
1 
 

C-band Scatterometer (CScat): the first gGlobal long-term satellite 
radar backscatter data set created by merging C-band ERS/ASCAT 
and Ku-band QSCAT with a C-band signal dynamic 
 
Shengli Tao1*, Zurui Ao2*, Jean-Pierre Wigneron3, Sassan Saatchi4, Philippe Ciais5, Jérôme Chave6, Thuy 5 
Le Toan7, Pierre-Louis Frison8, Xiaomei Hu1, Chi Chen9, Lei Fan10, Mengjia Wang11, Jiangling Zhu1, 
Xia Zhao12, Xiaojun Li3, Xiangzhuo Liu3, Yanjun Su12, Tianyu Hu12, Qinghua Guo1,13, Zhiheng Wang1, 
Zhiyao Tang1, Yi.Y. Y. Liu14*, Jingyun Fang1 

 

 10 
1 Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the 
Ministry of Education, Peking University, Beijing 100871, China 
2 Beidou Research Institute, Faculty of Engineering, South China Normal University, Foshan 528000, China 
3 ISPA, UMR 1391, Inrae Nouvelle-Aquitaine, Université de Bordeaux, Grande Ferrade, Villenave d’Ornon, France 
4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA 15 
5 Laboratoire des Sciences du Climat et de l’Environnement/IPSL, CEA-CNRS-UVSQ, Université Paris Saclay, Gif-sur-
Yvette, France 
6 CNRS, Université Toulouse 3 Paul Sabatier, IRD, UMR 5174 Evolution et Diversité Biologique (EDB), 31062 Toulouse, 
France  
7 Centre d'Etudes Spatiales de la Biosphère, CNRS-CNES-UPS-IRD, Toulouse, France 20 
8 LaSTIG, Université Gustave Eiffel, ENSG, IGN, F-77420 Champs-sur-Marne, France 
9 Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 
10 Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, 
Southwest University, Chongqing 400715, China 
11 School of Geoscience and Technology, Zhengzhou University, 450001, China 25 
12 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 
100093, China 
13 Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, 
Beijing 100871, China 
14 School of Civil and Environmental Engineering, University of New South Wales, Sydney NSW 2052, Australia 30 
 
 
 
 
Correspondence to: Shengli Tao (sltao@pku.edu.cn), Zurui Ao (aozurui@m.scnu.edu.cn), Yi Y. .Y. Liu (yiliu001@gmail.com)    35 
 

 

  



2 
 

Abstract Satellite radar backscatter contains unique information on land surface moisture, vegetation features, and surface 

roughness, and can be acquired in all weather conditions, thus has been used in a range of earth science disciplines. However, 40 

there is no single global radar data set that has a relatively long wavelength and a decades-long time spans more than two 

decades. This has limited the use of radar data for trend analysis over extended time intervals. We here provide the first long-

term (since 1992), high resolution (~8.9 km) monthly satellite radar backscatter data set over global land areas, the C-band 

Scatterometer (CScat) data set, by fusing signals from European Remote Sensing satellite (ERS, 1992-2001, C-band, 5.3 GHz), 

Quick Scatterometer (QSCAT, 1999-2009, Ku-band, 13.4 GHz), and the Advanced Scatterometer (ASCAT, since 2007, C-45 

band, 5.255 GHz).  

The six-year data gap between C-band ERS and ASCAT was filled out by modelling an equivalent C-band signal during 1999-

2009 from Ku-band QSCAT signals and climatic information. Towards this purpose, we first rescaled the signals from different 

sensors, pixel by pixel, using a new signal rescaling method that is robust to limited overlapping observations among sensors. 

We then corrected the monthly signal differences between the C-band and the scaled Ku-band signals, by modelling the signal 50 

differences from climatic variables (i.e., monthly precipitation, skin temperature, and snow depth) using decision tree 

regression.   

 The quality of the merged radar signal was assessed by computing the Pearson r, Root Mean Square Error (RMSE), 

and relative RMSE (rRMSE) between the C-band and the corrected Ku-band signals in the overlapping years (1999-2001 and 

2007-2009). We obtained high Pearson r values and low RMSE values at both the regional (r ≥ 0.9392, RMSE ≤ 0.1611, 55 

rRMSE ≤0.3738) and pixel levels (median r across pixels ≥ 0.8064, median RMSE ≤ 0.3834, median rRMSE ≤ 0.6488), 

suggesting high accuracy for the data merging procedure.   

The merged radar signals was were then validated with against the European Space Agency ERS-2 data, which a continuous 

ERS-2 data setprovide observations for a subset of global pixels till 2011 even after the failure of on-board gyroscopes in 2001 

available between 1995 and 2011. ERS-2 stopped working in full mode after 2001.  but observations are occasionally available 60 

for a subset of the pixels until 2011. Because the period of 1995-2011 fully overlaps with the working period of QSCAT (1999-

2009), comparing the merged radar signal against the ERS-2 data in 1995-2011 is the most direct validation available. We 

found highly concordant monthly dynamics between the merged radar signals and the ESA ERS-2 signals during 1995-2011, 

with regional Pearson r value ranging from 0.79 to 0.98 across regions. These results evidenced that our merged radar data 

have a consistent C-band signal dynamic. 65 

The CScat data set (https://doi.org/10.6084/m9.figshare.20407857, Tao et al. 20232a) is expected to advance our 

understanding of the long-term changes in, e.g., global vegetation and soil moisture. The data set will be updated on a regular 

basis to include higher temporal (from daily to weekly) and spatial (4.45 km starting from 1999) resolutions..  
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1 Introduction 

Microwave remote sensing uses electromagnetic radiation with a wavelength (l) between 1 cm and 1 m as a measurement tool 70 

(Ulaby et al. 1982). Depending on the source of the energy from which information is gathered, microwave remote sensing 

systems can be categorized into two groups: passive (radiometer) and active (radar). Passive systems collect the radiation 

naturally emitted by the observed surface, whereas active systems transmit a (radio) signal in the microwave bandwidth and 

record the signal backscattered by the target (Ulaby et al., 2014).  

 75 

Due to the longer wavelength compared to visible and infrared radiation, microwaves exhibit the important property of 

penetrating objects, with the penetrating ability increasing with increasing wavelength. Microwaves at high frequencies (such 

as Ku-band, ~13 GHz, l = ~2 cm) are sensitive to atmospheric conditions, but those at lower frequencies, such as C-band radio 

frequency (~5 GHz, l = ~6 cm), depend less on cloud cover and heavy rain events, making this technique suitable to work in 

all weather conditions (Ulaby et al., 2014; Carabajal and Harding, 2006; Le Toan et al., 2011). As a result, long-wavelength 80 

microwave remote sensing has been widely used in earth science studies for atmosphere, land, and ocean monitoring (Wentz 

et al., 1992; Wagner et al., 1999; Spreen et al., 2008; Wagner et al., 2007; Shi et al., 2016; Steele-Dunne et al., 2017; Murfitt 

and Duguay, 2021). 

 

However, there is no single multi-decadal microwave data set acquired at C-band or longer wavelength that spans more than 85 

two decades (Table 1). This has limited the use of microwave data for trend analysis over extended time intervals. Several 

passive microwave systems are available, such as the Advanced Microwave Scanning Radiometer for EOS (AMSR-E, 2002-

2011), The Advanced Microwave Scanning Radiometer 2 (AMSR2, 2012-now), WindSat (2003-2012), Soil Moisture and 

Ocean Salinity (SMOS, 2010-now) and Soil Moisture Active Passive (SMAP, 2015-now), all of which providing data with a 

wavelength of ~6 cm or longer (Spreen et al., 2008; Yao et al., 2021; Wigneron et al., 2017; Wigneron et al., 2020; Wigneron 90 

et al., 2021). However, merging them into a harmonized data set with a timespan longer than two decades has been shown to 

be challenging, mainly because AMSR-E has no overlapping observations with AMSR2 (Du et al., 2017; Moesinger et al., 

2020; Wang et al., 2021).   

