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Abstract. Rice is the most important staple food in Asia. However, high-spatiotemporal-resolution 

rice yield datasets are limited over this large region. The lack of such products greatly hinders studies 

that are aimed at accurately assessing the impacts of climate change and simulating agricultural 

production. Based on annual rice maps in Asia, we incorporated multi-sources predictors into three 

machine learning (ML) models to generate a high-spatial-resolution (4km) seasonal rice yield dataset 30 

(AsiaRiceYield4km) from 1995 to 2015. Predictors were divided into four categories that considered the 

most comprehensive rice growth conditions and the optimal ML models was determined based on an 

inverse proportional weight method. The results showed that AsiaRiceYield4km achieves good accuracy 

for seasonal rice yield estimation (single rice: R2 = 0.88, RMSE = 920 kg/ha, double rice: R2 = 0.91, 

RMSE = 554 kg/ha, and triple rice: R2 = 0.93, RMSE = 588 kg/ha). Compared with single rice of Spatial 35 

Production Allocation Model (SPAM), the R2 of AsiaRiceYield4km was improved by 0.20 and RMSE 

was reduced by 618 kg/ha on average. In particular, constant environmental conditions including 

longitude, latitude, elevation, and soil properties contributed the most (~45%) to rice yield estimation. 

For different rice growth periods, we found that the predictors of the reproductive period had greater 

impacts on rice yield prediction than those of the vegetative period and the whole growing period. 40 

AsiaRiceYield4km is a novel long-term gridded rice yield dataset that can fill the unavailability of high-

spatial-resolution seasonal yield products across major rice production areas and promote more relevant 

studies on agricultural sustainability worldwide. AsiaRiceYield4km can be downloaded from an open-

data repository (DOI: https://doi.org/10.5281/zenodo.6901968; Wu et al., 2022). 

1 Introduction 45 

As one major staple crop, rice (Oryza sativa L.) provides more than a quarter of calories for 

approximately half of the population with only 11% of the arable land on the earth (Maclean et al., 2002; 

Alexandratos and Bruinsma, 2012; Birla et al., 2017; Qian et al., 2020). Asia produces and consumes 

more than 90% of the global rice (Bandumula, 2018), which is dominated by poor smallholder farmers. 

Therefore, information on rice yield in Asia is essential for sustaining food security and farmers’ 50 

livelihoods (Laborte et al., 2017). In the last half-century, the growth of rice yields has contributed more 

to an increase in production than the expansion of planting areas (Blomqvist et al., 2020) and will remain 

a dominant factor considering the land-use policies for reducing environmental pressure (Lambin and 
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Meyfroidt, 2011; Kim et al., 2021). In addition, Asia has complex rice cropping systems where rice may 

be cultivated multiple times within one year (Zhang et al., 2020a). It is critically necessary to identify the 55 

long-term and seasonal Asia rice yields – at high spatial resolution to monitor and guide agricultural 

production.  

Previous global-scale crop yield datasets, including Harvester Area and Yields of 175 crops 

(M3Crops) (Monfreda et al., 2008), Spatial Production Allocation Model (SPAM) (You and Wood, 2006; 

Yu et al., 2020), Global Dataset of Historical Yields of Major Crops (GDHY) (Iizumi et al., 2014; Iizumi 60 

and Sakai, 2020), and Global Gridded Crop Model Intercomparison (GGCMI) phase 1 (Müller et al., 

2019), have been produced and widely employed in many studies (Folberth et al., 2020; Kaltenegger and 

Winiwarter, 2020; Iizumi et al., 2021; Lin et al., 2021; Liu et al., 2021b). However, due to the different 

research goals and technical restrictions, their spatial resolutions are relatively coarser (e.g. ~10km for 

M3Crops and SPAM; ~55km for GDHY and GGCMI phase 1) and temporal resolutions are mostly 65 

annual (Laborte et al., 2017). Only a few datasets have seasonally temporal information (e.g., GDHY) 

but still cannot cover all rice seasons (Kim et al., 2021). In addition, the time spans are limited (e.g., 

only one year for M3Crops; every five years for SPAM). For the long-term rice yield dataset, GDHY, 

the authors used a fixed rice area basemap that did not obtain the interannual spatial dynamics of rice 

yield. To the best of our knowledge, a long-term seasonal rice yield dataset with higher spatial resolution 70 

and dynamic spatial distribution is currently unavailable for the major rice planting regions on the world. 

