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Abstract. Smallholder agriculture is the bedrock of the food production system in sub-Saharan Africa. Yields in Africa are
significantly below potentially attainable yields for a number of reasons, and they are particularly vulnerable to climate change
impacts. Monitoring of these highly heterogeneous landscapes is needed to respond to farmer needs, develop appropriate policy
and ensure food security, and Earth Observation (EO) must be part of these efforts. There is a lack of ground data for developing
and testing EO methods in West Africa, and in this paper, we present data on (i) crop locations, (ii) biophysical parameters
and (iii) crop yield and biomass was collected in 2020 and 2021 in Ghana and is reported in this paper. In 2020, crop type
was surveyed in more than 1800 fields in three different agro-ecological zones across Ghana (Guinea Savannah, Transition and
Deciduous zones). In 2021, a smaller number of fields were surveyed in the Guinea Savannah zone, and additionally, repeated
measurements of leaf area index (LAI) and leaf chlorophyll concentration were made on a set of 56 maize fields. Yield and
biomass were also sampled at harvesting. LAI in the sampled fields ranged from 0.1 to 5.24 m?m~2, whereas leaf chlorophyll
concentration varied between 6.1 and 60.3 ugem 2. Yield varied between 190 and 4580 kgha ™', with an important within-
field variability (average per field standard deviation 381kgha ). The data are used in this paper to: (i) evaluate the Digital
Earth Africa 2019 cropland masks where 61 % of sampled 2020/21 cropland is flagged as cropland by the data set; (ii) develop
and test an LAI retrieval method from Earth Observation Planet surface reflectance data (validation correlation coefficient
R = 0.49, RMSE 0.44 m?>m~2; (iii) create a maize classification dataset for Ghana for 2021 (overall accuracy within the
region tested: 0.84); and (iv) explore the relationship between maximum LAI and crop yield using a linear model (correlation
coefficient R = 0.66 and R = 0.53 for in situ and Planet-derived LAI, respectively). The data set, made available here within
the context of the GEOGLAM initiative, is an important contribution to understanding crop evolution and distribution in

smallholder farming systems, and will be useful for researchers developing/validating methods to monitor these systems using
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Earth Observation data. The data described in this paper are available from https://doi.org/10.5281/zenodo.6632083 (Gomez-
Dans et al., 2022).

1 Introduction

Agricultural production in Sub-Saharan Africa is dominated by smallholder farms that support most households (Giller et al.,
2021; Antonaci et al., 2014). In Ghana, agriculture contributes around 20 % of GDP and employs around half of the population
(MOFA, 2010). Maize accounts for more than half of the country’s cereal production (Ragasa et al., 2014), and in the North
of the country, the crop is grown in rain-fed conditions, with low inputs (limited use of fertiliser, low uptake of modern/hybrid
varieties, low mechanisation), suffering additionally from considerable post-harvesting losses and nutrient-poor soils (Freduah
etal., 2019; MacCarthy et al., 2017; Sanchez, 2010),(MOFA, 2010). These factors result in an important yield gap compared to
potential attainable yields (van Loon et al., 2019; Cairns et al., 2013). This yield gap is exacerbated in a climate change context,
where agricultural production in Ghana is likely to be further limited by increased temperature and more erratic rain regimes
(Sultan and Gaetani, 2016; Chemura et al., 2020), with complex relationships with nitrogen use (Falconnier et al., 2020) and
other social factors (Nyantakyi-Frimpong and Bezner-Kerr, 2015), adding further vulnerability to yields in the region.

Timely monitoring of smallholder maize production is important to understand the developing food security situation, but
also to provide information to food producers and other value creators. Decision-makers at regional or national levels need this
for planning policy, import-export requirements, or other advance planning or support mechanisms for farmers (United Nations,
2013; Nakalembe et al., 2021). Monitoring capabilities are also important for developing crop insurance and maximising the
economic potential (and hence livelihoods) of smallholder farmers (Benami et al., 2021). At more local scales, such information
can be used by extension workers to assist farmers in improving their practice. (Carletto et al., 2013) argues that a lack of good
quality agricultural data in Africa has hampered innovation and growth in this crucial economic sector.