 

Active microwave remote sensing, or radar, has the potential to overcome this limitation. Scatterometer is one type of radars 95 

known for its large footprint, global coverage and high revisit rate. These properties make scatterometers interesting for the 

study of large-scale land surface dynamics (Ulaby et al., 2014). Spaceborne scatterometer sensors have been deployed since 

1978 (NASA’s Seasat-A, Ku-band, Table 1), but global coverage of scatterometer observation dates back to the European 

Remote Sensing satellite (ERS-1/-2) in the 1990s (C-band, from 1992 to 2001; Frison and Mougin, 1996; Lecomte and Wagner, 

1998; Prigent et al., 2001). Over the past three decades, multiple scatterometer missions have been launched with the aim of 100 

obtaining full and repeated global coverage (Ulaby et al., 2014), such as the Quick Scatterometer (QSCAT, Ku-band, from 
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1999 to 2009), the Oceansat-2 Scatterometer (OSCAT, Ku-band, since 2009), and the Advanced Scatterometer (ASCAT, C-

band, from since 2007 to 2018). Among these sensors, both ERS-1/-2 and ASCAT operate at the C-band frequency, but have 

a temporal gap of about six years (i.e., between 2001 and 2007). Filling this time gap would lead to the first global C-band 

scatterometer data set with continuous observations for the past three decades (since 1992). Moreover, this data set could in 105 

principle be further extended because ASCAT is still operational, and similar C-band radar missions are secured in the future 

(such as the Sentinel radar series and the Metop-Second Generation satellite mission;; Malenovský et al., 2012; Lin et al. 

2016).  

 

The present study aims at filling up the six-year gap of the C-band scatterometer data using Ku-band QSCAT data at the global 110 

scale (Fig. 1). QSCAT operated between 1999 and 2009, thus overlapping with both ERS (between 1999 and 2001) and 

ASCAT (between 2007 and 2009). Seen from Table 1, QSCAT is a good candidate for fulfilling this task, because it QSCAT 

operated between 1999 and 2009, thus overlapping with both ERS-2 (between 1999 and 2001) and ASCAT (between 2007 

and 2009). Recent studies also demonstrated the feasibility of merging ERS-1/-2, QSCAT, and ASCAT (Bentamy et al. 2012; 

Tao et al. 2022; Frolking et al. 2022a & b). In theory, the Ku-band signal interacts more with smaller elements (such as 115 

raindrops, snows, and canopy leaves) than the C-band signal, due to the difference in wavelength (Saatchi et al., 2013). 

However, our previous work (Tao et al. 2022) we havehas previously foundshown that  the Ku-band QSCAT signal in tropical 

regions can be adjusted to the ERS-2 observations during 1999–2001 and to the ASCAT observations during 2007–2009 to 

obtain a simulated C-band signal (Tao et al., 2022b). Our previous approach was especially designed for global tropical areas. 

Here, we further improved extend the our previous approach to method the global scale through a better understanding of the 120 

signal differences mechanism across climatic gradients, and by developing and an improved technique for modelling the signal 

differences (i.e. decision tree regression)a new signal rescaling method. We then applied the improved method at the global 

scale. Image resolution has also been enhanced: while the native resolution of scatterometer images is often coarse (25 km or 

larger), the National Aeronautics and Space Administration (NASA) Scatterometer Climate Record Pathfinder (SCP, 

www.scp.byu.edu/) project has improved the resolutions of ERS-1/-2, QSCAT, and ASCAT images using the Scatterometer 125 

Image Reconstruction (SIR) with Filtering (SIRF) algorithm (Long et al. 1993; Early & Long 2001). Specifically, ERS-1/-2 

images of 8.9 km resolution in the period of 1992-2001, and QSCAT (1999-2009) and ASCAT (2007-now) images of 4.45 

km resolution have been made publicly available. For guaranteeing a long time-span since 1992, we aggregated QSCAT and 

ASCAT images to 8.9 km, to be consistent with chose to perform the data merging method at the resolution of ERS-1/-2 

images, by aggregating QSCAT and ASCAT images to 8.9 km. We chose to produce a monthly radar data set in this study 130 

because daily scatterometer images do not complete a full global coverage, also because the monthly time resolution has been 

frequently adopted by previous global-scale studies (Sun et al. 2018). The resulting merged radar data set, named C-band 

Scatterometer (CScat), is publicly available in netcdf format at https://doi.org/10.6084/m9.figshare.20407857 (Tao et al., 

20232a). CScat will be constantly updated to have higher spatial and temporal resolutions. Below, we provide a detailed 

illustration on the source data, methods, quality, and validation of the CScat data set.  135 
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2 Data and Methods 

2.1 ERS-1/-2, QSCAT, and ASCAT Data  

Scatterometers were originally designed to measure wind speed and direction, particularly over oceans. However, their data 

have also been found as useful for land applications such as soil moisture estimation, rainfall estimation, and forest monitoring. 

Here we analyzed space-borne scatterometer data from the ERS-1/-2, QSCAT, and ASCAT sensors (Fig. 1; Table 1). The 140 

backscatter of the radar signal, usually expressed in decibels (dB), is a function of the sensor parameters (frequency, 

polarization, look angle and spatial resolution), and the dielectric and geometric properties of the scattering objects.   

 

ERS-1, launched in 1991 by the European Space Agency (ESA), is carries the first spaceborne C-band scatterometer with 

repeated and global geographical coverage (Carabajal & Harding, 2006; Table 1). The ERS-1 scatterometer data were available 145 

globally between 1992 and 1996, and the mission ended finally on March, 2000 because of a failure of the attitude control 

system but scatterometer data (Crapolicchio & Lecomte 2003). ERS-2 was then launched by ESA in April 1995 as a follow-

up to ERS-1. However, starting from early 2001 until the end of mission in 2011, ERS-2 has been operating without 

gyroscopes, which largely reduced its spatial coverage (Carabajal and Harding, 2006). Consequently, the distribution of global 

coverage ERS-2 images to the user community was discontinued for the period 2001-2011. Both sensors operate on a sun-150 

synchronous near-circular polar orbit, passing the Equator at 10:30 am in descending mode. The incidence angle of ERS-1 and 

ERS-2 ranges from 16 to 50 degrees. ERS-1/-2 images were acquired in vertical (V-) polarization mode, and were usually 

gridded at 25 or 12.5 km resolutions (Frison and Mougin, 1996).   

 

The SeaWinds scatterometer (13.4 GHz, Ku-band) onboard QSCAT was launched by NASA in 1999 and collected data in full 155 

mode until November 2009. It provides normalized cross-section backscatter values at fixed incidence angles of 46 degree in 

H- polarization mode and 54.1 degree in V- polarization mode. Its ascending and descending orbits cross the Equator at 6:00 

am and 18: 00 pm local standard time, respectively. The QSCAT images are normally delivered at a resolution of 22 km × 22 

km (Tsai et al., 2000).  