To address the above issues, there is a significant need to acquire  multi-sources data and wiser 

technologies for rice yield prediction estimation (Chlingaryan et al., 2018; Cao et al., 2020; van 

Klompenburg et al., 2020; Zhang et al., 2020b; Chen et al., 2022). With the rapid development of 

remote sensing technology in recent years, large-scale and long-term high-spatiotemporal observations 75 

provide ample and timely phenological and growing information for rice growth. Ground-based data 

such as climate and soil also provide more key environmental information (Folberth et al., 2016; 

Zhang et al., 2021). Many publications that successfully combine satellite-derived data and ground 

environmental information for yield estimation have expanded our knowledge (Huang et al., 2013; 

Mosleh et al., 2015; Cao et al., 2021; Fernandez-Beltran et al., 2021). Nevertheless, few studies have 80 

yet employed annual paddy rice areas for yield predictionestimation. Moreover, machine learning 

(ML), such as random forest (RF), extreme gradient boosting (XGBoost), and long short-term memory 
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(LSTM) has been increasingly and successfully used in crop yield estimation (Cai et al., 2019; van 

Klompenburg et al., 2020; Sakamoto, 2020; Luo et al., 2022). Such ML models can overcome the 

drawbacks of two traditional estimation methods: process-based crop models (PCMs) and statistical 85 

regression methods (SRMs). Compared with PCMs, ML can wisely select input variables according 

to the actual requirements and local geographical environment conditions without complicated 

parameters (Jeong et al., 2022). Due to the complex functions with higher efficiency and flexibility, 

the yield estimation results of ML are always better than those of SRMs (Chlingaryan et al., 2018). In 

addition, ML has a good spatial generalization. Therefore, ML models combined with multi-sources 90 

data potentially provide a good chance for large-scale gridded yield production estimation and their 

accuracy improvement.  

Overall, we would integrate multi-source data and annual rice maps into ML models for generating 

a seasonal rice yield dataset at 4km resolution across Asia (AsiaRiceYield4km) from 1995 to 2015. 

AsiaRiceYield4km will better support agricultural monitoring systems and related research over a large 95 

scale because of its higher-spatiotemporal resolution and longer-time span. 

2 Materials and methods 

2.1 Study area 

Asia is the most important rice-producing area accounting for 89% of the planting area and 91% of the 

global production (Food and Agriculture Organization of the United Nations, FAO, 2022). Considering 100 

the accessibility of locally census-based rice yield data, 14 main rice-producing countries of Asia were 

selected and then divided into 27 seasons cases (one case refers to one specific rice-cropping period in a 

country) based on different rice cropping systems (single, double, and triple rice), as shown in Fig. 1.  
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Figure 1: (a) Rice planting areas with different cropping systems in the main rice-producing countries of Asia. 105 

The green area represents the maximum paddy rice area where paddy rice grew for at least one year during 

the period 1995-2015 (Han et al., 2021, 2022). The pie chart represents the area proportion of different rice 

cropping systems. (b) Case numbers and cropping system for each country. Double rice follows the order of 

early before late (ei.ge., 12 and 13 represent the early season rice and late season rice in PhilippinesChina, 

respectively), and triple rice follows the order of spring, autumn, and winter (ei.ge., 25, 26, and 27 represent 110 

the spring season rice, autumn season rice and winter season rice of Vietnam, respectively). 

2.2 Data 

Multi-sources data were collected and used to predict rice yieldfor rice yield estimation, including: annual 

rice area maps, rice yield of 1400 administrative units (minimum administrative division scale units for 

each country with available rice yield), leaf area index (LAI) information from remote sensing products, 115 

and rice growth environmental conditions (location, time, soil, and climate). In addition, considering the 

necessity of phenological information, we also produced gridded key phenological dates from LAI data 

based on inflection-based and threshold-based methods (Sect. 2.3.1). Except for yield records at 

administrative unit scale from official statistics (Table S1), the other data were resampled to 4km×4km 

by the nearest neighbour resampling method in ArcMap 10.2 (originally spatial information is listed in 120 

Table S2). 

2.2.1 Rice area maps 

We selected the latest public rice distribution map dataset, APRA500 (annual dataset  of paddy rice area 

at a 500m resolution from 2000 to 2020), in this study (Han et al., 2021, 2022). APRA500 has annual 
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rice distribution information which can reduce the influence of other land cover types. Due to the 125 

topography conditions, cloud contamination, and the mixed-pixel effects with fragmented cropland fields, 

rice area in APRA500 was somehow underestimated (Han et al., 2022). To reduce this effect, we used 

the rice area union of the three years (current year, last year, and next year) to represent the rice area of 

the current year (e.g., the area of 2005 is the union of 2004, 2005, and 2006). Specifically, the union area 

of 2000, 2001, and 2002 was also applied to the years before 2001 because of the unavailable area maps. 130 

