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Abstract.

Green roofs can mitigate heat, increase biodiversity, and attenuate storm water, giving some of the benefits of natural vege-

tation in an urban context where ground space is scarce. To guide the design of more sustainable and climate resilient buildings

and neighbourhoods, there is a need to assess the existing status of green roof coverage and explore the potential for future

implementation. Therefore, accurate information on the prevalence and characteristics of existing green roofs is needed, but5

this information is currently lacking. Segmentation algorithms have been used widely to identify buildings and land cover in

aerial imagery. Using a machine-learning algorithm based on U-Net to segment aerial imagery, we surveyed the area and cov-

erage of green roofs in London, producing a geospatial dataset (Simpson et al., 2023). We estimate that there was 0.23 km2 of

green roof in the Central Activities Zone (CAZ) of London, (1.07 km2) in Inner London, and (1.89 km2) in Greater London

in the year 2021. This corresponds to 2.0% of the total building footprint area in the CAZ, and 1.3% in Inner London. There10

is a relatively higher concentration of green roofs in the City of London, covering 3.9% of the total building footprint area.

Test set accuracy was 0.99, with an f-score of 0.58. When tested against imagery and labels from a different year (2019), the

model performed just as well as a model trained on the imagery and labels from that year, showing that the model generalised

well between different imagery. We improve on previous studies by including more negative examples in the training data, and

by requiring coincidence between vector building footprints and green roof patches. We experimented with different data aug-15

mentation methods, and found a small improvement in performance when applying random elastic deformations, colour shifts,

gamma adjustments, and rotations to the imagery. The survey covers 1558 km2 of Greater London, making this the largest

open automatic survey of green roofs in any city. The geospatial dataset is at the single-building level, providing a higher

level of detail over the larger area compared to what was already available. This dataset will enable future work exploring the

potential of green roofs in London and on urban climate modelling.20
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1 Introduction

In urban areas, green roofs (i.e. roofs deliberately covered in a growing substrate and living vegetation) can provide some of

the benefits of ground-level green-space to health, well-being and the environment. Studies have examined the extent to which

green roofs can directly reduce cooling energy demand and the risk of overheating in buildings (e.g. Castleton et al. (2010);

Sailor et al. (2012); Sproul et al. (2014); Virk et al. (2015)), or can provide indirect benefits by decreasing the outdoor air25

temperature in hot weather with mixed results (e.g. Peng and Jim (2013); Virk et al. (2015); Cuthbert et al. (2022)). Green roofs

have the potential to provide a range of benefits to humans, and to the wider ecological system in cities by providing habitats

for wildlife (Filazzola et al., 2019; Hoeben and Posch, 2021), and can act as a carbon sink (Getter et al., 2009). Furthermore,

green roofs may be able to contribute to the removal of air pollutants (Baik et al., 2012), and storm water retention (Mentens

et al., 2006). Thus, green roofs are increasingly seen as an opportunity to improve health and well-being in urban environments,30

and as a part of climate mitigation and adaptation strategy. On the other hand, green roofs impose additional structural loads

and costs, so are not always appropriate (Losken et al., 2018); in other cases solar panels or high-albedo roofs may be more

appropriate. Cities worldwide have policies that encourage the use of green roofs through quantitative planning tools (The

Ecology Consultancy, 2017).

Previous technical reports commissioned by the Greater London Authority (GLA) have investigated the area of green roofs35

in London (Table 1). The 2019 Living Roofs and Walls report (hereafter LRW2019), surveyed existing green roofs for the years

2016 and 2017 ( (European Federation of Green Roof and Green Wall Associations (EFB) and Livingroofs.org on behalf of

the Greater London Authority, 2019; Livingroofs Enterprises Ltd, 2019)), although the methods are not publicly documented.

The survey reports estimates for Greater London by local authority district (LAD) and for the Central Activities Zone (CAZ: a

central area in London defined for planning purposes, see subsection 2.1 and Figure 1). In the London Plan Annual Monitoring40

Report (AMR), another report for the GLA, green roof areas in the CAZ were estimated based on aerial imagery for years

2013, 2015, and 2017 (Greater London Authority, 2021a, Key Performance Indicator 22, page 70) ranging from 1.75×105 m2

in 2013 to over 2.9× 105 m2 in 2015. Lastly, an interactive map of green roofs in the CAZ is publicly available on the GLA

website (Greater London Authority, 2014); it was produced in 2013/14 and is consistent with a green roof area in the CAZ

of 1.75× 105 m2. Although these different estimates (Table 1) offer valuable information on recent green roof coverage in45

London they lack transparency about the methods used, there is a wide disagreement about the area of green roofs in the CAZ,

and the full data are not publicly available for analysis.

Accurate, comprehensive, and open data documenting the location and area of green roofs can directly inform research

into city-scale heat mitigation strategy and is useful for stakeholders such as urban planners, policy makers and research

communities looking at urban heat mitigation and the added value of green spaces. However, there is a general lack of open50

data documenting the area and coverage of green roofs. In order to address this Wu and Biljecki (2021) applied a machine-

learning algorithm to high-resolution satellite-imagery to identify green roofs and solar panels in a number of cities around

the world, producing a ranking for which of the surveyed cities have the greatest coverage with green roofs and solar panels.

London was not included in their survey.
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Table 1. Previous estimates of green roof area in London. CAZ refers to a central area of London, see Subsection 2.1. Data from (European

Federation of Green Roof and Green Wall Associations (EFB) and Livingroofs.org on behalf of the Greater London Authority, 2019) and

(Greater London Authority, 2021a).

Survey area Source Survey year Green roof area (105 m2) % of built area

CAZ London Plan AMR 16 2013 1.75 1.5

CAZ London Plan AMR 16 2015 2.2 1.9

CAZ London Plan AMR 16 2017 over 2.9 2.5

CAZ LRW2019 2016 1.5 1.3

CAZ LRW2019 2017 2.1 1.8

Greater London LRW2019 2016 11.0 0.43

Greater London LRW2019 2017 15.0 0.59

In this study, we identify green roofs from aerial imagery: this is a binary segmentation problem, as a single class needs to55

be identified from a background. Such algorithms process an image to output a binary mask identifying areas belonging to the

target class. We used a fully convolutional neural network known as U-Net to segment the imagery: this type of neural network

was originally designed for biomedical image segmentation (Ronneberger et al., 2015), but have since been applied in other

research fields including remote sensing: for example to map roads (Ozturk et al., 2020), parking lots (Ng and Hofmann, 2018),

and green roofs (Wu and Biljecki, 2021) from imagery.60

Green roofs cover only a small proportion of the planar area of London, so in aerial imagery most pixels are not part of a

green roof. This means that the classification problem is imbalanced, with the negative class being many times more numerous

that the positive class. This can create problems with model training if gradient descent batches often do not contain any positive

examples. In Wu and Biljecki (2021), the training polygons were restricted to areas with relatively higher concentrations of

green roofs and image tiles with no green roof were excluded; 1-5 km2 of each of the 17 cities covered. Furthermore, the total65

number of examples for training is relatively low compared to many computer vision tasks, meaning that a computer vision

model may be unable to generalise the appearance of green roofs; as such, data augmentation is thought to be key for achieving

good segmentation performance. In the original U-Net paper, elastic deformations are applied to the training images, which

makes the network learn to be invariant to these deformations without the need for all possible deformations to be present in

the data (Ronneberger et al., 2015), this is justified as soft tissues in medical images are often deformed in this way. In Ng70

and Hofmann (2018) (on which Wu and Biljecki (2021) is based), random rotations in units of 90o and horizontal flips were

applied to the images, in order enforce rotational independence to the classifier and reduce overtraining.

