retrieved values. It 

should be noted that some input data (e.g., CERES and reanalysis data) are not available at near real time (NRT); moreover, 300 

this ‘likely cloud contamination’ detection method also requires a 30-day time window for high-quality clear-sky LST 

selection, which means that the proposed cloudy-sky LST recovery method cannot be used for NRT all-sky LST production. 

2.2.3 Kalman filter 

The KF was used to assimilate clear-sky LST retrievals to correct the evolving model prediction because real-time retrievals 

are discontinuous while the evolving model prediction is continuous. When a retrieval value is available, a weighted average 305 

is implemented between the prediction and the observation based on their individual uncertainties, and then the prediction is 
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corrected. When observations are not available, the prediction will be implemented based on the updated prediction from the 

former step. Therefore, a continuous LST series can be generated using this iterative process. The KF can be mathematically 

represented as follows: 

𝑇̂𝑡,𝑑
−

= 𝐴𝑑−1
𝑡 𝑇̂𝑡,𝑑−1 + 𝜔𝑑−1

𝑡 , (3) 310 

𝑇̂𝑡,𝑑 = 𝑇̂𝑡,𝑑
−

+ 𝐾𝑑
𝑡(𝑇𝑡,𝑑 − 𝑇̂𝑡,𝑑

−
), (4) 

𝐾𝑡,𝑑 = 𝑃−
𝑡,𝑑(𝑃−

𝑡,𝑑 + 𝑅)−1, (5) 

𝑃𝑡,𝑑 = (𝐼 − 𝐾𝑡,𝑑)𝑃−
𝑡,𝑑, (6) 

where 𝑇̂𝑡,𝑑
−

 is the temperature prediction at time t on day d from the prediction of d – 1 and 𝐴𝑑−1
𝑡  is the prediction process 

(Sect. 2.2.2) with a prediction error of 𝜔𝑑−1
𝑡 . The symbol " − " next to a variable indicates that the variable is an initial 315 

prediction without assimilation correction. The modeling prediction is propagated to 𝑃−
𝑡,𝑑 after this prediction.  

 

If an observation (Tt,d) is available, 𝑇̂𝑡,𝑑
−

 will be corrected using the Kalman gain 𝐾𝑑
𝑡 (Eq. 4), which was determined by the 

relative magnitude of the squared uncertainty of the model prediction 𝑃−
𝑑 and the satellite retrieval R (set to 9, squared RMSE, 

based on the official validation report). R is the squared retrieval uncertainty at each pixel of CGLS and MODIS, and it is 320 

calculated based on the ‘ERRORBAR_LST’ or ‘LST_err’ information in the files. The initial modeling uncertainty was 

calculated based on a comparison between the ERA5 and satellite retrievals at clear-sky time in the data series. The assimilation 

started in October 2010, and the model prediction reached a stable status before the product release date; thus, the initial value 

did not affect the output. The prediction error of d will also be corrected to 𝑃𝑡,𝑑 (Eq. 5). The next day will then be iteratively 

predicted. If there are no observations, then the LST will be automatically predicted on day d without correction.  325 

 

Jia et al. (2022a) used a spatial KF module that can assimilate spatially adjacent clear-sky pixels into the evolving model; 

however, this process is time-consuming and impractical for global production. In this study, if an observation on d was 

available, then the time-evolving model was corrected by KF normally; otherwise, a 30 × 30 [~150 km, referred to Jia et al. 

(2022a)] spatial window was set for the time-evolving model, and clear-sky pixels and their corresponding ERA5 LST within 330 

the spatial window will regress a linear conversion model, and the missing LST at the center pixel on d will be predicted from 

its corresponding ERA5 LST using such a linear relationship. Essentially, a local linear relationship replaced the spatial KF 

module, although it still effectively incorporated the adjacent clear-sky retrieval, and the computation efficiency was 

significantly improved. After the center LST was estimated by linear regression, it was considered the available retrieval for 

KF correction on d. If the spatial window did not have available clear-sky retrievals, then the time-evolving model predicted 335 

the LST on d based on the results on d-1. 
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2.2.4 Cloud effect estimation 

After data assimilation, the LSTs under clouds was initially predicted without considering the cloud effect. The cloud effect is 

the temperature warming/cooling effect caused by changing the SEB from clouds, which can be estimated using cloud radiative 340 

forcing. The SEB equation is as follows: 

𝑅𝑛 = 𝑅𝑠
𝑑(1 − 𝛼) + 𝜀𝑅𝑙

𝑑 −  𝜎𝜀𝑇4 = 𝐺 + 𝐿𝐸 + 𝐻, (7) 

where Rn is the surface net radiation, 𝑅𝑠
𝑑 is the DSR, α is the surface albedo, ε is the surface broadband emissivity (BBE), 𝑅𝑙

𝑑 

is the DLW, σ is the Stefan–Boltzmann constant, and T is the LST. Rn is partitioned into latent heat (LE), sensible heat (H) and 

ground heat (G). Cloud coverage changes Rn, which is called cloud radiative forcing. By following the land surface analysis 345 

(LSA SAF) GEO evapotranspiration product, G can be parameterized as follows: 

𝐺 = 𝑅𝑛 × 0.5𝑒𝑥𝑝 (−2.13(0.88 − 0.78𝑒𝑥𝑝 (−0.6𝐿𝐴𝐼))), (8) 

where the G is set to the 0.15 (0.05) Rn for bare land (permanent snow/ice). Based on the conventional force-restore method 

(Jin and Dickinson, 2000), G can be represented as follows: 

𝐺 = 𝑘𝑔
𝜕𝑇

∆𝑍
= 𝑘𝑔

𝑇−𝑇𝑑

∆𝑍
, (9) 350 

where kg is calledrepresents surface thermal conductivity (W m–1 K–1) and ΔZ is the responding surface depth, which is set to 

0.1 m. The deep layer temperature (Td) is assumed to have little response towards SEB; thus, Eq. 9 can be rewritten as follows: 

𝜕𝐺

𝜕𝑇𝑠
=

𝜕

𝜕𝑇𝑠
[𝑘𝑔

𝑇𝑠−𝑇𝑑

∆𝑍
] ≈

𝑘𝑔

∆𝑍
, (10) 

 

Accordingly, the change in G (∂G) caused by cloud coverage can be directly converted into the variation in LST, and ∂G is 355 

determined by partitioned cloud radiative forcing. That is, by knowing any two of the three variables (∂G, ΔTs, and kg), the 

other can be estimated. According to Jia et al. (2022a), kg was predetermined based on a continuous temperature series from 

the assimilation results and corresponding radiation data: 

𝑘𝑔 = ∆ℎ
𝐺𝑛𝑜𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅−𝐺𝑠𝑟̅̅ ̅̅ ̅

𝑇𝑛𝑜𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑇𝑠𝑟̅̅ ̅̅
, (11) 

where 𝐺𝑛𝑜𝑜𝑛
̅̅ ̅̅ ̅̅ ̅ (𝑇𝑛𝑜𝑜𝑛

̅̅ ̅̅ ̅̅ ̅) and 𝐺𝑠𝑟
̅̅ ̅̅  (𝑇𝑠𝑟

̅̅ ̅̅ ) are the monthly averaged ground heat (clear-sky LST) within ±15 days at noon and sunrise 360 

time, respectively, which are considered because morning warming can mainly be attributed to the SEB. The continuous data 

series from the data assimilation step ensures sufficient sampling for the kg calculation. Monthly means were used to minimize 

the disturbance of daily variation. Then, the cloud radiative forcing needs to be determined to estimate ΔTs: 

