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Abstract. Measuring the spatiotemporal dynamics of lake and reservoir water storage is fundamental for assessing the 

influence of climate variability and anthropogenic activities on water quantity and quality. Previous studies estimated relative 

water volume changes for lakes where both satellite-derived extent and radar altimetry data are available. This approach is 

limited to only a few hundred lakes worldwide and cannot estimate absolute (i.e., total volume) water storage. We increased 

the number of measured lakes by a factor of 300 by using high-resolution Landsat and Sentinel-2 optical remote sensing and 10 

ICESat-2 laser altimetry, in addition to radar altimetry from the Topex/Poseidon, Jason-1, -2 and -3, and Sentinel-3 and -6 

instruments. Historical time series (1984-2020) of absolute storage could be derived for more than 170,000 lakes globally with 

a surface area of at least 1 km2, representing 99% of the total volume of all water stored in lakes and reservoirs globally. Within 

this data set, we investigated how many lakes can be measured in near real-time in basins worldwide. We developed an 

automated workflow for near real-time global lake monitoring of more than 27,000 lakes. The historical and near real-time 15 

lake storage dynamics data from 1984 to current are publicly available through https://doi.org/10.25914/K8ZF-6G46 (Hou et 

al., 2022) and a web-based data explorer www.globalwater.online. 

1. Introduction 

Lakes and reservoirs are a key component of the global water cycle through their contribution to land-atmosphere exchanges, 

river-floodplain dynamics and groundwater systems. Lakes also emit substantial quantities of carbon dioxide and methane into 20 

the atmosphere through biogeochemical processes (Bastviken et al., 2011; Raymond et al., 2013). The seasonality of natural 

lakes sustains ecosystems and biodiversity, whereas constructed reservoirs provide an often essential water supply to society 

(Vörösmarty et al., 2010). Therefore, monitoring the quantity and quality of these surface water stores has important 

applications across a wide range of societal, environmental and economic areas. 

 25 

Globally, surface water resources have become vulnerable to climate change and anthropogenic pressure (Vorosmarty et al., 

2000). However, the processes, influences and consequences involved are still poorly understood in the absence of long-term 

historical spatiotemporal dynamic information for lake dynamics. Shifts in seasonal cycles and extreme events are reported or 

predicted for many lakes due to climate change, which may worsen the already uneven distribution of water resources (Oki 

https://doi.org/10.25914/K8ZF-6G46
http://www.globalwater.online/
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and Kanae, 2006; Wang et al., 2018). This stresses the need for global monitoring of lake dynamics, preferably in near real-30 

time (NRT), e.g., a latency of 1~10 days. 

 

Remote sensing approaches to global lake monitoring have benefitted from the substantial increase in Earth observation 

technologies over the last four decades (Papa et al., 2022). Remote sensing offers monitoring capability with coverage and 

consistency impossible to achieve with in situ networks (Alsdorf et al., 2007). Most natural lakes are ungauged, perhaps 35 

because they are generally more significant to ecosystems and biodiversity than for human activities and economic gain. 

Conversely, most large dam reservoirs are gauged, but the records are generally not publicly accessible. This lack of in situ 

measurement impedes understanding the change and variability of lakes worldwide. Remote sensing provides a tool to tackle 

these issues and improve our incomplete knowledge about long-term changes in lakes at the local, regional and global scale. 

    40 

Accurately locating lakes and reservoirs is the first step toward monitoring storage dynamics with remote sensing. Lehner and 

Döll (2004) used a range of data and digital maps to develop the Global Lakes and Wetlands Database (GLWD), which 

delineated the boundaries of global lakes and reservoirs with a combined area of 2.7 million km2. Based on GLWD and other 

regional and global data sources, Messager et al. (2016) developed the HydroLAKES database that provides detailed attribute 

information, such as shoreline length, size, and hydraulic residence times for 1.43 million lakes. The Global Water Bodies 45 

Database (GLOWABO) developed by Verpoorter et al. (2014) detected around 117 million lakes based on high-resolution 

satellite imagery. However, this dataset does not distinguish between lakes, rivers, floodplains and wetlands, unlike the 

HydroLAKES database, which means that the number of lakes is overestimated. Lehner et al. (2011) compiled the storage 

capacity and characteristics of 6,862 dams and reservoirs in the Global Reservoir and Dam database (GRanD). By 2020, there 

were 58,713 dams registered by the International Commission on Large Dams (ICOLD), but most of them are still not 50 

georeferenced. This gap was addressed by the Global Georeferenced Database of Dams (GOODD), in which Mulligan et al. 

(2020) captured the locations of more than 38,000 dams from multiple satellite sources. The more recent Georeferenced global 

Dams And Reservoirs (GeoDAR) dataset (Wang et al., 2022) not only provides the locations of 22,560 dams but also delineates 

the boundaries of 21,515 reservoirs around the world. 

 55 

Radar altimetry, such as from the TOPEX/Poseidon, Jason-1/2/3, ENVISAT, ERS-1/2 and Sentinel-3/6 instruments, has 

proven useful in measuring water levels in lakes and reservoirs (Birkett, 1998; Da Silva et al., 2010; Frappart et al., 2006). 

Global time series of radar altimetry-derived surface water elevation have been compiled in several places, including 

Hydroweb (Crétaux et al., 2011), the Database for Hydrological Time Series of Inland Waters (DAHITI) (Schwatke et al., 

2015), and the Global Reservoirs and Lakes Monitor (GREALM) (Birkett et al., 2010). Based on the GREALM dataset, 60 

Kraemer et al. (2020) evaluated long-term trends in the water level of lakes globally, but their study was limited to around 200 

lakes for which radar altimetry data were available. In contrast, Cooley et al. (2021) demonstrated the ability of ICESat-2 laser 

altimetry to measure water level variability for 227,386 lakes globally.  
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The spatial resolution of global satellite-derived surface water dynamics products improved significantly over the last two 65 

decades. Prigent et al. (2007) and Papa et al. (2010) developed a monthly and 25-km resolution surface water extent dataset 

based on a combination of passive (Special Sensor Microwave/Imager (SSM/I)) and active (European Remote Sensing (ERS)) 

microwave and optical remote sensing (Advanced Very High Resolution Radiometer (AVHRR)). This was refined to daily 

and 250 or 500-m resolution in the surface water dataset developed by Ji et al. (2018) and in the Global WaterPack (Klein et 

al., 2017). The 30-m resolution Global Surface Water Dataset (hereafter, GSWD (Landsat)) surface water maps developed by 70 

Pekel et al. (2016) from imagery from the Landsat sensor series have been one of the most promising data sources to help 

understand long-term changes in surface water resources on Earth. Landsat archives have been the most popular data to 

investigate long-term changes and variability in lakes and reservoirs at either global or regional scale, benefiting from the four 

decades-long archives of images with global coverage and 30-m high resolution (Ogilvie et al., 2018; Sheng et al., 2016; Tao 

et al., 2015; Yao et al., 2019; Zhao and Gao, 2018). Compared to  75 

  

Surface water height and extent are the two basic measurements needed to determine water storage change in lakes and 

reservoirs. Because of the shorter revisit times, daily or 8-day composite MODIS AQUA/TERRA products are less affected 

by cloud cover than 16-day Landsat observations, and the imagery is updated sufficiently rapidly to support near real-time 

(NRT) water monitoring. Some studies have used MODIS-derived water extent and altimetry data to estimate lake storage 80 

changes, such as in the Mackenzie Delta or South Asia, or worldwide (Gao et al., 2012; Normandin et al., 2018; Tortini et al., 

