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Abstract. Measurements ofing the spatiotemporal dynamics of lake and reservoir water storage are is fundamental toforin 

the assessment ofassessing the influence of climate variability and anthropogenic activities on water quantity and quality, as 

well as wetland ecology and the estimating greenhouse gas emissions from lakes. Previous studies estimated relative water 

volume changes for lakes where both satellite-derived extent and radar altimetry data are available. This approach is limited 10 

to only a few hundreds of lakes worldwide and cannot estimate absolute (i.e., total  stored volume) water storage. We 

increased In this study, the number of measured lakes was increased by a factor of 400 300 by using high-resolution Landsat 

and Sentinel-2 optical remote sensing and ICESat-2 laser altimetry, in addition to radar altimetry from the Topex/Poseidon, 

Jason-1, -2 and -3, and Sentinel-3 and -6 instruments. Historical tTime series (1984-2020) of relative (i.e., storage change) or 

absolute (i.e., total stored volume) storage could be derived for more than 170,000 lakes globally with a surface area of at 15 

least 1 km2 (, representing 99% of the total volume of all water stored in lakes and reservoirs globally) were retrieved. 

Within these this data setsatellite data, we investigated where and for how many lakes can be measured in near real-time near 

real-time storages (2020-present) can be estimated by remote sensing in each basins around the worldwide. Then, wWe were 

able to developed an automated workflow for near real-time global lake monitoring of more than 27,000 lakes. The historical 

and near real-time lake storage dynamics data for from 1984 to current are publicly available through 20 

https://doi.org/10.25914/K8ZF-6G46 (Hou et al., 2022). ) and a These datasets are virtually displayed on the web-based data 

explorer  application: www.globalwater.online. 

1. Introduction 

Lakes and reservoirs are a key component of the global water cycle through their contribution to land-atmosphere exchanges, 

river-floodplain dynamics, and groundwater systems. Lakes also emit substantial quantities of carbon dioxide and methane 25 

into the atmosphere through biogeochemical processes (Bastviken et al., 2011;Raymond et al., 2013). The seasonality of 

natural lakes sustains ecosystems and biodiversity, whereas constructed reservoirs provide an often essential water supply to 

society (Vörösmarty et al., 2010). Therefore, monitoring the quantity and quality of these surface water stores has important 

implications applications across a wide range of societal, environmental and economic areas. 
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 30 

Globally it has been observed that, surface water resources have become vulnerable to climate change and anthropogenic 

pressure (Vorosmarty et al., 2000). The However, the processes, influences and consequences involved are still poorly 

understood, in the absence of long-term historical spatiotemporal dynamic information for lake dynamics. Shifts in seasonal 

cycles and extreme events are reported or predicted for many lakes due to climate change, which may worsen the already 

uneven distribution of water resources (Oki and Kanae, 2006;Wang et al., 2018). This stresses the need for global monitoring 35 

of lake dynamics, preferably in near real-time (NRT), e.g., a latency of 1~10 days. 

 

Remote sensing approaches to global lake monitoring has have benefitted from the substantial increase of in Earth 

observation technologies over the last four decades (Papa et al., 2022). The rRemote sensinge technologies and techniques 

offers a monitoring capability with a coverage and consistency that is impossible to achieve with in situ networks (Alsdorf et 40 

al., 2007). For example, tMosthe large majority of natural lakes are ungauged, perhaps because they are generally more 

significant to ecosystems and for biodiversity than for human activities and economic gain. Many Conversely, most large 

dam reservoirs, as capital investment constructions, are gauged, well but these records are generally not publicly accessible. 

All This lack of in situ measurement these issues impedes understanding the change and variability of lakes worldwide. 

Therefore, rRemote sensing provides the best monitoring a tool to tackle these issues and improve our incomplete knowledge 45 

about long-term changes in lakes at the local, regional and global scale. 

    

Accurately locating lakes and reservoirs is the first step towards monitoring storage dynamics with remote sensing. Lehner 

and Döll (2004) used a wide range of available data and digital maps to develop the Global Lakes and Wetlands Database 

(GLWD), which delineated the boundaries of global lakes and reservoirs with a combined area of 2.7 million km2. Based on 50 

GLWD and other regional and global data sources, Messager et al. (2016) developed the HydroLAKES database that 

provides detailed attribute information, such as shoreline length, size, and hydraulic residence times for 1.43 million lakes. 

The Global Water Bodies Database (GLOWABO) developed by Verpoorter et al. (2014) detected around 117 million lakes 

based on high-resolution satellite imagery. However, this dataset does not distinguish between lakes, rivers, floodplains and 

wetlands, unlike the HydroLAKES database, which means that the reported number of lakes is an 55 

overestimateoverestimated. Lehner et al. (2011) complied compiled the storage capacity and characteristics of 6,862 dams 

and reservoirs in the Global Reservoir and Dam database (GRanD). By 2020, there were 58,713 dams registered in by the 

International Commission on Large Dams (ICOLD), but most of them are still not georeferenced. This gap was addressed by 

the Global Georeferenced Database of Dams (GOODD), in which Mulligan et al. (2020) captured the locations of more than 

38,000 dams from multiple satellite sources. 60 

 

Radar altimetry, such as from the TOPEX/Poseidon, Jason-1/2/3, ENVISAT, ERS-1/2 and Sentinel-3/6 instruments, has 

proven useful to measurein measuring water levels in lakes and reservoirs (Birkett, 1998;Da Silva et al., 2010;Frappart et al., 
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2006). Global time series of radar altimetry-derived surface water elevation have been compiled in several places, including 

Hydroweb (Crétaux et al., 2011), the Database for Hydrological Time Series of Inland Waters (DAHITI) (Schwatke et al., 65 

2015), and the Global Reservoirs and Lakes Monitor (G-REALM) (Birkett et al., 2010). Based on the G-REALM dataset, 

Kraemer et al. (2020) evaluated long-term trends in the water level of lakes globally, but this their study was limited to 

around 200 lakes for which radar altimetry data was were available. In contrast, Cooley et al., (2021) demonstrated the 

ability of ICESat-2 laser altimetry to measure water level variability for a larger number of227,386 lakes globally.  

 70 

The spatial resolution of global satellite-derived surface water dynamics products has been improved significantly over the 

last two decades. Prigent et al. (2007) and Papa et al. (2010) developed a monthly and 25-km resolution surface water extent 

dataset based on a combination of passive (Special Sensor Microwave/Imager (SSM/I)) and active (European Remote 

Sensing (ERS)) microwave and optical remote sensing (Advanced Very High Resolution Radiometer (AVHRR)). This was 

improved refined to daily and 250 or 500-m resolution in the surface water dataset developed by Ji et al. (2018) and in the 75 

Global WaterPack (Klein et al., 2017). The 30-m resolution surface water maps developed by Pekel et al. (2016) from 

imagery from the Landsat satellite sensor series has have been one of the most promising data sources to help understand 

long-term changes in surface water resources on Earth. Landsat archives have been the most popular data to investigate long-

term changes and variability in lakes and reservoirs at either global or regional scale, benefiting from the four decades-long 

archives of images with global coverage and 30-m high resolution,  (Ogilvie et al., 2018;Sheng et al., 2016;Tao et al., 80 

2015;Yao et al., 2019;Zhao and Gao, 2018). Compared to  

  

Surface water height and extent are the two basic components to measurements needed to determine water storage change in 

lakes and reservoirs. The Because of the shorter revisit times, daily or 8-day composite MODIS AQUA/TERRA products are 

less affected by cloud cover than 16-day Landsat observations, and new the MODIS imagesry are is updated with 85 

sufficiently rapidly timeliness to support near real time (NRT) water monitoring. Some studies have used MODIS-derived 

water extents and altimetry data to estimate lake storage changes, such as in the Mackenzie Delta or South Asia, or 

worldwide (Gao et al., 2012;Normandin et al., 2018;Tortini et al., 2020;Zhang et al., 2014). However, the 500-m spatial 

resolution of MODIS fails to detect changes in a large majority of smaller lakes, of which whose the number soars 

exponentially as the smaller lake sizes deceasesare considered. The 30-m resolution Landsat data, in combination with 90 

different altimetry sources, have been shown to be a better option to estimatefor estimating water volume dynamics in lakes 

and reservoirs, especially those with relatively slowly changing extent (Busker et al., 2019;Duan and Bastiaanssen, 2013). 