𝑅𝑐 = (1 − 𝛼) (𝑅𝑠,𝑐𝑙𝑑
𝑑 − 𝑅𝑠,𝑐𝑙𝑟

𝑑 ) + 𝜀(𝑅𝑙,𝑐𝑙𝑑
𝑑 − 𝜎𝑇𝑐𝑙𝑑

4) − 𝜀(𝑅𝑙,𝑐𝑙𝑟
𝑑 − 𝜎𝑇𝑐𝑙𝑟

4 ), (12) 

where Rc is the cloud radiative forcing, 𝑅𝑠,𝑐𝑙𝑑
𝑑  (𝑅𝑠,𝑐𝑙𝑟

𝑑 ) is the cloudy-sky (clear-sky) DSR, and 𝑅𝑙,𝑐𝑙𝑑
𝑑  (𝑅𝑙,𝑐𝑙𝑟

𝑑 ) is the cloudy-sky 365 

(clear-sky) DLW. The shortwave variables, BBE, and DLW can be obtained from the global radiation products. 
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The cloudy-sky LST (Tcld) equals the reconstructed LST (Tclr) plus the cloud effect (ΔTs), and Tclr is reconstructed from step 

two. ΔTs is unknown for the radiative forcing calculation and represents the ultimate target of this step. Therefore, the optimal 

ΔTs must be determined based on the optimization method to satisfy the SEB. Following Jia et al. (2022a), 𝛥𝑇𝑠 was initially 370 

assumed to be 0 K and the initial Rc was obtained based on Eq. 12. After energy partitioning through the LAI, G is computed 

and the updated ΔTs is estimated using kg; thus, Rc can be recomputed. By iteratively comparing the Rc differences and adjusting 

ΔTs (step = 0.05 K), the surface energy budget is balanced (|ΔCRE| < 20 W·m-2, see Figure 3). The threshold of 20 W·m-2 is 

the current accuracy level of the longwave radiation products (Wang et al., 2020). 

3 Results and discussion 375 

3.1 Overall assessment 

Based on all paired samples from the proposed GHA-LST dataset and 197 201 sites from 2011-2020, the overall RMSE of the 

all-sky GHA-LST is 3.38 31 K, with a bias of -0.53 57 K and R2 of 0.95. As site selection may influence the accuracy statistics, 

the accuracy of GHA-LST was also compared with that of the CGLS and MYD21C1 data under clear-sky and cloudy-sky 

conditions (Figure 4). Figure 4a shows the extracted clear-sky samples from the CGLS, whereas the corresponding clear-sky 380 

results from GHA-LST are shown in Figure 4b, which has the same sampling amount as Figure 4a. The recovered cloudy-sky 

LST at the corresponding CGLS cloudy time of Figure 4a was validated in Figure 4c. Such an accuracy comparison between 

the GHA-LST and CGLS data is sufficiently fair; thus, we also compared the accuracies between GHA-LST and MYD21C1 

(Figure 4d-4f). As Because MYD21C1 may have a slightly different observation time (< 0.5 h) from relative to GHA-LST, it 

was converted to the nearest UTC o’clock based on the diurnal cycle recorded by site observations to match the GHA-LST 385 

recording time. we paired the corresponding GHA-LST samples at the nearest time relative to the MYD21C1 samples.Jia et 

al. (2022a) 
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Figure 4. Density scatterplots of hourly LST samples from (a) CGLS clear-sky retrievals, (b) GHA-LST clear-sky samples 

corresponding to (a), (c) GHA-LST cloudy-sky samples corresponding to CGLS cloudy time, (d) MYD21C1 clear-sky retrievals, (e) 

GHA-LST clear-sky samples corresponding to (d), and (f) GHA-LST cloudy-sky samples corresponding to MYD21C1 cloudy time. 

 395 

The proposed GHA-LST dataset had better accuracy than the CGLS and MYD21C1 data under both clear-sky and cloudy-sky 

conditions (Figure 4). Compared to the CGLS (Figure 4a), the clear-sky GHA-LST had a similar RMSE (3.383.35 K, Figure 

4b), which is reasonable because most of the clear-sky GHA-LST samples were derived from clear-sky retrievals from the 

CGLS. The CGLS data have fewer partially cloud-contaminated pixels because they include a cloud contamination mark in 

the product; therefore, wThe partially cloude excluded these -contaminated samples were marked during production (Section 400 

2.2.2) and considered cloudy pixels. The results of MYD21C1 (Figure 4d)  only utilized samples that were marked as ‘good 

quality’ and passed a cloud contamination test (Section 3.6 in Ma et al. (2020))has more scattered samples that are located in 

mid- and low-value regions with a large negative bias based on the density scatterplot (Figure 4d); thus, these data are more 

likely to be cloud-contaminated because MYD21C1 doesn’t provide a quality mark for filtering out partially contaminated 

samples. In comparison, the GHA-LST process detected these cases and reconstructed them well (Figure 4e)produced similar 405 

accuracy with high-quality MODIS samples (Figure 4e) and represented . a stable accuracy (RMSE = ~3.3 K with few biases) 

under both clear-sky and cloud-sky conditions. Based on the sampling amount of the two groups (Figure 4a–c and 4d–f), the 

number of cloudy pixels is was nearly 1.5 times higher than the number of the clear-sky pixels, indicating the importance and 

necessity of the proposed GHA-LST dataset. In addition, GHA-LST has a stable accuracy (RMSE = ~3.4 K with few biases) 

under both clear-sky and cloud-sky conditions. As MYD21C1 (Figure 4d–f) only includes samples from noon and midnight, 410 

it has significantly fewer samples than the CGLS group (Figure 4a–c). The LST validation at noon suffers from more site 

heterogeneity issues (Jia et al., 2022a); thus, the GHA-LST in the MYD21C1 group (Figure 4e) has a slightly larger RMSE 

and bias than the GHA-LST in the CGLS group (Figure 4b). Other similar sStudies on similar topics, such as the recovery of 

all-sky MSG/SEVIRI LST (Martins et al., 2019), produced RMSEs of 2.1~3.7 K at 3 sites. However, direct comparisons of 

the validation statistics are difficult because substantially different sites and sampling amounts were utilized in this study.  415 

 

Figure 5 illustrates that the GHA-LST process has a considerably higher performance in obtaining daily mean LSTs. GHA-

LST has a similar RMSE to the daily mean CGLS, with 24 values in a day retrieved by satellites (Figure 5a and b); however, 

GHA-LST has substantially more available samples than the CGLS clear-sky results. In comparison, the daily mean computed 

from the average of the paired daytime/nighttime MYD21C1 has the largest RMSE, with a clear bias of 2.232.41 K. However, 420 

MODIS LSTs have been more widely used than GEO LSTs, and many studies have obtained daily mean LSTs by simply 

averaging two instantaneous Aqua retrievals at noon and midnight (Ouyang et al., 2012; Chen et al., 2017; Zou et al., 2017). 