2020; Zhang et al., 2014). However, the 500-m spatial resolution of MODIS fails to detect changes in smaller lakes, which are 

exponentially more numerous than large lakeswhose number soars exponentially as smaller lake sizes are considered. The 30-

m resolution Landsat data, in combination with different altimetry sources, have been shown to be a better option for estimating 

water volume dynamics in lakes and reservoirs, especially those with relatively slowly changing extent (Busker et al., 2019; 85 

Duan and Bastiaanssen, 2013). Landsat satellite series can provide historical observations back to the 1980s. Finally, while 

MODIS- or Landsat-derived water extent and altimetry data have demonstrated the capability to estimate changes in lake water 

storage, they cannot measure lake depth and, therefore, cannot provide absolute water storage volume without using 

bathymetric data. Several studies (e.g., Avisse et al., 2017; Bonnema et al., 2016; Vu et al., 2022) used a digital elevation 

model (DEM) to derive height-area curves and estimate absolute water volume, but the success of this approach depends on 90 

the volume of water present at the time of DEM data acquisition (e.g., February 2000 for the Shuttle Radar Topography Mission 

DEM data often used). To circumvent this, Messager et al. (2016) used the surrounding terrain data (i.e., slope derived from 

the DEM), while Khazaei et al. (2022) used geophysical characteristics and hypothetical idealised geometry (i.e., cone, box, 

triangular prism, and ellipsoid) to estimate water depth for lakes in the absence of bathymetry. Despite those approaches, there 

are currently no data products that provide absolute lake volume estimates at the global scale. 95 
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The objectives of this study were to (1) derive nearly four decades of data on relative and absolute water volume measurements 

for lakes worldwide and (2) enable a global NRT lake monitoring capability. To develop this, we first estimated water body 

extents between 1984-2020 from Landsat-derived surface water maps (i.e., GSWD (Landsat)) for 170,957 lakes with a surface 

area of at least 1 km2. We applied the gap-filling algorithm (Hou et al., 2022) in contaminated Landsat GSWD (Landsat) 100 

surface water images to restore missing data, thus improving the total number of usable images to derive lake area time series. 

Second, we estimated absolute water storage dynamics from 1984-2020 for each lake whose water area and its surrounding 

slope measurements are available using a geostatistical model (Messager et al., 2016). Third, we extended lake volume data 

beyond 2020 to provide near real-time or at least up-to-date information (from hereon referred to as 'NRT' for brevity). as 

Landsat does not provide NRT observations, we We considered a range of alternative satellite data sources (including Sentinel-105 

2, Jason-3, Sentinel-3 and -6, and ICESat-2) with monitoring abilities to derive NRT absolute lake storage. We examined 

where and for how many lakes NRT storage can be estimated using different combinations of these remote sensing data in 

each basin worldwide. Fourth, we extended historical absolute water storage estimates to NRT monitoring using the volume-

height relationship if radar or lidar altimetry data available after 2020. Where only NRT lake water area observations (e.g., 

from Sentinel-2) were available, we converted lake area to storage estimates using a geostatistical model. As these absolute 110 

lake storage products are affected by the bias errors of lake depth estimates from the geostatistical model, we also provided 

relative lake storage estimates for lakes observed simultaneously by optical imagers and altimetry. Overall, this made it 

possible to monitor more than 27,000 lakes and reservoirs worldwide.  The underlying strategy in developing this global lake 

monitoring system was to consider all readily available, validated, and frequently updated satellite data sources, explore the 

relative advantage of each source, and combine them to complement their respective weaknesses. 115 

2. Data and method 

2.1 Data 

2.1.1 Surface water extent  

The Joint Research Centre’s Global Surface Water Dataset (GSWD (Landsat)) provides the spatial and temporal distribution 

of surface water and their statistics at a global scale over the last 37 years. Open water areas larger than ca. 30 m × 30 m were 120 

detected by an expert system using Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic Mapper-plus (ETM+ ) 

and Landsat-8 Operational Land Imager (OLI) images between 1984 and 2020 (Pekel et al., 2016). The omission errors of 

water mapping from Landsat-5, -7 and -8 are less than 5%, while the commission errors are less than 1%. The monthly water 

history and monthly recurrence products from GSWD were used here. The monthly water history product provides monthly 

water mapping from March 1984 to December 2020. Each pixel was classified as open water, land, and non-valid observation. 125 

The monthly recurrence product comprises 12 datasets, one for each month (from January to December). Each shows the 

frequency of inundation in each pixel as a percentage of the number of times water is detected over the total number of clear 

observations in the full-time series. The BLUEDOT water observatory (hereafter BLUEDOT (Sentinel-2); https://www.blue-

https://www.blue-dot-observatory.com/aboutwaterobservatory
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dot-observatory.com/aboutwaterobservatory) provides five-day NRT measurements of surface water extent from 2015 to the 

present for 8,837 lakes globally. The surface water map is derived using normalised difference water index (NDWI) from 130 

clear-day optical Sentinel-2 imagery. We used these data to complement our Landsat data. 

2.1.2 Surface water height  

The Advanced Topographic Laser Altimeter System (ATLAS) onboard the Ice, Cloud and land Elevation Satellite-2 (ICESat-

2) launched by NASA in 2018 is designed to measure the elevation of ice sheets, oceans, lakes and vegetation with a 91-day 

repeat cycle. ATLAS/ICESat-2 determines elevation by measuring the return time of a laser pulse between the satellite and 135 

the Earth’s surface. The six laser beams from ICESat-2 allow it to cover more ground coverage of the Earth’s surface than its 

predecessor (ICESat-1). We used the ATLAS/ICESat-2 L3A Along-Track Inland Surface Water Data, Version 5 (ATL13) 

(Jasinski and Ondrusek, 2021). Unfortunately, updated ATL13 data are not released until 30-45 days after new observations 

are obtained, which does not suit NRT monitoring. Therefore, we also used ATLAS/ICESat-2 L3A Along Track Inland Surface 

Water Data Quick Look, Version 5 (ATL13QL), available within three days of new observations. ATL13 and ATL13QL apply 140 

the same algorithms to derive surface water height measurements for inland water bodies, including rivers, lakes, reservoirs 

and coastal water. The approach is described by Jasinski and Ondrusek (2021), but in brief, the procedure: 1) identifies ATLAS 

beams that intersect inland water body shape masks; 2) collects photons in short segments (~100 m) for calculating water 

height and in longer segments (1~3 km) for estimating and removing subsurface backscatter; 3) applies the physical and 

statistical modelling to derive inland water heights. Cooley et al. (2021) used ATLAS/ICESat-2 L3A Land and Vegetation 145 

Height (ATL08) to derive lake height time series and found the mean absolute error (MAE) between USGS gauge data and 

ICESat-2 height measurements is 0.14 m. Unlike ATL08, the ATL13 used here was designed to measure water height 

variations in rivers and lakes as it considers physical processes of light propagation in open water bodies. An error of 6.1 cm 

per 100 inland water photons has been reported (Jasinski and Ondrusek, 2021). We collected both ATL13 and ATL13QL 

water surface height data from any of the six beams within individual lake boundaries from HydroLAKES and derived water 150 

height for each lake observed by ICESat-2 between 2018 and the present. ATL13QL has larger uncertainties (~100 m) in 

geolocation than ATL13 (~5 m). As a result, segment heights from ATL13QL are 2.7 m, with a standard deviation of ~ 7 m, 

lower than those from ATL13. According to the user guide (Jasinski and Ondrusek, 2021), 2.7 m can be added to ATL13QL 

before merging these two products, and the differences between them have little impact on measuring relative heights. Each 

lake will be revisited by ICESat-2 around every 91 days. This means our ICESat-2-based storage product is limited to providing 155 

up-to-date information on seasonal variation rather than short-term dynamics. However, it has the benefit of providing 

observations with a rapid turnaround. 

