
Dear Editors and Reviewers: 

Sincere thanks for the evaluation of this work and your valuable comments and suggestions for 

improving this manuscript. We carefully considered the concerning points and made efforts to improve 

the rigor, logic, and clarity of our manuscript (essd-2022-273) titled “AsiaRiceYield4km: Seasonal Rice 

Yield in Asia from 1995 to 2015”. Here we submit the revised version, which has been modified 

according to the comments from the reviewers. The major changes that we made in the revised 

manuscript are summarized as follows: 

(1) To make the manuscript more readable, some words and phrases were clarified including case, 

administrative unit, and the three key phenological dates. 

(2) To further illustrate the dataset division rules and gridded yield estimation, we revised (1) Dataset 

division rules and added one paragraph named (5) Gridded rice yield generation in Sect. 2.3.3. And the 

Fig. 2 step3 was also revised. 

(3) As suggested, we added the temporal validation of AsiaRiceYield4km compared with observed yields 

(Sect. 3.2) and the temporal variation analysis of AsiaRiceYield4km from 1995 to 2015 (Sect. 3.4). 

(4) Some uncertainty from GLASS LAI, crop intensity maps were added into Sect. 4.3 Uncertainty 

analysis. 

(5) More information of the data sources and model parameters were listed in the revised supplement.  

 

We attach the detailed item-by-item response to all comments and suggestions for the evaluation. 

Yours sincerely, 

Zhao Zhang and co-authors 

COMMENTS FROM EDITORS AND REVIEWERS: 

---------------------------------------------------------------------- 

 

Review #1: 

General Comment: This manuscript developed a high spatial resolution (4km) rice yield dataset from 

1995 to 2015, covering major rice growing seasons and regions in Asia. Overall, this dataset would be a 

good complement to current rice yield products due to its high spatiotemporal resolution. I have the 

following questions or suggestions, which may help improve the manuscript clarity. 

 

Response to general comment:  

We are grateful for anonymous referee #1’s recognition of this study’s importance. We carefully revised 

our manuscript and provided a point-by-point response below. We have addressed all points raised in the 

revised manuscript.  

---------------------------------------------------------------------- 

Note: The individual comments (shown in black) are listed below including our responses (shown in 

blue) and revised parts in the manuscript (shown in red and italic font). Line numbers (shown in blue 

and bold font) that we mention in this comment refer to our revised manuscript with all markup version. 

 

Comment 1: The authors used the GLASS AVHRR LAI data to extract key crop phenological indicators 

for training, including planting, heading, and harvesting dates. However, since rice fields in Asia are very 

fragmented and the spatial resolution of GLASS LAI data (i.e., 0.05 deg) is not fine enough to capture 

pure rice LAI information, there should be mixed-pixel problems. How did the authors deal with these 

problems? In addition, I would say the extracted planting and harvesting dates are more of indicators of 



the early rapid growth and senescence stages rather the real planting and harvesting dates. The authors 

should clarify these conceptual differences to avoid possible confusions. 

 

Response to comment 1:  

Thank you very much for your comments and suggestions.  

Yes, mixed-pixed problems could impact accurately retrieving crop information. We agree with you 

that the problems could affect the extraction of LAI information. Fortunately, some efforts can reduce 

the mixed-pixel influence in some degree such as our efforts. Firstly, GLASS LAI product has the highest 

accuracy and the lowest uncertainty compared with other available LAI products (Xiao et al., 2016; Liang 

et al., 2021). Secondly, we used annual paddy rice of 500 m as base maps which can reduce the influence 

of other land cover types by capturing the dynamic temporal variation of rice distribution (Lines 124-

125). Moreover, only pixels with LAI value within or equal to average ± two times standard deviation 

were selected to identify rice growing information for the reduction the  interference of abnormal values 

(Lines 211-212). Finally, we filtered out a fraction of pixels where the rice growing information couldn’t 

be detected by inflection-based and threshold-based methods (details in Sect. 2.3.1). These measures 

helped us to reduce the influence caused by mixed-pixel problems. The accuracy of phenological 

information used in this study was satisfactory enough (R2 > 0.8) for the main rice-cropping seasons 

according to Zhang et al. (2022). Nevertheless, we further discussed the relevant uncertainties in Sect. 