In Ghana, 60 % of farms have an area of less than 1.2 ha (MOFA, 2010), giving rise to a highly heterogeneous landscape.
Some factors that explain this heterogeneity are also common with the yield gap: limited access to e.g., irrigation, mechanisa-
tion and fertilser use, workforce scarcity, low labour productivity, limited access to finance, etc. (van Loon et al., 2019). Local
patterns of crop yield are known to be impacted by local soil and meteorological conditions as well as farmer choices. For ex-
ample, Freduah et al. (2019) note that maize planting occurs over a three month period, with further crop development variation
depending on the use of fertiliser and other management practices. This, alongside the varying quality of seed inputs, results
in very different inter- and intra-field crop evolution even for crops subject to very similar weather patterns. This complicates
both monitoring and modelling efforts.

There is a strong need for better information on cropland area, crop productivity, and the factors that affect crop production
in Africa. Earth Observation (EO) has been shown to provide a practical data source to monitor croplands over large areas
for much of the world and contribute to the collection of better agronomic statistics. This in turn can be used by decision-
makers, agronomists and other parties to better understand and plan actions to improve food security and alleviating poverty

(e.g. (Baruth et al., 2008; Carletto et al., 2015; Brown, 2016)).
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To monitor agriculture, the first layer of information is mapping the areas of croplands, to distinguish them from other land
uses, but even this basic information is currently very uncertain for large parts of Ghana. To be able to estimate total production
or even average productivity in some region, an additional level of sophistication is needed on top of that where the crop type
is identified. While there have been some recent advances on cropland masks derived from Earth Observation for the region
(Burton et al., 2022; Estes et al., 2021; Xiong et al., 2017), accurate, timely data sets that allow the location of individual crops
over large areas are still mainly lacking.

The advent of frequent, medium- to high-resolution Earth Observation (EO) data over the last ~ 5 years from sensors such as
Sentinel 2 (Drusch et al., 2012) and the Planet constellation (Planet, 2018) allows repeated data acquisitions over the growing
season that give the potential to infer the status of crops at the field and sub-field level, even for smallholders. This is currently
mainly done using empirical relationships between satellite-derived indicators (such as spectral vegetation indices) and in situ
measurements of yield and/or above ground biomass. Typical approaches relate either the maximum value or the time integral
of the signal over the season to yield or biomass (Becker-Reshef et al., 2010; Kouadio et al., 2012; Unganai and Kogan, 1998;
Mkhabela et al., 2011; Franch et al., 2015; Petersen, 2018). The EO data act as indicators of green leaf biomass or green-up or
senescence rates.

There is a concerted effort to provide a minimal set of so-called "Essential Agricultural Variables" (EAVs) that are required
to monitor agriculture globally (Whitcraft et al., 2019). Some of the EAV's are more directly related to the status of the crop, e.g.
leaf area index (LAI), the fraction of photosynthetically active radiation absorbed by the canopy (fAPAR), soil moisture, above
ground biomass and leaf pigment concentrations such as chlorophyll concentration. Some of these biophysical parameters have
been successfully derived from EO data (Verrelst et al., 2019). The derivation of biophysical parameters is more involved than
calculating a vegetation index, but simplify the interpretation of EO data, reducing the effect of extrinsic/nuisance processes in
the EO signal, such as soil colour or brightness variations, acquisition geometry effects, different sensor spectral configurations,
etc. As the derivation is indirect, careful validation and assessment of uncertainties in the inference of these parameters is critical
(Loew et al., 2017).

LAI is an important indicator of crop development, and its use for yield estimation has been shown superior to using simple
indices (Baez-Gonzalez et al., 2005; Lambert et al., 2018). Although the relationship between surface reflectance and LAI is
complex, it is possible to develop empirical mappings between LAI and vegetation indices, although these mappings may not
be very general. Having estimates of LAI allows us to leverage mechanistic crop growth models to e.g., train the relationship
between modelled LAI (as a function of meteorological data, typical management and soils) EO observations (Jin et al.,
2017, 2019; Azzari et al., 2017; Jain et al., 2016), or more sophisticated data assimilation methods, based on combining the
uncertain evidence from the model predictions with the (incomplete) EO-derived observations of LAI (Huang et al., 2019).