In this study, we build on the machine-learning based method used by Wu and Biljecki (2021) for the segmentation of

green roofs from remote-sensed imagery, improve the segmentation performance by including more negative examples, and

experiment with data augmentation methods. We thus provide a robust, open and documented dataset of the location and area75

of green roofs in London at the level of individual buildings (Simpson et al., 2023), filling a gap in publicly available data. This

dataset has the greatest extent of its kind for any single city.
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2 Data and Methods

2.1 Geographic Context and Data

Greater London is a region of England with an area of 1,570 km2, which is divided into local authority districts (LADs),80

which are the 32 boroughs and the City of London. Inner London, with an area of 319 km2 is defined by the Office for

National Statistics; it comprises 14 LADs in the centre of London, roughly corresponding to the historic county of London

(Office for National Statistics, b). The Central Activities Zone (CAZ) is the historic, governmental, and business centre of

London defined by the GLA for planning purposes (Greater London Authority, 2021b, Policy SD4). The CAZ is contained

within Inner London but does not align with the LAD boundaries; it intersects with 10 LADs and has an area of 33.5 km2.85

Lower super output areas (LSOAs) are areas with 1000-3000 residents defined for the purpose of census statistics: each LSOA

is within exactly one LAD, and each LAD contains multiple LSOAs. In this article we use the LSOAs defined for the 2011

census (Office for National Statistics, a).

Using the Local Climate Zone typology (Stewart and Oke, 2012; Demuzere et al., 2019) as a reference, the built form of

Greater London is mostly classified as open lowrise. Inner London covers most of the area classified as open midrise and90

compact midrise, but also contains a large amount of open lowrise. The CAZ mainly covers the area of compact midrise in the

centre and is therefore the most densely built part of London. Buildings in the CAZ, and especially the City of London, are

more likely to be non-residential buildings. Figure 1 show the outlines of the LADs in Greater London and Inner London, and

the outline of the CAZ.

Datasets described in this section are summarised in Table 2.

Dataset Type Source Explanation

Imagery 2019 and 2021 25 cm RGB raster Getmapping Inc. Cloud free vertical aerial imagery mosaic.

OS VML Vector Ordance Survey Large scale building outlines. Dated July 2021.

UKBuildings Vector Verisk Ltd. Building footprints. Version 12, dated March 2022.

LSOA outlines Vector Office of National Statistics Lower-super output areas from 2011 Census.

LAD outlines Vector Office of National Statistics Local authority districts boundaries.
Table 2. Input geospatial dataset summary.

95

The imagery used for segmentation comprised of raster images with red, green and blue bands from cloud-free mosaics of

aerial imagery at 25 cm horizontal resolution (from (Getmapping Plc., 2020) accessed under an academic license). Two sets of

imagery were used, from 2019 and 2021. The imagery from 2021 was used as the primary dataset, with the imagery from 2019

providing an alternative dataset to test generalization. The collection dates for the imagery mosaic covering Greater London are

shown in Figure 2. The 2021 imagery covers 1706 km2 of which 1558 km2 was inside the Greater London boundary, while100

the 2019 imagery covers 1527 km2 of which 1422 km2 was inside the Greater London boundary.
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Figure 1. (A) Local authority districts in Greater London, identified by first three consonants of their names. Inner London is highlighted in

green and the outline of the CAZ is shown in red. Zoomed in maps of (B) Inner London, and (C) the CAZ.

Two GIS datasets were used for building footprints. Ordnance Survey (OS) VectorMap Local (VML) (Ordnance Survey

(GB), 2021) building footprints dated April 2019 were used in post-processing the segmentation, as inspection showed that

outlines were more consistent with the aerial imagery, especially in cases of buildings with internal courtyards. UKBuild-

ings (Verisk Analytics, Inc., 2022) building footprints were used for building counts, as it divides buildings into individual105

properties.

2.2 Segmentation pipeline

Our segmentation pipeline was based on that of Wu and Biljecki (2021), which is in turn based on Ng and Hofmann (2018).

The key differences are as follows:

1. we used aerial imagery rather than satellite imagery,110

2. our hand-labelled areas are distributed around the city rather than concentrated in a central area,

3. we focussed on fully surveying a single city rather than trying to cover many,
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Imagery collection dates 2021

2021-06-13
2021-06-14
2021-06-16
2021-07-17
2021-07-18

Imagery collection dates 2019

2019-06-29
2019-08-22

Figure 2. Collection dates for the aerial imagery mosaic covering Greater London. The primary imagery dataset used was that from 2021,

while the 2019 data were used for comparison.
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4. we experimented with additional data augmentation methods,

5. we implemented early stopping rather than training for a fixed number of epochs,

6. we tested different loss functions to handle the imbalanced nature of the problem,115

7. we experimented with freezing the pretrained layers of the model,

8. we did not use morphological opening or closing to adjust the prediction raster,

9. we used building footprints provided by Ordnance Survey rather than OpenStreetMap for postprocessing,

10. we included tiles containing no positive examples in training.

All analysis and data management was performed using Python (Van Rossum and Drake, 2009). A general outline of the120

workflow is shown in Figure 3. The method is covered in more detail in the following subsections.