Landsat satellite series can provide historical observations back to the 1980s. Finally, while MODIS- or Landsat-derived 

water extent and altimetry data have demonstrated the capability to estimate changes in lake water storage, they cannot 

measure lake depth and, therefore, are unable tocannot measure provide absolute water storage volume without the use 95 

ofusing bathymetric data. Avisse et al. (2017) proposed an approach to estimate absolute water volume based on an analysis 

of DEMs for reservoirs that were not yet constructed or empty at the time of DEM capture.Several studies (e.g., Avisse et al., 
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2017;Bonnema et al., 2016;Vu et al., 2022) used a digital elevation model (DEM) to derive height-area curves and estimate 

absolute water volume, but thise success of this approach depends on is affected the volume of water present at the time of 

by water level conditions at DEM data acquisition  (e.g., February 2000 for the Shuttle Radar Topography Mission DEM 100 

data often used)time. To circumvent this, Messager et al. (2016) used the surrounding terrain data (i.e., slope derived from 

the DEM), while Khazaei et al. (2022) used geophysical characteristics and hypothetical idealised geometry (i.e., cone, box, 

triangular prism, and ellipsoid) to estimate water depth for lakes in the absence of bathymetry. HoweverDespite those 

approaches, there are currently no such data products that provide absolute lake volume dynamics estimates at the global 

scale. 105 

 

This The objectives of this study were to aimed to (1) not only provides derive nearly four -decades of data on relative and 

absolute water volume measurements for lakes worldwide and (2)  but also enables a global, NRT lake monitoring 

capability. To develop this, we fFirst, we estimated water body extents between 1984-2020 from Landsat-derived surface 

water maps for 170,957 lakes. We applied the gap-filling algorithm (Hou et al., 2022) in the contaminated Landsat images to 110 

restore missing data, thus improving the total number of usable images to derive lake water area time series. Second, we 

estimated absolute water storage dynamics from 1984-2020 for each lake whose water area and its surrounding slope 

measurements are available using a geostatistical model (Messager et al., 2016). Third, as Landsat candoes not provide NRT 

observations, we considered a bunch range of new alternative satellite data sources (including Sentinel-2, Jason-3, Sentinel-3 

and -6, and ICESat-2) with monitoring abilities to derive NRT absolute lake storage. We examined where and for how many 115 

lakes NRT storage can be estimated using different combinations of these remote sensing data in each basin around the 

worldworldwide. Fourth, we extended historical absolute water storage estimates to NRT monitoring using the volume-

height relationship if radar or lidar altimetry data available after 2020. IfWhere there are only NRT lake water area 

observations (i.e.,e.g., from Sentinel-2) were available, we converted lake area to storage estimates using thea geo-statistical 

model. As these absolute lake storage products are affected by the bias errors of lake depth estimates from the geo-statistical 120 

model, we also provided relative lake storage productsestimates for lakes that have been observed simultaneously by optical 

remote sensing imagers and altimetry instruments at the same time. Overall, this study makde ist possible to monitor more 

than 27,000 lakes and reservoirs worldwide. This study aimed to produce both relative and absolute water storage dynamics 

for lake worldwide. Our dataset not only provides nearly four-decades of volume measurements but also enables a global, 

NRT lake monitoring capability. The methods to estimate lake storage in the previous studies were limited to a few hundred 125 

lakes that lie beneath the sparse ground tracks of radar altimetry instruments. With its much denser coverage, we found that 

ICESat-2 laser altimetry data could increase the number of measurable lakes by a factor of 400. Furthermore, we estimated 

water body extents between 1984-2020 from Landsat-derived surface water maps for 170,957 lakes. Relative storage 

changes were then estimated based on Landsat-derived extents and radar and laser altimetry data while absolute storage 

dynamics were calculated using a geostatistical model (Messager et al., 2016). This was possible for more than 27,000 lakes 130 

and reservoirs worldwide. NRT monitoring was achieved by implementing radar and laser altimetry data into a hypsometric 
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relationship. In addition, Sentinel-2 derived lake water extent were used to complement the Landsat estimates to further 

increase the monitoring capability. The core underlying strategy to in developing this global lake monitoring system is was 

to consider different all readily availablekinds of freely accessible, validated, and frequently updated satellite data sources, 

and to explore the relative advantage of each satellite source, and combine them to complement their respective weaknesses. 135 

2. Data and method 

2.1 Data 

2.1.1 Surface water extent  

The Joint Research Centre’s Global Surface Water Dataset (GSWD) provides the spatial and temporal distribution of surface 

water and their statistics at a global scale over the last 37 years. Open water areas larger than ca. 30 m × 30 m were detected 140 

by an expert system using Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic Mapper-plus (ETM+ ) and 

Landsat-8 Operational Land Imager (OLI) images between 1984 and 2020 (Pekel et al., 2016). The omission errors of water 

mapping from Landsat-5, -7 and -8 are less than 5%, while the commission errors are less than 1%. Monthly The monthly 

water history and monthly recurrence products from GSWD are were used in this studyhere. The monthly water history 

product provides monthly water mapping from March 1984 to December 2020 and . each Each pixel was classified as open 145 

water, land, and non-valid observation. The monthly recurrence product comprises 12 datasets datasets, one for each month 

(from January to December). Each dataset shows the frequency of inundation in each pixel as a percentage of the number of 

times water is detected over the total number of clear observations in the full-time series. The BLUEDOT water observatory 

(https://www.blue-dot-observatory.com/aboutwaterobservatory) provides 5five-day near real-time (NRT) measurements of 

surface water extent from 2015 to the present for 8,837 lakes globally. The surface water map is derived using normalized 150 

normalised difference water index (NDWI) from clear-day optical Sentinel-2 imagery. We used these data to complement 

our Landsat data. 

2.1.2 Surface water height  

The Advanced Topographic Laser Altimeter System (ATLAS) onboard the Ice, Cloud and land Elevation Satellite-2 

(ICESat-2) launched by NASA in 2018 is designed to measure the elevation of ice sheets, oceans, lakes and vegetation with 155 

a 91-day repeat cycle. ATLAS/ICESat-2 determines elevation by measuring the return time of a laser pulse between the 

satellite and the Earth’s surface. The six laser beams from ICESat-2 allows it to cover more ground coverage of the Earth’s 

surface, compared to it to cover more ground coverage of the Earth’s surface than its predecessor (ICESat-1). We used the 

ATLAS/ICESat-2 L3A along-track inland surface water data (version 5) was used in this study (Jasinski and Ondrusek, 

2021). It provides surface water height measurements for inland water bodies including rivers, lakes, reservoirs and coastal 160 

water from 2018 to present. They reported an error per 100 inland water of 6.1 cm (Jasinski and Ondrusek, 2021). The mean 

absolute error between USGS gauge data and ICESat-2 height measurements is 0.14 m (Cooley et al., 
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2021).ATLAS/ICESat-2 L3A along-track inland surface water data, version 5 (ATL13) was used in this study (Jasinski and 

Ondrusek, 2021). TUnfortunately, he updated ATL13 product data are is not released until 30-45 days after new 

observations weare obtained, which does not fit the purpose for the suit NRT monitoring. Therefore, in addition, wewe also 165 

used ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data Quick Look, Version 5 (ATL13QL), which is available 

within 3three days of new observations. ATL13 and ATL13QL apply the same algorithms to derive surface water height 

measurements for inland water bodies, including rivers, lakes, reservoirs and coastal water. The approach is described by 

Jasinski and Ondrusek (2021), but in brief, the procedure: 1) identifies ATLAS beams that intersect inland water body shape 

masks; 2) collects photons in short segments (~100 m) for calculating water height and in longer segments (1~3 km) for 170 

estimating and removing subsurface backscatter; 3) applies the physical and statistical modelling to derive inland water 

heights. Cooley et al. (2021) used ATLAS/ICESat-2 L3A Land and Vegetation Height (ATL08) to derive lake water height 

time series and found the mean absolute error between USGS gauge data and ICESat-2 height measurements is 0.14 m. 