Ultimately, all of these approaches rely on in situ data for method development and validation. The need for new data
collection is particularly acute for smallholder croplands in Sub-Saharan Africa, as most studies have concentrated in croplands
and crops in the global North (Pritchard et al., 2022). The contribution of this paper is to provide and describe a data set covering
three main aspects: (i) location of crops; (ii) biophysical parameters over the growing season for maize; and (iii) crop yield and

biomass data. We demonstrate the application of the crop type/location data to validate cropland data sets and to train a maize
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classifier using Sentinel 2 observations. This data set can be used to understand crop dynamics over three different regions.
We describe a biophysical parameter and yield data set collected over a set of maize fields in northern Ghana between July
and November 2021. An associated crop type data set for Ghana is also introduced, covering the same area as the biophysical
parameters for the 2021 season, but with a wider-area mapping undertaken during 2020.

Estimating biophysical parameters from EO data is an indirect problem, and in situ data is needed to validate EO retrievals
for particular environments. For croplands, tracking the vegetation over the entire growing season is particularly important.
Here, we concentrate on LAI and leaf chlorophyll concentration as the parameters of interest. LAI was selected for its known
relationship to yield and the use of LAI as a critical state variable in crop growth models. Leaf chlorophyll content has also been
related to GPP (Gitelson et al., 2006) and yield (Croft et al., 2020). Leaf chlorophyll has also been linked to the CO2-saturated
photosynthetic rate (Vmax) (Wang et al., 2021), which would provide an additional linkage into crop models to LAI, as well as
potential information on nitrogen stress. The biophysical parameter data set is enhanced by collecting additional data on grain
yield and biomass, both fundamental to understand food production and to allow the development of models that link EO data
to this.

Releasing the data set described in this paper is a contribution to data sharing efforts championed by the Group on Earth
Observations Global Agricultural Monitoring (GEOGLAM, https://www.earthobservations.org/geoglam.php), an initiative
launched by the G20 international forum in 2011 (Becker-Reshef et al., 2020). The crops in the fields surveyed in this data
set are grown by smallholder farmers and represent a typical sample of the variability found in this region, and provide a
strong foundation for developing and assessing land cover or crop type maps. The crop biophysical and agronomic parameters
provide an important source of data to develop and adapt crop monitoring methods to typical West African conditions, as well
as a useful source of data to validate the performance of crop growth models parameterised for maize in the region using typical
fields.

The data is available from https://doi.org/10.5281/zenodo.6632083 (Gomez-Dans et al., 2022).

2 Materials and methods
2.1 Location

In this study we present a new dataset of farm boundaries and biophysical parameter measurements in Ghana. The dataset
includes information on crop type, collected in an extensive campaign covering areas of 50 km by 50 km in three agroecological
zones across the country in December 2020 (see Fig. 1 for locations), and an intensive maize-focused campaign in 2021 in the
North of Ghana, specifically the Northern and Savannah regions (see Fig. 2).

In the intensive campaign, data were collected from the Tamale, Mion, Salaga North, Gushegu, Karaga and Nanton districts.
The intensive study area covers around 55 km East to West and close to 70 km North to South. It is within the Guinea Savannah
agro-ecological zone of the country. Rainfall patterns in the area are unimodal, with a rainy season starting in April/May and
ending in September/October. Mean daily temperatures oscillate between 31 °C in the hottest month (February/March) and

around 22 °C in the coolest month (August/September). Annual rainfall ranges between 900 mm and 1100 mm (see Fig. 3).
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During the rainy season, when most crops are grown, cloud cover is persistent, making it often difficult to acquire observations
using optical EO sensors. Additional difficulties for remote sensing of crops in this area include the prevalence of trees within

fields, inter-cropping practices, and often the presence of significant weed cover early in the season, all of which complicate

the interpretation of EO signals (see Fig. 4 for an example of this).
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Figure 1. Location of samples for crop type mapping in the 2020 extensive campaign. (A) Transition zone (B) Deciduous and (C) Northern

Savanabh sites. Top right sub-image shows the location of these areas within Ghana.