 160 

 ASCAT, onboard the Meteorological Operational (Metop) series of satellites, was launched in October 2006 as a successor 

of the ERS-1/-2 scatterometors. The frequency of ASCAT (5.255 GHz, C-band) was designed to be consistent with ERS-1/-

2, although the range of its incidence angles was extended to cover 25—65 degrees. ASCAT passes the Equator at 9:30 am in 

descending mode and 21:30 pm in ascending mode. The backscatters of ASCAT are often grided at a spatial resolution of 25 

km or 50 km. ASCAT images are available in V- polarization mode, as for ERS-1 and ERS-2 (Figa-Saldaña et al., 2002). 165 

 

The NASA SCP project has enhanced the resolutions of ERS-1/-2, QSCAT, and ASCAT images to a nominal image pixel 

resolution of 8.9, 4.45, and 4.45 km/pixel, respectively. We downloaded the enhanced resolution images from the Brigham 
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Young University (BYU) Center for Remote Sensing (www.scp.byu.edu/). The images are available for typical global regions 

under the Lambert Equal Area projection, including Europe, Bering Sea, Siberia, North America, East Asia, Central America, 170 

Australia, Alaska, Oceania, North Africa, Southern Africa, South America, and South Asia. Three regions, namely Antarctica, 

Greenland, and the Arctic region, were not considered in this research because of the lack of QSCAT and ASCAT images in 

the BYU version. Images were provided in the ‘SIR’ format, which were read and displayed using the functions provided at 

https://www.scp.byu.edu/downloads.html.  

 175 

2.2 Data pre-processing 

We first aggregated QSCAT and ASCAT images of the BYU version at the resolution of ERS-1/-2 images, namely 8.9 

km/pixel. Ascending path QSCAT and ASCAT images were used. The ascending path time of QSCAT acquisition (6:00 am) 

is before sun rise, and the ascending path time of ASCAT (21:30 pm) is well after sun set, both reflect nighttime land surface 

conditions. The ERS-1/-2 images of the BYU version are generated by combining images of all paths to ensure the highest 180 

possible spatial and temporal coverages, we therefore used the all-path ERS-1/-2 images. ERS-2 signals during August 1996— 

June 1997 were increased by 0.2 dB to account for the sensor calibration bias (Crapolicchio & Lecomte 2003). 

 

V-Polarization QSCAT images were merged with V-Polarization ERS-1/-2 and ASCAT images. H-Polarization QSCAT 

images were also tried but very similar merged signals were obtained. The BYU data center provides images synthesized from 185 

acquisitions made over periods of 17, three, and four consecutive days for ERS-1/-2, QSCAT, and ASCAT respectively. For 

all three sensors, images acquired within a month were averaged. ERS-1/-2 and ASCAT observations of the BYU version were 

normalized to a common 40-degree incidence angle to be free of angle influence on the observations. Monthly signals 

exceeding three standard deviations from the long-term mean were consider to be outliers. Some ASCAT images were found 

to have strip patterns. Fortunately, all the strips were characterized by regions with a low number of radar observations, and 190 

thus can be masked by thresholding for a minimum number of observations, which was set to 20 (Tao et al., 2022b). To avoid 

water contamination on the signal, we excluded pixels within which more than 2% of the pixel area are classified as “water”, 

according tousing the 300-m resolution ESA Climate Change Initiative (CCI) land-cover map for the year of 2015 

(maps.elie.ucl.ac.be/CCI/viewer/).  

 195 

 

2.3 Scaling radar time series 

Similar to Tao et al. (2022b), a two-step approach was used to merge the C-band (ERS-1/-2 and ASCAT) and Ku-band 

(QSCAT) signals into a continuous long-term radar data set. The first step of the method was to unify the backscatter values 
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from different sensors (i.e., data rescaling). The second step was to harmonise the scaled data into a smooth time series by 200 

addressing their monthly differences (Fig. 2).   

 

Regarding data rescaling, previous testbeds have proposed two methods for rescaling time series: a linear regression correction 

(Brocca et al., 2011), and a cumulative density function (CDF) matching technique (Liu et al., 2009). The linear regression 

correction involves first scaling a time series within the range of the reference time series, and then applying a linear regression 205 

equation between the two to minimise error. The CDF method further divides two time series into their quantile segments, and 

then constructs a regression for each segment so that the CDF of a time series matches the CDF of the reference time series 

(Liu et al., 2009). 

 

We found the CDF method and the linear regression correction performed well in most regions (Fig. S1). However, we found 210 

that the CDF method failed in regions with a strong QSCAT signal trend such as the deforested areas in southern Amazonia 

(Fig. 3a). This is mainly because QSCAT and ASCAT overlapped during three years, and the QSCAT signals in these three 

years do not cover the full signal range during 1999 - 2009. Linear regression correction, as used in Tao et al. (2022b), is a 

preferable option to cope with this issue (see Fig. S1), but it is sensitive to sudden changes in radar signal (Fig. 3b). To 

overcome these limitations, we designed a new dataused the rescaling method, illustrated in the following equation (Brocca et 215 

al. 2010 & 2013; Draper et al. 2009): 

 

Qscaled = (Qoriginal - Qmean_overlap) / Qstd_overlap * Astd_overlap + Amean_overlap      (Eq. 1) 

 

where Qscaled indicates the scaled QSCAT signals, and Qoriginal means the original QSCAT signals prior to signal rescaling. 220 

Qmean_overlap and Qstd_overlap indicate the mean and standardized deviation of the QSCAT signals with ASCAT in the overlapping 

period (i.e., 2007-2009). Likewise, Amean_overlap and Astd_overlap indicate the mean and standardized deviation of the ASCAT 

signals in the overlapping period.  

 

This This method has been used by previous research for rescaling soil moisture observations (Brocca et al. 2010 & 2013; 225 

Draper et al. 2009)method was . Here we found it found to be robust to both the trends and sudden changes in radar signal ( 

(Fig. 3)). We therefore used it to unify the scales of ERS-1/-2, QSCAT and ASCAT signals. Specifically, monthly QSCAT 

signals were first scaled against monthly ASCAT signals, pixel by pixel. We chose ASCAT as the baseline for the rescaling 

because it has the best radiometric quality (lower sensitivity, higher radiometric resolution), and because it is still operational. 

Thereafter, ERS-2 signals were scaled against QSCAT signals (already scaled against ASCAT) using the same method. The 230 

ERS-1 and ERS-2 data sets were already calibrated, so there was no need to rescale them separately.  
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2.4 Addressing the monthly signal differences 

We seek here to correct the monthly signal differences before averaging the scaled signals. Indeed, previous Most existing 

research averaged directly the scaled signals directly to obtain a singleto obtain a long-term merged time series (Du et al., 235 

2017; Moesinger et al., 2020), but we here seek to correct the monthly signal differences before averaging the scaled signals. . 

We previously found that the C-band and the scaled Ku-band signals exhibited large monthly differences in tropical regions 

large monthly signal differences between the C-band and the scaled Ku-band signals(Tao et al., 2022) in tropical regions. 

Importantly, the differences showed a seasonal pattern, with the Ku-band radar signal higher than C-band signal during the 

dry season, and lower in the wet season. This phenomenon could be explained by the fact that the Ku-band signal has a shorter 240 

wavelength and lower penetrating ability relative to C-band, thus is more affected by tropical rainfall or intercepted water on 

leaf surfaces (Weissman et al., 2012; Prigent et al., 2022).  To eliminate the signal differencesThus, we first attempted to 

modelled the signal differencesthe signal differences using rainfall as a predictor, and then added the modelled signal 

differences to the Ku-band signal (Tao et al., 2022) (Fig. 4a; Weissman et al., 2012; Prigent et al., 2022). The effects of rainfall 

could be explained by the fact that the Ku-band signal has a short wavelength and low penetrating ability relative to C-band, 245 

thus is more affected than the C-band signal by tropical rainfall and water intercepted at the top of the forest canopy (Tao et 

al., 2022b).   