This study suggests that the proposed GHA-LST dataset can significantly improve the accuracy and data availability of the 

daily mean LST. 
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425 

 
Figure 5. Density scatterplots of the daily mean LST samples from (a) GHA-LST, (b) CGLS, and (c) average daytime and nighttime 

MYD21C1 pairs. 

 

To demonstrate the accuracy and stability of the GHA-LST under different surface conditions, the hourly samples were further 430 

differentiated based on land cover types. Land cover data are obtained from the MCD12Q1 International Geosphere-Biosphere 

Programme (IGBP) classification. The validation statistics are listed in Table 3. 

Table 3: Validation statistics for different land cover types. 

Land Cover Clear-sky Samples Cloudy-sky Samples 

 Bias (K) RMSE 

(K) 

R2 N Bias (K) RMSE 

(K) 

R2 N 

Evergreen needleleaf 

forests 

0.03 3.29 0.90 187,100 0.50 2.78 0.89 281,421 

Evergreen broadleaf forests 0.22 3.03 0.89 37,907 1.34 2.27 0.95 39,350 

Deciduous broadleaf 

forests 

-1.26 3.26 0.94 190,753 -0.54 2.61 0.94 275,551 

Mixed forests -1.03 2.97 0.96 90,369 0.19 2.83 0.95 176,405 
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Closed shrublands 1.19 3.80 0.94 21,781 0.61 3.21 0.91 12,760 

Open shrublands -0.49 2.87 0.97 124,904 -0.28 4.07 0.96 184,840 

Woody savannas -0.20 3.26 0.93 263,142 0.34 3.63 0.94 602,743 

Savannas -0.56 3.06 0.95 182,085 0.06 3.03 0.96 318,231 

Grasslands -0.25 3.66 0.84 571,722 0.19 3.95 0.92 552,178 

Permanent wetlands 1.29 3.81 0.91 11,265 0.13 3.35 0.96 72,375 

Croplands -0.28 3.10 0.95 522,715 0.15 2.72 0.94 790,227 

Urban  -0.61 3.80 0.94 59,698 -0.44 3.11 0.92 88,839 

Barren -2.01 4.02 0.98 3,925 -1.95 4.59 0.94 4,812 

 

Table 3 indicates that the GHA-LST has stable accuracy under both clear-sky and cloudy-sky conditions for various land cover 435 

types. However, some clear biases were found for the forest and barren land cover types, which could be caused by split-

window retrieval errors under clear-sky conditions due to the large emissivity uncertainty (Li et al., 2022b). In comparison, 

high R2 values in these regions reflect the ability of the GHA-LST to capture regional temperature variations. 

3.2 Individual site validation 

Considering that 197 201 global sites were utilized, the RMSEs at individual sites can reflect the spatial pattern of GHA-LST 440 

accuracy; therefore, site RMSE maps under clear-sky and cloudy-sky conditions are illustrated in Figure 6. 
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Figure 6. Global RMSE statistics at individual sites under (a) clear-sky and (b) cloudy-sky conditions. 445 

 

The GHA-LST had similar accuracy patterns under both clear-sky and cloudy-sky conditions, and it had lower RMSEs (< 3.5 

K) in eastern America, Europe, and Australia but variable RMSEs from 3.5 to 5 K in western America and the TP. The median 

site RMSE under clear-sky conditions was 3.32 18 K, with a standard deviation of 0.74 81 K, and the median site RMSE under 

cloudy-sky conditions was 2.972.97 K, with a standard deviation of 0.981.01 K, indicating that cloudy-sky results had a slightly 450 

larger spatial variance of accuracy. Validation statistics for each site are listed in the Appendix. Furthermore, the site RMSE 

statistics were compared with the corresponding site elevations and latitudes to detect the potential factors that impact the 

validation statistics (Figure 7). 
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 455 

 

 

Figure 7. Scatter plots between the site RMSE and (a, b) elevation and (c, d) latitude under (a, c) clear-sky and (b, d) cloudy-

sky conditions. The significant linear relationship (p-values < 0.01) is drawn (a, b). 

 460 

The RMSE statistics at each site were mainly affected by the site elevation (Figure 7). Based on the scatterplots of site RMSE 

and site elevation under clear-sky and cloud-sky conditions (Figures 7a and b), the linear relationship was statistically 

significant (p-value < 0.01). We suppose that increasing elevation will decrease the spatial representativeness of the sites; 

therefore, the RMSEs of the clear-sky results showed an increasing trend. In addition, the cloudy-sky results had a larger slope 

(Figure 7b), indicating that they were more sensitive to elevation variations. Thus, we inferred that elevation was an essential 465 

factor affecting LST recovery. In these regions with high elevations, clear-sky LSTs with larger RMSEs were assimilated to 

the time-evolving model, thus affecting the cloudy-sky results. In addition, modeled temperature series include higher 
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uncertainty in these regions, and a relevant ‘cool bias’ issue in highlands was found in regional simulation models and global 

reanalysis datasets (Jia et al., 2022b; Meng et al., 2018). Although the relationship between the site RMSE and site latitude 

was not statistically significant (Figure 7c and d), the GHA-LST data at higher latitudes produced higher RMSEs, especially 470 

under cloudy-sky conditions; thus, we inferred that high latitudes were frequently covered by clouds and fewer clear-sky LSTs 

could be used in the data assimilation. In addition, sites at higher latitudes are usually located in coastal areas (Figure 6a), 

which may limit their spatial representativeness at the 5 km scale.  

3.3 Temporal and spatial analysis 

To evaluate the temporal continuity of the proposed GHA-LST dataset, the temporal LST variations from GHA-LST, CGLS, 475 

and corresponding ground measurements were compared at hourly and daily mean scales. In Figure 87, four global sites are 

shown as the representative sites from SURFRAD (SXF, 43.74° N, -96.62° W), BSRN (CAB, 51.97° N, 4.93° E), Fluxnet 

(AU-Rig, -36.65° S, 145.58° E), and AmeriFlux (US-Ro1, 44.71° N, -93.09° W). The study period was randomly chosen for 

different years. 

 480 
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Figure 87. Temporal variation of (a - d) hourly LST and (e - h) daily mean LST at four sites: (a, e) SURFRAD SXF, (b, f) BSRN 

CAB, (c, g) Fluxnet AU-Rig, and (d, h) AmeriFlux US-Ro1. Abbreviations: SURFRAD SXF, Surface Radiation Budget Sioux Falls; 490 
BSRN CAB, Baseline Surface Radiation Network Cabauw; Fluxnet AU-Rig, Australia- Riggs Creek; AmeriFlux US-Ro1, United 

States-US-Ro1; GHAT, global hourly, 5 km, all-sky land surface temperature; CGLS, Copernicus Global Land Service.  