2.2 Crop type mapping

Two crop type mapping campaigns were conducted: a preliminary campaign in December 2020, covering three agroecological
zones, and a maize-focused campaign in 2021.
The 2020 campaign served partly as a training exercise for 2021 data collection, but also to provide extensive sampling

over different crops and cropping systems within Ghana. Three teams surveyed three ~ 50 km x 50 km sites in the Guinea
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Figure 2. Location of the crop type mapping for the 2021 campaign. Red dots show agricultural fields. Green dots show locations where

biophysical parameters were collected. Top right sub-image shows the location of the area within Ghana

Savanna, Transition and Deciduous forest regions (see Fig. 1 for locations) between December 12 and December 21, 2020.
The site locations and main crops associated to each site were chosen based on previous knowledge and in discussion with
local agricultural extension workers. Within each site, crop types were initially identified from a drive-thru "windshield sur-
vey" (Defourny et al., 2014) and GPS locations and photographs were simultaneously gathered using mobile phones inside
individual fields. Crop type was mapped at a point location within each field. Fields that were less than 0.25 ha were ignored,
following the recommendations from Defourny et al. (2014). Fields were selected for cases where: (i) a crop could be identified
(the campaign took place in December when many fields had already been harvested, so crop identification was sometimes
based on crop residue inspection); (ii) a single crop was present (so plots with evidence of intercropping were discarded). The

crop types to map were selected as being the most representative of the region, with the goal of collecting around 600 points
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Figure 3. Monthly climatologies for temperature (top), precipitation and shortwave downwelling radiation over the Tamale area (derived
from ERAS/Land dataset between 1990 and 2021), as well as daily temperatures, precipitation and downwelling radiation for 2021. Grey

area indicates biophysical parameter collection period.

for each region. The crop distribution per region is shown in Table 1. For the deciduous, savannah and transitional zone, 644,
630 and 660 fields respectively were sampled.

A second crop type campaign was carried out in August 2021, more focused on identifying maize fields. It was conducted
near Tamale (Guinea savannah region) (Fig. 2), with the primary aim of identifying maize fields to compare to the data collected
in 2020, and a secondary aim of scoping fields that could be used for the biophysical parameter campaign. Fields were selected
following the same considerations as the 2020 campaign, but rather than points, polygons of the field boundaries were collected.
This required physical access to the fields, for which access permission was needed from the owners. This resulted in a smaller
number of fields (375) being surveyed compared to the 2020 campaign (Table 1). Field boundaries were collected by walking
around the field using a GPS tracker, and taking care to exclude trees and buildings to ensure that the mapped field area was
as homogeneous as possible and measurements in that area would relate to the crop. Only minor post-collection editing was

performed (e.g. closing polygons).
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Figure 4. Pictures of two maize fields within the study area, showing the crop heterogeneity, present of weeds and trees within fields. (Left)
field 7071ZIN (17th September 2021) In situ LAI: 1.1 m?m ™2, Chlorophyll conc: 39.3 ugem~2). (Right) field 3075TAM (14th September
2021) LAI: 1.9 m?m™2, Chlorophyll conc: 45.2 pgem ™2,

2.3 Biophysical parameter collection

The collection of biophysical parameters in 2021 focused on maize farms around Tamale. These farms were selected from
maize fields mapped in 2021 (Sect. 2.2) after permission was obtained from the farmers to allow repeated visits and harvesting
at the end of the growing season. The field campaign was delayed by the arrival of the measurement equipment into Ghana and
training requirements (covid and related delays), so the fields that were selected were those that appeared to be less developed
towards the start of the measurement campaign (August 2021). In the study area, maize is typically sown around June, so it
is possible that the selected fields are sown later than what is usual for this area. As for the crop mapping, the selected fields
show no intercropping, and the presence of trees is limited to the edges and have been masked out. These decisions limit
the selection of fields, but provide a simpler setting to validate EO-derived products and to test the link between biophysical
parameters and crop production. Heterogeneous fields required different measurement strategies to characterise the nature of
the crop combination, and the presence of several canopy layers (e.g. crop-tree) is not considered in most EO LAI products, so
tree detection and masking using VHR data would be needed to make any comparison fair.