2.2.2 Seasonal rice yield 

Rice seasons were determined mainly based on RiceAtlas (Laborte et al., 2017). RiceAtlas is the most 

comprehensive and detailed  database for rice season and has been widely used in many studies (van 

Oort and Zwart, 2018; Muehe et al., 2019; Fritz et al., 2019). The United States Department of 

Agriculture (USDA, https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx, last accessed: 7 April 2022)  135 

and the national statistics of each country were also referenced for rice seasons determination. The rice 

seasons have various names in different countries, such as Aman, Aus, and Boro for triple rice of 

Bangladesh and Rabi and Kharif for double rice of India. To make the data more readable and consistent, 

we used single rice (single season), double rice (early and late seasons), and triple rice (spring, autumn, 

and winter seasons) for the three rice cropping systems in our study, as shown in Fig.1b. A few rice 140 

seasons (e.g., the early season in Cambodia, Malaysia, Myanmar, and Indonesia; and the winter season 

in India) were not considered due to the lack of yield records. 

We collected seasonal rice yield data from FAO and other government websites (Table S1). Over 

45000 rice yield records of 1400 administrative units from 1995 to 2015 were collected. The quality of 

these data has been checked and some yield outliers were filtered out according to the following rules: 145 

(a) exceeding the actual biophysically attainable yields and (b) beyond the averages ± two times variance 

during the period 1995-2015 (Zhang et al., 2014; Cao et al., 2020, 2021). 

2.2.3 Key phenological dates  

The transplantingPlanting, heading, and harvesting datematurity datess are the three most important 

phenological dates during rice growing period. The whole growing period (WGP) is divided into two 150 

periods according to the three key phenological dates: vegetative period (VEP, from transplanting date 

to heading date) and reproductive period (REP, from heading date to harvesting maturity date).  

https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx
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However, most rice phenology datasets are always at administrative scales without interannual 

variation. The USDA provided country-scale growing phenological information. RiceAtlas had 

subnational phenology information but disregarded the annual dynamics (Laborte et al., 2017). In 155 

addition, these datasets lack heading date information about rice. Here, we retrieved the three dynamic 

key rice phenological dates from remote sensing data in Asia during the period 1995-2015 at a 4km×4km 

grid scale by inflection-based and threshold-based methods (Sect. 2.3.1). The USDA and RiceAtlas 

datasets provided a threshold range for phenology and were used to validate our extracted phenological 

dates. 160 

2.2.4 Location and time 

Location information includes longitude (Lon), latitude (Lat), and elevation (Ele). The Global 30-arc-

second (1km) gridded Digital Elevation Model (DEM) dataset (1999) from the National Oceanic and 

Atmospheric Administration (NOAA) was employed in this study. The Lon and Lat information was 

collected from the centroid of each resampled 4km pixel by ArcMap 10.2. The temporal information is 165 

represented by the year (1995-2015). 

2.2.5 Soil data 

Soil properties are important factors controlling rice growth and final yield. The Harmonized World Soil 

Database (HWSD) v1.2 provides key soil property variables, including: Topsoil Sand Fraction (T_Sand), 

Topsoil Silt Fraction (T_SILT), Topsoil Clay Fraction (T_CLAY), Topsoil Reference Bulk Density, 170 

(T_BULK_DEN), Topsoil Organic Carbon (T_OC), and Topsoil pH (H2O) (T_PH_H2O) 

(https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-

v12/en/, last accessed: 7 April 2022; Wieder et al., 2014).  

2.2.6 Climate data 

TerraClimate (Abatzoglou et al., 2018), a monthly high spatial resolution (4km) meteorological dataset 175 

(http://doi.org/10.7923/G43J3B0R, last accessed: 7 April 2022) from 1995 to 2015, was used  in our 

study. This dataset provides climate and water balance information for Asia rice (Salvacion, 2022), 

including Palmer Drought Severity Index (PDSI), precipitation accumulated (Pre), downward surface 

http://doi.org/10.7923/G43J3B0R
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shortwave radiation (Srad), maximum temperature (Tmax), minimum temperature (Tmin), vapor pressure 

(Vap), and wind speed (Ws). 180 

2.2.7 LAI 

Remote sensing indices have been widely used in rice yield prediction estimation (Son et al., 2020; 

Arumugam et al., 2021), but few studies have been conducted before 2000 (Liu et al., 2021a). To extend 

the period of the gridded yield dataset from 1995 in this study, we adopted Global Land Surface Satellite 