  

The Global Reservoirs and Lakes Monitor (GREALM) provides NRT surface water height dynamics for around 500 lakes 

globally using a combination of different satellite radar altimetry (Birkett et al., 2010). It provides two ongoing products (1) 160 

10-day NRT water heights from 1993-present derived from Topex/Poseidon, Jason 1/2/3 and Sentinel-6, and (2) 27-day NRT 

https://www.blue-dot-observatory.com/aboutwaterobservatory
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water heights from 2016-present using Sentinel-3A and B. Satellite radar altimetry determines the surface height by emitting 

microwave pulses towards the Earth’s surface and measuring the travel time between pulse emission and echo reception. The 

accuracy of these radar altimetry-derived water heights varies, mainly depending on the roughness and extent of the water 

body, but is typically within a few cm. 165 

2.1.3 Geostatistical model  

The HydroLAKES database provides the boundary outlines of more than 1.4 million individual lakes globally with a surface 

area above 0.1 km2 (Messager et al., 2016). This database is compiled from several global and regional lake and reservoir 

datasets derived using topographic maps, optical remote sensing imagery composites and radar instruments. HydroLAKES 

also comprises a geostatistical model with parameters to predict average water depths and volumes based on surrounding 170 

topography information for lakes with a surface extent between 0.1 km2 and 500 km2. The geostatistical model (Messager et 

al., 2016) is described as follows: 

 

Log!"(D) = C! + C# 	× Log!"(A) + C$ 	× Log!"(S!"") + s#          (1) 

 175 

where D is the predicted mean depth (m), A the observed surface area of the lake (km2), S100 the average slope (derived from 

DEM) within a 100-m buffer around the lake, C1, C2 and C3 coefficients estimated from fitting the model using global lake 

data for different lakes sizes (i.e., 0.1-1 km2, 1-10 km2, 10-100 km2, 100-500 km2), and s2 the residual variance. The 

fundamental assumption is that one can extrapolate the slope around the lake towards the centre of the lake to estimate lake 

depth. The traditional approach uses a DEM within the lake to derive area-height A-H curves but cannot retrieve true land 180 

surface elevation below water. In comparison, the model used here considers the DEM outside lake rather than inside it and 

hence is not affected by water inundation at the time of DEM acquisition. Messager et al. (2016) reported that the symmetric 

mean absolute percent error (SMAPE) between predicted and reference volume is 48.8% without significant bias in volumes 

for the majority of lakes around the world, with the exception of Finland, Sweden and northwestern Russia, the European Alps, 

and the Andes. We compared this approach with alternative approaches. Khazaei et al. (2022) developed a statistical model, 185 

GLOBahty, relating lake depth with surface water area, elevation, volume, shoreline length, and watershed area. They 

demonstrated that the performance of this statistical model is better than previous approaches to calculating lake depth by 

assuming the lake shape fits one of four geometries: box, cone, triangular prism, and ellipsoid (e.g., Yigzaw et al., 2018). We 

compared both models to in situ data. The resulting SMAPE error for the GLOBahty method was 70.5%, and therefore not 

better than the geostatistical method. This result informed our choice to use the simpler geostatistical method in favour of the 190 

GLOBathy dataset in this study. The uncertainties from the geostatistical model are mainly from the observed surface area and 

the DEM used to derive slope. The omission and commission errors of surface water mapping from GSWD used in this study 

are 5% and 1%, respectively. EarthEnv-DEM90 was used in the geostatistical model to derive slope and its vertical accuracy 



7 
 

is around 10 m (Robinson et al., 2014). We assessed how these errors propagate into water storage estimation in the validation 

analysis.  195 

2.2 Method 

2.2.1 Global historical lake volume estimation 

We estimated water surface extent changes of GSWD (Landsat) water bodies, where the shoreline polygons of lakes or 

reservoirs were delineated with HydroLAKES, as follows. First, we overlaid each lake boundary polygon from HydroLAKES 

on GSWD (Landsat). Second, we introduced a 500-m buffer around the lake to ensure the maximum water extent possible was 200 

enveloped. Third, for each lake, we calculated the number of wet pixels within the lake boundary polygon from the GSWD 

(Landsat) monthly water history product from 1984 to 2020. Lake water extent was then estimated by multiplying the total 

number of wet pixels by the grid pixel area. During this process, we also calculated the contamination ratio of each image as 

the ratio of non-valid pixel values over all pixel values within the lake boundaries. Water extent was not estimated for lakes 

smaller than 1 km2 due to the limited spatial resolution of Landsat. Finally, monthly lake extent time series were produced for 205 

170,957 lakes worldwide. 

 

Landsat images are affected by suboptimal observation conditions (e.g., cloud and cloud shadows) and data acquisition (e.g., 

swath edges, the Landsat-7 Scan Line Corrector failure) and limited archiving of acquired imagery. These factors reduced the 

total number of effective Landsat images available over the 37 years. Previous studies used images with a contamination ratio 210 

below a certain threshold (e.g., 5%) or aggregated the imagery to seasonal, annual or five-year averages (e.g., Shugar et al., 

2020; Yang et al., 2020). However, low-frequency time series can miss important monthly, seasonal and interannual changes 

in surface water extent. Alternatively, higher temporal frequency satellite data such as MODIS may be used to fill gaps in the 

Landsat imagery (e.g., Li et al., 2021). However, this is only possible for the MODIS era, i.e., after 2000, and the spatial 

resolution of MODIS poses an additional constraint on the size of the lake that can be monitored.  215 

 

Here, we applied a simple and effective gap-filling approach we published previously (Hou et al., 2022) to recover missing 

data in partial Landsat water mapping to boost the total number of usable images. Unlike our earlier publication, however, we 

here used a monthly recurrence map rather than a multi-year average recurrence map. This made it possible to restore the 

partially missing maps for the specific month considered, making it more sensitive to seasonal changes. In summary, the 220 

monthly GSWD (Landsat) recurrence product was used to restore missing data in any given month (January to December), 

considering the seasonal changes in surface water extent. For example, the contaminated surface water map derived from 

GSWD (Landsat) in January 2022 was restored using the January recurrence data. This was achieved by, first, matching the 

GSWD (Landsat) extent mapping for different recurrence frequencies in the corresponding month to the available parts of each 

contaminated image. The differential evolution method (Storn and Price, 1997) was used to find the best-fit frequency, 225 
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minimising the difference between the recurrence mapping and monthly water mapping. Subsequently, the mapping at the 

best-fit recurrence frequency was used to reconstruct missing data. The algorithm was implemented for all images with 

contamination ratios ranging from 5% up to 70%. The efficacy of this approach was evaluated and confirmed in a previous 

publication (Hou et al., 2022). 

 230 

For each lake, mean lake water depth dynamics were calculated based on the estimated water extent time series using the 

mentioned geostatistical model of Messager et al. (2016). The predicted mean water depths were bias-corrected by the residual 

variance of its corresponding empirical equations (Messager et al., 2016). Lake water volumes (V in gigalitre (GL), millions 

of cubic meters (MCM) or 106 m3) were estimated by the bias-corrected predicted water depths multiplied by water extents. 