An initial set of 56 maize fields were selected both for biophysical parameter and yield characterisation. The field sizes
ranged from 0.25 ha to 2.2 ha, with an average field size of 0.78 ha. From the initial 56 farms, eight farms were dropped later
in the season as the crop had been damaged by animals, flooded or abandoned by the farmer and overgrown with weeds. These
fields are representative of typical maize fields grown in the Guinea savanna region of Ghana.

Measurements were taken from September 6th, 2021 to November 5th, 2021. Measurement of LAI and leaf chlorophyll
content was performed weekly in the sample farms using an Li-Cor LAI-2200-C device and a Minolta SPAD 500 device
respectively. The full field protocol for LAI and leaf chlorophyll is presented in Appendix A.
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2020 campaign

2021 campaign

Deciduous
Crop class
Oil palm
Maize
Cocoa
Cassava
Plantain
Orange
Rubber
Rice
Coconut
Garden eggs
Bush

Number
117
116
90
74
66
61
46
45
10
7
12

Guinea Savannah

Crop class
Maize
Soybean
Sorghum
Rice
Groundnut
Pigeon pea
Yams
Millet
Cassava
Cowpea

Bush

Number
90
87
75
74
68
56
56
52
39
30
3

Transition
Crop class
Maize
Cassava
Cashew
Yam
Plantain
Cocoa
Tomatoes
Mango
Garden eggs
Pepper
Cabbage
Orange

Cowpea

Number
127

83

78

60

54

53

53

41

Guinea Savannah

Crop class
Maize
Groundnut
Cassava
Rice
Soyabean
Cowpea
Yam

Millet

Number
214

71

4

Table 1. Number of mapped fields per crop type class for the 2020 and 2021 campaigns.

In each field visited, 4 locations were selected and marked, and measurements taken at these. For the leaf chlorophyll

measurements, the Sth and 6th leaf (relative to the bottom of the canopy) of individual plants in each sampling site were tagged

on the first visit. Measurements were then repeatedly taken on these leaves in subsequent visits. At the time of measurements,

the general state of the crop and its phenology were also noted.

2.4 Crop yield and biomass measurements

Crop yield was measured by crop cutting. For each farm, three 6 m x 6 m plots inside the field were harvested, cobs removed,

and grain weighted. We report the quadrant yields, as well as the field-averaged mean yield and associated standard deviation.

For a subset of 10 farms, above ground biomass was also sampled. The full protocol is given in Appendix B.
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2.5 Satellite data

Together with the ground data described above, we have also produced a ready-processed dataset of contemporaneous satellite
observations to facilitate training and experimentation. We will use the ground data to develop an empirical estimation of LAIL
Fig. 5 shows time series of the field averaged NDVI over four fields derived from Sentinel 2 and Planet. Sentinel 2 observations
are restricted by clouds, whereas Planet data are more frequent, particularly towards the end of the growing season. When both
sensors collect data, the NDVI value is comparable, although it is also clear that the Planet data show a larger instability in
time, as well as the presence of outliers. It would have been preferable to use Sentinel 2 observations to produce estimates of
LAI as the data have a richer spectral information content, but given the scarcity of match ups with the ground measurements,
we decided to use the Planet data, and to develop a simple mapping using a vegetation index as a pragmatic trade off.