(GLASS) Advanced Very-High-Resolution Radiometer (AVHRR) LAI data 185 

(http://glass.umd.edu/Download.html, last accessed: 7 April 2022; Xiao et al., 2013, 2016, 2017), which 

begun from 1981 with a fine spatial resolution of 4 km and temporal resolution of 8 days. Compared with 

other similar products, GLASS AVHRR LAI has the highest accuracy and lowest uncertainty (Liang et 

al., 2021). The GLASS AVHRR LAI was used for rice phenological information extraction and yield 

estimationprediction.  190 

2.3 Methods 

We applied three steps to generate AsiaRiceYield4km by incorporating multi-sources data into three ML 

methods: determining phenological dates, categorizing and selecting predictors, and developing the 

optimal models and generating gridded rice yield (Fig. 2). Details of each step are provided in the 

following sections. 195 
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Figure 2: Flowchart for generating long-term and high-resolution gridded rice yields by incorporating multi-

sources data into ML models for one case. All 27 cases followed these steps and were combined to get the 

AsiaRiceYield4km dataset.  

2.3.1 Determining phenological dates 200 

The inflection-based method (Chen et al., 2016; Luo et al., 2020) and threshold-based method (Manfron 

et al., 2017) were employed to detect rice phenological dates (Fig.2 step1) according to the following 

rules: (1) TranspPlanting dates: The LAI always maintains a low value for a period before the planting 

datetransplanting date and dramatically increases after this date (Sakamoto et al., 2005; Chen et al., 2018). 

Therefore, if there is one point in the LAI curve where the first derivative is > 0 after it or its second 205 
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derivative is equal to 0, this point is defined as the planting datetransplanting date. (2) Heading dates: the 

inflection point from VEP to REP (Wang et al., 2018) is characterized by the maximum value of the LAI 

between the planting datetransplanting date and the harvesting datematurity date (Son et al., 2013). (3) 

Harvesting Maturity dates: the physiological activity of rice will sharply drop during the harvesting 

period. The first inflection point at the LAI curve where its first derivative becomes negative is 210 

considered the harvesting datematurity date. In addition, LAI values of pixels beyond the averages ± two 

times standard deviation (SD) were filtered (Zhang et al., 2022). If the phenological dates in some grids 

cannot be detected by the above rules or be filtered, the average value of the administrative unit where 

the grids are located is applied. 

2.3.2 Categorizing and selecting predictors 215 

To provide comprehensive rice growth information for the ML models, we divided the multi-sources 

data into four categories including 50 predictors (Table S3): cumulative growing predictors of different 

growing periods (CGP), extreme growing predictors (EGP), constant environmental conditions (CEC), 

and temporal information (TI) (Fig. 2 step2). The CGP includes the sum of each LAI and climate variable 

in different growing periods (VEP, REP, and WGP), reflecting the overall growing and weather 220 

difference of the three continuous growing periods. The EGP consists of the maximum and minimum of 

each climate and LAI variable considering the impact of extreme events. CEC reflects the influence of 

the geographical environment on rice growth. TI reflects long-term agronomic technology improvements 

and variety renewal (Huntington et al., 2020). 

High-dimensional predictors often affect the accuracy and computational efficiency of ML methods 225 

(LeCun et al., 2015; Zhang et al., 2019). To reduce this effect, Pearson correlation analysis was employed 

to estimate the relationship between yield and other variables for each case. The variablesused to select 

variables with a significant correlation with yield (p < 0.05) were selected as predictors (Cao et al., 2021). 

The yield and selected predictors of one case were input into one model.  at each administrative unit. 

Specifically, the four predictors, Lon, Lat, Ele, and Year, were considered to have a stable impact on rice 230 

yield and were included in all 27 predicted estimation models for the 27 cases (Ray et al., 2019; 

Huntington et al., 2020). Considering the covariate-relation of the predictors in CGP for WGP and the 
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remaining two periods, the predictors of WGP would be selected if its Pearson R was higher than that in 

the remaining two periods, or vice versa.  

2.3.3 Developing the optimal models and generating gridded rice yield 235 

(1) Dataset division rules 

To effectively reduce overfitting effects (Dinh and Aires, 2022), we divided all data into three sets 

(training, validation, and testing) which were used to optimize the ML parameters, select the optimal 

model, and evaluate its generalization ability, respectively (Ripley, 2007). The diagram of the database 

division process is shown in Fig. 2 step3. For each case, the whole database contained the selected 240 

predictors from all administrative-scale units during 1995-2010. The database was randomly divided into 

two subsets by the administrative unit: 20% of the samples were used for testing and the remaining 80% 

were randomly resplit into 70% for training and 30% for validation without consideration of 

administrative units. Thus, the training, validation, and testing sets contain 56% (80%×70%), 24% (80%

×30%), and 20% (20%×100%), respectively, of the whole dataset. Such division rules avoid information 245 

leakage from the testing set to the training set (Meroni et al., 2021) and enhance the robustness of the 

model.  