Ultimately, we estimated monthly water storage dynamics from 1984-2020 for 170,611 lakes globally.  235 

2.2.2 Global near real-time lake volume estimation 

To provide routine and low-latency measurements of lake water storage, we obtained NRT satellite-derived water heights and 

extents from different monitoring satellite sources, including ICESat-2), US Department of Agriculture (USDA) GREALM 

and BLUEDOT (Sentinel-2) water observatory (Table 1). We selected all estimates for lakes whose volume dynamics from 

1984–2020 were derived from GSWD (Landsat) with the geostatistical model. We investigated where and for how many lakes 240 

both historical and NRT storages can be estimated reliably around the world. We assumed that if satellite-derived extents and 

levels (e.g., GSWD (Landsat) and ICESat-2) or two satellite sources (i.e., GSWD (Landsat) and BLUEDOT (Sentinel-2)) show 

consistency in lake changes over time, we are able to ensure the reliability of these satellite measurements to derive lake 

volume estimates. We examined pairwise relationships (i.e., AhisV-Hnrt or VAhis-Anrt) of overlapping monthly time series 

between historical volume area (AhisV) and NRT height (Hnrt) or area (Anrt). We only extended historical volume estimation to 245 

NRT monitoring when there was a statistically significant (p<0.05) correlation between the predictor and predictand. 

Specifically, we calculated the significant Pearson correlation threshold (Rt) using a t-test allowing for sample size N (i.e., the 

number of data pairs). If the Pearson correlation (R) between VAhis-Hnrt or VAhis-Anrt exceeded Rt we used Hnrt or Anrt, 

respectively, to estimate lake storage dynamics after 2020.  

 250 

Depending on some of the features of the satellite data sources (BLUEDOT (Sentinel-2), ICESat-2, GREALM), we used 

different approaches to estimate absolute NRT storage. If both historical and NRT sources (i.e., GSWD (Landsat) and 

BLUEDOT (Sentinel-2)) only observed lake area changes, we converted lake area to storage using the geostatistical model 

(Eq. 1) and merged them to derive storage time series from 1984-present. If NRT satellite sources (i.e., ICESat-2 or GREALM) 

observed lake water height changes, we developed the relationship between historical volume (Vhis) and NRT height (Hnrt) for 255 

the overlapping months and used that Vhis-Hnrt, if significantly correlated, to extend historical volume estimation to NRT 

monitoring using only satellite-derived Hnrt. As the relationship is not necessarily linear, NRT lake storage was estimated using 

cumulative distribution function (CDF) matching. Unlike the conventional approach to build V-A-H curves, which typically 
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requires the selection and fitting of empirical equations (e.g., linear or higher-degree polynomial equations), CDF matching 

takes a simpler route. It entails the development of a monotonic cumulative distribution function for overlapping height (Hnrt) 260 

and volume (Vhis) data. The distribution allows for the ranking of values, showing their relative positions in the dataset. When 

a new height value (Hnrt) is to be retrieved, CDF matching uses the pre-established cumulative distribution functions and their 

associated rankings. By comparing the rank of the new value with those in the distributions, the corresponding volume value 

(Vnrt) can be determined.A look-up table was developed to rank all historical H and V, allowing one to be estimated from the 

other based on the ranking. Overall, we derived absolute water storage dynamics from 1984 onwards for 24,865 lakes using a 265 

geostatistical-model and GSWD (Landsat) with ICESat-2, 129 lakes using with GREALM, and 4,054 lakes using with 

BLUEDOT (Sentinel-2). 

 

Our main objective was to estimate NRT absolute water storage dynamics for lakes worldwide as much as possible. 

However, we also measured relative storage where radar or laser-derived surface water heights, as well as Landsatoptical 270 

imaging-derived surface water extent, were available (i.e., GSWD (Landsat) with ICESat-2 or Landsat with GREALM, and 

BLUEDOT (Sentinel-2) and ICESat-2). Unlike absolute storage products, relative storage products are unaffected by any 

bias from the geostatistical model. We produced alternative storage datasets to provide options to users requiring different 

bias tolerances or different applications. For the relative storage products, we calculated historical storage changes for lakes 

where the A-H relationship was significantly correlated as follows (Crétaux et al., 2016): 275 

∆V =	 (&!'	&!"#)	´	(*!+	*!"#	+	,*!	×*!"#)
$

      (2) 

where DV is storage change between two consecutive measurements; Ht and Ht-1 are altimetry-derived surface water heights 

at time t and t-1, respectively; At and At-1 are optical remote sensing derived surface water extents at time t and t-1, respectively. 

Where there are only H data available in the NRT period, we estimated corresponding A using CDF matching and calculated 

relative storage change time series using Eq (2). As Sentinel-2 and ICESat-2 can measure NRT surface water extent and level, 280 

respectively, we used them to derive relative storage changes from 2018-present. This product is free from any errors in the 

geostatistical model and in the A-H or V-H relationships used in the other products. Overall, we measured relative lake storage 

dynamics from 2018 onwards for 24,990 lakes using ICESat-2 and GSWD (Landsat), for 2,740 lakes using ICESat-2 and 

BLUEDOT (Sentinel-2), and from 1993 onwards for 227 lakes using GREALM and GSWD (Landsat).  

  285 
Table 1 Sources of satellite data for lake storage monitoring using observations overlapping with the GSWD (Landsat)-derived surface water 
extent datasetmaps. 

Dataset I II III 

Source ICESat-2 USDA GREALM  BLUEDOT (Sentinel-2) 

Period 2018-current 1993-current/2016-current 2015-current 

Type laser altimetry radar altimetry optical 
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Variable height height extent 

Temporal resolution 91 days 10-days/27-days 5-days 

Overlapping with GSWD (Landsat) (number) 101,983 347 5,948 

 

3. Results and Discussion 

3.1 Lake area estimation validation  290 

A large portion of Landsat data was missing due to cloud, cloud shadow and the Landsat-7 Scan Line Corrector (SLC) failure. 

Left unmitigated, this issue would have limited the observations per year or an underestimation of surface water area even if 

using images with little contamination. Cloud cover was the most common issue, but water extent could be reconstructed for 

contamination ratios of 58% and higher (Fig. 1 and Fig. S1). The SLC failure resulted in missing data of around 22% after 

2003 (Chen et al., 2011). Missing data could also be caused by a combination of cloud cover, SLC failure and swath edges, 295 

for example (Fig. 1 and Fig. S1). The reconstructed water extent maps in the rightmost column of Fig. 1 and Fig. S1 

demonstrate that these missing data scenarios could be usefully restored, no matter what types of contamination issues, what 

kinds of lake shapes, or how much (between 5-70%) of contamination ratios. By applying this step, we strongly increased the 

number of usable images. 

 300 
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Figure 1. Examples of the performance of the image gap-filling algorithm in Lake Rossignol, Canada. (First column: historical water maps 
from GSWD (Landsat) (yellow: water; green: land; blue: no data; image contaminated ratio from top to bottom: 16%, 58%, 29% and 55%); 
second column: historical water maps trimmed by the lake boundary from HydroLAKES with a 500 m buffer (number: contamination ratio); 
third column: water recurrence (0~100%) maps at the specific month; fourth column: restored water maps) 305 
 

 

Our lake area data have 5318 lakes in common with the data of Zhao and Gao (2018) and 11,101 lakes with Donchyts et al. 