We have used the Planet Surface Reflectance (SR) version 2 product (Planet, 2018) downloaded from Planet Explorer
(https://www.planet.com/explorer/). We calculate NDVI as it is a commonly used vegetation index that is frequently used
to describe crop condition and yield (Turner et al., 1999; Smith et al., 2002; le Maire et al., 2004; Ferwerda and Skidmore,
2007; Le Maire et al., 2008). The Planet SR product is derived from the top of atmosphere (TOA) radiance images acquired by
the PlanetScope constellation which collects data in the red, green, blue and near infrared bands with a nominal resolution of
~3.7m. The SR product has a ground sampling distance of ~3 m and a positional accuracy better than 10 m (Planet, 2018).
The data are atmospherically corrected and have an associated cloud, cloud shadow, etc. pixel mask (Planet, 2018).

The vast changes in acquisition geometry, sensor properties, failure of the cloud and cloud/shadow mask and inconsistencies
in the atmospheric correction result in the measurements from Planet being very noisy and contaminated with outliers, as is
clear from Fig. 5 (see also Houborg and McCabe (2016)). Outliers and gaps in the time series (particularly at the start of the
measurements period) require treatment: we develop here a robust smoothing and interpolation approach that allows us to
achieve the desired NDVI to LAI mapping, along with an estimate of LAI uncertainty.

We use an efficient and robust smoothing filter with a bi-square weighting to flag and remove gross outliers in the Planet

NDVI time series (Heiberger and Becker, 1992; Garcia, 2010). An outlier is flagged if ’& > 1, where u; is the studentised

residual for sample ¢ (Garcia, 2010). An example application of the smoother is shown in Fig. 6(a), where the Sentinel 2 field
averaged NDVI is also shown for comparison.

To further reduce the large remaining variability, we fit a double logistic function (Zhang et al., 2003; Beck et al., 2006;
Atkinson et al., 2012; Yang et al., 2019) (Eq. 1) to NDVI as a function of time ¢ for each pixel, an effective way to both reduce
the noise (Hird and McDermid, 2009; Jonsson and Eklundh, 2002) and allow temporal interpolation.

1 1
D + -
Pl exp(pa(t—ps)) 1+ exp(—pa(t—ps))
We have implemented the double logistic fitting as a two stage process to account for both the large variability and the

NDVI = pg —

6]

limited observational opportunity at the early start of the growing season. As a first stage, the six parameters p;, i € (0...5) in
Eq. 1 are estimated for individual pixels over a field. Then, the per field median values for the six parameters are calculated

and used to define bounds in parameter values for the second pass. In the second pass, the double logistic is again fitted the per

10
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pixel NDVI time series, with all parameters except p; (the amplitude) being constrained to be within 5 % of the median field
value. In this way, we ensure that the mapped timing information is spatially correlated at the field level, and that the variation
in the amplitude of the vegetation index will be greater.

Although the outlier filtering method described above is based on smoothing and statistical tests, the spatially-aware field
constraints and typical consistency in reconstructed VI trajectories (Fig. 6(c)) over a field suggest that the outlier filtering is
appropriate, and does not introduce large biases. The processing described above results in more stable estimates of NDVI over
time, as can be seen in Fig. 6(c), particularly tightening up the temporal trajectory towards the start of the time series.

We use the interpolated and smoothed NDVI data to develop the mapping to LAI. The large uncertainty in the individual
elemental sampling unit (ESU) LAI ground measurements suggests that the model is fitted at field level. A potential further
issue with a mapping from NDVI to LAI are saturation effects with high LAI (Baret and Guyot, 1991). For maize in the
study area, very high LAI is never achieved, and the field measurements never exceed an LAI of 3, so we might suppose
that saturation of the signal should not be a problem here. The limited range of the field data LAI data also suggests that a
linear model is an acceptable model choice. We estimate the value of NDVI on the day of the in sifu observations from the
smoothed/interpolated Planet data, and average both the EO estimated NDVI and the in situ LAI over the field. We randomly
split the data set set into 70 % for training and 30 % validation. We fit the linear model LAI = m - NDVI+ ¢ to the training data
and test its performance on the validation samples. We repeat this fitting procedure using twenty random splits to avoid biases

in the estimates of m and c and to provide an initial uncertainty on these parameters.
2.6 Validation of cropland masks