Unlike ATL08, the ATL13 used in this studyhere was designed to measure water height variations oin rivers and lakes as it 

considers physical processes of light propagation in open water bodies. An error of 6.1 cm per 100 inland water photons has 175 

been reported (Jasinski and Ondrusek, 2021). We collected both ATL13 and ATL13QL water surface height data from any 

of the six beams within individual lake boundaries from HydroLAKES and derived water height time series for each lake 

that observed by ICESat-2 from between 2018 to and the present. ATL13QL has larger uncertainties (~100 m) in geolocation 

than ATL13 (~5 m). As a result, segment heights from ATL13QL are 2.7 m, with a standard deviation of ~ 7 m, lower than 

those from ATL13. According to the user guide (Jasinski and Ondrusek, 2021), 2.7 m can be added to ATL13QL before 180 

merging these two products, and the differences between them have little impact on measuring relative heights. Each lake 

will be revisited by ICESat-2 around every 91 days. This means our ICESat-2 -based storage product is limited to provideing 

updated information on seasonal variations, rather than short-term changes, dynamicsfor global lakes. However, it has the 

benefit of providesing updated data where there are new observations with a rapid turnaround. 

  185 

The Global Reservoirs and Lakes Monitor (G-REALM) provides NRT surface water height dynamics for 392 around 500 

lakes globally using a combination of different satellite radar altimetry (Birkett et al., 2010). It has provides two on-going 

products:  (1)one is the 10-day NRT water heights from 1993-present derived from using Topex/Poseidon, and Jason 1/2/3 

and Sentinel-6, and (2) the other is the 27-day NRT water heights from 2016-present using Sentinel-3A and B. Satellite radar 

altimetry determines the surface height by emitting microwave pulses towards the Earth’s surface and measuring the travel 190 

time between pulse emission and echo reception. The accuracy of these radar altimetry-derived water heights varies, mainly 

depending on the roughness and extent of the water body, but is typically within a few cm. 

2.1.3 Geo-statistical model  

The HydroLAKES database provides the boundary outlines of more than 1.4 million individual lakes globally with a surface 

area above 0.1 km2 (Messager et al., 2016). This database is compiled from several global and regional lake and reservoir 195 
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datasets derived using topographic maps, optical remote sensing imagery composites and radar instruments. HydroLAKES 

also comprises a geo-statistical model with parameters to predict average water depths and volumes based on surrounding 

topography information for lakes with a surface extent between 0.1 km2 and 500 km2. The geo-statistical model (Messager et 

al., 2016) is described as follows: 

 200 

Log!"(D) = C! + C# 	× Log!"(A) + C$ 	× Log!"(S!"") + s#          (1) 

 

where D is the predicted mean depth (m), A the observed surface area of the lake (km2), S100 the average slope (derived from 

DEM) within a 100-m buffer around the lake, C1, C2 and C3 constant parameterscoefficients estimated from best fitting the 

model using global lake data and present for different for different sizes of lakes sizes (i.e., 0.1-1 km2, 1-10 km2, 10-100 km2, 205 

100-500 km2), and s2 the residual variance. The fundamental assumption is that one can extrapolate the slope around the lake 

towards the centre of the lake to estimate lake depth. The traditional approach uses a DEM within the lake to derive A-H 

curves, but cannot retrieve true land surface elevation below water. In comparison, the model used here considers the DEM 

outside lake rather than inside it, and hence is not affected by water inundation at the time of DEM acquisition. Messager et 

al. (2016) reported that the symmetric mean absolute percent error between predicted and reference volume is 48.8% without 210 

significant bias in volumes for the majority of lakes around the world, with the exception of Finland, Sweden and 

northwestern Russia, the European Alps, and the Andes. Before choosing this geo-statistical model, wWe did compared this 

approach with alternative different approaches to estimate lake depth. Khazaei et al. (2022) developed a statistical model, 

GLOBahty, relating lake depth with surface water area, elevation, volume, shoreline length, and watershed area. They 

demonstrated that the performance of this statistical model is better than the previous approaches to calculateing lake depth 215 

by simply assuming the lake shape fits one of in four geometries: box, cone, triangular prism, and ellipsoid (e.g., Yigzaw et 

al., 2018). In our study, wWe compared this statistical model (Khazaei et al., 2022) with the geostatistical model (Messager 

et al., 2016) both models and validated them against to in situ data. The resulting SMAPE error for the GLOBahty method 

was 70.5%, and therefore not better than the geo-statistical method. This result informed led our choice to use the simpler 

geo-statistical method in favour of the GLOBathy dataset in this study. The uncertainties from the geo-statistical model are 220 

mainly from the observed surface area and the DEM used to derive slope. The omission and commission errors of surface 

water mapping from GSWD used in this study are 5% and 1%, respectively. EarthEnv-DEM90 was used in the geo-

statistical model to derive slope, and its vertical accuracy is around 10 m (Robinson et al., 2014). We assessed how these 

errors propagate into water storage estimation in the validation analysis. The symmetric mean absolute percent error (see 

Eq.2 below) between predicted and reference volume is 48.8% and there is no significant bias in volumes for the majority of 225 

lakes around the world with the exception of Finland, Sweden and northwestern Russia, European Alps, and the Andes 

(Messager et al., 2016). The HydroBASINS database delineates watershed boundaries worldwide at different basin or 

catchments scales (Lehner and Grill, 2013). The catchment boundaries in the Pfafstetter level-3 product from HydroBASINS 

were used as the basic units for lake statistical analysis in this study.  
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2.2 Method 230 

2.2.1 Global historical lake volume estimation 

We estimated water surface extent changes of future GSWD water bodies, where the shoreline polygons of lakes or 

reservoirs were delineated with HydroLAKES, as follows. First, we overlaid each lake boundary polygon from 

HydroLAKES on top of GSWD. Second, we introduced a 500-m buffer around the lake to estimate ensure the maximum 

water extent possible was envelopedor possible lake expansion due to hydrological variability. Third, for each lake, we 235 

calculated the number of wet pixels within the lake boundary polygon from the GSWD monthly water history product from 

1984 to 2020. Lake water extent was then estimated by multiplying the total number of wet pixels by the grid pixel area. 

During this process, we also calculated the contamination ratio of each image as the ratio of non-valid pixel values over all 

pixel values within the lake boundaries. Water extent was not estimated for lakes smaller than 1 km2 due to the limited 

spatial resolution of Landsat. Finally, monthly lake water extent time series were produced for 170,957 lakes world-wide. 240 

 

Landsat images are affected by suboptimal observation conditions (e.g., cloud and cloud shadows) and data acquisition (e.g., 

swath edges, the Landsat-7 Scan Line Corrector failure) and limited archiving of acquired imagery. This These factors then 

reducesd the total number of effective Landsat images available over the 37 years to derive water extent dynamics for many 

lakes. Many Previous studies chose to either used images with a contamination ratio below a certain threshold (e.g., 5%) or 245 

to aggregated the imagery 16-day or less temporal resolution to seasonal, annual or five-year averages (e.g., Shugar et al., 

2020;Yang et al., 2020). However, low low-frequency time series can miss important monthly, seasonal and interannual 

changes in surface water extent. Alternatively, higher temporal frequency satellite data such as MODIS may be used to fill 

gaps in the Landsat imagery (e.g., Li et al., 2021). However, this is only possible for the MODIS era, i.e., after 2000, and the 

spatial resolution of MODIS poses an additional constraint on the size of the lake that can be monitored.  250 

 