 

To extend our previous approach to the global scale, we explored the monthly signal differences against not only 

rainfall but also snow depth and skin temperature., for the following reasons:  250 

1. Analogous to the effect of rainfall on Ku-band signals in tropical regions, we expect that snowpack prevents the 

Ku-band signal from reaching the land surface in regions covered by snow (Kelly et al., 2003; Naeimi et al., 2012). Our 

analysis in Alaska confirmed this point: Ku-band signals closely track the seasonal changes in snow depth derived from the 

ERA5-Land archive (0.1 x 0.1 degree resolution, Muñoz-Sabater, 2019) (Fig. 4d-f).  

2. Sskin temperature is related with a range of ecological or hydrological processes such as surface freeze//thaw, ice 255 

melting,  in cold regionsand forest canopy evaporation (Konings et al., 2017) —all could impact the radar signals by altering 

the water content of the measured objects. One example is shown in Fig. 4g-i: monthly mean skin temperature (also from the 

ERA5-Land archive) predicts the signal differences in the western Alaska where permafrost is present. We therefore also 

expect that skin temperature is to be an effective predictor of the signal differences. 

 Importantly, signal differences in many regions are caused by more than one climatic phenomenon. For instance, 260 

both precipitation and skin temperature could impact the Ku-band signals in forested regions through, respectively, rainfall 

contamination and canopy evaporation. In cold regions such as the Tibetan Plateau, precipitation, snow depth, and skin 

temperature could be jointly responsible for the signal differences, considering the hydrological process of rainfall—snow/ice 

formation—snow/ice melting (Fig 4a).  



9 
 

Thus, Skin temperature in order to model the signal differences from climatic variables accurately, we used decision 265 

tree regression. This technique recursively partitions observations into two sets based on a predictor that minimizes the 

predictive errors (Sankaran et al., 2005; Pekel 2020). Compared with other modeling techniques, decision tree regression can 

be efficiently performed without heavy computation burden. Besides, a major advantage of the decision tree regression is that 

it produces a model with easily interpretable rules (Sankaran et al. 2005; Loh 2011). One example is shown in Fig. 4: while 

precipitation, skin temperature, and snow depth all contribute to the signal differences in one pixel of the Tibetan Plateau (Fig. 270 

4a), the decision tree model clearly dissects the causes of the signal differences by creating binary trees firstly based on snow 

depth, then by precipitation, and finally by skin temperature (Fig. 4b). After the decision tree modelling, the Pearson r value 

between the C-band and Ku-band signals increases largely from 0.55 to 0.91 (Fig. 4c).is correlated with snow depth and rainfall 

amount. In addition, Meanwhile, all the three climatic variables (precipitation, skin temperature, and snow depth) will be used 

together in one regression model for predicting the signal differences. Currently we built three regression models, each taking 275 

one climatic variable as input. As discussed above, precipitation, skin temperature, and snow depth could be responsible for 

the signal differences in separate periods. Multiple variable regression is therefore a promising way to further improve the 

modelling accuracy.   

 

Based on this prior knowledgeTo summarize, combining monthly climatic variables and decision tree regression 280 

modelling, the following steps were designed towe corrected the monthly signal differences on a global scalepixel by pixel 

using the following steps: 

1. For each pixel, a decision tree regression model was built taking the monthly signal differences during the 

overlapping periods (i.e., 1999-2001, and 2007-2009) as dependent variable, and were regressed, separately, 

against monthly ERA5-Land rainfall, snow depth, and skin temperature derived from the reanalysis ERA5-Land 285 

archive(0.1 x 0.1 degree resolution, Muñoz-Sabater, 2019) as explanatory variables. We used the Matlab function 

‘fitrtree’ to implement the decision tree modelling (The Mathwork, Inc.).Decision tree regression (Sankaran et 

al., 2005) was used because the relationships between signal differences and climatic variables could be non-

linear.  

1. After tree construction, cross-validation procedures were used to avoid over-fitting. We increased the value for 290 

the ‘MinLeafSize’ parameter from 1 to 30 with a step size of 1, and calculated the cross-validated errors. The 

‘MinLeafSize’ corresponding to the minimum cross-validated error was used, which ensures an optimal tree 

depth and a high predicative accuracy. Here, five-fold cross-validation was used because only ~60 overlapping 

observations (or, ~60 months) were available during 1999-2001 and 2007-2009, but we verified that the results 

were not altered with 10-fold cross-validation.  295 

2. Signal differences during the overlapping periods were then predicted by the regressions established in step 1, 

and added back to the scaled Ku-band signals. As a result, we obtained three sets of corrected Ku-band signals 

in the overlapping periods. Pearson r values between the C-band signals (also from the overlapping periods) and 
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each of the three sets of corrected Ku-band signals were then calculated. The Pearson r value was used to judge 

which regression (or which climatic variable) most accurately predicted the signal differences. We verified that 300 

the quality of the final merged signals was unaltered if mean squared deviation (MSD, Kobayashi and Salam, 

2000) rather than Pearson r was used to select the optimal regression.Variable importance of the decision tree 

regression was quantified using the Matlab function ‘predictorImportance’.  

3. The optimal decision tree regression selected modelin step 2, established with data from the overlapping periods, 

was then applied on climatic data from 1999 to 2009, and the predicted signal differences were added to the full 305 

QSCAT time series. This way, the QSCAT signal was transformed into an “equivalent” C-band signal..  

4. The data merging procedure was applied pixel by pixel. After transforming the QSCAT data, we built a time 

series for each pixel for the 1992–2022 period, combining ERS-1/-2, QSCAT, and ASCAT time series. Radar 

observations averaging data from the overlapping periods (1999–2001 and 2007–2009) were averaged across 

sensors.  310 

3.5. To assess the effectiveness of the data merging approach, Pearson r (unitless), RMSE (unit, dB), and relative 

RMSE (rRMSE, unitless) between the C-band and the corrected Ku-band signals in the overlapping periods 

(1999-2001 and 2007-2009) were finally calculated.  

 

𝑟 = ∑(#!$#̅)(#!$'()
)∑(#!$#̅)" ∑('!$'()"

    (2) 315 

𝑅𝑀𝑆𝐸 = '∑(#!$'!)"

*
    (3) 

𝑟𝑅𝑀𝑆𝐸 = +,-.
/#

      (4) 

 

where 𝑥̅ denotes the mean of the monthly Ku-band signals 𝑥 in the overlapping years; 𝑦+ denotes the mean of the monthly C-

band signals 𝑦 in the overlapping years; 𝑥0 	and 𝑦0 denote the values of 𝑥 and 𝑦 at the i-th month, respectively; 𝜎𝑦 denotes the 320 

standard deviation of 𝑦; and 𝑛 denotes the number of months in the overlapping years. rRMSE was used because it is 

normalized against the standard deviation of the signal, thus can be compared across regions. 

2.5 Validation of the data merging approach 

We also conducted a stricter evaluation of the data merging approach. From January 2001 to 2011, the ERS-2 satellite 

experienced a series of failures that affected its data continuity and spatial coverage. However, observations were occasionally 325 

available for a subset of global pixels (Crapolicchio et al., 2012). This period overlaps with the QSCAT operating period, thus 

it can be used to test whether the corrected Ku-band (QSCAT) signal shows a consistent dynamic with the C-band signal. 