4.3.1 (Lines 436-439). 

Thank you for pointing out these conceptual differences of the phenological information. The 

extracted planting dates were the transplanting dates which located in the early rapid growth stage 

(Mandal et al., 2018). For harvesting dates, they referred to the occurrence of leaf senescence at maturity 

period (Ogawa et al., 2021; Ni et al., 2021; Zhou et al., 2019). These two dates are truly indicated the 

early rapid growth and senescence stages. However, these extraction rules were thought as transplanting 

and maturity dates detection according to most previous studies (Luo et al., 2020; Niu et al., 2022). To 

avoid ambiguity, we replaced planting with transplanting and harvesting with maturity according to 

relevant researches (Dong and Xiao, 2016;). Correspondingly, the figure of LAI extraction in Fig. 2 Step1 

was also revised. 
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Comment 2: The authors used the Pearson correlation analysis to identify those predictors with a 

significant correlation with rice yield at each administrative unit for training (Lines 218-220). I'm curious 

if the authors trained the model in each administrative unit and then combined all the training results to 

get the rice yields for the entire Asian region. More explanations about the experimental implementations 

should be given. Meanwhile, how do the authors deal with the multicollinearity problems of these 

predictors? There is a significant correlation between the different predictors in Table S3. In addition, I 

found very limited information on hyper-parameters in the supplementary material, the authors may want 

to provide detailed information of those parameters in each optimal model (e.g., how many hidden layers, 

node numbers, and max-depth, etc). Furthermore, in Line 295, detailed information on the trained 27 

optimal models should also be give (maybe present in the supplementary material). 

 

 

Response to comment 2:  

Thanks very much for your constructive comment.  

We trained the optimal models in each case (one specific rice-cropping period, including all 

administrative units in the country. Such training case contains many administrative units which are at 

the minimum administrative division scale with available rice yield records from 1995 to 2015. The 

gridded predictors selected in these cases were input into the optimal models to produce the gridded rice 

yield and all the gridded rice yield were combined to get the AsiaRiceYield4km dataset. We agreed with 

you that more experimental implementations should be given, thus we added more details in the revised 

manuscript Sect. 2.3.2 (Lines 226-229) and one new paragraph named (5) Gridded rice yield estimation 

in Sect. 2.3.3 (Lines 296-299). Besides, Figure 2 was adjusted correspondingly.  

Multicollinearity problems can affect the performance of regression models (Ma and Cheng, 2016; 

Yang et al., 2022), but machine learning (ML) can overcome this problem in some degree (Feng et al., 

2016; Zhao et al., 2019; Guo et al., 2021; Chan et al., 2022). ML can capture non-linear relationships and 

handle the interactions among predictors (Breiman, 2001; Shalev-Shwartz and Ben-David, 2014; Leng 

and Hall, 2020). Specifically, both random forest (RF) and extreme gradient boosting (XGBoost) are 

tree-based algorithms which can inherently immune to multicollinearity problems (Guo et al., 2021). 

Besides, the bagging process in RF and bootstrapping process in XGBoost can also mitigate 

multicollinearity effects according to Ma and Cheng (2016) and Ma (2020).  

For hyper-parameters, we followed your suggestions to add hyper-parameter spaces in the revised 

supplement. Besides, more details about the defined space and the optimal set of values were listed in 



the supplement (Table S4 and S5) and the Python library details of ML algorithms were also presented 

(Lines 34-36 and 37-39 in the supplement). 
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Comment 3: The authors compared their dataset with observations via scatter plots (Figure 5). 