Here, we applied a simple and  effective gap-filling approach we published previously (Hou et al., 2022) to recovery missing 

data in partial Landsat water mapping to boost the total number of usable images. Unlike our earlier publication, however, 

Hou et al. (2022), this study we here used a corresponding monthly recurrence map, rather than a multi-year average 

recurrence map, . This made it possible to restore the contaminated partially missing water maps for the specific month 255 

considered, which makesing it more sensitive to seasonal changes as much as possible. In summary, the monthly GSWD 

recurrence product was used to address restore missing data in any given month (January to December), considering the 

seasonal changes in surface water extent. For example, the contaminated surface water map derived from Landsat in January 

2022 was restored by using the January recurrence data. This is was achieved by, first, for each contaminated image, 

matching the GSWD extent mapping for different recurrence frequencies in the corresponding month to the available parts 260 

of each contaminated imagethe image. The differential evolution method (Storn and Price, 1997) was used to find the best-fit 

frequency, i.e., minimising the difference between the recurrence mapping and monthly water mapping. Subsequently, the 
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mapping at the best-fit recurrence frequency was used to reconstruct missing data. The algorithm was implemented for all 

images with contamination ratios ranging from 5% up to 70%. The efficacy of this approach was evaluated and confirmed in 

a previous publication (Hou et al., 2022). 265 

 

For each lake, mean lake water depth dynamics were calculated based on the estimated water extent time series using a the 

mentioned geo-statistical model of Messager et al. (2016). This model provides empirical equations (Eq. 1) relating water 

depth with water extent and slope within a 100 m buffer around the lake for difference size of lakes (Messager et al., 2016). 

The basic principle is that we can extrapolate mean lake water depth from local slopes of surrounding topography. The 270 

predicted mean water depths were bias-corrected by the residual variance of its corresponding empirical equations (Messager 

et al., 2016). Lake water volumes were estimated by the bias-corrected predicted water depths multiplied by water extents. 

Ultimately, we produced estimated monthly water storage dynamics from 1984-2020 for 170,611 lakes globally.  

2.2.2 Global near real-time lake volume estimation 

To provide routine and low-latency measurements of lake water storage, we obtained NRT satellite-derived water heights 275 

and extents from different monitoring platformssatellite sources, including ICESat-2the National Snow & Ice Data Center 

(NSIDC), U.S.S Department of Agriculture (USDA) GREALM  and BLUEDOT (Sentinel-2) water observatory (Table 1). 

We selected all measurements estimates for lakes whose volume dynamics from 1984–2020 were derived from GSWD with 

the geo-statistical model. As there areWe examined pairwise relationships (i.e., V-H or V-A) of overlapping monthly time 

series between historical volume (V) and NRT height (H) or area (A), we can use their pairwise relationship (i.e., V-H or V-280 

A) to extend historical volume estimation to NRT monitoring using only satellite-derived H or A. We only extended 

historical volume estimation to NRT monitoring applied this method when there was a statistically significantly (p<0.05) 

correlation between the predictor and predictand. Specifically, we calculated the significant Pearson correlation threshold 

(Rt) using a t-test allowing for sample size N (i.e., the number of data pairs). If the Pearson correlation (R) between V-H or V-

A exceeded Rt we used H or A, respectively, to estimate lake storage dynamics after 20212020.  285 

 

Considering differentDepending on some of the features of the satellite data sources (Sentinel-2, ICESat-2, GREALM) with 

monitoring abilities, we used different approaches to estimate absolute NRT storage time series. If both historical and NRT 

satellite sources (i.e., Landsat and Sentinel-2) only observed lake surface water area changes, we converted lake area to 

storage using the geostatistical model (Eq. 1) and merged them together to derive storage time series from 1984-present. If 290 

NRT satellite sources (i.e., ICESat-2 or GREALM) can observed lake water height changes, we developed the relationship 

of the overlapping monthly time series between historical volume (V) and NRT height (H) for the overlapping months and 

used their that V-H pairwise relationship (i.e., V-H) to extend historical volume estimation to NRT monitoring using only 

satellite-derived H. As the relationship is not necessarily monotoniclinear, NRT lake storages were was estimated using 

cumulative distribution function (CDF) matching. In practice, aA look-up table was developed to rank all historical H and V, 295 
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allowing one to be estimated from the other based on the ranking. In totalOverall, we derived estimated absolute water 

storage dynamics from 1984 onwards for 24,865 lakes using ICESat-2, 129 lakes using GREALM, and 4,054 lakes using 

Sentinel-2. 

 

The Our main objective main purpose in this study is was to estimate NRT absolute water storage dynamics for lakes 300 

worldwide as much as possible around the world. But However, we also measured relative storage estimates where both 

radar or laser-derived surface water heights as well as Landsat-derived surface water extent, as well as Landsat-derived 

surface water extent,s were available (i.e., Landsat and with ICESat-2 or Landsat and with GREALM). Different Unlike 

from absolute storage products, relative storage products were are unnot affected by any bias errors from the geostatistical 

model. In this study, wWe produced alternative varieties of lake storage datasets, thus  to providinge more options to the 305 

users requiring with different bias tolerances in or different applications. For the relative storage products, we calculated 

historical storage changes for lakes where the A-H relationship was significantly correlated as follows (Crétaux et al., 2016): 

∆V =	 (&!'	&!"#)	´	(*!+	*!"#	+	,*!	×*!"#)
$

      (2) 

where DV is storage change between two consecutive measurements; Ht and Ht-1 are radar or laser altimetry -derived surface 

water heights at time t and t-1, respectively; At and At-1 are optical remote sensing derived surface water extents at time t and 310 

t-1, respectively. TWhere there are only H data available in the NRT period, we estimated corresponding A using CDF 

matching and calculated relative storage change time series using the Eq (2). As Sentinel-2 and ICESat-2 can measure NRT 

surface water extent and level, respectively, we used them to derive relative storage changes from 2018-present. This product 

is free from the any errors form in both the geostatistical model and in the A-H or V-H relationships used in the other 

products. Overall, we measured relative lake storage dynamics from 2018 onwards for 24,990 lakes using ICESat-2 and 315 

Landsat, for 2740 lakes using ICESat-2 and Sentinel-2, and from 1993 onwards for 227 lakes using GREALM and 

Landsat.As the relationship is necessarily monotonic, lake storage was estimated using cumulative distribution function 

(CDF) matching. In practice, a look-up table was developed to rank all historical A or H and V, allowing one to be estimated 

from the other based simply on the ranking. In total, we produced historical and NRT water storage dynamics from 1984 

onwards for 23,294 lakes using ICESat-2, 67 lakes using G-REALM, and 4,054 lakes using Sentinel-2. 320 

  
Table 1 Sources of satellite data for lake water storage monitoring using that have observations overlapping with the Landsat-derived 
water extent dataset. 

Dataset I II III 

Platform NSIDC USDA BLUEDOT 

Source ICESat-2 USDA G-REALM (several satellites)  BLUEDOT (Sentinel-2) 

Period 2018-current 1993-current/2016-current 2015-current 

Type laser altimetry radar altimetry optical 

Variable height height extent 
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Temporal resolution 91 days 10-days/27-days 5-days 

Overlapping with Landsat (number) 101,983 255347 5,948 

Successfully constructed in this study (number) 25,495 168 4,102 

 

In addition to these absolute lake volume storage estimates, we produced relative storage estimates where both radar or laser-325 

derived surface water heights as well as Landsat-derived surface water extents were available. We calculated storage changes 

for lakes where the A-H relationship was significant correlated as follows (Crétaux et al., 2016): 

∆𝑉 =	     (1) 

where DV is storage change between two consecutive measurements; Ht and Ht-1 are radar or laser altimetry derived surface 

water heights at time t and t-1, respectively; At and At-1 are optical remote sensing derived surface water extents at time t and 330 

t-1, respectively. Where there are only H data available after 2021, we estimated corresponding A using CDF matching. 