Label polygons

Aerial imagery Select labelling areas

Train/validation/test 
split

Segmentation model

Training area 
polygons

Tiled binary mask

Tiling

Tiled imagery

Train data

U-Net Training

Labelling

Tiling

Validation 
data

Early stopping 
+ model 
selection

Test data

Performance 
evaluationPredictions binary mask

Predictions candidate polygons

Final prediction polygons

OS Building Footprints

Edge extraction

Intersection

Data preparation

Segmentation 
model training

Prediction and 
extraction

Figure 3. Workflow diagram of the overall segmentation pipeline.
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2.3 Imagery and labelling

To identify the locations of green roofs and estimate their covered area, we trained our U-Net with training polygons from a

sample area. The encoder layers of the U-Net produce compressed abstract representations of the image at different scales, by

repeatedly using convolution blocks followed by maxpool downsampling. The decoder layers apply upsampling and concate-125

nation with convolution to produce a prediction with the same dimensions as the input image, combining information from the

different scales provided by each encoder layer. The relationship between the image and the classification is learned from a

set of labelled examples, hereafter referred to as training polygons. To produce training data, green roofs in the imagery were

labelled by hand to provide input for model training. The training polygons and geospatial results are included in the data

repository associated with this article to this article for reproducibility Simpson et al. (2023). We selected areas for labelling130

based on the OS 1 km grid reference system, so each grid square is 1 km2. Firstly, a 4 km2 area in the CAZ was selected,

known to have a relatively higher concentration of green roofs: this was to ensure that there is sufficient representation of green

roofs in the data. Secondly, to increase the diversity of the data, we selected a further 21 km2 distributed around Inner London

without prior knowledge of the concentration of green roofs, aiming to represent each LAD and a variety of built forms (based

on an LCZ map); these areas had much smaller amounts of green roofs. All grid references that were included are listed in135

Table A2 and mapped in Figure 4. Within the selected grid squares, every building in the imagery was inspected and green roofs

were labelled by hand. Labelling was performed by drawing polygons using QGIS (QGIS Association, 2022); some examples

of training polygons are shown in Figure 5. Labels were initially produced with reference to the 2019 imagery, and then were

modified with reference to the 2021 imagery; the labels are different for the two datasets. In total, sample areas covered 7.8%

of Inner London, resulting in 4.9× 104 m2 (in 2019) and 5.7× 104 m2 (in 2021) of green roofs labelled inside the CAZ, and140

2.3× 104 m2 (in 2019) and 3.3× 104 m2 (in 2021) outside the CAZ.

Once trained we applied the U-Net to a larger area (the whole of Greater London) to map existing green roofs.

2.4 Performance metrics

Standard metrics were calculated to assess the validity of the segmentation model. Metrics were calculated from the final vector

layers, after all processing steps. The metrics are listed in Table 3. Accuracy, intersection-over-union (IoU), precision, recall,145

and F-score all range from 0 to 1, where 1 represents an ideal classifier. F-score is a more appropriate measure of the overall

validity of a model for imbalanced classification than accuracy. As well as calculating these metrics, we examined examples of

poor segmentation performance to understand the failure modes of our segmentation method.

2.5 Segmentation algorithm

The imagery was broken into 256× 256 pixel tiles at a scale of 0.25 m per pixel in the OSGB36 coordinate reference system.150

Pixel values were normalized to match ImageNet during training and prediction. We refer to areas labelled with no green roof

as negative, and those labelled with any green roof as positive. All tiles within the hand-labelled areas were used. Negative

pixels (i.e. those without green roof) were more numerous than positive pixels, and fully-negative tiles were more numerous
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Figure 4. Map of hand labelled areas.

Table 3. Classification performance metrics calculated in this study.

Metric Definition

Accuracy Proportion of area correctly classified

True positive (TP) Area correctly classified as positive.

False positive (FP) Area incorrectly classified as positive.

True negative (TN) Area correctly classified as negative.

False negative (FN) Area incorrectly classified as negative.

Intersection over union (IoU) TP/(TP+FP+FN)

Precision TP/(TP+FP)

Recall TP/(TP+FN)

F-score harmonic mean of precision and recall
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Figure 5. Example of training polygons. The area outlined in green was manually identified as being a green roof in this aerial imagery.

Imagery ©GetMapping Plc. Image location is shown in Figure A3.
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than positive tiles. To include negative-only tiles (which are far more numerous) while ensuring that enough batches would

contain positive examples, we experimented with two resampling methods during training: over-sampling positive tiles by155

repetition, or random sampling with replacement of the negative-only tiles.

Transfer learning refers to the practice of transferring models or parts of models between different learning tasks - in this

case from a well-known image classification task to our segmentation task. Ng and Hofmann (Ng and Hofmann, 2018) used

transfer learning to mitigate the small number of training examples; the U-Net encoder is replaced with a ResNet50 trained

on the ImageNet dataset (He et al., 2016; Deng et al., 2009), an example which we follow. Transfer learning can improve160

performance and reduce the required training resources as the model will have already learned to extract features from images

that are generally informative. Freezing refers to the choice to not update the pre-trained part of the model during training,

which can beneficial as it can massively reduce the compute time required for training: we experimented with freezing pre-

trained layers.

The algorithm was implemented in PyTorch (Paszke et al., 2019). The model was trained using the Adam optimiser (Kingma165

and Ba, 2014), an optimiser that dynamically adjusts learning rates for each model parameter, making training less dependent

on the global learning rate and therefore reducing required training resources.

Rather than training the model for a fixed number of epochs, we implemented early stopping. Early stopping refers to

stopping training when validation performance ceases to improve. This reduces the required training resources and can effective

at reducing overfitting. Training was stopped if the mean validation loss in the past five epochs was greater than that of the five170

epochs before.

It was not practical to test all combinations of hyperparameters, loss functions, augmentations etc. in a grid search. We

therefore optimised each choice one-by-one: first loss function, then learning rate, augmentations, and freezing. Testing data

were not used for training method tuning, and were only processed after the hyperparameters were finalised.

Four-fold cross-validation was performed; as required computational resources grows with the number of folds, we decided175

four was a good compromise between testing performance thoroughly and limiting resource usage. The hand-labelled tiles

were split into five sets, of which one was reserved as the test dataset. The random split was performed separately for positive

and fully negative tiles to ensure all splits contained both positive and negative examples. For each fold, training was performed

with 3 of these sets, and validation with one set. This is to demonstrate that good performance is not unique to a particular

random split of training and validation data, and therefore tests the ability of the model to generalise. To reduce resource180

requirements, optimisation of the training method was performed by maximising validation F-score using the first fold only,

with only the final selected configuration being cross-validated. The test dataset remained unseen to all models during training,

and was not used for choosing the optimal configuration, allowing for a good estimate of out-of-sample performance.

Cross-entropy loss, Lovasz loss, F-measure loss, and Focal loss functions were tested: Lovasz is intended as a surrogate for

the intersection-over-union measure (Berman et al., 2018), whereas focal loss is intended to give greater weight to hard-to-185

classify examples during training (Lin et al., 2017). The cross-entropy and focal loss functions were weighted by the inverse

frequency of the classes to account for class imbalance. In the final selected model configuration this resulted in the posi-

tive class having a weight of 102 times that of and the negative class. Focal loss has a parameter gamma which adjusts the
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importance of different parts of the loss distribution, and different values were tested. The F-measure loss approximates the

F1-score in a way that is differentiable, and leads to training that balances precision and recall without the need for weighting190

(Pastor-Pellicer et al., 2013). Learning rate, loss function, and data augmentation methods were tested. The hyperparameters

tuned, and hyperparameter values used for the final classification, are listed in Table A1.