 

The GHA-LST data have satisfactory temporal continuity and correspond to the ground measurements at hourly and daily 

mean scales. At the hourly scale, the hourly LST exhibits harmonic diurnal variations under clear-sky conditions, especially 495 

at Fluxnet AU-Rig (Figure 8c7c), where the climate is dry and cloud cover is low. In comparison, a more complicated temporal 

pattern of LSTs is observed for continuous cloudy time (e.g., BSRN CAB, Figure 8b7b), indicating that the harmonic function-

based DTC models may not work well in these cases. The GHA-LST data can capture the DTCs under both clear-sky and 

cloudy-sky conditions and correspond to the ground measurements and clear-sky CGLS. Certain clear-sky CGLS points are 

scattered and have a clear negative bias (Figure 8a7a) because they were detected as partially covered pixels; thus, they were 500 

not used in the data assimilation. At AmeriFlux US-Ro1 (Figure 8d7d), GHA-LST is more consistent with CGLS than the 

ground measurements on clear-sky days; thus, we infer that US-Ro1 has a larger heterogeneity issue than the other sites.  

 

After temporal aggregation, the daily mean LST variation in different years also demonstrated the continuity and stable 

accuracy of the GHA-LST. The relatively larger differences between the satellite datasets and ground measurements at noon 505 

(hourly scale) and during summer (daily mean scale) can be explained by site representativeness. A temporal variation analysis 

of accuracy (Jia et al., 2022a) suggests that ground measurements generally have the lowest representativeness at noon and the 

RMSE statistics of hourly LST products can increase by more than 1 K from nighttime to noon. As solar radiation increases 

in the morning, LST has distinct warming responses over different land cover types in a pixel; thus, the spatial heterogeneity 

of the pixel is enhanced during daytime.  510 
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Figure 98. Global LST maps of (a) GHA-LST annual mean in 2021, (b) CGLS + MYD/MOD21 annual mean in 2021; hourly LST 

maps at 02:00 UTC on September 07, 2021, of (c) GHA-LST and (d) CGLS + MYD/MOD21. Abbreviations: GHA-LST, global 

hourly, 5 km, all-sky land surface temperature; CGLS, Copernicus Global Land Service. 515 

 

A global all-sky LST map was analyzed to demonstrate the spatial continuity of the proposed GHA-LST dataset. The global 

annual mean maps of all-sky LST from GHA-LST and clear-sky LST from CGLS+MYD/MOD21 were compared (Figure 98). 

Overall, the GHA-LST data exhibit high spatial continuity across the globe at different time scales. The annual mean GHA-

LST for 2021 (Figure 9a8a) illustrates a reasonable spatial pattern. The annual LSTs from CGLS+MYD/MOD21 (Figure 9b8b) 520 
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present a systematic clear-sky bias (Ermida et al., 2019), especially in the connection regions of the CGLS and MODIS data 

(southwestern Canada and Siberia), where clear artificial lines are shown. In comparison, assimilating the clear-sky results to 

the time-evolving model can produce more spatially consistent LST maps.  

 

At the hourly scale, the GHA-LST map (Figure 9c8c) can also produce the reasonable spatial variation in LST without artificial 525 

textures. Compared with the clear-sky pixels in Figure 9d8d, the cloudy-sky pixels of the GHA-LST data (Figure 9c8c) were 

well recovered. It should be noted that the clear-sky map (Figure 9b8b) had more spatial textures than the all-sky annual mean 

map (Figure 9a8a) because clear-sky LSTs have higher spatial heterogeneity due to solar heating. Furthermore, the various 

numbers of available clear-sky days in different locations may cause spurious spatial textures (e.g., lines at the connection 

region of CGLS and MODIS). Additionally, the GHA-LST spatiotemporally filtered clear-sky satellite LSTs using the 530 

simulated model series, which may sacrifice spatial textures for data fusion. 

 

To evaluate the ability of GHA-LST to capture spatial textures at regional scales, the GHA-LST annual means in the Alaska 

and TP regions are shown in Figure 109. These two areas were selected because they are hot spot regions in terms of their 

response to climate change (Kuang and Jiao, 2016; Melvin et al., 2017), and GHA-LST was recovered in these two regions 535 

from MODIS and CGLS, respectively. The corresponding annual mean skin temperatures of ERA5 and the Global Land Data 

Assimilation System (GLDAS) were also included for comparison. ERA5 and GLDAS were employed because global hourly 

all-sky LST is currently only available from reanalysis datasets and both of them are widely used in the relevant research 

(Muñoz-Sabater et al., 2021; Rodell et al., 2004). GHA-LST has a spatial pattern similar to that of the two reanalysis datasets 

but produces many more spatial details. GHA-LST has a spatial resolution of ~5 km; therefore, it can provide more spatial 540 

texture information than the ERA5 (0.1°) and GLDAS (0.25°) data. GLDAS data have invalid pixels, mainly because it ignores 

all inland lakes. 
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Figure 109. Regional Temporally averaged all-sky LST maps in 2021 from (a, b) GHA-LST, (c, d) ERA5, and (e, f) GLDAS (a, c, e) 545 
over the Tibetan Plateau and (b, d, f) Alaska. Abbreviations: GHA-LST, global hourly, 5 km, all-sky land surface temperature; 

GLDAS, Global Land Data Assimilation System. 

 

3.4 Global anomaly analysis 

To justify the potential use of LST in climate warming-related issues, the relationship between LST and surface air temperature 550 

(AT) has recently been discussed. However, previous studies have either focused on local site scales (Hachem et al., 2012; 

Good, 2016; Sohrabinia et al., 2015; Mutiibwa et al., 2015) or ignored the clear-sky LST bias (Good et al., 2017). In 

comparison, the proposed GHA-LST provides an exceptional opportunity to spatiotemporally upscale the all-sky hourly LST 
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to allow for comparisons with AT climate datasets. Monthly anomaly variations in global LST and AT are shown in Figure 11 

10 by removing the seasonal cycle in the daily mean (Tmean), daily minimum temperature (Tmin), daily maximum temperature 555 

(Tmax), and diurnal temperature range (DTR).  

 

Berkeley Earth Surface Temperatures (BEST, Rohde et al. (2013)), NASA Goddard Institute for Space Studies Surface 

Temperature Analysis version 4 (GISTEMP v4, Lenssen et al. (2019)), and Climatic Research Unit Temperature, version 4 

(CRUTEM4, Osborn and Jones (2014)) were used to characterize the AT variation (Figure 11a10a). Other all-sky LST datasets 560 

were averaged and shown to verify the GHA-LST anomaly, including two MODIS-derived gap-free results, as shown in Table 

1 (Hong et al., 2022; Zhang et al., 2022), and the ERA5-Land reanalysis skin temperature. Only BEST and GHA-LST can 

provide Tmax and Tmin; thus, they were used in Figure 11 10 b-d. The reference time period was 2015-2017, and the 

uncertainty shadow in Figure 11a 10a is the standard deviation of the averaged LST/AT datasets. 

 565 
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Figure 1110. Monthly anomaly variation of globally geographical weighted LST and land surface air temperature (AT) at different 570 
scales: (a) mean temperature (Tmean), (b) maximum temperature (Tmax), (c) minimum temperature (Tmin), and (d) diurnal 

temperature range (DTR). Abbreviations: GHA-LST, global hourly, 5 km, all-sky land surface temperature; BEST, Berkeley Earth 

Surface Temperatures. 