Overall, we estimated relative lake storage dynamics from 2018 onwards for 23,419 lakes using ICESat-2 and Landsat, and 

from 1993 onwards for 148 lakes using G-REALM and Landsat.  

3. Results and Discussion 

3.1 Lake area estimation validationImproved lake extent mapping after image gap-filling  335 

A large portion of Landsat data were was missing due to cloud, cloud shadow and the Landsat-7 Scan Line Corrector (SLC) 

failure. UnmitigatedLeft unmitigated, this issue would have resulted in the limited the number of observations per year or an 

underestimation of surface water area even if using an images with a low little contamination ratio. Cloud cover is was the 

most common issue, but water extent could be reconstructed for contamination ratios of 58% and higher (Figs. 1 and Fig. 

S12). The SLC failure resulted in missing data of around 22% after 2003 (Chen et al., 2011) . Missing data could also be 340 

caused by a combination of cloud cover, SLC failure and swath edges, for example (Figs. 1 and Fig. S12). The reconstructed 

water extent maps in the rightmost column of Figs. 1 and Fig. S12 demonstrate that these missing data scenarios could be 

usefully restored, no matter what types of contamination issues, what kinds of lake shapes, or how much (between 5-70%) of 

contamination ratios. By applying this step, we much strongly increased the number of effectively usableuseful  images. 

 345 
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Figure 1. Examples of the performance of the image gap-filling algorithm in Lake Rossignol, Canada. (First column: historical water 
maps from GSWD (yellow: water; green: land; blue: no data; image contaminated ratio from top to bottom: 16%, 58%, 29% and 55%); 
second column: historical water maps trimmed by the lake boundary from HydroLAKES with a 500 m buffer (number: contamination 
ratio); third column: water recurrence (0~100%) maps at the specific month; fourth column: restored water maps) 350 
 

 

Our lake area data have 5318 lakes in common with the data of Zhao and Gao (2018), and 11,101 lakes with Donchyts et al. 

(2022) with . The lakes for which area estimates were validated had average areas from 0.1 km2 to 1000 km2. Zhao and Gao 

(2018) used the same Landsat data source (GSWD) and the same lake boundary delineation (GRanD included in 355 

HydroLAKES) but a different gap-filling approach to derive lake area. Nonetheless, the mean lake area between the two 

products scatters closely around a 1:1 relationship (Fig. 2a). In addition, wWe also calculated correlation and bias in lake 

area time series for the common period 1984–2018 for each lake. The median R and SMAPE were 0.91 and 3.6%, 

respectively. This suggests that that our gap-filling algorithm produces results that are overall similar to those of Zhao and 

Gao (2018). Donchyts et al. (2022) used a different Landsat data source, lake boundary delineation, and gap-filling algorithm 360 

to derive lake area time series. Despite these differences, mean lake area values still lies cluster fairly closely around the 1:1 

relationship, especially for lakes greater than 1 km2 (Fig. 2b). Larger biases exist for some lakes smaller than 1 km2. This 
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was caused mainly by different definitions of lake boundaries between HydroLAKES and Donchyts et al. (2022); we found 

that only one-tenth of lakes had boundary area differences within 20%. The median R and SMAPE in lake area time series 

from 1984 to 2020 for 11,101 lakes between our product and Donchyts et al. (2022) were 0.76 and 9.7%., once again lower 365 

mainly due to the differences for small lakes. 

 
 

 

Figure 2 Scatterplots of mean lake area from our product vs. two other published datasets (black line: 1:1 relationship). 370 

3.2 Where Feasibility of near real-time lake monitoring is feasibleCoverage 

We were able to estimateestimated monthly lake volume dynamics for 170,611 lakes for during the period 1984–2020 (Fig. 

3a). Most of themlakes are distributed across in the northern hemisphere’s high high latitudes regions, especially in northern 

North America. The GloLakes dataset also provides near real-time volume estimates for 27,599 lakes. We only considered 

all lakes with an area greater than 1 km2 given the resolution limitations of the Landsat imagery. There are more than a 375 

million lakes with areas between 0.1–1 km2 that remain unmeasured, but the combined storage of these small lakes only 

accounts for 1% of global total lake water storage, according to the HydroLAKES dataset. Overall, the a large vast 

majorityportion of global lake volume for the period 1984-2020 has beenwas measured in this study (Fig. 3b and c). Over 

three-fourths of total lake basin volume have been measured either by optical remote sensing (i.e., extent) or altimetry (i.e., 

height) in 200 basins (79% of the total number of lake basins) (Fig. 3b). Over the half of total basin lake and reservoir 380 

volumes was estimated in 209 basins (83%) around the world, but coverage was poorer for several basins in tropical regions 

of Africa and the northern high latitude regions (Fig. 3c). The poor coverage in some basins is due to either the overlapped 

periods between extent and height observations is not long enough to perform as training data or the volume is more 

sensitive to height variability rather than the nearly constant extent (resulting in a weak A-H relationship). This Here we 

study mainly focuses on estimating both historical and NRT lake water storage dynamics. NRT lake water storage time 385 
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series werewas only estimated if A-H-V relationships were significantly correlatedsufficiently strong, aleven though we 

produced historical water storage change for more than 170,000 lakes. This also ensures means we make sure that satellite-

derived extent and level observations are consistent in characterising lake change before producing lake storage time series 

from 1984 to the present. 

 390 

As the Landsat, Senitinel-2 and ICESat-2 used here have comprehensive coverage of global lakes, we investigated if we can 

use any two of them (optical + altimetry or two optical) can be used to monitor global lakes and for how much of the lakes in 

each basin storage can be measured in by remote sensingeach case. This should provide valuable information for the newly 

launched Surface Water and Ocean Topography (SWOT) mission that aims to monitors storage changes in global lakes as it 

achieves to by measureing both extent and level on a single satellite platform. The HydroBASINS database delineates 395 

watershed boundaries worldwide at different basin or catchments scales (Lehner and Grill, 2013). The catchment boundaries 

in the Pfafstetter level-3 product from HydroBASINS were used as the basic spatial basin units for lake statistical analysis in 

this study. This should provide valuable information for the newly launched Surface Water and Ocean Topography (SWOT) 

mission that monitors storage changes in global lakes as it achieves to measure both extent and level on a single satellite 

platform. If remote sensing measurements from two sources (derived extent and level or derived storages) are significantly 400 

correlated for a particular lake, we considered that this lake can be monitored by Earth observation. We followed three 

compliementary approaches: (1) geo-statistical model (Landsat + Sentinel-2), (2) H-V relationships (Landsat + ICESat-2), 

and (3) extent and level observations (Sentinel-2 + ICESat-2). Approach (3) can be considered would likely be the most 

reliable as storages is were directly measured by extent and level from remote sensing. However, approaches (1) and (2) 

make it possible to estimate absolute storage changes. Landsat and ICESat-2 together are able to could measure lake water 405 

storage in nearly all (i.e., 234 out of 292) river basins worldwide (Fig. 3b). Satellite-derived extents and levels are 

significantly correlated for over more than one -fourth of lakes in each of the 145 basins. This feature is evenly distributed 

across the continents, except for Antarctica and northern highhigh northern  latitudes, regions, due to the influence of frozen 

water surfaces. Sentinel-2 and ICESat-2 cover 122 basins globally (Fig. 3d). There are 58 basins where over half of the lakes 

can be monitored by themthat method, mainly located in the USA, southeastern South America, the Mediterranean, southern 410 