This is good. However, it would be better if the authors can additionally provide comparisons 

of the interannual variations in rice yield for each rice system (e.g., single, double early and 

later) in each country (there should be some survey data). The performance of your dataset in 

capturing interannual variations in rice yield is important. 

 

Response to comment 3:  

Thanks very much for your constructive comment.  

We agree with you that the comparison of interannual variation is essentially important for rice yield 

dataset. Here, we added interannual comparison between AsiaRiceYield4km and observed yields for all 

countries. The results showed that our dataset has good consistency with the observed yield for all rice 

growing seasons. This comparison result analysis was added to the revised Section 3.2 Comparing 

AsiaRiceYield4km products in the manuscript (Lines 338 to 345). 

 

Comment 4. The authors used cumulative values of predictors (e.g., LAI and PDSI) in different 

phenological periods (e.g., vegetative and reproductive) to train models. However, these 

cumulative information has no actual physiological significance. Meanwhile, considering that 

crop phenological dates (e.g., planting and harvesting) vary from year to year, it would be better 

to use the average value of these predictors over each phenological periods for training (i.e., 

more comparable across years). 



 

Response to comment 4:  

We did select eight cumulative growing predictors (CGP) during annual rice phenological stage, 

including leaf area index (LAI) and seven climate variables. LAI can indicate the vegetational variation 

in rice growing status and biomass. Therefore, we believe the cumulated LAI predictors have the actual 

physiological significance as many previous studies confirmed. Meanwhile, the cumulative climate 

predictors represent weather conditions during rice growing period which have no physiological 

significance, the same for the cumulative climate ones. 

Nevertheless, we still followed you to replace predictors from CGP category with average values in 

some cases to validate the estimate results. According to Fig. C1, difference of R2 and RMSE for the three 

cases is 0-0.2 and 7-59 kg/ha, respectively. The predictors from average values had the similar impact on 

rice yield estimation with those from CGP. Such comparison results are attributed to the good consistency 

between CGPs and their related averages. Moreover, compared with the monthly resolution of weather 

predictors, the small change (±10 days per decade, Zhang et al., 2022) of temporal variation of rice 

phenological dates do not significantly affect the results. Therefore, we still used cumulative values for 

rice yield prediction. 

 

Fig. C1: The accuracy of AsiaRiceYield4km and the average. 
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Comment 5: I would suggest that the authors get editing help from someone with full 

professional proficiency in English, as the current manuscript has substantial language issues. 

I pointed out some, but not all. 

 

Response to comment 5: 

Thanks very much for your suggestions.  

The manuscript was carefully revised with the help of professional editors of AJE 

(https://www.aje.cn/?_ga=2.249467463.1174155384.1668480853-862469041.1668480853, last 

accessed: 15 November 2022). The editing certificate was as follows: 

 



 

Figure C2: Editing certificate for the manuscript. 

Other concerns: 

Comment 6: Line 72: When you say prediction, it is more of a future period than a historical period. 

 

Response to comment 6: 

Thank you. We realized that it is inappropriate to use rice yield prediction for a historical period 

dataset. We change “prediction” to “estimation” and “predicted” to “estimated” throughout the 

manuscript. 

 

Comment 7: Line 112: Change “i.e., ” to “e.g., ” 

 

Response to comment 7: 

Corrected as suggested. The same errors were also corrected in Line 434. 

 

Comment 8: Line 113: Change “Philippines” to “China”: the season number of 12 and 13 should 

belong to China. 

 

Response to comment 8: 

Thank you, we apologized for our carelessness. We have made this correction to the manuscript. 

 

Comment 9: Line 117: Change “are” to “were”. 

 

Response to comment 9: 

Corrected as suggested. 

 



Comment 10: Line 275: Have you tried any other proportions (e.g., 0.6/0.2/0.2) to examine the 

robustness of your datasets, trained models and evaluation results? 

 

Response to comment 10: 

According to your suggestion, we have tried different proportion strategies for ML models (Table C1). 