(2022) with average areas from 0.1 km2 to 1000 km2. Zhao and Gao (2018) used the same Landsat data source (i.e., GSWD) 

and the same lake boundary delineation (GRanD included in HydroLAKES) but a different gap-filling approach to derive lake 310 

area. Nonetheless, the mean lake area between the two products scatters closely around a 1:1 relationship (Fig. 2a). We also 

calculated correlation and bias in lake area time series for the common period 1984–2018 for each lake. The median R and 

SMAPE were 0.91 and 3.6%, respectively. This suggests that our gap-filling algorithm produces results overall similar to those 

of Zhao and Gao (2018). Donchyts et al. (2022) used a different Landsat data source (i.e., derived spectral water index), lake 

boundary delineation, and gap-filling algorithm to derive lake area time series. Despite these differences, mean lake area values 315 

still cluster fairly closely around the 1:1 relationship, especially for lakes greater than 1 km2 (Fig. 2b). Larger biases exist for 

some lakes smaller than 1 km2. This was caused mainly by different definitions of lake boundaries between HydroLAKES and 
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Donchyts et al. (2022); we found that only one-tenth of lakes had boundary area differences within 20%. The median R and 

SMAPE in lake area time series from 1984 to 2020 for 11,101 lakes between our product and Donchyts et al. (2022) were 0.76 

and 9.7%, once again lower mainly due to the differences for small lakes. Although there are limitations and challenges when 320 

using remote sensing to precisely estimate area change for each lake, especially in global studies, this validation analysis has 

ensured that our lake extent estimation attains a level of proficiency comparable to other published datasets. 

 
 

 325 

Figure 2 Scatterplots of mean lake area from our product vs. two other published datasets (black line: 1:1 relationship). 

 

To further assess our lake extent estimates, we manually derived lake area based on bands 8 (near infrared), 4 (red) and 3 

(green) from high-resolution Sentinel-2 imagery using Google Earth Engine and compared it against lake area derived in this 

study (Figure S2 and Table S1). We selected two Sentinel-2 images without cloud cover - one with a relatively small extent 330 

and another with a relatively large extent - for each of 20 lakes chosen to represent different continents and climates and with 

varying surface water color, lake shape and size and surrounding land cover. We delineated the lake area using Sentinel-2 

surface reflectances in the three bands and visually validated it with a false-color image. The Sentinel-2 derived lake area was 

then compared to GSWD (Landsat) derived lake area. The results show that the average difference of lake area estimates 

derived between GSWD (Landsat) and Sentinel-2 for all 40 pairs is 2.62% (Table S1). The estimated lake area differences do 335 

not vary systematically with geographical location, surrounding land cover or lake shape and size. Most importantly, the area 

estimates for both small and large extents exhibited very strong consistency between the two satellite sources (Figure S2). This 

confirms GSWD (Landsat) can successfully capture changes in lake area. Comparatively large biases (from 3-10%) are 

observed exclusively in lakes with surrounding ephemeral disconnected surface water bodies or emerging islands within the 

lake during dry periods, such as Lake Pozuelos in Argentina, Lake Baia Grande in Brazil, and Lake Aksehir in Turkey (Figure 340 

S2 and Table S1). 
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3.2 Feasibility of near real-time lake monitoring  

The primary objective behind generating the NRT lake data is to evaluate present-day conditions in lakes and dams in their 

historical context. This becomes takes on ever greater importance in an era of rapid climate change. Of particular significance 

is the storage volume, as it enables the aggregation of numerous water bodies within a single system. Such an aggregation 345 

offers a more comprehensive and insightful perspective on the hydrological status of catchments or river systems, such as 

provided by initiatives like the Global Water Monitor (www.globalwater.online). Knowledge of combined stored volumes are 

also needed to understand concepts such as catchment water equilibrium and to interpret GRACE terrestrial water storage 

estimates for example, enhancing our understanding of global water availability. 

 350 

We estimated monthly lake volume dynamics for 170,611 lakes during 1984–2020 (Fig. 3a). Most lakes are in the northern 

hemisphere’s high latitudes, especially in North America. We only considered lakes with an area greater than 1 km2 given the 

resolution of the Landsat imagery. There are more than a million lakes with areas between 0.1–1 km2 that remain unmeasured, 

but the combined storage of these small lakes only accounts for 1% of global total lake water storage, according to the 

HydroLAKES dataset. Overall, a large portion of global lake volume for the period 1984-2020 was measuredestimated. Here 355 

we focus on estimating both historical and NRT lake dynamics. NRT lake water storage was only estimated if A-H-V 

relationships were sufficiently strong, even though we produced historical water storage change for more than 170,000 lakes. 

This also ensures that satellite-derived extent and level observations are consistent in characterising lake change before 

producing lake storage time series from 1984 to the present. 

 360 

As the Landsat, Sentinel-2 and ICESat-2 have comprehensive coverage of global lakes, we investigated if any two of them 

(optical + altimetry or two optical) can be used to monitor global lakes and how much of the lakes in each basin storage can 

be measured in each case. This should provide valuable information for the newly launched Surface Water and Ocean 

Topography (SWOT) mission that aims to monitor storage changes in global lakes by measuring both extent and level on a 

single satellite platform. The HydroBASINS database delineates watershed boundaries worldwide at different basin or 365 

catchments scales (Lehner and Grill, 2013). The catchment boundaries in the Pfafstetter level-3 product from HydroBASINS 

were used as the spatial basin units for analysis. If remote sensing measurements from two sources (derived extent and level 

or derived storages) are significantly correlated for a particular lake, we considered that this lake can be monitored by Earth 

observation. We followed three complementary approaches: (1) geostatistical model + extent (GSWD (Landsat) + 

geostatistical model + BLUEDOT (Sentinel-2)), (2) geostatistical model + height (GSWD (Landsat) + geostatistical model + 370 

V-H relationship + ICESat-2) and (3) extent + height (BLUEDOT (Sentinel-2) + ICESat-2)(1) geostatistical model (Landsat 

+ Sentinel-2), (2) H-V relationships (Landsat + ICESat-2), and (3) extent and level observations (Sentinel-2 + ICESat-2). 

Approach (3) would likely be the most reliable as storage is directly measured by extent and level from remote sensing. 

However, approaches (1) and (2) make it possible to estimate absolute storage changes. GSWD (Landsat) and ICESat-2 
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together could measure lake water storagechanges in nearly all (i.e., 234 out of 292) river basins worldwide (Fig. 3b). Extents 375 

derived from GSWD (Landsat) data and levels derived from ICESat-2 exhibit a substantial correlation in over 25% of lakes 

within 145 out of the total 224 river basins.Satellite-derived extents and levels are significantly correlated for more than one-

fourth of lakes in each of the 145 basins. This feature is evenly distributed across the continents, except for Antarctica and 

high northern latitudes, as storage changes in many lakes in these cold regions are dominated by level changes or there may 

be large uncertainties in surface water maps due to the influence of frozen water surfaces. BLUEDOT (Sentinel-2) and ICESat-380 

2 cover 122 basins globally (Fig. 3d). There are 58 basins where over half of the lakes can be monitored by that method, mainly 

located in the USA, southeastern South America, the Mediterranean, southern Africa, southern Asia, and Australia. GSWD 

(Landsat) and BLUEDOT (Sentinel-2) both measure surface water extent and show strong time series consistency in 63 out of 

124 basins. Three-quarters of lakes have a significant A-H relationship (Fig. 3c) with a distribution pattern similar to that of 

BLUEDOT (Sentinel-2)/ICESat-2. 385 

 

 
Figure 3 The locations of 170,611 lakes whose storage dynamics for the period of 1984-2020 were estimated in this study (a), the 
percentages of lakes (in terms ofrefer to the total number (170,611) of lakes in Fig 3a) whose NRT water storage dynamics can be derived 
usingwhose changes are consistently measured by both GSWD (Landsat) and ICESat-2 (b), GSWD (Landsat) and BLUEDOT (Sentinel-2) 390 
(c), and BLUEDOT (Sentinel-2) and ICESat-2 (d) in each basin.   
 