Africa, southern Asia, and Australia. Landsat and Sentinel-2 both measure surface water extent and they show strong time 

series consistency in 63 out of 124 basins. Three-quarters of lakes hasve a significant A-H relationship (Fig. 3c) with a 

distribution pattern similar to that of Sentinel-2/ICESat-2. 
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 415 
Figure 3 The locations of 170,957611 lakes whose storage dynamics for the period of 1984-2020 were estimated in this study (a), the 
percentages of lakes (in terms of number) whose NRT water storage dynamics can be derived using Landsat and ICESat-2 (b), Landsat 
and Sentinel-2 (c), and Sentinel-2 and ICESat-2 (d) in each basin. 
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 420 
Figure 2 As in Fig. 1 but for Lake Wivenhoe, Australia. (First column: historical water maps from GSWD (yellow: water; green: land; 
blue: no data image contaminated ratio from top to bottom: 25%, 27%, 46 % and 33%); second column: historical water maps trimmed by 
the lake boundary from HydroLAKES with a 500 m buffer (number: contamination ratio); third column: water recurrence (0~100%) maps 
at the specific month; fourth column: restored water maps) 
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 425 
Figure 3 a) The locations of 170,957 lakes whose storage dynamics for the period of 1984-2020 were measured in this study, b) the ratio 
(%) of measured extent or/and height (covert to volume) in this study and total volume recorded in HydroLAKES, and c) the ratio (%) of 
measured volume in this study and total volume recorded in HydroLAKES in each of 253 basins worldwide. 
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3.3 Validation of historical lake storage estimatesValidation 

There is a general lack of independent and publicly available lake and reservoir storage data with which to validate our 430 

results, and indeed the lack of on-ground data motivated our study. Nonetheless, we were able to validate absolute lake 

volume time series estimates against in situ measurements for 238 494 lakes in Australia,; South Africa, India,  and Spain; 

and the USA, respectively available from the Australian Bureau of Meteorology,  Donchyts et al. (2022),and  United States 

Bureau of Reclamation and United States Army Corps of Engineers, respectively. We evaluated the accuracy of lake volume 

time series by Pearson correlation (R) and the symmetric mean absolute percent error : 435 

𝑆𝑀𝐴𝑃𝐸 = 100 ×	 !
.
∑ |01234536	507893	'	:436;<=36	507893|
(01234536	507893	+	:436;<=36	507893)/#

      (23) 

The results (Fig. 4) suggest an average median R between reported lake volumes and our estimates of 0.780.91 and a 

SMAPE of 52.538%. This SMAPE is similar to the 48.8% that reported in by Messager et al. (2016) (48.8%). Some 82% of 

validated lakes have R above 0.7 and SMAPE values mainly ranges between 5%-–50% (Fig. 4). Selected lake volume 

cComparisons for selected lakes are shown in Fig.45, chosen to representing different sizes of lakes and different SMAPE 440 

errors. It appears We can also see that uncertainties from remote sensing and the DEM do not meaningfully significantly 

affect absolute lake volume estimates and that bias is the main source of error  (Fig. 5). The lakes for which storage was 

validated had average volumes from between 1- and 10,000 GL (Fig. 6). The comparisons of mean lake volumes between 

GloLakes and in situ data show that the bias error (38%) is consistent along withfor different lake sizes (Fig. 6). 

 445 

 
Figure 4 The distribution of R and SMAPE of absolute water storage validation results against in situ data for 494 lakes (vertical red line: 
the median value). 
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 450 
Figure 4 5 SomeA comparisons of absolute lake water storage time series from GloLakes against in situ (observed) data for selected lakes 
(blue line: observed data; red line: historical storage estimates; black shade: error bars of historical storage estimates).Some comparisons 
of predicted lake water storage from GloLakes against in situ (observed) data.. 

 

 455 
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Figure 6 Scatterplots of predicted mean lake volume vs. observed mean volume (red dot: mean lake volume; black line: 1:1 relationship; 
background blue colours indicate data density). 
 

For many applications, the relative agreement (e.g., R) may be more relevant than the absolute error, as and the latter can be 

affected by several factors. For example, the delineation of lake shorelines from HydroLAKES can be different than from 460 

those used for in situ measurement, as the spatial definition to distinguish the lake from connected rivers or wetlands can in 

practice sometimes be ambiguous. As a resultIn such cases, predicted volumes are not directly comparable to in situ data, 

and there can be systematic over- or underestimation. Secondly, lake volume cannot be estimated very preciselywith high 

accuracy unless detailed lake bathymetry data is available, but this is beyond current satellite remote sensing abilities. We 

used a geo-statistical model to estimate lake depth. T. The estimation accuracy of that approach largely depends on the 465 

quality of the DEM used and the degree to which the relationship between the topography of the lakebed and the surrounding 

slopes surrounding the lake conforms to the geostatistical model assumptionsis such that the underlying assumptions are 

supported. Overall, tThe relative volume dynamics estimates are generally more reliable, as demonstrated by the correlation 

values. Nonetheless, the estimated volumes are within 10% of reported values for many lakes and reservoirs. We compared 

our relative lake storage dynamics data against the global surface water storage change time series for 1992–2018 The data 470 

produced by Tortini et al. (2020) for 104 common lakes. The data can be was downloaded from the Physical Oceanography 

Distributed Active Archive Center (PODAAC) of NASA’s Jet Propulsion Laboratory. We compared our relative lake 

storage dynamics dataset against their global surface water storage change time series for 1992–2018 for 104 common lakes. 

The result two show strong agreement (Fig. 7) showed that the two datasets have a strong agreement, with a median R of 

0.94 ( and 95% of them R values above 0.7). Selected Some of the time series are comparisoned results are shown in Fig. 8. 475 

and show that both datasets are most limited by the temporal frequency of image acquisition. 

 
Figure 7 The distribution of R of relative water storage validation results against Tortini et al. (2022) for 104 lakes (vertical blue line: the 
median value). 



21 
 

 480 
Figure 8 Relative lake water storage time series from GloLakes (blue line) against Tortini et al. (2022) (brown line) for selected lakes. 
 

3.4 Comparison with other datasets 

We compared our monthly lake area time series estimates with the Global Reservoir Surface Area Dataset (GRSAD) v2 

(Zhao and Gao, 2018). GRSAD provides monthly reservoir surface area time series estimates from 1984–2018 based on the 485 

Landsat-derived GSWD (Pekel et al., 2016), with image contamination issues corrected as well, but using a different 

method. For 5,323 overlapping water extent time series pairs, we found strong agreement between GRSAD and our product, 

with average R of 0.88 and SMAPE of 3.6%. Among them, the correlation for data derived from Landsat images with minor 

contamination issues (i.e., missing data <5%) reached 0.97. The difference between these two products is mainly due to the 

different approaches to gap-filling contaminated images. The image gap-filling algorithm developed by Hou et al. (2022) and 490 

applied in this study is more easily implemented in rapid NRT image processing, however. 

 

To our knowledge, we produced the first four decades-long relative and absolute lake storage dynamics for all HydroLAKES 

registered lakes with area exceeding 1 km2. Previous studies have mainly focused on measuring relative lake storage 

dynamics using remote sensing. For example, Busker et al. (2019) used Landsat imagery and radar altimetry to estimate lake 495 

volume variations for 137 lakes, and Tortini et al. (2020) produced a storage change dataset for 347 lakes in a similar way 

but using MODIS instead of Landsat imagery. Furthermore, none of these studies tested a NRT monitoring capacity. They 

were also limited to a few hundred of lakes due to the sparse track of radar altimetry. With denser coverage, the ICESat-2 

laser altimetry improves the number of measured lakes by a factor of more than hundred. Based on this, we were able to 
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measure a wide range of lakes at global scale. Busker et al. (2019) did not make their lake dataset publicly accessible but the 500 

data produced by Tortini et al. (2020) can be downloaded from the Physical Oceanography Distributed Active Archive 

Center (PODAAC) of NASA’s Jet Propulsion Laboratory. We compared our relative lake storage dynamics dataset against 

their global surface water storage change time series for 1992–2018 for 104 common lakes. The result showed that the two 

datasets have a strong agreement, with average R of 0.90.  

  505 

It is not possible to remotely sense bathymetry for the great majority of lakes and reservoirs, and indeed even in situ surveys 

can be challenging and error-prone due to a limited number of sometimes imprecise measurements across the lake. 