 

The LST anomaly couples well with the global AT anomaly at the Tmean and Tmin scales, and LST has a slightly larger 575 

amplitude than AT, whereas the Tmax and DTR of the two variables can only match the anomalous direction and the magnitude 

is quite different. At the Tmean scale, anomalies of GHA-LST and other LSTs have very similar variations with the AT 

datasets, even though they have completely different data sources (Figure 11a10a). These findings are consistent with the trend 

comparison between the ERA5-Land skin temperature and AT (Wang et al., 2022). Both datasets have limited uncertainty 

(shadowed areas), indicating that they can accurately characterize the land surface thermal dynamics. In comparison, LST had 580 

a slightly larger anomaly amplitude than AT, which was mainly caused by the daytime LST. Solar heating increases the 

temperature difference between LSTs and ATs over different surface land cover types (Good et al., 2017). Accordingly, Tmax 

exhibited the largest difference (Figure 11b10b), especially in years with large anomalies, thus indicating that LST Tmax had 

a stronger response to heat anomalies. Tmin showed a higher correlation between the two variables (Figure 11c10c). LST has 

a considerably stronger DTR disturbance than AT owing to the difference in Tmax (Figure 11d10d). We did not quantify the 585 

trend magnitude because the time span was only 11 years and the overall trend was affected by the value in one specific year. 

This analysis demonstrates the potential usefulness of GHA-LST in climate studies and global hourly AT estimates.  

 

4 Discussion 

The site RMSE statistics were compared with the corresponding site elevations and latitudes to detect the potential factors that 590 

impact the accuracy of the results (Figure 11). 
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Figure 11. Scatter plots between the site RMSE and (a, b) elevation and (c, d) latitude under (a, c) clear-sky and (b, d) cloudy-sky 595 
conditions. The significant linear relationship (p-values < 0.01) is drawn (a, b). 

 

The RMSE statistics at each site were mainly affected by the site elevation (Figure 11). The scatterplots of site RMSE and site 

elevation under clear-sky and cloud-sky conditions (Figures 7a and b) show that the linear relationship was statistically 

significant (p-value < 0.01). We suppose that increasing elevation will decrease the spatial representativeness of the sites; 600 

therefore, the RMSEs of the clear-sky results showed an increasing trend. In addition, the cloudy-sky results had a larger slope 

(Figure 11b), indicating that they were more sensitive to elevation variations. Thus, we inferred that elevation was an essential 

factor affecting LST recovery. In these regions with high elevation, clear-sky LSTs with larger RMSEs were assimilated in 

the time-evolving model, thus affecting the cloudy-sky results. In addition, modeled temperature series include higher 

uncertainty in these regions, and a relevant ‘cool bias’ issue in highlands was found in regional simulation models and global 605 

reanalysis datasets (Jia et al., 2022b; Meng et al., 2018). Although the relationship between the site RMSE and site latitude 
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was not statistically significant (Figure 11c and d), the GHA-LST data at higher latitudes produced higher RMSEs than the 

data at lower latitudes, especially under cloudy-sky conditions; thus, we inferred that high latitudes were frequently covered 

by clouds and fewer clear-sky LSTs could be used in the data assimilation. In addition, sites at higher latitudes are usually 

located in coastal areas (Figure 6a), which may limit their spatial representativeness at the 5 km scale.  610 

 

Furthermore, the spatial continuity at regional scale was evaluated. A detailed mapping examination suggests that no artificial 

textures occurred under most conditions at mid- and low latitudes; however, at high latitudes where MODIS swath data are 

the basic input data, swath edges are observed on the map in some cases (Figure 12). 

 615 

Figure 12. Case showing the artificial texture (middle of the image) at Northwestern Canada at 05:00 UTC on January 02, 2012.  

 

Such spatial discontinuity occurs when the clear-sky LST retrievals within a swath have considerable temperature differences 

compared to that of spatially neighboring pixels that are not covered by the swath. Regions at high latitude experience longer 

cloud durations than those at lower latitudes; thus, pixels that are not covered by the swath might accumulate high uncertainties 620 

compared to the adjacent clear-sky retrievals. Therefore, an artificial texture remained after the data assimilation. Based on the 

literature review, spatial continuity is also a major issue for current MODIS LST products due to substantially different view 

zenith angles and view times of neighboring swaths after reprojection (Figures 14 and 17 in Li et al. (2022b)). To address such 

discontinuity issues, machine learning methods that incorporate additional variables for estimating cloudy-sky LST can be 

used in the future (Zhao et al., 2019). 625 

4 5 Data Availability 

The global hourly, 5 km, all-sky land surface temperature dataset (GHA-LST) dataset from 2011 to 2021 is freely available at 

https://doi.org/10.5281/zenodo.74872846981704 (Jia et al., 2022c), and the full dataset is also accessible from 
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glass.umd.edu/allsky_LST/GHA-LST. Quality Check (QC) flags are also included: the Bit 0 indicates the sky condition mask 

(1: clear-sky, 0: cloudy-sky), and the Bit 1 is the cloud duration that represents the uncertainty level (0: <=10 days, 1: >10 630 

days). The algorithm produced a stable accuracy within 10 days as indicated by Jia et al. (2022a).For users’ convenience, the 

dataset is released as a Climate Modeling Grid (CMG) in the ‘geotiff’ file format, and the images include geolocation 

information.  

5 6 Conclusions 

LST is an essential driving factor in the surface radiation budget and hydrological cycling, and TIR-based satellite retrieval is 635 

the primary method used to obtain LST globally. However, TIR-derived LST has numerous data gaps, mainly due to cloud 

cover, which seriously restricts the application of current LST products. Studies have focused on producing all-sky LST 

products; nevertheless, global all-sky LSTs on an hourly scale are still unavailable. Considering the high temporal variability 

of LST and the importance of the DTC in ET estimation, drought detection, and heatwave monitoring, we produced a global 

hourly, 5 km, all-sky land surface temperature dataset (GHA-LST) from 2011 to 2021. The data are recovered using CGLS 640 

LST products from geostationary satellites and the MYD/MOD21 products from polar-orbiting satellites. Moreover, GHA-

LST represents the first global gap-free LST product at an hourly scale, and it has been comprehensively validated by in situ 

measurements at 197 201 global sites in this study. 

 

Based on the ground measurements from the SURFRAD, BSRN, Fluxnet, AmeriFlux, HRB, and TP networks, the overall 645 

RMSE of GHA-LST is 3.38 31 K, with a bias of -0.53 57 K and R2 of 0.95. The comparisons of individual accuracy suggest 

that the proposed GHA-LST dataset has better accuracy than the CGLS and MYD21C1 data under both clear-sky and cloudy-

sky conditions. In addition, the accuracy is stable under both clear-sky and cloudy-sky conditions (RMSEs = ~3.4 3 K with 

few biases based on different sampling groups). The overall sampling amount was more than 5 million, and we suppose that 

the overall validation can represent the general accuracy of GHA-LST globally. In addition, after temporal aggregation to the 650 

daily mean scale, the GHA-LST dataset produced an RMSE of 1.767 6 K and significantly improved the accuracy and data 

availability of the global daily mean LST.  