(2) ML models  

ML can develop transfer functions based on the relationships between predictors and target variables for 

rice yield prediction estimation (Chlingaryan et al., 2018; Shahhosseini et al., 2020). Three widely 250 

employed ML models, RF, XGBoost, and LSTM were selected for rice yield  estimationprediction. The 

RF is based on the bagging ensemble model, which generates multiple decision trees and obtains 

predictions by voting on all individual trees (Breiman, 1996, 2001). In addition, extra randomness is 

introduced to the RF when generating trees and searching for the best tree stages (Shahhosseini et al., 

2020). It provides more diversity for trees and can generate the overall better performance model (Zhang 255 

et al., 2019). XGBoost uses the optimized gradient boost for decision trees, which tries to make weak 

learners strong (Chen and Guestrin, 2016). This method adopts an updated strategy to train the estimated 

predicted model and the updated model minimizes the loss by reducing errors from previous models 

(Obsie et al., 2020). LSTM is a special recurrent neural network (RNN) that is proposed to overcome the 

vanishing and exploding gradient problems of RNNs (Hochreiter and Schmidhuber, 1997; Sak et al., 260 
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2014; Tian et al., 2021). LSTM contains input, hidden and output layers and the hidden layers consist of 

memory cells (He et al., 2019; Zhang et al., 2019). Tuning hyper-parameters can effectively improve the 

accuracy for rice yield estimation (Shahhosseini et al., 2021). The hyper-parameters tuning details and 

Python library information of the ML algorithm are shown in Supplementary Methods. 

(3) Model evaluation 265 

The coefficient of determination (R2) and root-mean-square error (RMSE) were adopted to evaluate the 

performance of each model for each case. 
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where i is the number of administrative units, n is the total number of administrative units, and j is the 270 

year. Yob
i,j is the observed rice yield from government or FAO websites in the ith administrative unit of 

year j,Yob
i,j is the average of the observed rice yield in the ith administrative unit of year j, and Yes

i,j is 

the AsiaRiceYield4km yield in the ith administrative unit of year j. 

(4) The optimal yield estimation prediction model selection 

In this study, three ML models can generate three different yield prediction estimation results. Previous 275 

studies recommend the weighted ensemble method by combining the estimation prediction results of 

different methods, wishing for a relatively stable result but still giving up some accuracy (Shahhosseini 

et al., 2020, 2021). Moreover, many studies also selected the optimal ML model by comparing only the 

accuracy of validation/testing sets (Zhang et al., 2021; Chen et al., 2022; Luo et al., 2022). Here, to 

conduct a comprehensive evaluation of different ML models and datasets, we developed an inverse 280 

proportional weight (IPW) method to assign weights for training, validation, and testing accuracy to 

calculate the adjusted accuracy for each ML model (Eq. 3-7). The ML model with the best adjusted 

accuracy was selected as the optimal ML model. 

/ ( )tr tr tr va tew p p p p= + +                                                                                                                  (3) 

/ ( )va va tr va tew p p p p= + +                                                                                                                (4) 285 

/ ( )te tr tr va tew p p p p= + +                                                                                                                  (5) 

2 2 2 2

ad tr tr va va te teR R w R w R w=  +  +                                                                                                        (6) 
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ad tr tr va va te teRMSE RMSE w RMSE w RMSE w=  +  +                                                               (7) 

where tr, va, and te are abbreviations for training, validation, and testing; ptr, pva, and pte are the inverse 

proportions for the sizes of the training, validation, and testing sets, respectively, which are equal to 290 

1/0.56, 1/0.24, and 1/0.20, respectively; and wtr, wva, and wte are the weights of the training, validation, 

and testing sets, respectively. R2
ad and RMSEad represent the adjusted R2 and RMSE, respectively. R2

tr, 

R2
va, and R2

te are the R2 values of the training, validation, and testing sets, respectively; RMSEtr, RMSEva, 

and RMSEte are the RMSE values of the training, validation, and testing sets, respectively. The ML model 

with the highest R2
ad and lowest RMSEad is regarded as the optimal model for each season in Fig. 1b. 295 

(5) Gridded rice yield generation 

For each case, predictors of gridded scale consistent with administrative scale (Sect. 2.3.2) were input 

into the optimal model and the gridded rice yield was generated from 1995 to 2015. All the27 cases 

followed this process and were combined to generated the AsiaRiceYield4km dataset. 