3.3 Validation of historical lake storage estimates 

There is a general lack of independent and publicly available lake and reservoir storage data to validate our results, and indeed 

the lack of on-ground data motivated our study. Nonetheless, we were able to validate absolute lake volume estimates against 395 

in situ measurements for 494 lakes in Australia, South Africa, India, Spain and the USA, respectively available from the 
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Australian Bureau of Meteorology,  Donchyts et al. (2022), United States Bureau of Reclamation and United States Army 

Corps of Engineers. We evaluated the accuracy of lake volume time series by Pearson correlation (R) and the symmetric mean 

absolute percent error: 

𝑆𝑀𝐴𝑃𝐸 = 100 ×	 !
.
∑ |01234536	507893	'	:436;<=36	507893|
(01234536	507893	+	:436;<=36	507893)/#

      (3) 400 

The results (Fig. 4) suggest a median R between reported lake volumes and our estimates of 0.91 and a SMAPE of 38%. This 

SMAPE is similar to the 48.8% reported by Messager et al. (2016). 82% of validated lakes have R above 0.7 and SMAPE 

mainly ranges between 5–50% (Fig. 4). Comparisons for selected lakes are shown in Fig.5, representing different sizes of lakes 

and different SMAPE errors. It appears that uncertainties from remote sensing and the DEM do not meaningfully affect 

absolute lake volume estimates (Fig. 5). The lakes for which storage was validated had average volumes between 1 and 10,000 405 

GL (Fig. 6). The comparison between GloLakes and in situ data show that the bias error (38%) is consistent for different lake 

sizes (Fig. 6). 

 

 
Figure 4 The distribution of R and SMAPE of absolute water storage validation results against in situ data for 494 lakes (vertical red line: 410 
the median value). 
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Figure 5 Absolute lake water storage (unit: GL) time series from GloLakes against in situ (observed) data for selected lakes (blue line: 
observed data; red line: historical storage estimates; black shade: error bars of historical storage estimates). 415 

 

 
Figure 6 Scatterplots of predicted mean lake volume vs. observed mean volume (red dot: mean lake volume; black line: 1:1 relationship; 
background blue colours indicate data density). 
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 420 

For many applications, the relative agreement (e.g., R) may be more relevant than the absolute error, and the latter can be 

affected by several factors. For example, the delineation of lake shorelines from HydroLAKES can be different from those 

used for in situ measurement, as the spatial definition to distinguish the lake from connected rivers or wetlands can sometimes 

be ambiguous. In such cases, predicted volumes are not directly comparable to in situ data, and there can be systematic over- 

or underestimation. Secondly, lake volume cannot be estimated with high accuracy unless detailed lake bathymetry data is 425 

available, but this is beyond current satellite remote sensing abilities. We used a geostatistical model to estimate lake depth. 

The accuracy of that approach depends on the quality of the DEM and the degree to which the relationship between the 

topography of the lakebed and surrounding slopes conforms to the geostatistical model assumptions.  

 

The relative volume estimates are generally more reliable, as demonstrated by the correlation values. We compared our relative 430 

lake storage dynamics data against the global surface water storage change time series for 1992–2018 produced by Tortini et 

al. (2020) for 104 common lakes. The data was downloaded from the Physical Oceanography Distributed Active Archive 

Center (PODAAC) of NASA’s Jet Propulsion Laboratory. The two show strong agreement (Fig. 7) with a median R of 0.94 

and 95% of R values above 0.7. Selected time series are compared in Fig. 8 and show that both datasets are most limited by 

the temporal frequency of image acquisition. 435 

 
Figure 7 The distribution of R of relative water storage validation results against Tortini et al. (2022) for 104 lakes (vertical blue line: the 
median value). 
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 440 
Figure 8 Relative lake water storage (unit: GL) time series from GloLakes (blue line) against Tortini et al. (2022) (brown line) for selected 
lakes. 
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3.4 Validation of NRT lake storage estimates 445 

 

To our knowledge, we produced the first four decades-long data set of relative and absolute lake storage dynamics from 1984-

present for all HydroLAKES registered lakes with an area exceeding 1 km2. Previous studies have focused on measuring 

relative lake storage dynamics using remote sensing. For example, Busker et al. (2019) used Landsat imagery and radar 

altimetry to estimate lake volume variations for 137 lakes. Similarly, Tortini et al. (2020) produced a storage change dataset 450 

for 347 lakes but using MODIS instead of Landsat imagery. Neither study offered an NRT monitoring capacity. They were 

also limited to a few hundred lakes due to the sparse track of radar altimetry. With denser coverage, the ICESat-2 laser altimetry 

improves the number of measured lakes by a factor of more than hundred. Based on this, we were able to monitor a wide range 

of lakes at global scale.  

 455 

To validate satellite-derived lake heights used to estimate NRT storages in this study, we obtained in situ lake level 

measurements from the Australian Bureau of Meteorology (http://www.bom.gov.au/water/index.shtml) and Environment 

Canada (https://wateroffice.ec.gc.ca/). In total, we identified 96 lakes in Australia (including 83 reservoirs) and 54 lakes in 

Canada (including 23 reservoirs) with in situ level data corresponding to our study. Following the same validation approach 

as Cooley et al. (2021), we compared temporal changes in lake heights between in situ data and altimetry data. The results 460 

show strong agreement between ICESat-2 and in situ measurements, with a mean absolute error (MAE) of 0.23 m and a mean 

Pearson correlation (R) of 0.99 in Australia and 0.19 m, and 0.97 in Canada (Figure 9). 

 

 
Figure 9 Evaluation of ICESat-2 derived lake heights against in situ gauge measurements from Australian Bureau of Meteorology (BoM) 465 
and Environment Canada (EC). 
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We validated our ICESat-2 and Sentinel-2two NRT approaches (i.e., (1) geostatistical model + extent (GSWD (Landsat) + 

geostatistical model + BLUEDOT (Sentinel-2)) and (2) geostatistical model + height (GSWD (Landsat) + geostatistical model 470 

+ V-H relationship + ICESat-2)) to derived water storage time series from 1984 to present against in situ data that can help to 

assess the accuracy of both our historical and NRT methods (Fig. 910). We compared the performance of water storage 

estimates between the respective methods used to derive historical and NRT estimates. The average R and SMAPE for the 

method, evaluated for 1984-2020 with storage estimated using a geostatistical model, were 0.94 and 22%. The performance 

for the NRT methods, evaluated for 2020-present with storage estimated using a V-H relationship or V-V merging, decreased 475 

slightly to R=0.88 and SMAPE=31%, respectively. For most lakes, the agreement between predicted and observed storages 

shows similar accuracy (in terms of correlation and bias, Table 2) for the historical and NRT methods, as NRT estimates were 

only produced if the V-H or V-A relationships were significantly correlated. For example, both ICESat-2 and Sentinel-2 derived 

products record sharply decreasing in water storage in Big Sandy Reservoir, Vega Reservoir, and El Vado Lake in the NRT 

method period (Fig. 910). However, the performance of the NRT methods decreases for Lake Summer, Horsetooth Reservoir 480 

and El Vado Lake as there was one erroneous observation (Fig. 910). 