Recently, the European Space Agency (ESA) has released the ERS-2 data set for the period of 2001–2011 reprocessed with 

the latest Advanced Scatterometer Processing System (ASPS) version 10.04  (Crapolicchio et al., 2012; 
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https://earth.esa.int/eogateway/news/ers-1-scatterometer-l2-dataset-processed-with-asps-v10-04-is-available-online). We 330 

used this version of ERS-2 data (hereafter referred to as ESA ERS-2) to validate our data merging approach. Excluding 

Australia, Southern Africa, and the Bering Sea, ten out of the 13 global regions were covered by the ESA ERS-2 data set 

during 2001 and 2011. For each of these ten regions, we calculated monthly radar backscatter coefficients at 40-degree 

incidence angle from the ESA ERS-2 data set, for comparison with our merged radar data set. To normalize the incidence 

angle, a linear regression was fitted between all incidence angles and the radar backscatter coefficients, and the R squared 335 

value and RMSE value of the regression were reported. The backscatter coefficient at 40-degree incidence angle was then 

predicted by the regression. To ensure data quality, the predicted backscatter coefficient was not used if the RMSE was higher 

than 0.5 dB. Since the ESA ERS-2 data have a resolution of 25 km, we aggregated our merged radar signals to that resolution. 

For each month during between 2001 and 2011, pixels with available ESA ERS-2 observations were located, and their ERS-2 

signals were averaged across pixels. Because the footprints of the ESA ERS-2 observations are not fixed temporally, different 340 

months have different subset of pixels. Our merged radar time series from the same pixels were then averaged and compared 

with the ESA ERS-2 signal mean. Months with too few pixels (<100) having ESA ERS-2 observations were not considered. 

This increases the strictness of the comparison in the sense that there is an additional spatial variation of pixels embedded 

within the radar time series.  

  345 

3 Results   

3.1 Merged radar signals and quality assessments 

The merged radar signal, averaged across pixels within a region, is presented in Fig. 5. Pearson r, RMSE and rRMSE between 

the C-band and the corrected Ku-band signals in the overlapping years (1999-2001 and 2007-2009) were used to assess the 

quality of the merged radar signal. All 13 regions had a r value larger than 0.9392, with a maximum of 0.99. We also obtained 350 

low RMSE values (from 0.03 05 to 0.1611), even in regions with a large seasonal amplitude in radar signal, such as Siberia 

where the seasonal amplitude is around 3 dB but the RMSE is only 0.1611. This result was further confirmed by the low 

rRMSE values obtained in all regions, which ranged from 0.09 14 to 0.3738. 

 

We further assessed the data merging quality at the pixel level. Before correcting the monthly signal differences, the Pearson 355 

r values between the C-band and the scaled Ku-band signals showed a long-tailed distribution in all regions (Fig. 6). Regional 

median r values were relatively low, ranging from -0.22 to 0.91, and negative r values were found in almost all regions. After 

correcting the monthly signal differences, the regional median r values ranged from 0.80 64 to 0.9694, with no negative r 

values observed (Fig. 6). The improvement was the most obvious in the northern high latitudes, such as Europe (r improved 

from 0.54 to 0.9087), Bering Sea (r from -0.13 to 0.9394), Alaska (r from -0.16 to 0.94), and Siberia (r from -0.22 to 0.9394). 360 

In contrast, the improvements for five regions, namely Central America, Australia, North Africa, South America, and South 
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Asia, were relatively limited, because their median r values prior to signal correction were already high. All these five regions 

contain large portions of barren lands, deserts, shrublands, or grasslands, where the Ku-band signal is not as impacted as in 

forested and snow-covered regions.    

 365 

Regarding RMSE (Fig. 7), regional median RMSE values varied between 0.15 and 1.52 before correction for signal 

differences, but decreased sharply after correction for signal differences (between 0.10 13 and 0.3834; Fig. 7). The most 

obvious improvement was still observed in the northern high latitudes such as Europe (RMSE decreased from 0.66 to 0.2933), 

Bering Sea (RMSE from 1.32 to 0.3331), Alaska (RMSE from 1.28 to 0.31), and Siberia (RMSE from 1.52 to 0.3834). Regional 

median rRMSE values were lower than 0.6488, and in most regions lower than 0.5 (Fig. S2), consistent with the RMSE-based 370 

assessments (Fig. S2). Besides, although rRMSE values were generally low in the final CScat data set, in the final CScat data 

set, tropical regions, mountainous regions, and arid regions had relatively higher rRMSE values than other regions (Fig. S3). 

 

3.2 Importance of the predictor variables  

For each pixel, we built three regression models including rainfall, skin temperature, and snow depth, respectively, as a 375 

predictor of the signal difference in the overlapping years (1999-2001 and 2007-2009). The climatic variable that most 

accurately predicted the signal differences was finally used for that pixel (see Section 2.4).  

 

We found that, for 3133.3% of all the pixels, signal differences were most accurately predicted by rainfall (hereafter referred 

to as Type 1 pixels, Fig. 8a). This type of pixels was mainly found in the southern hemisphere, particularly in tropical regions. 380 

In the northern hemisphere, such pixels were primarily located in the low and middle latitudes (Fig. 8a).    

 

For 6457.8% of all the pixels, signal differences were most accurately predicted by skin temperature (hereafter referred to as 

Type 2 pixels, Fig. 8b). This type of pixels was widely distributed across the globe. In tropical regions, the spatial pattern of 

Type 2 pixels is similar to the pattern of Type 1 pixels (Fig. 8a & 8b), which is expected because skin temperature and rainfall 385 

are correlated. The main differences between the distributions of Type 1 and Type 2 pixels were found in the northern high 

latitudes and dry regions such as the hyper-arid Sahara and Arabian DesertsSahara Desert.  

 

Signal differences in the remaining 58.9% pixels were most accurately predicted by snow depth (Fig. 8c, hereafter referred to 

as Type 3 pixels). As expected, this type of pixels was primarily found in mountainous regions such as the Himalayas and the 390 

southern part of the Andes, as well as the very high-latitude regions in the northern hemisphere.  
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3.3 Independent validation of the merged radar signal 

The quality of the merged radar signals was also validated directly against the ESA ERS-2 data (see Section 2.5). The number 

of ESA ERS-2 pixels available for a comparison differed across regions. Furthermore, the pixel number decreased largely 395 

around 2003 in many regions (Fig. S4). Despite the variations in pixel number, we found highly similar monthly dynamics 

between the merged radar signals and the ESA ERS-2 signals in all regions. Using the Pearson r value as an index of similarity, 

all regions had a Pearson r value higher than 0.79, with a maximum of 0.98. Seven Six regions had a r value higher than 0.90 

(ranging from 0.90 to 0.98) (Fig. 9). This validation evidences that the CScat data are unlikely to be biased due to the cross-

period merging method. 400 

4 Discussion   

4.1 New method for rRescaling the radar time series 

The purpose of this project was to create the first global long-term radar backscatter data set with a consistent C-band signal 

dynamic. C-band ERS-1/-2 (1992-2001) and ASCAT (2007 -onwards) signals were bridged by Ku-band QSCAT (1999-2009) 

signals. Observations overlapped between the three sensors, which allowed us to rescale the signal times series.    405 

 

The CDF matching technique has been a classical signal rescaling method (Liu et al., 2009; Liu et al., 2011; Liu et al., 2015). 