A key part of the U-Net methodology is data augmentation Ronneberger et al. (2015) - a process wherein distortions or

transformations are applied to the training data to increase robustness when training data is scarce. Augmentation can reduce

overfitting, a process wherein a model memorizes certain features of the training dataset that do not generalise out-of-sample195

(Shorten and Khoshgoftaar, 2019). During training, augmentations were applied to the imagery tiles, and correspondingly to the

label masks. Augmentation was applied randomly and independently each training epoch, with equal probability to positive and

negative tiles. We experimented with flipping images in both planes, applying 90◦ rotation, applying random crops, randomly

shifting the colours, randomly applying gamma adjustment, and randomly adjusting the sharpness of the imagery. We also

experimented with applying elastic distortions. All augmentations used the Albumentations library (Buslaev et al., 2018).200

2.6 Post-processing

Predicted segmentation masks were generated from the trained model using the same tiling method as used for training. The

same prediction probability threshold of 0.5 was applied across the whole domain.

From the binary masks produced by the segmentation algorithm, we extracted green roof candidate polygons. Tiling resulted

in zero-width gaps between polygons where as green roof straddled two tiles, this was closed by simply taking the union of these205

polygons. The intersection was then taken between the candidate polygons and the OS VML building footprints, to remove any

candidate polygons that did not intersect with a building footprint. This process helped to reduce the false positive rate because

the segmentation algorithm can incorrectly identify ground-level green cover as a green roof. We found it convenient to apply

simplification of the prediction polygons using the iterative end-point fit algorithm and a threshold of 0.25 m, then to drop

polygons smaller than 10 m2, which had little impact on segmentation performance but reduced the file size (simplify routine210

implemented in Gillies et al. (2007–)). In previous work (Ng and Hofmann (2018); Wu and Biljecki (2021)), morphological

opening and closing have been used on the raster classification masks as a post-processing step: these are filters that remove

small isolated positive areas and fill in small negative areas respectively. But we found that these morphological operations

decreased segmentation performance so we did not use them. The post-processed segmentation results were spatially joined

with the UKBuildings layer in order to identify which individual buildings have green roofs, and so calculate the number of215

buildings covered.

2.7 Testing generalisation

As an additional test of out-of-sample performance, we included a second imagery dataset from a different year; the primary

imagery was for the year 2021, the alternative dataset for the year 2019. First, training was performed using the 2021 imagery

and labels, using k-fold cross validation to test the sensitivity of the performance to the train-test split. This model was tested220

against imagery and labels from the same year (2021) but also from an earlier year (2019). We compared the pixel-value
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distributions of the roof selected between these datasets. Further, we trained a single model using the 2019 imagery and labels,

with exactly the same data split (i.e. the same geographic locations of tiles) as the first fold of the primary model; this model

was used to provide a benchmark for the performance of the primary model by testing against both 2021 and 2019 test data.

Model design optimisation was performed only with the 2021 imagery and labels.225

2.8 Area estimates

To estimate area of green roof in each geographic area, the polygons of green roof area identified by the segmentation are spa-

tially intersected with the polygons of the geographic area. The same process is used with the building footprints to estimate

building footprint area. All area calculations were applied in the OSGB36 / EPSG:27700 coordinate projection. Area projec-

tions are scaled up by the recall of the model, based on the assumption that a fixed proportion of each green roof is missed by230

the model. Not doing so would lead to an underestimation of the green roof area.

To estimate the change in green roof area between 2019 and 2021, we performed the geometric set difference between the

2021 and 2019 prediction polygons, with the 2019 prediction polygons buffered by 5 m to allow for errors in segmentation.

3 Results

3.1 Segmentation performance235

The performance statistics averaged across folds for green roof identification are given in Table 4; performance statistics for

all folds are given in Table A4, and the full confusion matrix in A3. Table 5 gives the same statistics calculated in terms of

building counts rather than area; with performance statistics for all folds in Table A3 and the full confusion matrix in A5 Table

6 compares the performance of models trained on 2019 and 2021 imagery and labels, and tested against both 2019 and 2021

imagery and labels.240

Results of the hyperparameter search are shown in Table A1. The best performance was found with the F-measure loss (F-

score improvement 0.3), which may be because the class imbalance is large. We found that the augmentation which provided

the greatest improvements in performance were the non-destructive transformations (flips and rotations) which provided an F-

score improvement of 0.10 versus no augmentations, the effect of the other augmentations (elastic tranformation, colour shift,

random gamma adjustment) were smaller, improving F-score by only a further 0.03. We found that over-sampling the positive245

tiles was more effective than not including any negative-only tiles, including all tiles without resampling, or under-sampling

negative tiles. We experimented with the proportion of positive tiles to be achieved by resampling, and found the best results

when 50% of tiles contained positive pixels. Training was roughly two times faster per epoch with the pre-trained part of the

model frozen, so augmentation experiments were performed with it frozen, when the best combination was found training

was repeated with the model un-frozen but this did not lead to an increase in F-score. We found that the building-intersection250

step increased testing precision by 0.05 on average across the folds for the 2021 testing dataset and 0.11 for the 2019 testing

dataset with no effect on recall, showing that across the building-intersection step plays an important role in suppressing false
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positives. Figure 6 shows the distribution of colours in the predictions for the two imagery sets: generally true positives, false

positives, and false negatives have strongly overlapping colour distributions which are similar between the two imagery sets.

Table 4. Performance metrics for the green roof identification method, calculated based on area. For the full set of statistics for all folds see

Supplementary Table A4

Accuracy IoU Precision Recall F-score

Dataset

Testing 2021 0.9925 0.3970 0.6505 0.5046 0.5683

Testing 2019 0.9921 0.3707 0.5072 0.5793 0.5408

Validation 0.9923 0.4666 0.7148 0.5733 0.6363

Training 0.9941 0.5773 0.7374 0.7266 0.7320

Table 5. Performance metrics for the green roof identification method, calculated based on building counts. For the full set of statistics for

all folds see Supplementary Table A6

Accuracy IoU Precision Recall F-score

Dataset

Testing 2021 0.9924 0.4128 0.5721 0.5972 0.5844

Testing 2019 0.9892 0.3256 0.3934 0.6536 0.4912

Validation 0.9920 0.4516 0.6024 0.6433 0.6222

Training 0.9925 0.4444 0.5404 0.7146 0.6154

Table 6. Comparison of test dataset performance model trained on 2019 imagery and labels with the model trained on 2021 imagery and

labels.