3 Results 300 

3.1 Performance of the predicted estimated models 

After selecting the optimal ML model for each case, we scattered the seasonal training, validation, testing, 

and adjusted accuracy in Fig. 3. The training R2 is higher than 0.9 for all cases, followed by validation 

and testing R2 (average: 0.78 and 0.69, respectively). The R2
ad ranges from 0.60 to 0.90 (average: 0.77), 

with the lowest R2
ad in the single season of Malaysia and the highest R2

ad in the winter season of 305 

Bangladesh (Fig. 3c). As for RMSE, the averages for training, validation, and testing are 105, 408, and 

489 kg/ha, respectively. The RMSEad ranges from 162 to 817 kg/ha and its average is 396 kg/ha. The 

highest RMSEad is for single rice in China (Fig. 3d). The rice yields of China are mostly higher than those 

of other countries, which might cause more modeling uncertainties. For double rice systems (Fig. 3b and 

3e), there is no significant difference between their modeling accuracies, with approximately 0.77 for 310 

Rad
2 and 410 kg/ha for RMSEad. For triple rice, the winter season in Bangladesh has the highest Rad

2 (0.90; 

No. 24 dot in Fig. 3c), and the spring season in Vietnam has the lowest RMSEad (327 kg/ha; No. 25 dot 

in Fig. 3c). Additionally, 27 optimal models consist of two types of ML models—XGBoost for 15 
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seasons and RF for 12 seasons—with no LSTM model. The 27 optimal models and their hyper-

parameters are listed in Table S5. 315 

 

  

Figure 3: Accuracy (R2 a-c and RMSE d-f) of the predicted estimated yields for seasonal rice in each region. 

The R2 (a-c) and RMSE (d-f) are presented in the top panel and bottom panel, respectively. The color of the 

dots indicates different training accuracy ranks; testing accuracy on the x-axis; validation accuracy on the y-320 

axis; and the size of dots represents the adjusted accuracy. Note: numbers for each dot represent each case 

shown in Fig. 1b.  

3.3.23 Comparing AsiaRiceYield4km products with the observations 

After aggregating AsiaRiceYield4km into administrative units, we compared them with the observed 

yield at administrative and annual scales. At the administrative scale, comparisons were separately 325 

conducted for single, double, and triple rice, as shown in Fig. 4. The predicted estimated and observed 

yields are closed around the 1:1 line. The overall R2 is higher than 0.87, while the RMSE is lower than 

921 kg/ha, suggesting that AsiaRiceYield4km is mostly identical to the observations. The accuracy of 

single rice (R2: 0.88 and RMSE: 920 kg/ha) is slightly lower than that of double rice (R2: 0.91 and RMSE: 

554 kg/ha) and triple rice (R2: 0.93 and RMSE: 494 kg/ha), mainly because some high-yielding units are 330 

not well predicted estimated for single rice (Fig. 4a). Moreover, late rice shows higher accuracy than 

early rice (R2: 0.92 > 0.89, RMSE: 553 kg/ha < 556 kg/ha), which is consistent with the previous study 
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(Cao et al., 2021). As for triple rice, winter rice has higher accuracy than spring and autumn rice even 

though its yield range was the greatest. 

 335 

Figure 45: Comparison of AsiaRiceYield4km with observed yields at administrative units for (a) single rice, 

(b) double rice, and (c) triple rice.  

At the interannual scale, annual average yield of AsiaRiceYield4km and observed yields for each 

case are presented. All seasons are statistically highly significant (p < 0.001), and R2 of all the results is 

higher than 0.8. In addition, the differences of SD are also presented in Fig. 5. The largest difference is 340 

the early season for double rice in Vietnam which is mainly attributed to the underestimation of 

AsiaRiceYield4km after 2006. All differences of std are lower than 200 kg/ha, indicating that 

AsiaRiceYield4km can well estimate and capture the interannual variations in observed yields.  
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Figure 5: Interannual comparison of AsiaRiceYield4km with observed yield from 1995 to 2015.  345 

3.34 Comparing AsiaRiceYield4km products with SPAM  

Due to the limited time coverage and rice seasons information of SPAM, only single rice in 2000, 2005, 

and 2010 were compared between AsiaRiceYield4km and SPAM. The spatial distribution of rice yield 

for AsiaRiceYield4km, SPAM, and observed yield in 2005 are presented in Fig. 6a-c with the zoom-in 

views of the Indo - Gangetic Plain (IGP) in Pakistan and India (Fig. 6 a1-c1). After aggregating 350 

AsiaRiceYield4km and SPAM to administrative units, both products were also quantitatively compared 

with the observed yield in Fig. 6d for 2005. Similar comparisons for 2000 and 2010 are shown in Fig. 