For instance, Liu et al. (2011) used the CDF method for recalling vegetation optical depth (VOD) derived from the Special 

Sensor Microwave Imager (SSM/I, 1987–2007), TRMM Microwave Imager (TMI, 1998–2008) and AMSR-E (2002–2008) 

sensors. Moesinger et al. (2020) also used it for rescaling VOD products from SSM/I, AMSR-E, AMSR2 (2012-2019), and 410 

WindSat (2003-2012).  In these previous studies, the overlapping periods among sensors are relatively long, some even 

exceeding ten years. In contrast, neither the ERS-2-—QSCAT nor the QSCAT—-ASCAT overlapping periods span more than 

three years. The rescaled QSCAT signals by CDF could therefore be biased, due for instance to deforestation in southern 

Amazonia (Fig. 3a). The linear regression correction can tackle this issue (Fig. S1, Tao et al. 2022b), but is sensitive to sudden 

changes in radar signal. As shown in Fig. 3b, the QSCAT signal surged in 2009 in one location of Alaska, and the linear 415 

regression correction created an obvious bias in the rescaled QSCAT signals. This situation is rare in tropical regions but 

appears more frequent in northern high latitudes, possibly due to the surface freeze/thaw process. Although we have excluded 

potential outliers from the radar signals by implementing a standard deviation filter (see Section 2.2), such sudden changes 

were not identified as outliers.  

 420 

We used a simple yet effective Our new method for rescaling the signal time series. This method  (Eq. 1) is rooted in the 

discipline of statistics, and all the terms shown in Eq. 1 have been frequently used in physical and social sciences. However, 

as far as we know, has been used successfully by previous research for rescaling soil moisture data (Brocca et al. 2010 & 2013; 
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Draper et al. 2009). We here further demonstrated its capability of this is the first time such a rescaling of microwave signals 

is performed withwith a short overlapping period (~ three years). Additionally, The the results shown in Fig. 3 suggest that 425 

this method is robust to both the trends and sudden changes in radar signal. Merging time series of satellite observations has 

been an important yet challenging task in earth science studies. Many sensors have temporal overlaps, such as among AMSR-

E, ASCAT, Sentinel-1, and SMOS, with the lengths of overlapping period ranging from several months to a couple of years 

(Table 1).  Rescaling these data using Eq. 1 could uncover interesting mechanism underlying the signal differences, which is 

an important prerequisite for creating data sets with an even longer time span.Thus, it could be considered by future research 430 

for merging signal times series with limited overlapping observations. 

 

 

4.2 Signal quality and merging mechanism  

After rescaling the radar time series from different sensors, monthly signal differences were corrected, by modelling them 435 

from climatic variables (namely precipitation, skin temperature, and snow depth). The quality of the merged radar signals was 

assessed against the ESA ERS-2 data set. Highly similar monthly time series were obtained, suggesting high accuracy for the 

merging procedure. 

 

Why did rainfall, skin temperature, and snow depth successfully predict the signal differences? The main reason is that the 440 

Ku-band signal has a lower penetrating ability in comparison to the C-band signal because of its shorter wavelength. In regions 

with a strong rainfall such as the tropics, Ku-band signals are more impacted by raindrops and the intercepted water on forest 

top-canopyleaf surfaces, thus showing different seasonal patterns with C-band signals (Fig. 4a). The rainfall attenuation of 

high frequency microwave signals (Ku/Ka band or 13/35 GHz) is used for microwave-derived rain retrieval, such as the case 

of precipitation radar operating at 13.8 GHz on board TRMM (Iguchi et al., 2000).  445 

 

Skin temperature is found to be the mostan effective predictor of the signal differences for almost two thirds (6457.8%) of all 

the pixels (Fig. 8). This is expected because skin temperature not only corelates with rainfall, but also reflects several land 

surface processes. In tropical regions, skin temperature was found as an almost equally important predictor of signal difference 

as rainfall. The first explanation for this result is that there is a negative correlation between skin temperature and rainfall in 450 

tropical regions (Fig. S5). A second explanation could be the increased evapotranspiration of the rainforest canopy in dry 

periods due to high vapor pressure deficit. Increased evapotranspiration is correlated with skin temperature, and could impact 

the Ku-band signals, influencing top canopy moisture. This phenomenon therefore helps explain why Ku-band signals are 

higher than C-band signals in dry periods (Guan et al., 2015; Konings et al., 2017).  

 455 
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In boreal regions (Fig. 8b), skin temperature is also the mostan effective predictor of the signal differences. This could be 

related with the fact that the local land surfaces in these regions are seasonally frozen, or covered by ice, causing different 

signal performances between Ku-band and C-band signals. The surface freeze/thaw cycle is reflected captured by skin 

temperature changes, explaining why skin temperature predicted signal difference in these regions.   

 460 

In arid regions such as central Austria, the Sahara Desert and the Arabian Desert (Fig. 8b), skin temperature also outperformed 

rainfall as a better predictor ofexplained the signal differences in most pixels. These regions receive limited amount of rainfall 

annually. Soil moisture is therefore mainly controlled by land surface processes, such as the seasonal changes in wind intensity/ 

and direction in deserts, which modify the roughness of the sand dunes and finally lead to a temporal variation in soil moisture 

(Frédéric et al., 2015). Soil moisture changes with skin temperature, leading to changes in the penetration depths of C-band 465 

and Ku-band signals, due to the attenuation of the microwave signal as a function of moisture. This hypothesis could explain 

why skin temperature is closely related with the signal differences in some arid regions.  

 

Snow depth was found to be the most effective predictor of the signal differences in mountainous and high-latitude regions 

seasonally covered by snow. The Ku-band signal interacts with snows because of its short wavelength, thus its dynamics 470 

follows the seasonal changes in snow depth. Ku-band signal is higher when snow depth is deeper and vice versa (Fig. 4ad), 

but C-band signal shows the opposite dynamics, possibly because of a deeper penetration. We therefore modelled the signal 

differences using snow depth as a predictor. In fact, this is phenomenon has long been recognized a reversed version of theby 

classical approach research which models snow depth or snow-water equivalent from microwave signal differences (Kelly et 

al., 2003). Since the launch of Scanning Multichannel Microwave Radiometer (SMMR) in 1978, microwave data have been 475 

used to estimate snow depth and snow-water equivalent. One of the classical methods is based on the fact that microwaves at 

different frequencies respond differently to snow cover. For instance, the Chang equation (Chang et al., 1982) utilizes the 

channel differences between low- (such as 19 GHz) and high- (such as 37 GHz) frequency brightness temperatures observed 

by passive microwave sensors. Here, we found similar signal differences between low- (C-band) and high- (Ku-band) 

frequency radar signals. Since several radar sensors at different frequencies are operating, efforts could be made to create 480 

products of snow depth or snow-water equivalent based onby combining radar sensors signals such as QSCAT and ASCATof 

different frequencies such as QSCAT and ASCAT. 

 

 

Although we calculated, for each pixel, the most effective climatic variable for predicting the signal differences, this does not 485 

necessarily mean that the signal differences are explained by a single climatic variable.  In many cases, precipitation, snow 

depth, and skin temperature indicate three phases of the same climatic or hydrological process, such as the rainfall-snow/ice 

formation- snow/ice melt cycle in the Tibetan Plateau and Alaska. This is evidenced by the fact that all three variables predict 

the signal differences with high accuracies in the Tibetan Plateau (Fig. S6). It is also worth noting that, although climatic data 
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were used to merge radar signals into a single time series, this does not mean our final radar signals contain mainly climate 490 

information. The three climatic variables were merely used to model signal differences, which were then added to the Ku-band 

signals. Besides, the 1999-2009 period accounts for only a third of the entire time span. Thus, the main information contained 

in the merged signals is related to features of the land surface rather than to climate. 