According to the validation results in Section 3.3, the SMAPE error of our absolute lake storage dataset is around 52.5%, in 

the order as Messager et al. (2016). The geo-statistical model extrapolated lake bathymetry from the surrounding 

topography. Thus, its accuracy largely depended on the errors from the digital elevation models and can vary in different 510 

landscapes depending on relief and any change from above- to below-water topography. Khazaei et al. (2022) used 

HydroLAKES-derived surface area, elevation, volume, shoreline length, and watershed area to estimate maximum lake 

depth, and applied a distance method (Hollister and Milstead, 2010) to develop a lake bathymetry map by converting 

Euclidean distance to shoreline into depth based on the estimated maximum depth. Doing so they produced the GLOBathy 

dataset, which provides the height-area-volume (h-A-V) relationship for each lake delineated by HydroLAKES. We used 515 

these h-A-V relationships as an alternative to the geo-statistical method, and estimated absolute lake storage dynamics from 

1984 onwards and validated the resulting alternative product against in situ lake storage records. The SMAPE error resulting 

from the GLOBahty method is 70.5%, which is greater than that from the geo-statistical method. This led our choice to use 

the geo-statistical method in favour of the GLOBathy dataset in this study.  

 520 

3.4 Validation of NRT lake storage estimates 

 

To our knowledge, we produced the first four decades-long data set of relative and absolute lake storage dynamics from 

1984-present for all HydroLAKES registered lakes with an area exceeding 1 km2. Previous studies have mainly focused on 

measuring relative lake storage dynamics using remote sensing. For example, Busker et al. (2019) used Landsat imagery and 525 

radar altimetry to estimate lake volume variations for 137 lakes, and. Similarly, Tortini et al. (2020) produced a storage 

change dataset for 347 lakes in a similar way but using MODIS instead of Landsat imagery. Furthermore, nNeither study 

offered one of these studies tested an NRT monitoring capacity. They were also limited to a few hundred of lakes due to the 

sparse track of radar altimetry. With denser coverage, the ICESat-2 laser altimetry improves the number of measured lakes 

by a factor of more than hundred. Based on this, we were able to monitor a wide range of lakes at global scale.  530 

 

We validated our ICESat-2 derived and Sentinel-2 derived water storage time series from 1984 to present against in situ data 

that contains can help to assess the accuracy of both our historical and NRT observations methods (Fig. 9). We compared the 
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performance of water storage estimates between the respective methods used to derive historical and NRT periodsestimates 

to investigate if extrapolated NRT estimates are valid. The average R and SMAPE in for the historical method, evaluated for 535 

period (1984-2020)  if with storage was estimated using a geostatistical model,  were 0.94 and 22%. The performance for the 

NRT period method, evaluated for (2020-present) with when storage was estimated using a V-H relationship or V-V merging, 

decreased slightly (to R=0.88 and SMAPE=31%), respectively. For most lakes, the agreement between predicted and 

observed storages in NRT period shows similar accuracy (in terms of correlation and bias, Table 2) for the historical and 

NRT methods, as NRT storages estimates were in our products were only estimated produced if the V-H or V-A relationships 540 

were significantly correlated. For example, both ICESat-2 and Sentinel-2 derived products record sharply decreasing in 

water storage in Big Sandy Reservoir, Vega Reservoir, and El Vado Lake in the NRT method period (Fig. 9). However, the 

performance for of the NRT period method statistically decreases for Lake Summer, Horsetooth Reservoir and El Vado Lake 

as there iswas one erroneous observation (Fig. 9). 

 545 

 
Figure 9 Comparisons of historical and NRT lake water storage time series from GloLakes against in situ (observed) data (blue line: 
observed data; red line: historical storage estimates; black shade: error bars of historical storage estimates; light pink shade: NRT 
monitoring period; cyan line with dots (first two rows): NRT storage estimates from ICESat-2; magenta line with dots (third row): NRT 
storage estimates from Sentinel-2). 550 
 

We compared NRT estimates from our different storage products (ICESat-2, Sentinel-2, and GREALM), and summarizsed 

the results for lakes withof different sizes (Table 3). The mean R and SMAPE between ICESat-2 and Sentinel-2 products 

wasere 0.83 and 7%, respectively. The ICESat-2 and GREALM products had a similar correlation (R=0.81) and bias 
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(SMAPE=7%), although they are both derived from altimetry. The evaluation results generally did not vary as a function of 555 

with lake size, except for the fact that ICESat-2 and Sentinel-2 products show better correlation (R=0.92) and less bias 

(SMAPE=2%) for lakes with an area greater than 100 km2. 

 
Table 2 Comparisons of correlations and biases between historical and NRT methods (results from Fig. 9). 

Lake Name NRT Monitoring 
Approach 

Historical (1984-2020) NRT (2020-present) 

R SMAPE R SMAPE 

Big Sandy 

L-H; ICESat-2 

0.96 39% 0.94 53% 

Vega 0.93 41% 0.98 52% 

Starvation 0.96 18% 0.97 18% 

Green Mountain 0.92 10% 0.93 13% 

Sumner 0.91 26% 0.81 43% 

Brantley 0.89 22% 0.89 21% 

Horsetooth 

L-A; Sentinel-2 

0.95 12% 0.56 8% 

Rockport 0.95 14% 0.99 19% 

El Vado 0.96 18% 0.81 48% 

 560 
 Table 3 Cross-validations of NRT method between our different storage products for lakes with of different sizes. 

  Landsat + ICESat-2 
 Landsat + Sentinel-2 Landsat + GREALM 
 <10 km2 10-100 km2 >100 km2 All <10 km2 10-100 km2 >100 km2 All 

Total number of  
overlapped lakes 1247 612 92 1951 7 22 63 92 

R 0.83 0.83 0.92 0.83 0.84 0.84 0.80 0.81 

SMAPE 8% 7% 2% 7% 7% 11% 5% 7% 
 

 

3.5 Future opportunities to monitor lake storage changes 

Remote sensing provides an opportunity can to measure water in the majority lakes worldwide and provide NRT 565 

information, which is not most lakes worldwide and provide NRT information, which is impossible with the current in situ 

network. Both Topex/Poseidon (1992-2002), and Jason 1/2/3 (2002-present), and Sentinel-6 (a.k.a. Jason-CS; 2020-present) 

are all able to measure lake height every 10 ten days, which can be adequate to trace monitor the variability of lakes 

dynamics. The ability to monitor lake heights at 10-day temporal resolution will be continued by Sentinel-6 (a.k.a. Jason-CS) 

launched in 2020. However, many smaller lakes located in between the sparse ground-tracks cannot be detected by these 570 
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radar altimeterthese radar altimeters cannot detect many smaller lakes in between the sparse ground tracks. The ICESat-2 

laser altimeter can cover a much larger number ofmany more lakes globally, benefiting from its dense reference tracks that 

are further enhanced by the six laser beams onboard. The trade-off is that its temporal resolution is only 91 days, but this is 

still sufficient to observe seasonal changes in many lakes,, and more frequent water extent mapping can be used to 

interpolate between these observations. The Landsat-derived GSWD was used to estimate lake surface water extents from 575 

1984-2020 in this studyis study used the Landsat-derived GSWD to estimate lake surface water extents from 1984-2020. The 

GSWD are expected to will be updated annually by the Joint Research Centre of the European Commission (https://global-

surface-water.appspot.com/download), meaning at which point lake extent estimates can be extended beyond 2020. 

Although Landsat is not able tocannot provide NRT observations, this weakness can be addressed using MODIS and 

Sentinel-2, for example. The daily or 8-day composite MODIS products have a better chance to provide valid observations 580 

than the 16-day Landsat images, but the 250-m or 500-m resolution is often not sufficient to detect lake area changes 

accurately. Five-day, 10-m resolution surface water extent data derived from Sentinel-2 would be a promising product 

candidate for NRT global lake monitoring,, but although the sheer volume of data presents some challenges for storage and 

easy accessprocessing. LSentinel-2-based lake water area data from BLUEDOT are currently already only available from 

BLUEDOT for several thousand lakes around the worldworldwide, and , although its satellite source is Sentinel-2. In 585 

factthere is no fundamental limitation that would prevent a similar approach from measuring all , Sentinel-2 can observe 

surface water changes for the same amount (e.g., 170,957 lakes measured in this study) of lakes as by Landsat in this study. 