S1. Compared with SPAM, AsiaRiceYield4km has a higher R2 and a lower RMSE. Specifically, the R2 
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of AsiaRiceYield4km is 0.18, 0.23, and 0.20 higher and the corresponding RMSE value is 570, 692, and 

592 kg/ha lower, respectively, than that of SPAM in 2000, 2005, and 2010. Moreover, 355 

AsiaRiceYield4km shows better spatial consistency with the observed yield across the whole area. The 

yield spatial variation in AsiaRiceYield4km and the observed yield are identical in the IGP, while some 

administrative unit yields of SPAM are overestimated (Fig. 6a1-c1). 

 

Figure 6: Yield distribution of (a) AsiaRiceYield4km, (b) SPAM, and (c) observed yields in 2005, and (d) 360 

quantitative comparisons with the observed yields in 2005. (a1) to (c1) are the zoom-in views of the IGP in 

Pakistan and India, with (a1) for AsiaRiceYield4km, (b1) for SPAM, and (c1) for the observed yields. 

3.42 SThe spatiotemporal spatial characterizations of AsiaRiceYield4km 

Based on the estimated seasonal yields from optimal ML models, we characterized the spatiotemporal 

patterns of rice yields during the period 1995-2015. At the spatial scale, single rice is widely distributed 365 
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in 11 countries across the whole area, where its yield varies greatly from 400 to 10000 kg/ha with an 

average of 5428 kg/ha. Specifically, the highest average yield is in China (7384 kg/ha) and the lowest 

yield is in India (1889 kg/ha). Such a large difference might be ascribed to better irrigation in China 

(Dawe et al., 2010) and relatively low-level soil fertility, investment, and technology in India (Srivastava 

and Mahapatra, 2012). Double rice mostly distributed between 30°N~0°. Double rice has insignificant 370 

differences between early yield and late yield: early rice ranges from 1041 to 8347 kg/ha with an average 

yield of 4598 kg/ha; late rice ranges from 666 to 7977 kg/ha with an average yield of 4539 kg/ha. Triple 

rice seasons are planted in Bangladesh and Vietnam. The ranges of rice yield for spring, autumn, and 

winter are from 3034 to 6249, from 2690 to 6986, and from 2514 to 10870 kg/ha, with corresponding 

averages of 4153, 4716, and 7794 kg/ha, respectively. Notably, the highest average yield is 8597 kg/ha 375 

for winter rice in Bangladesh, due to its high-yielding hybrid varieties and well-managed fieldwork (e.g., 

fully irrigated increasing fertilizer, pesticides, and herbicides applications) (Meroni et al., 2021). 
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Figure 74: Spatial patterns of the predictedestimated rice yields (averages during the period 1995-2015) for 

different seasons.  380 
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For the temporal scale, the interannual rate of yield change (defined as yield difference of last 

year and current year divided by yield of last year) from 1995 to 2015 for each case is shown in Fig. 

8. The annual rate ranges from -18.55% to 25.57%. The average interannual rate during 1995-2015 

increases for most cases, with the exception of single rice for Japan (-0.01%) and the early season of 

double rice for Thailand (-0.11%). Among all cases, the greatest average rate is 2.65% in Cambodia.  385 

 

Figure 8: Temporal variation ofin the estimated rice yield change for different seasons from 1995 to 2015. 
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4 Discussion 

4.1 Frequency and importance of the predictors in ML models  

In this study, 50 predictors were used in ML models but their contributions greatly varied. First, only 390 

predictors having a significant correlation with yields were selected for ML models, with the exception 

of temporal and spatial predictors (Year, Lon, Lat, and Ele) (details in Sect. 2.3.2). As a result, the 

selection frequency of temporal and spatial predictors was 27 times and the selection frequency of other 

predictors ranged from 2 to 25 times (Fig. 9a). Using the selected predictors, ML models then predicted 

estimated rice yields and ranked the importance of each predictor (Fig. 9a). The results showed that 395 

temporal and spatial predictors had relatively greater average importance (>0.05) and that the importance 

of the remaining predictors was lower than 0.03 (Fig. 9a). 

For different growing periods, REP predictors had greater average importance (0.010) in ML 

models followed by WGP and VEP predictors (0.007 and 0.005). The average selection frequency for 

WGP and VEP predictors (8.4 and 10.9 times, respectively) was much lower than that of REP (14.5 400 

times). Therefore, REP predictors contributed the most to yield estimation, which was also consistent 

with previous studies (Chang et al., 2005; Nazir et al., 2021). In addition, we also found that EGP 

predictors (0.014 and 21.3 times) had greater average importance and selection frequency than CGP 

predictors (0.007 and 11.3 times), respectively, indicating the stronger response of rice yields to extreme 

growth conditions. 405 

Figure 9b further proportioned the importance of the four predictor categories for each seasonal rice. 