For the two dataset division strategies, we used R2 and RMSE of training, validation, testing and 

estimation result for accuracy comparison. For the two division strategies, the results showed similar 

accuracy. It suggested that our datasets, trained models and evaluation results were robustness.  

 

Table C1: Accuracy of rice yield estimation for different proportion strategies. 

Case 
Division 

strategy 

R2 (%) RSME (kg/ha) 

Training Validation Testing Estimation Training Validation Testing Estimation 

Single season for 

Republic of Korea 

0.6/0.2/0.2 99 69 67 79 22 232 219 190 

0.56/0.24/0.2 99 68 64 80 25 226 232 186 

Early season for 

Thailand 

0.6/0.2/0.2 99 83 70 85 37 322 412 303 

0.56/0.24/0.2 99 83 71 84 39 326 409 314 

Autumn season 

for Vietnam 

0.6/0.2/0.2 99 77 84 64 53 510 332 633 

0.56/0.24/0.2 99 77 83 65 67 536 353 618 

 

 

Comment 11: Figure 3: What does the legend mean? I didn’t see any difference in the color of these 

dots. 

 

Response to comment 11: 

For Fig. 3, the legend referred to the training accuracy (R2 and RMSE). We are sorry that the previous 

legend range is too large (R2: 0 - 1; RMSE: 0 - 1000kg/ha), resulting in no differences for estimated 

models. We have adjusted the legend range to: R2 from 0.9 to 1 and RMSE from 0 to 500kg/ha, as the 

training R2 was over 0.9 and the training RMSE was lower than 400 kg/ha for all optimal models (Line 

316-322).  

 

Comment 12: Section 3.2: I would suggest moving this section to the end of “3 Results”. Meanwhile, 

you should add additional analysis of temporal variations. 

 

Response to comment 12: 

Thanks very much for your constructive comment. We have moved Sect. 3.2 to the end of Sect. 3 and 

adjusted the title to 3.4 The spatiotemporal spatial characterizations of AsiaRiceYield4km. The analysis 

of temporal variations for rice yield was also added (Lines 381-387). 

 

Comment 13: Line 417: Add using: by “using” multi-source 

 

Response to comment 13: 

Corrected as suggested. 

 



Comment 147: Table S1: names of the local administrative unit presents the specific… -> names of the 

local administrative unit represent the specific… 

 

Response to comment 14: 

Corrected as suggested. 

 

Comment 15: Table S2: Provide the full names of these abbreviations in the footnotes. 

 

Response to comment 15: 

The full names have been added. 

 

Comment 16 : Table S3: What do you mean in these rows: 

                  The sum of for whole growing period 

                  The sum of for vegetative stage 

                  The sum of for reproductive stage 

                  The maximum for whole growing period 

 

Response to comment 16: 

We feel sorry for our carelessness. Variable “wind speed” was missing. Thanks to your kind reminder, 

we have revised and simplified them in Table S3. These rows were: 

Sum of wind speed for whole growing period 

Sum of wind speed for vegetative period 

Sum of wind speed for reproductive period 

Maximum wind speed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Review #2: 

General Comment: High-spatial and high-temporal resolution rice yield datasets are lack especially 

over large regions. The manuscript employed machine learning algorithms to generate long-term high-

resolution rice yield over the South Asia, Southeast Asia, and East Asia. Undergoing a study at 

continental scales like this is a huge project. The 5km rice yield map over the major rice producing 

countries in Asia from 1995 to 2015 fills the data gap for assessing the impacts of climate change and 

the sustainable development. However, I have a few major concerns to be addressed so that the 

manuscript could be more solid. 

 

Response to general comment: We are grateful for anonymous referee #2’s recognition of this study’s 

importance. We carefully revised our manuscript and provided a point-by-point response below. We 

have addressed all points raised in the revised manuscript.  

---------------------------------------------------------------------- 

Note: The individual comments (shown in black) are listed below including our responses (shown in 

blue) and revised parts in the manuscript (shown in red and italic font). Line numbers (shown in blue 

and bold font) that we mention in this comment refer to our revised manuscript with all markup version. 