Accuracy IoU Precision Recall F-score

Dataset

Trained on 2019

Testing 2021 1 0.9921 0.3682 0.6379 0.4655 0.5382

Testing 2019 1 0.9909 0.3580 0.4580 0.6212 0.5273

Trained on 2021

Testing 2021 1 0.9929 0.4134 0.6801 0.5131 0.5849

Testing 2019 1 0.9923 0.3782 0.5216 0.5790 0.5488

3.2 Distribution of green roofs255

Table 7 gives estimates for LADs in Inner London, Table 8 for Outer London, and Table 9 for aggregated areas. Proportion of

total building footprint area means the total green roof area divided by the total building footprint area including all buildings
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Figure 6. Colour and brightness of pixels in false positive (FP), true positive (TP), and false negative (FN) groups for (A) 2021 imagery and

labels, (B) 2019 imagery and labels. The model was trained on 2021 imagery and labels.

not only those with green roofs. Proportion of area means the total green roof area divided by the area of the geography (LAD,

CAZ, or Inner London). Proportion of buildings means the count of buildings with any green roof divided by the count of

all buildings. Proportion of buildings by area means the building footprint area of buildings that have any green roof divided260

by the total building footprint area. Mean coverage means the total area of green roof divided by the total footprint area of

buildings that have any green roof.

We estimate that the CAZ contained 2.27× 105 m2 of green roof on the dates of imagery collection (Summer 2021). Green

roof area estimates for each LAD in Greater London, and LSOA in Inner London, are mapped in Figure 7. Most (58%) LSOAs

contain no green roofs, and the maximum proportion of building footprint area covered by green roofs in any LSOA is 38%.265

We estimate that between 2019 and 2021, green roof area increased by 1.6×104 m2 in the CAZ, 6.7×104 m2 in Inner London,

and 1.5× 105 m2 in Greater London.
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(A) Greater London by LAD

(B) Inner London by LSOA
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Figure 7. Area of green roof identified in (A) LADs and (B) LSOAs as a fraction of total building footprint area.
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Table 7. Table of estimated green roof area for each LAD in Inner London in 2021.

Green Proportion of Proportion of Proportion Proportion Mean

roof total building geographic of of buildings coverage

area footprint area area buildings by area

(104 m2) (%) (%) (%) (%) (%)

City of London 6.1 3.9 2.1 7.8 25.6 15.3

Tower Hamlets 15.6 3.1 0.8 1.7 11.4 27.7

Islington 10.0 2.2 0.7 1.0 6.7 33.2

Hackney 9.8 2.0 0.5 1.0 7.3 27.9

Newham 12.4 1.6 0.3 0.3 6.2 25.8

Camden 7.0 1.3 0.3 1.1 7.9 16.0

Southwark 8.4 1.2 0.3 0.7 6.0 20.7

Hammersmith and Fulham 5.4 1.2 0.3 0.5 9.2 12.7

Lewisham 7.9 1.1 0.2 0.4 3.8 29.8

Wandsworth 6.9 0.9 0.2 0.3 4.9 18.2

Lambeth 6.1 0.9 0.2 0.4 3.8 22.9

Westminster 5.3 0.8 0.2 1.1 7.7 10.0

Haringey 4.2 0.6 0.1 0.2 1.9 34.1

Kensington and Chelsea 1.8 0.5 0.1 0.4 2.8 17.2

4 Discussion

4.1 Segmentation Performance

The segmentation model achieves a high level of accuracy (0.99). Precision and recall based on area for the 2021 testing dataset270

are 0.65 and 0.50 respectively, with an F-score of 0.57 (Table 4). Based on counts of buildings instead, precision is lower (0.57)

and recall is higher (0.60). This indicates that the model is effective at identifying green roofs, and that many of the false

positives are small areas on buildings with no green roof.

Given that the survey covers such a large and diverse area, and the green roof fraction is low in many areas, it is important

to consider the false positive rate. Tables A3 and A5 suggest that we expect 0.3% of the built area to be incorrectly identified275

as green roof, which is comparable to the green roof area in some districts that have very little green roof e.g. Waltham Forest,

but small in areas with more green roof.

Inspection of false negatives in the results showed that many pixels classified as false positives and false negative are at the

edges of green roofs. In the k=1 validation dataset 31% of the false positive area is within a 1 m buffer of the hand-labelled

polygons, and 34% of false negative area is within a 1 m buffer of the predictions. This indicates that the dataset is good at280

identifying green roofs, but that there are often inconsistencies at the edge of the green roof between the human labeller and
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Table 8. Table of estimated green roof area for each LAD in Outer London in 2021.

Green Proportion of Proportion of Proportion Proportion Mean

roof total building geographic of of buildings coverage

area footprint area area buildings by area

(104 m2) (%) (%) (%) (%) (%)

Greenwich 12.3 1.6 0.3 0.3 5.3 30.3

Barking and Dagenham 6.9 1.1 0.2 0.3 6.1 17.4

Brent 7.3 0.8 0.2 0.3 3.4 22.8

Barnet 7.9 0.7 0.1 0.2 3.0 21.9

Ealing 6.6 0.6 0.1 0.2 2.5 23.7

Richmond upon Thames 3.1 0.4 0.1 0.2 2.1 20.8

Hounslow 4.0 0.4 0.1 0.2 2.9 14.9

Hillingdon 5.4 0.4 0.0 0.2 4.5 9.5

Waltham Forest 2.8 0.4 0.1 0.1 2.5 16.1

Kingston upon Thames 2.1 0.4 0.1 0.2 2.9 12.6

Harrow 2.7 0.3 0.1 0.2 1.5 22.3

Sutton 2.4 0.3 0.1 0.1 1.9 17.9

Enfield 3.7 0.3 0.0 0.1 1.8 18.8

Merton 2.1 0.3 0.1 0.2 1.3 23.8

Croydon 3.8 0.3 0.0 0.1 1.9 16.4

Havering 3.0 0.3 0.0 0.1 2.2 13.2

Bexley 2.2 0.2 0.0 0.1 1.4 16.0

Bromley 2.9 0.2 0.0 0.1 1.7 13.3

Redbridge 0.8 0.1 0.0 0.1 1.2 7.8

Table 9. Table of estimated green roof area for the CAZ, Inner London, and Greater London in 2021.

Green Proportion of Proportion of Proportion Proportion Mean

roof total building geographic of of buildings coverage

area footprint area area buildings by area

(104 m2) (%) (%) (%) (%) (%)

CAZ 22.7 2.0 0.7 2.5 14.7 13.8

INNER 106.8 1.3 0.3 0.6 6.3 21.2

TOTAL 188.8 0.7 0.1 0.3 3.8 19.7
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the model. A similar observation was made by Wu and Biljecki (2021) when discussing the relative difficulty of segmenting

green roofs compared to solar panels, which have more well-defined edges in imagery. It may be that performance is limited

by the consistency of the human labelling rather than the efficacy of the machine learning algorithm.

Differences in precision and recall in the test datasets between folds are small (see Table A7), showing that the performance285

is not unique to a particular train-test split and demonstrating the appropriateness of the model. It is possible that performance

might be improved generally by labelling more data thus increasing the size of the training dataset, or through another method

of data augmentation that was not explored.