Although the proportioned importance varied for different rice seasons, the overall contribution was 

highest for CEC predictors (45%) followed by EGP (21%), TI (18%), and CGP predictors (16%). CEC 

had the greatest proportioned importance for most countries which suggested the great importance of the 

geographical environment for rice yield estimationprediction. More interestingly, the importance of CEC 410 

predictors for Myanmar, Thailand, and the late season of Vietnam exceeded 0.8.  
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Figure 97: (a) Averaged frequency and importance of each predictor. (b) The proportioned importance of 

each predictor categories category for seasonal rice.  

4.2 Improvements in AsiaRiceYield4km 415 

AsiaRiceYield4km is a seasonal rice yield product with high spatiotemporal resolutions and a long time 

span across the dynamic rice planting areas in the main rice-producing countries of Asia. Compared with 

SPAM, the spatial resolution of our AsiaRiceYield4km is 4km which is the current highest resolution 

among all rice yield datasets. Additionally, the product period covers from 1995 to 2015 and includes 

multi-seasonal rice yields within one year, with more information than most other rice yield datasets. 420 

Similarly, AsiaRiceYield4km considered both the annual dynamic change in rice-planting areas and 

phenological information at a grid scale, rather than a constant planting area map and fixed growing 

period. Such dynamic information assisted us in capturing better spatial and temporal variations in rice 

yields, and consequently greatly improved the accuracy of our product. Moreover, we applied four 

predictor categories and the optimal ML models to predict estimate seasonal yields. Four predictor 425 

categories provided comprehensive rice growth information to ensure the accuracy of yield 
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predictionsestimations. The optimal models for each rice season are determined by the IPW method. As 

a weighted ensemble assessment to fully consider training, validation, and testing accuracy, we are 

certain that the IPW method is more robust and reasonable to select the optimal model for seasonal rice 

yield in Asia. 430 

4.3 Uncertainty analysis 

In this study, we have improved the yield prediction processes to ensure the accuracy of the 

AsiaRiceYield4km product as much as possible, however, several factors might negatively impact its 

accuracy. Due to the limitations of remote sensing techniques (i.ee.g.., clouds and topography), some 

paddy rice areas cannot be recognized, consequently leading to map errors (Han et al., 2022). The 435 

spatial resolutions of multi-source data also cause uncertainties. For example, given that the rice 

planting areas in Asia are always fragmented (Lowder et al., 2016) but the LAI resolution in this study 

is somehow coarser (0.05°), the mixed-pixel problem will inevitably influence the accuracy of 

AsiaRiceYield4km in small size rice-planting areas. Although the GLASS LAI has highest accuracy 

and lowest uncertainty and we have made several efforts to mitigate the uncertainty, there is still 440 

uncertainty and inevitable effects on the rice yield estimation (Liu et al., 2018; Li et al., 2018; Fang et 

al., 2019; Chen et al., 2020). In addition, the crop intensity used in this study is administrative scale. 

The annual crop intensity variation in rice still inflects the yield estimation results. Finally, due to the 

lack of a process-based mechanism, ML is weakly traceable and interpretable for rice yield variability 

(Muruganantham et al., 2022), especially for extreme rice yields. Nevertheless, compared with other 445 

public products (Fig. 6), our methods still generated better seasonal rice yield predictions at a higher-

spatiotemporal-resolution for a longer period.  

5 Data availability 

The seasonal rice yield product for Asia during the period 1995-2015 (AsiaRiceYield4km) is available 

at https://doi.org/10.5281/zenodo.6901968 (Wu et al., 2022). We encourage users to independently verify 450 

data products before using them. 

https://doi.org/10.5281/zenodo.6901968
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6 Conclusions 

We produced a long-term seasonal rice yield dataset with high spatiotemporal resolution on dynamic 

paddy rice areas in Asia by using multi-source data and ML models. Our AsiaRiceYield4km dataset has 

higher accuracy than other public datasets and shows more spatial consistency with the observed yield. 455 

We attributed such improvements to more dynamic information (e.g., rice area and phenological dates), 

full consideration of rice growth conditions, and the novel IPW method to select the optimal ML model. 

Moreover, we discovered that constant environmental conditions contributed the most (~45%) to rice 

yield prediction than other growing conditions. Predictors in REP had more impacts on yield predictions 

than those in WGP and VEP. Our dataset can address the lack of seasonal rice yield datasets and support 460 

studies related to agricultural production and development. 
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