 

The individual site validation indicated that the GHA-LST dataset has similar accuracy in terms of spatial patterns under 

different sky conditions. It had lower RMSEs (< 3.5 K) in eastern America, Europe, and Australia but varying RMSEs from 655 

3.5 to 5 K in western America and the TP. In comparison, the cloudy-sky results had a larger spatial variance in accuracy. 

Furthermore, the analysis between the site RMSE and the corresponding site elevation and latitude suggested that the RMSE 

statistics at each site were mainly affected by site elevation. 
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Temporal analyses were performed for four representative sites, and the GHA-LST dataset had a high temporal continuity and 660 

was consistent with the ground measurements at hourly and daily mean scales. The temporal variation in hourly LST also 

illustrated that mathematically predictable DTCs cannot be obtained for locations with continuous cloudy days, thus 

highlighting the advantage of the time-evolving model-based method used for the GHA-LST product. Spatial analysis 

suggested that the GHA-LST dataset has satisfactory spatial continuity over clear-sky and cloudy-sky regions, and artificial 

textures were not observed. Regional mapping analysis of the TP and Alaska regions demonstrated that GHA-LST can capture 665 

greater spatial details than reanalysis datasets, which were the only data source for obtaining hourly gap-free LSTs before this 

study. The monthly anomaly analysis indicated that the GHA-LST anomalies are consistent with global AT datasets and other 

LST datasets at the Tmean and Tmin scales, whereas the Tmax and DTR of the LSTs and ATs are only consistent with the 

anomalous direction while when the magnitudes are different. 

 670 

In the future, passive microwave-based LSTs can be used to improve the recovery accuracies over high-elevation regions. 

Aadditional clear-sky LST products, such as the visible infrared imaging radiometer suite (VIIRS) and advanced very high-

resolution radiometer (AVHRR), can also be assimilated to increase the time span and spatial resolution of the proposed 

dataset. Machine learning can be employed to effectively incorporate information from ground measurements, spatial textures, 

and related factors (e.g., elevation, soil moisture, land cover, and wind speed). GHA-LST represents the first gap-free LST 675 

dataset at an hourly, 5 km scale over the globe, and it has satisfactory accuracy and great potential for use in estimating global 

plant water stress, monitoring extreme weather, and advancing meteorological forecasting models. 

 

Appendix 

Table: Validation statistics of each site. 680 

Network Site Clear-sky Samples Cloudy-sky Samples 

bias RMSE R2 N bias RMSE R2 N 

SURFRA

D 

BND -0.34 2.34 0.97 36983 0.90 2.32 0.96 50266 

FPK -1.17 2.94 0.97 36910 -0.17 2.93 0.96 50501 

GWN 0.64 2.80 0.95 42136 0.64 2.85 0.91 44621 

PSU -0.81 2.75 0.96 34317 -0.50 2.23 0.96 52809 

SXF -0.42 2.32 0.98 37649 0.39 2.48 0.96 49400 

BSRN bar 0.11 2.69 0.97 25941 -0.12 3.33 0.94 48341 
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bud 0.87 3.66 0.94 4942 -0.92 3.49 0.91 7939 

cab -0.53 2.18 0.95 22129 0.28 1.84 0.93 40650 

dar -2.38 4.66 0.86 14516 -1.18 3.89 0.48 20617 

e13 -0.31 2.39 0.97 37930 0.93 2.93 0.94 35193 

pay 0.79 2.26 0.96 29785 -0.42 2.36 0.92 54290 

sel -1.55 3.38 0.90 3605 -2.95 3.99 0.84 4843 

spo 0.45 3.61 0.92 2681 0.22 3.81 0.91 5810 

tat 0.01 3.35 0.95 36718 0.03 2.51 0.93 50949 

tik 0.05 3.55 0.97 12411 -0.65 4.28 0.94 57405 

tor -1.13 3.53 0.95 12559 -0.80 2.87 0.93 70797 

Fluxnet AU-ASM 1.59 3.80 0.94 21781 0.61 3.21 0.90 12760 

AU-Cpr 0.20 3.55 0.96 19103 1.74 3.27 0.93 14607 

AU-DaP 3.36 4.98 0.89 11696 3.95 4.81 0.80 11099 

AU-DaS 0.59 3.37 0.89 17051 1.07 2.49 0.85 16929 

AU-Dry -1.96 3.63 0.92 14357 -2.27 3.48 0.86 11939 

AU-Emr 0.94 2.99 0.95 13603 0.95 2.85 0.89 8054 

AU-Gin 0.50 2.44 0.95 15637 0.45 3.42 0.87 9008 

AU-GWW 0.71 3.13 0.98 6328 1.70 4.04 0.92 3712 

AU-RDF 0.23 3.01 0.91 7611 0.17 2.67 0.83 6871 

AU-Rig -0.01 2.53 0.96 17709 0.28 2.39 0.92 12438 

AU-Rob -0.15 2.79 0.73 4762 0.54 1.33 0.88 3864 

AU-Stp 0.92 2.99 0.94 18748 0.50 3.34 0.84 14097 

AU-Whr 0.50 3.17 0.94 14734 0.25 1.67 0.95 12076 

AU-Wom 0.35 3.47 0.89 16156 1.04 1.91 0.93 17560 

AU-Ync 0.64 2.44 0.97 10896 1.26 3.21 0.92 7989 

BE-Lon -0.60 2.35 0.94 9418 0.55 1.70 0.95 24109 



38 

 

CA-Gro -0.86 2.40 0.98 10517 0.85 1.99 0.98 19025 

CH-Cha 2.15 3.48 0.94 5909 -0.41 2.73 0.92 11457 

CH-Dav -0.63 4.14 0.90 4289 -0.55 4.88 0.77 4412 

CH-Fru 3.50 5.85 0.75 368 3.21 4.64 0.85 90 

CN-Sw2 1.31 2.37 0.97 36 -0.29 2.23 0.46 11 

CZ-BK1 0.02 2.64 0.94 9109 1.16 2.86 0.91 20696 

CZ-wet 1.64 4.06 0.88 7983 0.27 3.19 0.86 11327 

DE-Akm 0.54 1.94 0.96 9771 1.21 1.95 0.96 20507 

DE-Geb -0.28 2.66 0.94 9599 -0.18 2.59 0.92 25439 

DE-Gri 2.31 4.18 0.92 9857 0.94 2.54 0.93 24950 

DE-Hai -0.77 3.42 0.89 4910 0.80 2.62 0.90 12100 

DE-Kli -0.96 3.66 0.89 9558 0.18 2.72 0.90 24733 

DE-Lnf -0.71 3.97 0.84 4835 0.74 2.63 0.89 11927 

DE-Obe -1.56 3.30 0.93 10758 0.60 2.86 0.89 23689 

DE-RuR 0.02 2.39 0.93 7775 0.17 1.69 0.95 22683 

DE-RuS 0.22 2.77 0.92 5938 0.30 1.84 0.94 16662 

DE-SfN 0.70 2.86 0.94 5497 -1.18 2.70 0.92 15626 

DE-Spw -0.50 2.35 0.95 9326 1.01 1.86 0.97 23628 

DE-Tha -1.68 3.18 0.94 9873 0.20 2.25 0.93 25184 

DE-Zrk -1.33 2.86 0.91 4559 0.00 1.95 0.93 9525 

DK-Sor -0.94 3.02 0.91 7224 1.09 3.22 0.84 17380 

FI-Hyy -0.65 1.29 0.99 24 -0.38 1.74 0.97 264 

FR-Pue 1.41 3.35 0.92 14666 0.24 2.25 0.92 17435 

GF-Guy -0.16 2.89 0.33 7675 0.95 1.66 0.41 9819 

GH-Ank 0.50 2.40 0.57 9314 2.86 3.62 0.49 8107 

IT-CA1 -0.61 2.55 0.96 12906 -1.64 2.81 0.92 11233 
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IT-Isp -0.17 2.67 0.93 7082 -1.10 2.54 0.91 10436 