 

 
Figure 9 10 Comparisons of historical and NRT lake water storage time series from GloLakes against in situ (observed) data (blue line: 
observed data; red line: historical storage estimates; black shade: error bars of historical storage estimates; light pink shade: NRT 485 
monitoring period; cyan line with dots (first two rows): NRT storage estimates from V-H relationship with ICESat-2; magenta line with 
dots (third row): NRT storage estimates from geo-statistical model with BLUEDOT (Sentinel-2)). 
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We compared NRT estimates from our different storage products (ICESat-2, Sentinel-2, and GREALM) and summarised the 

results for lakes of different sizes (Table 3). The mean R and SMAPE between GSWD (Landsat)/ICESat-2 and GSWD 490 

(Landsat)/BLUEDOT(Sentinel-2) products were 0.83 and 7%, respectively. The GSWD (Landsat)/ICESat-2 and GSWD 

(Landsat)/GREALM products had a similar correlation (R=0.81) and bias (SMAPE=7%), although they are both derived from 

altimetry. The evaluation results generally did not vary with lake size, except that GSWD (Landsat)/ICESat-2 and GSWD 

(Landsat)/BLUEDOT (Sentinel-2) products show better correlation (R=0.92) and less bias (SMAPE=2%) for lakes with an 

area greater than 100 km2. 495 

 
Table 2 Comparisons of correlations and biases between historical and NRT methods (results from Fig. 910). 

Lake Name NRT Monitoring 
Approach 

Historical (1984-2020) NRT (2020-present) 

R SMAPE R SMAPE 

Big Sandy 

LV-H; ICESat-2 

0.96 39% 0.94 53% 

Vega 0.93 41% 0.98 52% 

Starvation 0.96 18% 0.97 18% 

Green Mountain 0.92 10% 0.93 13% 

Sumner 0.91 26% 0.81 43% 

Brantley 0.89 22% 0.89 21% 

Horsetooth 
L-Ageo-statistical 
model; BLUEDOT 

(Sentinel-2) 

0.95 12% 0.56 8% 

Rockport 0.95 14% 0.99 19% 

El Vado 0.96 18% 0.81 48% 
 

 Table 3 Cross-validations of NRT methods between our different storage products for lakes of different sizes. 

  GSWD (Landsat) + / ICESat-2 
 GSWD (Landsat) + / BLUEDOT (Sentinel-2) GSWD (Landsat) + / GREALM 
 <10 km2 10-100 km2 >100 km2 All <10 km2 10-100 km2 >100 km2 All 

Total number of  
overlapped lakes 1247 612 92 1951 7 22 63 92 

R 0.83 0.83 0.92 0.83 0.84 0.84 0.80 0.81 

SMAPE 8% 7% 2% 7% 7% 11% 5% 7% 
 500 

 

3.5 Current limitations and future Future opportunities 

Remote sensing provides an opportunity to measure water in most lakes worldwide and provide NRT information, which is 

impossible with the current in situ network. Topex/Poseidon (1992-2002), Jason 1/2/3 (2002-present), and Sentinel-6 (a.k.a. 
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Jason-CS; 2020-present) are all able to measure lake height every ten days, which should be adequate to monitor dynamics in 505 

many lakes. Sentinel-3A/B (2016-present) has a revisit time of 27 days, still providing valuable, quasi- monthly updates on 

changes on water level. The dynamic estimates of lake height from these radar altimeters were seamlessly processed and 

derived from G-REALM. However, radar altimeters cannot detect many smaller lakes in between the sparse ground tracks. 

The ICESat-2 laser altimeter covers many more lakes globally, benefiting from its dense reference tracks enhanced by the six 

laser beams onboard. The trade-off is its temporal resolution of ~91 days, but this is still sufficient to observe seasonal changes 510 

in many lakes worldwide, and more frequent water extent mapping can be used to interpolate between these observations. This 

study used the Landsat-derived GSWD to estimate lake surface water extents. The main limitation of using GSWD is that it 

only produced monthly observations from 1984-2020 and cannot provide NRT information, despite its use of Landsat 

observations with a temporal frequency of 16 days. The GSWD are expected to be updated annually by the Joint Research 

Centre of the European Commission (https://global-surface-water.appspot.com/download), at which point lake extent 515 

estimates can be extended beyond 2020. In this study, we harnessed the capabilities of BLUEDOT (Sentinel-2) to expand lake 

surface water extent estimates beyond 2020, benefitting from the 5-day revisit interval of Sentinel-2 within the BLUEDOT 

framework. However, lake area data from BLUEDOT are presently available only for a subset of several thousand lakes across 

the globe. This issue could be overcome using MODIS, VIIRS or Sentinel-2 data directly, for example. The daily or 8-day 

composite MODIS and VIIRS products have a better chance to provide valid observations, but the hundred-meter range 520 

resolution is often not sufficient to accurately detect lake area changes. 5-day, 10-m resolution water extent derived from 

Sentinel-2 should be a promising candidate for NRT global lake monitoring. The sheer volume of data presented us with a 

challenge for data storage and processing, but there is no fundamental limitation that would prevent a similar approach from 

measuring all 170,957 lakes measured by GSWD (Landsat) in this study. The advantage of Sentinel-2 would be that it can 

provide NRT lake observations with low latency. The high computation and storage demands could potentially be met by 525 

cloud platforms like Google Earth Engine (GEE). In future research, we hope to consider such approaches to improve our data 

set.Remote sensing provides an opportunity to measure water in most lakes worldwide and provide NRT information, which 

is impossible with the current in situ network. Topex/Poseidon (1992-2002), Jason 1/2/3 (2002-present), and Sentinel-6 (a.k.a. 

Jason-CS; 2020-present) are all able to measure lake height every ten days, which can be adequate to monitor lake dynamics. 

However, these radar altimeters cannot detect many smaller lakes in between the sparse ground tracks. The ICESat-2 laser 530 

altimeter can cover many more lakes globally, benefiting from its dense reference tracks enhanced by the six laser beams 

onboard. The trade-off is that its temporal resolution is only 91 days, but this is still sufficient to observe seasonal changes in 

many lakes, and more frequent water extent mapping can be used to interpolate between these observations. This study used 

the Landsat-derived GSWD to estimate lake surface water extents from 1984-2020. The GSWD are expected to be updated 

annually by the Joint Research Centre of the European Commission (https://global-surface-water.appspot.com/download), at 535 

which point lake extent estimates can be extended beyond 2020. Although Landsat cannot provide NRT observations, this 

weakness can be addressed using MODIS and Sentinel-2, for example. The daily or 8-day composite MODIS products have a 

better chance to provide valid observations than the 16-day Landsat images, but the 250-m or 500-m resolution is often not 
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sufficient to detect lake area changes accurately. Five-day, 10-m resolution water extent derived from Sentinel-2 would be a 

promising candidate for NRT global lake monitoring, although the sheer volume of data presents challenges for storage and 540 

processing. Sentinel-2-based lake area data are currently already available from BLUEDOT for several thousand lakes 

worldwide, and there is no fundamental limitation that would prevent a similar approach from measuring all 170,957 lakes 

measured by Landsat in this study. The advantage of Sentinel-2 would be that it can provide NRT lake observations with low 

latency. The high computation and storage demands can potentially be met by cloud platforms like Google Earth Engine 

(GEE). In future research, we hope to consider such approaches to improve our data set. An inherent limitation of any optical 545 

remote sensing is the effect of clouds and other atmospheric interferences and vegetation, to a lesser extent. This issue could 

be mitigated by using passive microwave sensors or SARs. For example, the Japanese Space Agency’s AMSR2 and TRMM 

TMI sensors and NASA’s AMSR-E and GPM instruments can provide daily observations of surface water based on differences 

in brightness temperature between wet and dry areas (De Groeve et al., 2015; Hou et al., 2018). Unfortunately, their resolution 

is generally very coarse due to the observation method. Sentinel-1 SAR could be a more practical solution to monitor lakes 550 

under cloud cover, with 2–12 days and 10-m resolution, provided the water detection algorithm can be automated, and 

vegetation cover does not interfere with the mapping. Finally, the Surface Water and Ocean Topography (SWOT) satellite 

mission was launched at the end of 2022 and is expected to measure surface water height and extent simultaneously every 11 

days for lakes greater than 250 m by 250 m. Its temporal resolution is intermediate to the radar and laser altimetry used here. 