 

Comment 1: (1) The rice cultivated area is the fundamental information for rice yield estimation. The 

manuscript used rice map for each year from 2000 to 2020 while the yield model was developed and 

used to estimate spatial distribution of rice yield during 1995 to 2015. Since most input dataset used for 

rice yield model in the study are available for the year 2000 to 2020, why not generating rice yield for 

2000 to 2020 so that the map and the rice yield coincided with each other for the same year? 

 

Response to comment 1:  

Thank you very much for your comments and suggestions.  

Our main objective in the study is to produce a long-term rice yield dataset with higher 

spatiotemporal resolutions and seasonal information across Asia. Although multi-sources data were used, 

available rice yield was the dominant factor for time span which was essential for model training and 

accuracy validation. After inputting our most efforts, we can only obtain the yield records of 1995~2015 

for most countries (Table S2). Therefore, the time span of this study was selected from 1995 to 2015.  

 

Comment 2: (2) Another concern is the way of predictor selection. The authors selected the predictors 

based on the correlation analysis between indicators and the yield at each administrative unit. While this 

is in general logic, it might be a problem when great differences existed in cropping patterns and the rice 

management in an administrative unit. The correlations may fail to achieve a significant level when an 

improper unit was targeted. This needs more clarification. Please also specify the administrative unit. Is 

it national level or sub-national level administrative units? 

 

Response to comment 2:  

Thanks very much for your constructive comment.  

The administrative unit is the sub-national level unit which is at the minimum administrative 

division (including first, second and third levels, Table S1) scale in this study. Differences of the cropping 

patterns and the rice management do exist at a national level, while those in the minimum administrative 

division for each country are smaller.  



Besides, the selected predictors in our study consistently indicated significant relationships with 

yield. To make our manuscript clearer, we have added more descriptions for administrative units (Lines 

114-115). The administrative division for each country were also listed in Table S1 according to your 

advice. 

 

Comment 3: (3) The authors only used one vegetation indicator LAI as the inputs. It is assessed by 

several research that LAI products are of high uncertainty even for the improved GLASS LAI products. 

The product still has some abnormal values and unrealistic seasonality especially in winter. From my 

understanding, using LAI products might introduce high uncertainty in yield model which is unable to 

be solved. 

 

Response to comment 3:  

Thanks very much for your constructive comment.  

Considering the spatial and temporal resolutions, GLASS LAI products are more appropriate for 

our research than other latest public products even with higher spatial resolution. GLASS LAI products 

have the highest accuracy and the lowest uncertainty compared with other available LAI products 

according to Xiao et al. (2016) and Liang et al. (2021). In addition, the abnormal values and unrealistic 

seasonality of LAI are always over the northern high latitudes and the equatorial belt due to cloud/snow 

coverage and low solar zenith angle in winter (Garrigues et al., 2008; Jin et al., 2017). However, for 

northern areas at high latitudes area, there is no rice planting in winter. Only some rice planting area of 

Malaysia and Indonesia located in the equatorial belt may be affected by these problems. Moreover, only 

5 LAI variables, accounting for one-tenth of all variables, were used and preprocessed to filter abnormal 

pixels and those without rice growth patterns (Sect. 2.3.1) to reduce the uncertainty from LAI. In the 

revised manuscript, we have suggested the process for LAI data (Lines 211-212) and added the 

uncertainty of GLASS LAI in section 4.3 (Lines 439-442). 
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Comment 4: (4) According to the importance of the indicators, static indicators (Year, Lat, Long, Ele) 

are much higher than other indicators. For some countries, the proportioned importance of CEC+TI 

indicators could be higher than 90%. And for the whole study area, the CEC+TI are the most important 

indicators. How to explain this? Does this mean there are no need to add other indicators for yield 

mapping? 



 

Response to comment 4:  

Thank you very much for your comments and suggestions.  