The advantage of using Sentinel-2 is would be that it can provide NRT lake observations with low latency. However, it 

requires huge The high computation and storage demands can computation sources to derive global lake water area change 

even in one repeat cycle as it has high spatial and temporal resolution. This limitation can be potentially be addressed met by 590 

the existence of cloud platforms like Google Earth Engine (GEE). In future research, we We hope will to consider such 

approaches to GEE and Sentinel-2 to improve monitoring abilitiesour data set of our GloLakes product in the future study. 

The An inherent main limitation of using any optical remote sensing is the effect of cloud s and other atmospheric 

interferences and vegetation, to a lesser extent, vegetation. This issue can could be mitigated by using passive microwave 

sensors or SARs. The For example, the Japanese Space Agency’s AMSR2 and TRMM TMI sensors and NASA’s AMSR-E 595 

and GPM instruments can provide daily observations of surface water based on different differences in brightness 

temperature between wet and dry areas (De Groeve et al., 2015;Hou et al., 2018). Unfortunately, their resolution is generally 

very coarse due to the observation method. Sentinel-1 SAR could be a more practical solution to monitor lakes under cloud 

cover, with 2–12 days and 10-m resolution,, provided the water detection algorithm can be automated, and vegetation cover 

does not interfere with the mapping. The Finally, the Surface Water and Ocean Topography (SWOT) satellite mission will 600 

behas been was launched at the end of 2022, which and will can is expected to measure surface water height and extent 

simultaneously every 21 11 days for lakes greater than 250 m by 250 m. Its temporal resolution sits is intermediate to 

between the radar and laser altimetry used in this studyhere. The spatial resolution is lower than Landsat and Sentinel-2, but 
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SWOT shows promise for monitoring lake changes given that the two basic components (i.e., A and H) needed to estimate 

lake volume change are measured at the same timesimultaneously. 605 

4. Data availability 

The global historical and near real-time lake storageGloLakes data described here are available from 

https://dx.doi.org/10.25914/K8ZF-6G46 (Hou et al., 2022). Five Six products are provided, the details of which are listed 

described in Table 24. Our The products also provide additional attributes including such as latitude, longitude, lake name, 

country name, state/province name, basin name and catchment name for each lake. The products can be linked to the 610 

HydroLAKES database using the ID index provided in the metadata. This allows users to combine storage dynamics data 

with other lake attributes, such as latitude, longitude, lake type, shoreline length, hydraulic residence times, and watershed 

area, etcamong others. Using the same HydroLAKES metadata, our the dataset can also be coupled to the GRanD (Lehner et 

al., 2011), HydroSHEDS (Lehner et al., 2008), and HydroRIVERS (Lehner and Grill, 2013) data bases. ThusThis allows , 

users can to access relate additional other river and reservoir information attributes and implement the data in hydrological 615 

model configuration, e.g., to improve river routing. The global lake dynamics are also can also be interactive explored 

accessible and visualised through the Global Water Monitor (http://www.globalwater.onlinethe web address will be released 

soon), which along with NRT information on other water cycle data such as , among others, river discharge (Hou et al., 

2020;Hou et al., 2018), soil moisture 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.d7782f18?tab=overview, v202012 combined product) and 620 

precipitation and other meteorological variables (Beck et al., 2022) (Beck et al., 2019). 

 
Table 2 4 Description of the global lake storageGloLakes products. 

Filename Type of Volume Satellite Sources 
The Number of 

Measured Lakes 
Period 

Global_Lake_Absolute_Storage_LandsatPlusGREALM (1984-present).nc Absolute Landsat; G-REALM 67129 1984-current 

Global_Lake_Absolute_Storage_LandsatPlusICESat2 (1984-present).nc Absolute Landsat; ICESat-2 23,29424,865 1984-current 

Global_Lake_Absolute_Storage_LandsatPlusSentinel2 (1984-present).nc Absolute Landsat; Sentinel-2 4,054 1984-current 

Global_Lake_Relative_Storage_LandsatPlusGREALM (1993-present).nc Relative Landsat; G-REALM 148227 1993-current 

Global_Lake_Relative_Storage_LandsatPlusICESat2 (2018-present).nc Relative Landsat; ICESat-2 23,41924,990 2018-current 

Global_Lake_Relative_Storage_Sentinel2PlusICESat2 (2018-present).nc Relative Sentinel-2; ICESat-2 2740 2018-current 
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5. Conclusions 625 

This study We produced historical and towards near real-time lake storage dynamics from 1984-present by combining using 

optical remote sensing (i.e., Landsat and Sentinel-2) and radar and laser altimetry data (i.e., Topex/Poseidon, Jason-1/2/3, 

Sentinel-3/6, and ICESat-2) at the global scale. The historical lake storage time series can help improve understanding of the 

influence of climate change and human activities on global or regional lake storage dynamics from 1984 to the present, and 

help to, e.g., estimate lake carbon dioxide and methane emissions from lakes. The NRT lake storage data we provide will 630 

hopefully provide useful and current information for water managers and other decision-makers in those managing our water 

resources and aquatic ecosystems. This product comprises both relative and absolute volume estimatesSurface water extent 

time series were estimated for all HydoLAKES HydoLAKES-delineated lakes larger than 1 km2. To maximise achieve more 

frequent water extent measurements frequency, a simple image gap-filling algorithm was implemented in each historical 

Landsat-derived surface water map. This process effectively solves restored missing data issues caused by, e.g., cloud, cloud 635 

shadow, swath edges and the Landsat-7 SLC failure. The monthly Landsat-derived water extents in this study showed strong 

correlations with GRSAD v2Zhao and Gao (2018) for 5,323 5,318 reservoirs and Donchyts et al. (2022) for 11,101 lakes, 

with an average median R of 0.880.91 and 0.76, respectively. We demonstrated that tThe geo-statistical HydroLAKES 

bathymetry estimation approach produced slightly better results volume estimates than the GLOBathy method. The geo-

statistical method  and was applied to estimate absolute lake volume dynamics from 1984-2020 for 170,611 lakes onwards 640 

by combining Landsat and Sentinel-2 imagery. Validation results showed an average median R of 0.780.91 and a SMAPE of 

52.538% between estimated and reported volumes for 238 494 lakes in the USA, South Africa, India, Spain and Australia. In 

situ bathymetric measurements would be ideal needed to more precisely accurately estimate total lake volume, but they are 

not available for the majority of the millions of lakes globally. Relative lake volume storage changes could be 

calculatedwere measured for lakes where their satellite-derived extents and heights were both available. The average median 645 

correlation between our relative storage product and a previous MODIS-derived data was 0.900.94.  

The historical lake storage time series can help improve understanding of the influence of climate change and human 

activities on global or regional lake storage dynamics from 1984 to present, and help to, e.g., estimate lake carbon dioxide 

and methane emissions from lakes. The NRT lake storage data we provide will hopefully provide useful and current 

information for water managers and other decision-makers in managing our water resources and aquatic ecosystems. In 650 

addition, we investigated where and for how many lakes whose NRT storage time series can be estimated by remote sensing 

around the world. The results indicated that the most suitable places regions for satellite-based to enable lake monitoring 

capabilities include is the USA, southeastern South America, the Mediterranean, southern Africa, southern Asia, and 

Australia. The NRT monitoring abilities were then was achieved using BLUEDOT (Sentinel-2), ICESat-2 and GREALM in 

this study. The validation results showed that the performance of NRT storage estimatesion decreases slightly compared to 655 

historical storage estimates, but it are still of good qualitydoes not systematically occur in our datasets. In the future, the 
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estimates GloLakes can could be potentially be improved using Sentinel-2 -derived global surface water mapping and 

observations from the recently launched SWOT mission. 
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