IT-Ren 2.31 4.63 0.87 9756 2.95 5.88 0.71 12239 

IT-SR2 3.21 4.27 0.91 3492 1.56 2.71 0.90 17518 

NL-Hor 0.55 2.81 0.86 2969 0.32 1.79 0.92 5737 

NL-Loo -0.69 2.99 0.90 9372 0.76 1.77 0.95 15435 

RU-Fyo -0.46 2.05 0.96 238 0.77 2.22 0.96 7008 

RU-Sam -0.76 2.88 0.98 1644 0.81 3.97 0.95 9583 

RU-SkP -3.05 5.34 0.97 864 -1.63 3.30 0.98 1971 

US-AR1 -1.31 3.49 0.96 10508 -0.24 3.03 0.95 6996 

US-AR2 -0.83 3.79 0.95 7432 -0.11 2.97 0.96 5464 

US-CRT -0.83 2.78 0.96 10347 0.43 2.07 0.97 15745 

US-Los -0.08 2.70 0.97 3021 0.15 2.17 0.97 4542 

US-Me2 0.34 2.75 0.95 12973 0.23 3.51 0.90 19078 

US-Ne1 0.92 3.13 0.96 10294 2.62 3.83 0.95 10852 

US-NR1 -1.02 3.66 0.92 16549 0.47 3.92 0.86 18482 

US-Oho -0.40 3.67 0.95 10223 1.16 2.70 0.96 16047 

US-Prr 1.73 4.60 0.93 863 0.11 3.86 0.94 3674 

US-SRC -0.58 2.43 0.98 15668 -0.47 3.85 0.91 11042 

US-SRG 2.25 3.81 0.95 21746 2.24 4.64 0.89 12345 

US-Syv -2.01 3.01 0.98 7748 -0.66 2.18 0.97 11231 

US-Tw1 2.85 4.50 0.92 14013 2.39 3.39 0.92 7556 

US-UMB -1.62 3.11 0.97 11318 0.48 2.28 0.97 20943 

US-Var -1.56 4.09 0.94 21334 -1.75 3.66 0.92 13087 

US-WCr -2.47 4.86 0.95 220 -1.56 4.52 0.95 2110 

US-Whs -1.15 2.31 0.98 19711 -0.19 3.79 0.92 14735 

US-Wkg -0.98 3.04 0.97 20263 -0.26 3.96 0.91 13703 
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US-WPT -2.00 3.51 0.95 10666 -0.21 2.02 0.96 14589 

BR-Npw 0.76 2.40 0.91 8409 2.01 3.24 0.72 12547 

CA-SCB 0.86 3.04 0.96 18819 0.49 4.05 0.93 26292 

DE-Dgw -1.49 3.75 0.87 6103 -0.36 2.81 0.87 17270 

FI-Sii -1.14 4.39 0.87 655 -0.44 4.55 0.88 19230 

FR-LGt 2.16 4.04 0.91 3863 1.50 3.06 0.90 6792 

ID-Pag 1.29 2.73 0.61 1361 0.66 1.74 0.65 3877 

JP-BBY 0.25 3.05 0.95 10928 0.27 2.92 0.94 23698 

JP-Mse -0.27 3.48 0.94 3501 0.69 2.20 0.95 5199 

JP-SwL -2.00 4.45 0.84 3522 -1.53 4.39 0.77 4334 

KR-CRK -0.87 3.03 0.95 16752 -0.79 2.31 0.96 15019 

NZ-Kop -0.50 2.53 0.90 16963 0.72 2.36 0.88 18010 

PH-RiF -2.70 3.91 0.75 2213 -0.35 1.96 0.72 6215 

US-Bi1 2.98 4.49 0.90 12504 2.92 4.30 0.84 8264 

US-BZB 2.51 5.48 0.93 8946 1.45 4.86 0.92 23668 

US-EML -0.98 4.01 0.93 4492 -0.81 3.96 0.92 19278 

US-Ho1 -1.28 2.38 0.98 23048 0.81 1.96 0.97 30691 

US-HRA -0.01 3.36 0.78 1582 0.39 2.71 0.73 1645 

US-MRM 1.63 3.74 0.90 851 1.28 3.58 0.91 8514 

US-NC4 -0.14 1.96 0.95 6969 0.29 1.73 0.94 7481 

US-NGC 1.05 5.21 0.45 1226 -1.40 4.49 0.65 4598 

US-Sne 2.23 4.80 0.88 13559 1.92 3.38 0.90 9069 

US-Uaf 2.23 4.43 0.95 21801 1.87 4.86 0.93 69880 

AmeriFlux CA-ARB -0.74 2.91 0.98 14549 1.34 3.88 0.95 26437 

CA-Ca3 0.45 2.86 0.98 22291 1.05 2.57 0.89 80737 

CA-Cbo -0.10 2.99 0.96 30675 1.55 2.80 0.96 53145 
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CA-DB2 1.34 3.92 0.91 2069 -0.29 3.14 0.84 9357 