 

4.3 Limitations and future works 495 

We used the reanalysis ERA5-Land monthly climatic data to model the signal differences. As a result, whether signal 

differences can be accurately modelled partly depends on the accuracy of the ERA5-Land climatic data. Future work will test 

the effectiveness of other climatic data sets for modelling the signal differences. The accurate mapping of some climatic 

variables, such as snow depth, are challenging (Orsolini et al., 2019; Clifford, 2010; Pulliainen et al., 2020). This is critical in 

the high-latitude regions such as northern Alaska, where snow depth is the most important variable predicting the signal 500 

differences. The estimation of rainfall is also challenging in regions with sparse climate stations such as the tropics. An 

increasing amount of climate data sets has been made publicly available, including the Modern-Era Retrospective analysis for 

Research and Applications Version 2 (MERRA-2, Gelaro et al., 2017), and the Climate Hazards Group InfraRed Precipitation 

with Station data (CHIRPS). The snow depth product of MERRA-2 has been demonstrated as superior than ERA5 in mainland 

China (Zhang et al., 2021). The CHIRPS precipitation was also validated to have an excellent performance in tropical Africa 505 

(Camberlin et al., 2019). Thus, it is possible that these climate products may produce a better merging quality for tropical and 

mountainous regions where the rRMSE values remained relatively high (Fig. S3). 

 

Except for climatic layers, remote sensing-based layers such as NDVI could be useful for modelling the signal differences in 

vegetated areas. NDVI reflects the vegetation growth condition, which is the result of several environmental factors interacting. 510 

NDVI therefore contains multiple environmental information. In addition, aerosol could be a contributing factor to the signal 

differences, especially in deserts such as the Sahara Desert where the rRMSE values in the final CScat data set remained 

relatively high (Fig. S3). The Sentinel 5P mission provides near real-time, high-resolution aerosol products starting from the 

year of 2018 (Ingmann et al., 2012). Analysis will soon be conducted to assess whether NDVI and aerosol layers can further 

improve the data merging quality. 515 

 

Another potentially useful data set to be included into our data merging framework is the Oceansat-2 scatterometer (OSCAT). 

OSCAT also provides Ku-band backscatters akin to QSCAT, but operating in a different period (between 2009 and 2014) 

(Bhowmick et al., 2013). QSCAT operated in full mode between 1999 and 2009, and overlapped with ASCAT during three 

years (2007-2009). Adding OSCAT will expand the overlapping period by five years (up to 2014), which could help further 520 

improve the data merging method. 
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In Tao et al. (2022b), linear regression was established to predict the signal differences from monthly rainfall amounts, because 

the signal differences exhibited a good linear relationship with rainfall in tropical rainforest regions. However, dDecision tree 

regression was also adopted in Tao et al. (2022) used for a limited number of pixels mainly located in the ever-wet north-525 

western Amazonia and Asian tropical rainforests, . This is because the relationship between signal differences and rainfall in 

these ever-wet regions is non-linear. The present study used only the decision tree regression (Fig. 4b, e, h), and used three 

climatic variables to increase the modelling model accuracyof the signal differences. The use of decision tree was inspired by 

Sankaran et al. (2005) in which decision tree was used to dissect the relationship between rainfall and woody cover for African 

savannas. More advanced machine learning techniques are an option in the future. Meanwhile, all the three climatic variables 530 

(precipitation, skin temperature, and snow depth) will be used together in one regression model for predicting the signal 

differences. Currently we built three regression models, each taking one climatic variable as input. As discussed above, 

precipitation, skin temperature, and snow depth could be responsible for the signal differences in separate periods. Multiple 

variable regression is therefore a promising way to further improve the modelling accuracy.   

 535 

CScat data set currently has a spatial resolution of 8.9 km and a monthly temporal resolution. Although this is suitable for 

global-scale studies such as vegetation biomass estimation, it’s less useful for local-scale studies requiring frequent 

observations such as phenological monitoring (Pfeil et al. 2020). We also plan to generate a nNew versions of CScat radar data 

set by with higher spatial and temporal resolutions are being created using the methodology developed in this study. Higher 

spatial resolution can be achieved by merging only merging only QSCAT and ASCAT images. As stated in the Introduction, 540 

the BYU data centre provides QSCAT and ASCAT images at the resolution of 4.45 km. It’s therefore possible to generate a 

global C-band radar data set at 4.45 km resolution but with a shorter Although this will shorten the time span (by a few years, 

the BYU data centre provides QSCAT and ASCAT images at the resolution of 4.45 km,since the QSCAT mission started in 

1999). It’s also possible to have higher temporal resolutions, such as daily resolution with a quasi-global coverage, and time-

averaged (such as weekly) resolutions with a full global coverage (Lin et al.  2016). New versions of CScat will be made 545 

publicly available at https://doi.org/10.6084/m9.figshare.20407857. thus this new data set will have the advantage of having 

even higher resolution. 

 

 

C-band radar data have been widely used in earth science studies for monitoring vegetation dynamics, mapping deforestation 550 

and soil moisture, and estimating snow water-equivalent (Chang et al., 1982; Clifford, 2010; Kelly et al., 2003; Liu et al., 2009; 

Saatchi et al., 2013; Steele-Dunne et al., 2017; Smith and Bookhagen, 2018). Thus, the merged radar signals are expected to 

be useful in a range of research disciplines. A possible outcome is to separate the signal into soil moisture and vegetation 

components vegetation optical depth (VOD)using radiative transfer models (Liu et al., 2021). This way, the signals can be 

more directly related to the soil or vegetation dynamics. Technically, extracting VOD and soil moisture from CScat signal is 555 

feasible with the help of the Water Cloud Model (Liu et al., 2021), and   efforts are being devoted to developing a CScat VOD 
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data set at the global scale. Considering its The merged radar signals span a long time span (since 1992), CScat and can be 

further extended because ASCAT is still operational. Thus, once soil and vegetation signals are separated, the vegetation 

partVOD  would be suitable for assessment of long-term global vegetation changes. Using optical MODIS Leaf Area Index 

data, a recent study found that most of the world’s vegetated areas are becoming greener, particularly in China and India (Chen 560 

et al., 2019). Using optical vegetation index NDVI, another recent research explored the long-term (2000-2020) resilience 

change of global forests (Forzieri et al., 2022). It would be interesting to re-evaluate the vegetation trends using radar CScat 

VOD data. While radar signal penetrates the upper forest canopy and interacts directly with the water molecules contained in 

forest biomass, optical greenness data reflect the canopy features of the top-most leaf layer which could be maintained due to 

leaf demography or light availability (Guan et al., 2015; Wu et al., 2016). We therefore expect the CScat VOD data set to 565 

provide new insights into the long-term changes of global forests. 
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Table 1. Basic information of commonly used satellite microwave sensors. 

Sensor Type Frequency (GHz) 
Launch 
date 

End of life 
date Event Reference 

AMSR Radiometer 
6.9, 10.7, 18.7, 23.8, 
36.5, 50.3, 52.8, 89.0 2002/12 2003/10   

AMSR-2 Radiometer 
6.9, 7.3, 10.7, 18.7, 
23.8, 36.5, 89.0 2012/5 -   

AMSR-E Radiometer 6.9, 10.7, 18.7, 23. 8, 
36.5, 89.0 

2002/5 2011/12 Antenna stopped rotating in 
2011/10. 