Comparing the performance of the same model (trained on 2021 imagery and labels) for the two testing datasets (2021

versus 2019), precision was lower for the 2019 dataset (from 0.57 to 0.39) but recall was higher (from 0.59 to 0.65) (Table 4).290

This means that with the alternative imagery dataset the model tends to include more a higher proportion of spurious green

roofs. The difference in precision is greater when calculated in terms of building counts rather than area (0.59 to 0.39) (Table

5), suggesting that the additional false positives take the form of small areas on buildings without real green roofs. Imagery in

the alternative set was completely unseen during training and optimisation. However, as Table 6 shows, performance is just as

good or better than a model trained on the 2019 images and labels. This demonstrates model can generalise to unseen imagery,295

although with some loss of precision.

The IoU score for the testing dataset averaged across folds (0.397, Table 5) of our segmentation model is similar than that

reported in Wu and Biljecki (2021) (0.396, see their sec 3.2.2). However, Wu and Biljecki (2021) did not include fully negative

tiles in their training or validation; excluding fully negative tiles from our validation would increase the IoU by reducing false

positives. Wu and Biljecki (2021) covered a total of 2217 km2 across 12 cities, with the largest being 302 km2 in Las Vegas,300

Nevada; our survey covered 1558 km2, making ours the largest survey of green roofs in a single city.

While performance was generally good as measured by the performance metrics, we collected some examples of poor

classification performance: Figure 8 shows some examples of false positives and Figure 9 false negatives. Shadows in the

aerial imagery was a cause of both false positives and false negatives, for example Figure 8a as well as Figures 9a and 9b. This

could be because the shapes and colours are simply less distinct in shadow, but there are also few examples of this to learn from305

in the training data. The visual texture of roofs may be a source of false positives, for example Figures 8b, 8c, and 8d have a

similar rough texture to the green roof in Figure 9d. Sedum-based green roofs often have a red-brown hue, meaning that another

source of false positives are roofs with a similar red-brown hue as seen in Figures 8e and 8f; Figure 6 shows that true positives

and false positives have strongly overlapping colour distributions, so it would not be possible to improve performance simply

by selecting certain colours. It could be that relatively small variations in colour lead to the misclassification, but we found310

that augmentations in gamma and colour only slightly improved performance. Multi-spectral imagery could help deal with

variations in vegetation colour. However, multi-spectral aerial imagery is collected more rarely and is less available; satellite

multi-spectral imagery is available but resolution is poorer. Therefore, visible-spectrum aerial imagery has some practical

advantages over multi-spectral imagery. Combining layers of multi-spectral imagery at lower resolution with aerial-imagery is

technically challenging, but could be effective for this task. Sometimes part of a green roof is correctly identified, but patches315

are missed, as in Figures 9c and 9d.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Examples of false positive classification in the 2021 imagery. The green outline shows the area identified as green roof by the

model. Imagery ©GetMapping Plc. Image location is shown in Figure A3.
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(a) (b)

(c) (d)

Figure 9. Examples of false negative classification in the 2021 imagery. The green outline shows the area identified as green roof by the

model. Imagery ©GetMapping Plc. Image location is shown in Figure A3.

This method can be applied to other cities, and we have explored how the segmentation methods can be improved. While

previous similar studies had included in training only tiles which contain positive examples, we found that including a large

number of negative examples was very effective at suppressing the false positive rate in unseen areas despite increasing the

class imbalance, and would recommend this approach in general. We observed improvement in segmentation performance320

by application of data augmentations, which we can recommend for future similar studies. The F-measure loss was also

particularly effective for this problem as the segmentation classes are so imbalanced.

4.2 Limitations

As is clear from this study, automatic methods are scalable, allowing large areas to be surveyed and monitored; however,

they have limitations. Green roofs can only be identified by this method if they are visible in the imagery, and small areas of325

vegetation (that is, not visible at 25 cm pixel size) are necessarily left out. Hand labelling also has limitations; there are edge

cases where it is difficult to for a human to determine visually from the imagery whether a building has a green roof or where

the edge of the green roof is due to shadows or poor condition of the green roof.

We compared performance between two sets of imagery collected in different years by the same company. However, these

two sets of imagery are quite similar as they were collected by the same company, both in summer, and presumably with the330

21



same or similar instruments, it may be that the model would not generalise to a model from a completely different source of

imagery e.g. from satellite observations. Summer collection of optical aerial imagery is preferred because a high solar angle

means better light conditions. When a model trained on 2021 imagery is tested against 2019 imagery, recall holds up well but

there is a substantial difference in precision. More broadly, generalisation to completely different imagery sets (for example

satellite imagery) would be best achieved by including examples from those sets during training. The trained model would335

not be expected to perform well on a completely unseen source of imagery without further training, as a diversity of imagery

sources was not present during training. While relatively high-resolution satellite-imagery is available covering most cities in

the world, these are generally not as high quality as the aerial imagery available in London; therefore, the same method applied

to other cities may yield worse performance.

We have not attempted to separate different types of green roof (e.g. intensive, extensive, roof gardens). While types of plant340

may be differentiated to some extent in aerial imagery, important features like depth of substrate cannot. Some green roofs may

be in poor condition from lack of water, and there may be cases of fake turf or other imitation vegetation being detected as

green roofs: both of these could be better identified using multi-spectral imagery.

Performance of the building-intersection step is reliant on the alignment of the buildings footprints with the imagery. The OS

building footprints are very accurate, especially for identifying courtyards within building footprints. We found that alignment345

between other imagery sets, and with other building footprint sources, was not as reliable. However, OS maps are only available

in the Great Britain, as opposed to OpenStreetMap which has a more global coverage.

4.3 Comparison to other estimates

Our estimate of green roof area in the CAZ in 2021 (2.3× 105 m2) is higher than the LRW2019 estimates and the AMR

estimate for 2013 and 2015, but lower than the AMR estimates for 2017. For Greater London, the identified area is higher than350

the 2016 and 2017 estimated areas from LRW2019. While individual-building data from previous studies are not available

for comparison, local-authority district (LAD) level data are available from for 2017 from LRW2019 (Livingroofs Enterprises

Ltd, 2019; European Federation of Green Roof and Green Wall Associations (EFB) and Livingroofs.org on behalf of the

Greater London Authority, 2019) In Figure 10, we compare our results for 2019 with the estimates for each LAD in 2017 from

LRW2019: the results are strongly correlated, but some LADs have quite different results. According to this, most LADs have355

gained some green roof between 2017, with a few losing some. Newham (Nwm) and Hillingdon (Hdn) appear to have gained

the most green roofs between 2017 and 2019. Our estimate for Havering (Hvg) is close to zero, because the 2019 imagery does

not cover Havering (see Figure 2). Where estimates are differ by a small amount it may be due to differences in methodology

or errors rather than a real change.