CA-HPC 2.12 4.75 0.92 1246 0.43 3.96 0.90 5235 

CA-LP1 -0.84 3.82 0.93 21152 -0.76 4.14 0.91 85705 

CA-SMC 1.44 3.98 0.94 1584 -0.50 4.29 0.92 6376 

CA-TVC 0.77 4.31 0.96 597 0.44 4.23 0.93 7059 

CR-Fsc -1.69 2.83 0.89 4375 -1.10 2.21 0.79 5075 

MX-Aog 0.68 4.09 0.82 13245 -0.40 3.47 0.76 9890 

MX-Ray -0.81 4.30 0.82 1696 -0.58 4.19 0.74 1369 

PR-xGU -1.30 3.01 0.84 8677 0.99 3.04 0.64 5644 

US-A32 0.58 2.54 0.97 8069 1.23 3.07 0.94 7247 

US-A74 0.47 2.53 0.96 5684 1.46 3.21 0.91 5129 

US-ALQ 0.24 4.24 0.92 6691 0.02 3.16 0.93 9417 

US-Aud 1.54 2.99 0.98 3896 2.09 4.49 0.88 2342 

US-Br1 -0.45 2.88 0.96 3189 0.85 2.67 0.96 4219 

US-BRG 1.03 3.22 0.94 15519 0.98 2.72 0.94 21042 

US-CPk -0.70 4.79 0.86 9156 -0.19 4.44 0.85 11985 

US-CS1 -0.04 2.55 0.97 2503 0.56 2.32 0.97 4840 

US-Cwt -0.34 3.44 0.87 18318 -2.15 2.98 0.93 21479 

US-DFC -0.87 2.82 0.96 4238 0.22 2.39 0.95 6946 

US-HB2 0.19 1.77 0.96 3965 0.63 1.65 0.95 4221 

US-HBK -2.43 3.30 0.97 8713 -1.81 2.99 0.95 12407 

US-HWB -1.67 3.04 0.95 11420 -1.09 2.26 0.96 15504 

US-Jo1 -1.30 2.85 0.98 30406 -0.74 4.02 0.92 24292 

US-KFS 0.12 3.97 0.91 25297 1.03 4.36 0.87 29666 

US-KM4 0.96 3.44 0.93 33623 1.31 2.66 0.96 48132 

US-Kon 0.11 4.76 0.89 12873 0.84 4.11 0.89 14146 
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US-MC2 0.91 3.82 0.84 1515 -0.88 3.16 0.80 1551 

US-MH1 2.40 4.13 0.91 864 3.32 5.50 0.87 1469 

US-Mj1 0.77 3.10 0.93 903 0.91 3.76 0.85 818 

US-MOz -1.07 3.09 0.95 32259 0.46 1.99 0.97 38554 

US-Mpj 1.14 4.84 0.93 49525 2.19 5.86 0.87 36528 

US-MRf 0.37 2.52 0.91 1220 1.38 2.93 0.84 2455 

US-MSR 0.72 4.99 0.82 1056 0.20 5.37 0.72 1383 

US-MVF 0.65 2.54 0.97 1237 -0.14 3.83 0.89 1807 

US-MWA -1.89 3.74 0.93 7021 -0.32 2.05 0.97 13027 

US-MWF -1.28 2.85 0.95 6609 0.01 1.62 0.98 12025 

US-MWW -2.13 4.02 0.91 7136 -1.70 2.80 0.95 11146 

US-NC1 1.91 2.86 0.96 8453 1.84 2.77 0.94 9058 

US-ONA -0.41 2.35 0.93 20058 0.85 2.34 0.89 19570 

US-PFb 0.49 2.61 0.80 839 2.72 3.64 0.84 846 

US-PFk -0.89 1.70 0.94 845 1.44 2.03 0.96 885 

US-PHM -1.02 3.29 0.90 11040 -0.16 3.78 0.77 25556 

US-Rls 0.47 3.99 0.93 24093 -0.39 4.58 0.86 27506 

US-Ro1 0.08 2.96 0.96 18488 0.00 2.46 0.96 24116 

US-Rpf -0.48 3.34 0.95 2054 0.28 3.59 0.94 63663 

US-Seg -0.31 2.35 0.98 46399 -0.20 4.04 0.92 38404 

US-Skr 1.46 3.14 0.77 3282 3.46 4.84 0.65 2707 

US-Slt -0.30 1.91 0.97 8329 1.59 2.48 0.96 9199 

US-TrB -3.27 4.06 0.93 2256 -2.62 3.43 0.94 2715 

US-Tur -1.52 4.31 0.71 509 -0.19 4.21 0.68 1687 

US-UiA 1.49 3.14 0.96 3830 1.01 2.33 0.96 4907 

US-Vcm 0.10 3.76 0.90 45014 0.64 4.60 0.80 34198 
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US-Vcs -1.09 3.81 0.90 24731 -1.23 4.69 0.79 18661 

US-Wgr 0.14 3.17 0.92 3108 -0.35 2.45 0.90 4191 

US-Wjs 0.59 4.62 0.93 42573 1.16 5.29 0.88 34057 

US-Wpp 1.26 4.86 0.77 2723 0.82 4.43 0.70 3381 

US-Wrc -0.80 3.05 0.92 13709 -1.57 2.54 0.93 25363 

US-xAB -0.32 2.30 0.94 9821 -0.19 1.96 0.91 18766 

US-xAE -2.71 4.41 0.94 15088 -0.99 3.14 0.94 13825 

US-xBL -1.88 3.04 0.96 12366 -1.01 2.33 0.96 17532 

US-xBR -3.18 3.95 0.97 14553 -2.78 3.59 0.96 20114 

US-xCP -2.19 3.05 0.98 15172 -0.96 4.59 0.90 18990 

US-xDC -2.22 3.41 0.97 12281 -1.30 2.74 0.97 16593 

US-xDJ -0.72 3.62 0.94 1186 -1.59 4.03 0.94 32892 

US-xDL -0.55 2.78 0.91 14189 1.05 2.56 0.92 17607 

US-xDS -1.30 2.64 0.94 16311 -0.71 2.34 0.88 17426 

US-xGR -1.52 3.33 0.91 11223 -2.71 3.79 0.91 16486 

US-xHA -2.01 2.86 0.97 13716 -0.65 2.07 0.96 18138 

US-xJE -1.73 3.80 0.88 15472 -0.20 2.65 0.90 16721 

US-xJR -1.19 3.06 0.97 17076 -0.54 4.09 0.92 11774 

US-xKA -2.16 3.57 0.96 13431 -0.84 2.79 0.95 14802 

US-xLE -1.53 3.11 0.92 11741 0.34 1.98 0.94 13226 

US-xMB -2.54 3.61 0.98 15039 -2.31 4.81 0.93 13100 

US-xML -1.75 3.37 0.92 12540 -0.63 3.50 0.87 16124 

US-xNG -1.91 3.35 0.97 10233 -0.15 2.85 0.96 16173 

US-xNQ -1.90 3.36 0.97 13902 -1.44 4.63 0.91 14718 

US-xRM -1.61 3.38 0.93 14558 -1.59 4.45 0.84 16957 

US-xSB -1.61 2.64 0.94 15547 -1.02 2.25 0.90 17909 
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US-xSC -1.32 3.70 0.91 13934 -1.00 2.67 0.94 20575 

US-xSE -0.91 2.36 0.96 14088 -0.11 1.74 0.96 18191 

US-xSL -1.83 3.52 0.96 14314 -0.63 4.39 0.89 15042 

US-xSP -3.52 4.13 0.96 16381 -2.63 3.88 0.90 10012 

US-xST -2.19 2.95 0.98 10986 -0.55 2.08 0.97 17499 

US-xTA -3.32 4.01 0.94 13180 -0.40 2.05 0.94 15434 

US-xUN -2.53 3.12 0.98 13573 -1.09 2.13 0.98 20054 

US-xWD -1.76 2.99 0.98 11784 -0.53 2.44 0.97 17020 

HRB ArouCJZ -0.26 4.43 0.93 3624 -0.65 5.76 0.79 5111 

BajitanGB -2.72 4.03 0.98 3925 -2.35 4.70 0.93 4812 

DamanCJZ -0.03 2.95 0.96 3815 1.62 5.07 0.89 4729 

TP biru -0.76 4.89 0.89 3451 -0.45 4.72 0.87 3584 

namucuo -0.23 4.01 0.90 3321 0.12 4.22 0.90 3412 
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