NSIDC, 
2011 

ASAR SAR 5.331 2002/3 2012/4   

ASCAT Scatterometer 5.3 2006/10 -   

ERS-1 
SAR, radiometer, 
scatterometer 5.3 1991/7 2000/3 

ERS-1 scatterometer stopped 
producing data since 1996/6. 

Attema et 
al. 2000 

ERS-2 
SAR, radiometer, 
scatterometer 5.3 1995/4 2011/7 

Some gyroscopes failed in 2000 
and 2001; tape recorder fails since 
2003/06. 

Crapolicc
hio et al. 
2012 

OSCAT Scatterometer 13.5 2009/9 2014/2   

OSCAT-2 Scatterometer 13.5 2016/9 2021/2   

PALSAR SAR 1.3 2006/1 2011/4   

PALSAR-2 SAR 1.3 2014/5 -   

QSCAT Scatterometer 13.4 1999/6 2018/10 Antenna stopped rotating in 
2009/11. 

NCAR 
Climate 
data 
guide, 
2023 

Seasat-A  Scatterometer 14.6 1978/6 1978/10   

Sentinel-1 SAR 5.4 2014/4 - 
Sentinel-1B terminated in 
2021/12. 

ESA, 
2022 

SMAP SAR, radiometer 1.3 2015/1 -   

SMOS Radiometer 1.4 2009/11 -   
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SSM/I Radiometer 19.4, 22.2, 37, 85.5 1987/6 - 

Data quality of the SSM/I F08 
85.5 GHz channel degraded since 
1987/12;  SSM/I F15 22.2 GHz 
channel become unusable since 
2006/08. 

Hollinger 
et al. 
1990; 
Hilburn & 
Wentz. 
2008 

TMI Radiometer 
10.7, 19.4, 21.3, 37.0, 
85.5 1997/11 2015/4 

Observations cover only tropical 
areas. 

Kummero
w et al. 
2000 

WindSat  6.8, 10.7, 18.7, 23.8, 
37.0 

2003/1 2020/10 
Service interrupted from 2005/02 
to 2005/06, and from 2007/06 to 
2007/08. 

Wentz et 
al. 2013 
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Figure 1. Temporal coverages and radio frequencies of ERS-1/-2, QSCAT, and ASCAT. ERS-1/-2 and ASCAT have a 

C-band radio frequency (5.3 GHz), and QSCAT have has a Ku-band frequency (13.4 GHz). QSCAT operated between 1999 

and 2009 in full mode, overlapping with both ERS and ASCAT. Image courtesy of NASA and the European Space 785 

Agency (ESA). 
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 790 
Figure 2. Flow chart illustrating the development and assessment of the CScat data set. Inputs/outputs are colored in 

green, the signal merging procedures colored in yellow, and assessment and validation for the merged signals colored in 

blue.   
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 795 
 
Figure 3. Comparisons between the CDF method, the linear regression correction, and the new method illustrated in 

Eq (1) for rescaling radar signals. In most regions, the three methods performed almost equally well (Fig. S1), but the CDF 

method and the linear regression correction failed for signals with a strong trend or sudden changes. 

 (a) Comparison between the new method and the CDF method and the method shown in Eq (1) for rescaling a QSCAT 800 

signal time series with a strong decreasing trend. (b) Comparison between the new method and the linear regression 

correction and the method shown in Eq (1) for rescaling a QSCAT signal time series with sudden increases in signal during 

the overlapping period.   
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Figure 4. Illustration on the correction of the monthly signal differences between the C-band and the scaled Ku-band 815 

signals in the overlapping years (1999-2001 and 2007-2009), taking one pixel in the Tibetan Plateau (88.01E,  33.73N) 

as an example. (a) The C-band and the scaled Ku-band signals before correction in one pixel of Amazonia. The location of 

the pixel is indicated by a red dot in the left-most map. The three panels in (a) show the radar signals against monthly 

precipitation (unit mm), skin temperature (unit K), and snow depth (unit mm). The blue-white background shows the 

monthly precipitations. The vertical dotted line in each panel a and c separates the ERS-QSCAT overlapping (1999–2001) 820 

and QSCAT-ASCAT (2007–2009) overlapping periods. (b) Decision tree regression with monthly precipitation, skin 

temperature, and snow depths as predictors of the signal differences. Predicted signal differences by decision tree regression 

with precipitation as input versus observed signal differences. (c) The C-band and the final corrected Ku-band signals by the 

decision tree regression.. The vertical dotted line in a and c separates the ERS-QSCAT overlapping (1999–2001) and 

QSCAT-ASCAT (2007–2009) overlapping periods. (d-f) show one example of the signal correction in Alaska with snow 825 

depth as the predictor of the signal differences. (g-i) show one example of the signal correction in Alaska with skin 

temperature as the predictor of the signal differences. 
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 Figure 5. Time series and quality assessment of the merged CScat radar time series at the regional level. Each row 860 

shows one region. Inside each row, the map in the left panel shows the location of the region. Lambert equal area projection 

is used in the map. The line plot in the right panel shows the merged radar time series, averaged across pixels and colored 

according to sensors. The Pearson r (unitless), RMSE (dB) and rRMSE (unitless) labelled in the panel were calculated using 

the C-band and the corrected Ku-band signals in the overlapping years (1999-2001 and 2007-2009), as indicators of the data 

merging quality.   865 
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Figure 6. Pearson r-based quality assessment of the CScat data set at the pixel level. Each panel shows the result of one 

region. Inside each panel, the Pearson r values between the C-band and the scaled Ku-band signals in the overlapping years 

(1999-2001 and 2007-2009) were calculated for all the pixels in this region and colored in orange. As a comparison, the 875 

Pearson r values between the C-band and the corrected Ku-band signals in the overlapping years were also calculated and 

colored in green. The medians of the Pearson r values are labelled inside each panel. 
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Figure 7. RMSE-based quality assessment of the CScat data set at the pixel level. Each panel shows the result of one 

region. Inside each panel, the RMSE values (unit dB) between the C-band and the scaled Ku-band signals in the overlapping 

years (1999-2001 and 2007-2009) were calculated for all the pixels in this region and colored in orange. As a comparison, 890 

the RMSE values between the C-band and the corrected Ku-band signals in the overlapping years were also calculated and 

colored in green. The medians of the RMSE values are labelled inside each panel. The rRMSE-based quality assessments 

isare shown available in supplementary material (Fig. S2). 
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Figure 8. Spatial distributions of the different types of radar pixelsvariable importance for predicting the signal 

differences between the C-band and the scaled Ku-band signals in the overlapping years (1999-2001, 2007-2009). The 

variable importance was calculated from the decision tree regression model using the Matlab function ‘predictorImportance’. 

For Types 1, 2, and 3 pixels, the most 905 

 important variables signal differences between the C-band and the scaled Ku-band signals in the overlapping years (1999-

2001, 2007-2009) were most accurately predicted byare monthly precipitation, skin temperature, and snow depth, 

respectively.  
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Figure 9. Validation of the merged CScat radar signals against the ESA ERS-2 data. The units of the signals is are dB. 

Note that CScat values are different from ESA ERS-2 values because the CScat signals have been rescaled taking ASCAT as 

the baseline. 915 