Only about half of the models which the importance of CEC+TI are obviously more than 50%, 

which suggests the importance of other indicators (CGP, EGP, CEC) still account for approximately 50%. 

We have attempted to estimated rice yield only by predictors of CEC+TI for some high proportioned 

importance and low proportioned importance cases. All the results were worse than the original models. 

For the high proportioned importance cases, the accuracy of only input CEC+TI predictors decreased 

less than that of low proportioned importance ones.  

It is generally accepted that CEC+TI shows a high proportioned importance on yield estimates, 

which is in agreement with the findings from Huntington et al. (2020), Cao et al. (2021) and Ray et al. 

(2019). The three static predictor, Lat, Lon, and Ele, are the most basic geographical environment for rice 

growing and TI is used to replace the influence on rice yield of long-term agronomic technology 

improvements and varieties renewal because of the management data at a larger scale unavailable. 

Agronomic technology and varieties renewal are essential for rice yield compared with climate change 

and can offset the negative impacts of climate change according to the related studies (Yu et al., 2012; 

Ladha et al., 2021). Therefore, it is reasonable to have a high proportion for the importance of CEC+TI. 

 

Figure C1: Accuracy of AsiaRiceYield4km and only CEC+TI predictors for rice yield estimation. 
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Comment 5: (5) When the model is applied for yield estimation during different growing season, does 

the pixel level cropping intensity map used or it is mainly based on the majority of rice cropping patterns 

in each administrative unit? The uncertainty of season rice yield might exceeded the uncertainty of the 

model due to the biased seasonal rice map. 

 

Response to comment 5:  

Thanks very much for your constructive comment. 

In this study, we identified rice cropping intensity at the administrative scale due to the unavailable 

of suitable gridded rice cropping intensity maps. Although several large scale gridded cropping intensity 

maps were generated recently, they still cannot distinguish different crops especially for rice (Han et al., 

2022; Liu et al., 2021). In this study, RiceAtlas, the most comprehensive and detailed spatial dataset on 

rice cropping intensity, was used. This dataset is nearly ten times more spatially details and has nearly 

seven times more spatial units compared with others (Laborte et al., 2017) which can reflect more explicit 

rice cropping intensity at administrative scale. At gridded scale, only pixels of rice area located in these 

minimum administrative unit with available seasonal rice yield were mapped. Besides, according to 

Response to comment 4 and Sect. 2.3.1, the pixels passed the inflection, and threshold detection were 

used for model training which suggest that these pixels are relative pure and can mitigate the uncertainty 

of rice seasons. We admit that the administrative rice crop intensity will introduce uncertainty for yield 

estimation, and such uncertainty of rice crop intensity had been added into Sect. 4.3 (Lines 439-442).  

 

Reference: 

Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Zhuang, H., Cheng, F., Zhang, J., and Tao, F.: Annual paddy rice planting area and 

cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020, Agric. Syst., 200, 103437, 

https://doi.org/10.1016/j.agsy.2022.103437, 2022. 

Laborte, A. G., Gutierrez, M. A., Balanza, J. G., Saito, K., Zwart, S. J., Boschetti, M., Murty, M. V. R., Villano, L., Aunario, J. K., 

Reinke, R., Koo, J., Hijmans, R. J., and Nelson, A.: RiceAtlas, a spatial database of global rice calendars and production, Sci. Data, 

4, 170074, https://doi.org/10.1038/sdata.2017.74, 2017. 

Liu, X., Zheng, J., Yu, L., Hao, P., Chen, B., Xin, Q., Fu, H., and Gong, P.: Annual dynamic dataset of global cropping intensity 

from 2001 to 2019, Sci. Data, 8, 283, https://doi.org/10.1038/s41597-021-01065-9, 2021. 

 

 

Comment 6: (6) Any possibility to use some in-situ collected actual yield data to validate the yield map? 

 

Response to comment 6:  

Thanks very much for your constructive suggestions.  