Examining the GLA’s geospatial data (which is only public for the CAZ) (Greater London Authority, 2014) and infographics360

(Livingroofs Enterprises Ltd, 2019), we see multiple instances of ground-level parks being incorrectly identified as green

roofs (e.g. Finsbury Square in Islington, Figure A1). Making use of the building footprint data enables us to avoid such

misclassifications. There is also disagreement for the Barbican Centre (Figure A2), of which the full area is counted as a roof

by the GLA results: this is a difficult edge-case, as the OS building footprints do not include the full area of the complex as a
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building. Over the CAZ, we find that 4% of the the area of the Greater London Authority (2014) dataset does not intersect with365

OS building footprints. It also appears that in the GLA’s geospatial data, an area slightly larger than the vegetation is usually

selected, which may be due to the resolution of the input data. This demonstrates the utility of ensuring the coincidence of

identified green roof patches with building footprints.

Wu and Biljecki (2021) report that proportion of buildings by area which have a green roof is 41.6% in Zurich, 24.8% in

Berlin, and 17.2% in New York (London was not included in their survey). Comparing this with the results in Tables 7, 8, 9, we370

see that the City of London ranks between Berlin and New York at 21.0%. This method of ranking is sensitive to the geographic

area included in the calculation if the concentration of green roofs varies between districts within a city. Furthermore, given

our interest in rooftop vegetation as a climate adaptation strategy, the actual amount of vegetation seems more relevant than the

total area of the building.

4.4 Distribution of green roof areas375

As shown in Table 7, although larger total areas of green roof are present in some LADs, the City of London is has the highest

concentration of green roofs in London. Especially high concentrations of green roofs are also seen in in Tower Hamlets.

Distribution of green roofed buildings within LADs is heterogeneous (see Fig 7). When LSOAs stand out as having relatively

high green roof coverage, it is often due to a single large building or a cluster of buildings with green roofs.

Despite having the highest green roof coverage out of the LADs, only 3.9% of the building footprint of the City of London380

is covered by green roofs. The City of London has very low amounts of green cover generally, so it is consistent with policy

(e.g. (Greater London Authority, 2021b, Policy G5)) that green roofs would be adopted there. However, the LRW 2008 report

(Design for London et al., 2008) found that 32% of roof area in the City of London could be suitable for retrofitting with green

roofs, so the current status is a long way from that proposed. As the dataset identifies individual buildings, in future work we

will explore what kinds of buildings, and what areas, have adopted green roofs. Given that the area of vegetation in the City of385

London is overall quite low, it is possible that existing green roof coverage is making a difference to the thermal environment:

a possibility that we will explore in a urban climate modelling study enabled by this data.

4.5 Use of the dataset

The dataset provides far greater detail than is available publicly from previous work in London. Green roof polygons are

provided for individual areas of green roof, and are identifiable for individual buildings. This will enable new insights into the390

distribution of green roofs in London which were not possible before. For example, using the building use classifications given

by the UKBuildings dataset, we can calculate the distribution of green roofs between building uses. As shown by Figure 11,

non-residential buildings make up most of the buildings with green roofs (56%), with around 1.2% of non-residential building

footprint area covered by green roofs compared to 0.3% of residential buildings. While a large fraction of green roofs occur on

residential buildings, only a small proportion of residential buildings have a green roof. This illustrates the utility that this level395

of detail brings. Future work will extend this analysis to look in detail at the characteristics of buildings that have green roofs

in London.
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Figure 10. Scatter plot showing estimated green roof area in LADs of Greater London, comparing the estimates from Livingroofs Enterprises

Ltd (2019) (2017) to our estimates (2019).

Figure 11. Share and proportion of green roofs for different building uses. Most green roofs are on non-residential buildings. Mixed use

refers to buildings comprising both residential and non-residential uses.
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5 Conclusions

In this study, we produced a survey of green roofs in London using automatic segmentation of aerial imagery. The segmentation

model shows strong generalisation to unseen imagery. The resulting geospatial dataset is made available for further research.400

We identified areas which have a high prevalence of green roofs; especially the City of London and parts of Tower Hamlets.

We highlighted some of the difficulties of producing such a dataset: especially that low prevalence of green roofs means that

the classification problem is highly imbalanced, which can create problems for machine-learning algorithms. Furthermore, we

demonstrate the importance of excluding ground-level vegetation from surveys of green roofs by ensuring areas classified as

green roofs are coincident with building footprints.405

This dataset covers the whole of Greater London and provides data at the single-building level, which other publicly available

datasets cannot. We demonstrated how the resulting dataset can be used to extract information about the distribution of green

roofs between districts, as well as using single-building-level data to cross reference green roof coverage with building use. In

future work, we will use this geospatial dataset to further explore the characteristics and uses of buildings and neighbourhoods

which have green roofs as well as those with potential for more green infrastructure, and to quantify the thermal effects of410

green roofs on London’s micro-climate through urban climate modelling.

6 Code and data availability

Code and data generated by this project are available for download 10.5281/zenodo.7603123 (Simpson et al., 2023). The

geospatial data is stored in GeoJSON format, and can be read with GIS applications such as QGIS, ArcMap, or Fiona.

Aerial imagery was used under license from GetMapping Plc. Ordnance Survey data was used under license. These licensed415

data are available under educational license https://digimap.edina.ac.uk.
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Table A1. Table listing the hyperparameters that were tuned, which values were tested, and the final value used for classification.

Parameter Tested values Final value

Loss function Cross entropy, Lovasz, Focal, F-

measure

F-measure

Learning rate 5.e-3, 5.e-4, 5.e-5, 5.e-6 5.e-5

Random augmentations None; flips and 90◦ rotations; crops and

flips and 90 ◦ rotations; flips and fully

random rotations; 90% crops and flips

and 90◦ rotations; flips and 90◦ rota-

tions and sharpness; flips and 90◦ rota-

tions and sharpness; elastic distortion;

alterations to gamma and colour

Flips, rotations, elastic distortions, al-

terations to gamma and colour

Max epochs 100 100

Pretrained model frozen True, False True

Table A2. Grid references of hand-labelled areas. Grid references are in the OSGB 1936 system.

TQ2280 TQ2474 TQ2481 TQ2678 TQ2781 TQ2784

TQ2872 TQ3073 TQ3176 TQ3181 TQ3184 TQ3280

TQ3281 TQ3282 TQ3290 TQ3373 TQ3478 TQ3486

TQ3681 TQ3775 TQ3783 TQ3872 TQ4084 TQ4180

TQ4283
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Table A3. Full confusion matrix for the green roof identification method, calculated based on area. TP, TN, FP, FN are as a proportion of

total building footprint area in the hand-labelled areas.