The spatial resolution is lower than Landsat and Sentinel-2, , but SWOT shows promise for monitoring lake changes given 555 

that the two basic components (i.e., A and H) needed to estimate lake volume change are measured simultaneously. 

4. Data availability 

The GloLakes data described here are available from https://dx.doi.org/10.25914/K8ZF-6G46 (Hou et al., 2022). Six products 

are provided, described in Table 4. The products also provide additional attributes such as data quality (Q1: absolute volume 

estimated using geostatistical model and satellite-derived lake extents; Q2: absolute volume estimated based on the V-H 560 

relationship; Q3: relative volume estimated based on both satellite-derived heights and extents; Q4: relative volume estimated 

based on heights obtained from satellite measurements, combined with the extents of the lake derived from the area-height (A-

H) relationship), latitude, longitude, lake name, country name, state/province name, basin name and catchment name for each 

lake. The products can be linked to the HydroLAKES database using the ID index provided in the metadata. This allows users 

to combine storage dynamics data with other lake attributes, such as lake type, shoreline length, hydraulic residence times, and 565 

watershed area, among others. Using the same HydroLAKES metadata, the data can also be coupled to the GRanD (Lehner et 

al., 2011), HydroSHEDS (Lehner et al., 2008), and HydroRIVERS (Lehner and Grill, 2013) databases. This allows users to 

relate other river and reservoir attributes and implement the data in hydrological model configuration, e.g., to improve river 

routing. The global lake dynamics can also be interactive explored through the Global Water Monitor 

(http://www.globalwater.online), which along with NRT information on other water cycle data such as river discharge (Hou 570 

https://dx.doi.org/10.25914/K8ZF-6G46
http://www.globalwater.online/
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et al., 2020; Hou et al., 2018), soil moisture 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.d7782f18?tab=overview, v202012 combined product) and 

precipitation and other meteorological variables (Beck et al., 2022). 

 
Table 4 Overview of GloLakes Product Descriptions 575 

Filename 
Type of 

volume 

Satellite 

sources 

Historical 

method 

NRT 

method 

The number of 

measured lakes 

Time 

Coverage 

Global_Lake_Absolute_Storage_LandsatPlusGREALM 

(1984-present).nc 
Absolute 

GSWD 

(Landsat) + 

G-REALM 

Q1 Q2 129 
1984-

current 

Global_Lake_Absolute_Storage_LandsatPlusICESat2 

(1984-present).nc 
Absolute 

GSWD 

(Landsat) + 

ICESat-2 

Q1 Q2 24,865 
1984-

current 

Global_Lake_Absolute_Storage_LandsatPlusSentinel2 

(1984-present).nc 
Absolute 

GSWD 

(Landsat) + 

BLUEDOT 

(Sentinel-2) 

Q1 Q1 4,054 
1984-

current 

Global_Lake_Relative_Storage_LandsatPlusGREALM 

(1993-present).nc 
Relative 

GSWD 

(Landsat) + 

G-REALM 

Q3 Q4 227 
1993-

current 

Global_Lake_Relative_Storage_LandsatPlusICESat2 

(2018-present).nc 
Relative 

GSWD 

(Landsat) + 

ICESat-2 

Q3 Q4 24,990 
2018-

current 

Global_Lake_Relative_Storage_Sentinel2PlusICESat2 

(2018-present).nc 
Relative 

BLUEDOT 

(Sentinel-2) 

+ ICESat-2 

Q3 Q3 2740 
2018-

current 

 
Table 4 Description of the GloLakes products. 

Filename Type of Volume Satellite Sources 
The Number of 

Measured Lakes 
Period 

Global_Lake_Absolute_Storage_LandsatPlusGREALM (1984-present).nc Absolute Landsat; G-REALM 129 1984-current 

Global_Lake_Absolute_Storage_LandsatPlusICESat2 (1984-present).nc Absolute Landsat; ICESat-2 24,865 1984-current 

Global_Lake_Absolute_Storage_LandsatPlusSentinel2 (1984-present).nc Absolute Landsat; Sentinel-2 4,054 1984-current 

Global_Lake_Relative_Storage_LandsatPlusGREALM (1993-present).nc Relative Landsat; G-REALM 227 1993-current 

Global_Lake_Relative_Storage_LandsatPlusICESat2 (2018-present).nc Relative Landsat; ICESat-2 24,990 2018-current 

Global_Lake_Relative_Storage_Sentinel2PlusICESat2 (2018-present).nc Relative Sentinel-2; ICESat-2 2740 2018-current 

 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.d7782f18?tab=overview
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5. Conclusions 

We produced historical and near real-time lake storage dynamics from 1984-present by combining optical remote sensing (i.e., 580 

Landsat and Sentinel-2) and radar and laser altimetry data (i.e., Topex/Poseidon, Jason-1/2/3, Sentinel-3/6, and ICESat-2) at 

the global scale. The historical lake storage time series can help improve understanding of the influence of climate change and 

human activities on global or regional lake storage dynamics from 1984 to the present. The NRT lake storage data we provide 

will hopefully provide useful and current information for those managing our water resources and aquatic ecosystems. Surface 

water extent time series were estimated for all HydroLAKES-delineated lakes larger than 1 km2. To maximise measurement 585 

frequency, a simple image gap-filling algorithm was implemented in each historical GSWD (Landsat)-derived surface water 

map. This process effectively restored missing data caused by, e.g., cloud, cloud shadow, swath edges and the Landsat-7 SLC 

failure. The monthly Landsat-derivedgap-filling GSWD (Landsat) derived water extents showed strong correlations with Zhao 

and Gao (2018) for 5,318 reservoirs and Donchyts et al. (2022) for 11,101 lakes, with a median R of 0.91 and 0.76, respectively. 

The geostatistical HydroLAKES bathymetry estimation approach produced slightly better volume estimates than the 590 

GLOBathy method and was applied to estimate absolute lake volume dynamics from 1984-2020 for 170,611 lakes. Validation 

results showed a median R of 0.91 and a SMAPE of 38% between estimated and reported volumes for 494 lakes in the USA, 

South Africa, India, Spain and Australia. In situ bathymetric measurements would be needed to more accurately estimate total 

lake volume, but they are not available for the majority of the millions of lakes globally. Relative lake volume storage changes 

were measured for lakes where their satellite-derived extents and heights were both available. The median correlation between 595 

our relative storage product and previous MODIS-derived data was 0.94. In addition, we investigated where and for how many 

lakes whose NRT storage time series can be estimated by remote sensing around the world. The results indicated that the most 

suitable regions for satellite-based lake monitoring include the USA, southeastern South America, the Mediterranean, southern 

Africa, southern Asia, and Australia. NRT monitoring was achieved using BLUEDOT (Sentinel-2), ICESat-2 and GREALM. 

The validation results showed that the performance of NRT storage estimation decreases slightly compared to historical 600 

estimates but are still of good quality. In the future, the estimates could be improved using Sentinel-2-derived global surface 

water mapping and observations from the recently launched SWOT mission. 
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