Although it’s difficult to collect in-situ yield for such a larger area, a fraction of in-situ single rice 

yield data is available from 1995 to 2015 in China. These data are obtained from China agro-

meteorological stations, which are maintained by China Meteorological Administration (CMA) 

(http://data.cma.cn/). Fig. C2 presents the locations of the 47 agro-meteorological stations.  

Fig. C3 shows that AsiaRiceYield4km was well consistent with in-situ yield as the average R2 was 



0.55 during 1995-2015. Moreover, the R2 at the specific years could be as high as 0.72 at 2000, followed 

by 0.69 at 2005 and 0.68 at 2010. Besides, the RMSE was lower than 600 kg/ha at 2005, followed by 714 

kg/ha at 2000 and 899 kg/ha at 2010. Therefore, the in-situ validation results were well satisfactory. 

The RMSE for all years (Fig C3a) was somehow large (1019 kg/ha). Several reasons might cause 

such bias: the rice area planted at the agro-meteorological stations was generally lower than 0.015km2, 

largely smaller than our pixel size (4×4km, 16 km2). Besides, rice at agro-meteorological stations was 

well managed, thus such in-suit yields failed in characterizing those records at an administrative scale. 

Overall, the scale differences might be attributed as the main reason for the validation uncertainties. 

 

Figure C2: Location of the selected agro-meteorological stations. 

 

 



Figure C3: (a) Accuracy between AsiaRiceYield4km and in-situ yield for all years. (b) The accuracy between 

AsiaRiceYield4km and in-situ collected actual yield in 2000, 2005 and 2010. 

 

Specific comments: 

Specific comment 1: (1) Page 4 Line 106, what do you mean by 27 seasons? 

 

Response to specific comment 1:  

Thank you.  

Here, 27 seasons refers to 27 different rice-cropping periods in 14 countries. However, we have to 

admit that “season” might confuse readers. Therefore, we’ve changed “season” into “case” and added 

the explanation for “case” (one specific rice-cropping period in a country). Relevant sentences in the 

manuscript were also modified. 

 

Specific comment 2: (2) The authors collected many rice yield data from different sources. Please add 

more detailed information of the yield data including the spatial units, temporal extent, etc. 

 

Response to specific comment 2:  

Thanks very much for your constructive comment.  

We have added detailed administrative scale and temporal information in the revised Supplement 

Table S1. 

 

Specific comment 3: (3) Page 10, Line 229 – 234, the dataset was first divided into two parts according 

to the administrative units. 80% of the administrative units were randomly selected as training and 

validation among which 70% of samples were used for training and 30% were used as validation sets. In 

this case, the training samples were not 56% of the whole dataset. Same for validation and testing. Please 

make it more clear for readers. 

 

Response to specific comment 3:  

Thanks very much for your constructive comment.  

The dataset division in the original manuscript is incomprehensible. For each case, 20% of the 

subset was selected randomly by administrative units. The rest of the 80% was split into 70% for training 

and 30% for validation. One sample is one administrative unit in one year with several predictors. 

Therefore, the training, validation, and testing dataset were 56% (80%×70%), 24% (80%×30%), and 

20% (20%×100%) of the whole data, respectively (Fig. C4). The original flowchart was misleading. We 

have reorganized the expression of the dataset division (Lines 241-245) and redrawn the flowchart of 

the dataset division (Fig. 2 step3). 
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Figure C4: Dataset division rules 

 

Specific comment 4: (4) Add more testing results for other years. The authors estimated rice yield for 

Asia for 1995-2015 but was insufficiently validated and tested for different years. Also, the temporal 

changes of rice yield should be added to result and discussion sections. 

 

Response to specific comment 4:  

Thanks very much for your constructive comment.  

We have added the temporal comparison of AsiaRiceYield4km and observed yields in Sect. 3.2 

(Lines 338 to 345) for all years to validate the temporal accuracy of our results. Moreover, temporal 

variation analysis of rice yield was also included in Sect. 3.4 (Lines 381-387). 

 