Land Built

area area

(km2) (km2) TP TN FP FN

Dataset K-fold

Testing 2021 1 3.9 1.282 0.0050 0.9879 0.0024 0.0048

2 3.9 1.282 0.0047 0.9876 0.0026 0.0051

3 3.9 1.282 0.0047 0.9872 0.0030 0.0051

4 3.9 1.282 0.0054 0.9876 0.0026 0.0044

average 3.9 1.282 0.0049 0.9876 0.0027 0.0048

Testing 2019 1 3.9 1.282 0.0047 0.9877 0.0043 0.0034

2 3.9 1.282 0.0041 0.9878 0.0042 0.0040

3 3.9 1.282 0.0048 0.9861 0.0058 0.0033

4 3.9 1.282 0.0052 0.9880 0.0039 0.0029

average 3.9 1.282 0.0047 0.9874 0.0045 0.0034

Validation 1 4.0 1.333 0.0060 0.9887 0.0021 0.0033

2 4.0 1.278 0.0070 0.9851 0.0032 0.0047

3 3.9 1.255 0.0060 0.9839 0.0030 0.0071

4 4.0 1.261 0.0079 0.9844 0.0026 0.0052

average 4.0 1.282 0.0067 0.9856 0.0027 0.0050

Training 1 12.0 3.798 0.0089 0.9851 0.0029 0.0031

2 12.0 3.853 0.0075 0.9863 0.0025 0.0036

3 12.1 3.875 0.0077 0.9860 0.0033 0.0030

4 12.0 3.870 0.0084 0.9863 0.0028 0.0025

average 12.0 3.849 0.0081 0.9859 0.0029 0.0031
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Table A4. Full performance metrics for the green roof identification method, calculated based on area.

Accuracy IoU Precision Recall F-score

Dataset K-fold

Testing 2021 1 0.9929 0.4134 0.6801 0.5131 0.5849

2 0.9923 0.3774 0.6423 0.4778 0.5480

3 0.9919 0.3659 0.6075 0.4792 0.5358

4 0.9930 0.4325 0.6720 0.5482 0.6038

average 0.9925 0.3970 0.6505 0.5046 0.5683

Testing 2019 1 0.9923 0.3782 0.5216 0.5790 0.5488

2 0.9918 0.3329 0.4946 0.5044 0.4995

3 0.9909 0.3436 0.4509 0.5907 0.5114

4 0.9932 0.4328 0.5697 0.6431 0.6042

average 0.9921 0.3707 0.5072 0.5793 0.5408

Validation 1 0.9947 0.5298 0.7454 0.6468 0.6926

2 0.9922 0.4735 0.6893 0.6020 0.6427

3 0.9899 0.3754 0.6696 0.4607 0.5459

4 0.9923 0.5048 0.7538 0.6045 0.6709

average 0.9923 0.4666 0.7148 0.5733 0.6363

Training 1 0.9940 0.5957 0.7514 0.7419 0.7466

2 0.9938 0.5497 0.7487 0.6741 0.7094

3 0.9937 0.5510 0.7018 0.7194 0.7105

4 0.9947 0.6120 0.7479 0.7710 0.7593

average 0.9941 0.5773 0.7374 0.7266 0.7320
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Table A5. Full confusion matrix for the green roof identification method, calculated based on counts of buildings. TP, TN, FP, FN are as a

proportion of total building footprint area.

Building

count TP TN FP FN

Dataset K-fold

Testing 2021 1 12026 0.0063 0.9835 0.0075 0.0027

2 12026 0.0067 0.9742 0.0168 0.0022

3 12026 0.0068 0.9727 0.0183 0.0022

4 12026 0.0070 0.9791 0.0119 0.0020

average 12026 0.0067 0.9774 0.0136 0.0023

Testing 2019 1 12026 0.0067 0.9739 0.0181 0.0013

2 12026 0.0064 0.9617 0.0304 0.0016

3 12026 0.0067 0.9543 0.0378 0.0012

4 12026 0.0068 0.9618 0.0302 0.0012

average 12026 0.0067 0.9629 0.0291 0.0013

Validation 1 11505 0.0077 0.9832 0.0066 0.0024

2 11724 0.0078 0.9701 0.0195 0.0026

3 11167 0.0081 0.9684 0.0215 0.0021

4 11820 0.0085 0.9767 0.0132 0.0016

average 11554 0.0080 0.9746 0.0152 0.0022

Training 1 30932 0.0065 0.9820 0.0100 0.0016

2 30717 0.0072 0.9705 0.0209 0.0015

3 31069 0.0070 0.9674 0.0242 0.0014

4 30731 0.0071 0.9758 0.0159 0.0012

average 30862 0.0069 0.9739 0.0177 0.0014

29



Table A6. Full Performance metrics for the green roof identification method, calculated based on building counts.

Accuracy IoU Precision Recall F-score

Dataset K-fold

Testing 2021 1 0.9932 0.4266 0.6354 0.5648 0.5980

2 0.9919 0.3938 0.5478 0.5833 0.5650

3 0.9916 0.3952 0.5280 0.6111 0.5665

4 0.9928 0.4387 0.5913 0.6296 0.6099

average 0.9924 0.4128 0.5721 0.5972 0.5844

Testing 2019 1 0.9919 0.3718 0.4915 0.6042 0.5421

2 0.9899 0.3260 0.4097 0.6146 0.4917

3 0.9854 0.2798 0.3163 0.7083 0.4373

4 0.9896 0.3455 0.4099 0.6875 0.5136

average 0.9892 0.3256 0.3934 0.6536 0.4912

Validation 1 0.9937 0.5000 0.7157 0.6239 0.6667

2 0.9902 0.3883 0.5252 0.5984 0.5594

3 0.9909 0.4171 0.5407 0.6460 0.5887

4 0.9934 0.5185 0.6614 0.7059 0.6829

average 0.9920 0.4516 0.6024 0.6433 0.6222

Training 1 0.9937 0.4771 0.5920 0.7108 0.6460

2 0.9923 0.4381 0.5428 0.6943 0.6093

3 0.9914 0.4145 0.4922 0.7241 0.5860

4 0.9927 0.4548 0.5471 0.7294 0.6252

average 0.9925 0.4444 0.5404 0.7146 0.6154

Table A7. Standard deviation of performance metrics between folds, calculated using area.

Accuracy IoU Precision Recall F-score

Dataset

Testing 2021 0.0005 0.0310 0.0330 0.0333 0.0317

Testing 2019 0.0010 0.0450 0.0497 0.0572 0.0471

Validation 0.0019 0.0677 0.0414 0.0812 0.0647

Training 0.0004 0.0316 0.0238 0.0409 0.0254
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Figure A1. Example of ground-level green space misclassified as green roof in GLA dataset (in blue) (Greater London Authority, 2014).

Building outlines according to OS VML are shown in orange, our results are shown in green. Image location is shown in Figure A3. Imagery

©GetMapping Plc. Building polygons are OS data ©Crown copyright and database rights 2022.
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Figure A2. Example of disagreement between our result and GLA dataset (Greater London Authority, 2014) (in blue) due to building

outlines. Building outlines according to OS VML are shown in orange. The green areas of the Barbican Centre are excluded in our analysis,

as the OS VML does not identify them as within a building footprint. Image location is shown in Figure A3. Imagery ©GetMapping Plc.

Building polygons are OS data ©Crown copyright and database rights 2022.
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Figure A3. Locations of images in this paper.
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