We use the collected data to partially validate the DigitalEarth Africa cropland mask (Burton et al., 2022). This binary (crop/no
crop) mask has been developed for 2019, but there are plans to extend it to other years. Using crop masks from prior years is a
pragmatic choice to monitor the same region in the current season (Becker-Reshef et al., 2018). We can use the crop location
data to assess the accuracy of the crop mask for other years, and to test its suitability to enable within-season crop mapping.
The DigitalEarth Africa cropland mask is based on a random forest (RF) classifier, but as well as binary mask of cropland/non-
cropland final product, it provides an estimate of the probability of each 10 m pixel being cropland. The final binary mask is
derived from the pixel probability data set, and cropland is assumed if the pixel probability is greater than 0.5. We can assess the
quality of the mask by testing the fraction of surveyed cropland locations (pixels) and their associated probability. A good mask
would be characterised by a large proportion of the visited cropland pixels having a probability larger than 0.5. Conversely, a

poor mask would show most visited pixels having a probability lower than 0.5.
2.7 Crop mask classification

The data sets collected in 2020 and 2021 can be used to extend previous efforts to provide cropland/crop type maps (Xiong
et al., 2017; Jolivot et al., 2021; Estes et al., 2021; Burton et al., 2022), but here we illustrate the use of the 2021 data set
in developing a 10 m maize mask for the whole Northern province in Ghana using data from Sentinel 2. The classification

experiment is done using the Google Earth Engine platform (Gorelick et al., 2017). The approach taken was to collect Sentinel
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Figure 5. Field averaged NDVI from Sentinel 2 (green dots) and Planet (purple squares) over four of the visited maize fields in 2021. Vertical
purple lines indicate the extent of the in sifu data gathering campaign. Error bars indicated 2-98% field NDVI percentiles.

2 observations of surface reflectance (atmospherically corrected with the sen2cor package (Louis et al., 2016), GEE data
set "COPERNICUS/S2_SR") between May and October 2021, when rain-fed crops are being grown. After applying a cloud
mask, and only processing pixels labelled as "Crops" in the ESRI Sentinel 2 landcover map (Karra et al., 2021) (although the
code provided is flexible and users can modify the base map and its classes easily), temporal series of number of vegetation
indices (NDVI, LSWI, IRECI and GCVI) and a subset of spectral bands (Red Edge 1, NIR, SWIR1 and SWIR2) are then
smoothed/interpolated using a robust Whittaker smoother (Eilers, 2003; Garcia, 2010), with a smoothing strength parameter
of 0.5. The classifier used was a random forest (RF) with 100 trees, and in order to train the classifier, the individual pixels
underlying the field-surveyed polygons were used. The pixels were split into two sets: 70 and 30 % of the points were used for

training and validation (respectively). For the production of the final mask, all pixels were used to train the classifier.

3 Results
3.1 Biophysical parameter measurements

Pictures from two typical fields are shown in Fig. 4, which show the clear row structure and the low plant density that was
common to most fields. Time series of the evolution of in situ measurements are shown in Figs. 7 and 8 for LAI and chlorophyll

respectively for the sample fields.

12



260

265

7074ZIN

() Qutlier filtering (b) Unconstrained model fitting
0.7 — —
Outliers Fitted func median

.06 — Filtered VI — Fitted func 1o
'g 05 Smoothed | Sample fitted pixels
= Mean £10S2 VI [ Planet VI
‘= 0.4 — _
o
5 03 -
&
> 0.2 — |

0.1 — —

| Day of year [bov] Day of year [Dov]
(c) Constrained model fitting
0.7 —
Fittled func median

.06 — Fitted func 1o
5 05 Sample fitted pixels
° [ Planet VI
‘= 0.4 —
o
£ 03
&
> 02 —

0.1 —

I I I
200 250 300 350

Day of year [DOY]

Figure 6. Planet VI time series processing steps example for field 7074ZIN. (a) Outlier filtering. (b) First pass single pixel double logistic
fitting (unconstrained). (c) Second pass single pixel double logistic fitting (phenology parameters constrained by median field). The vertical

lines show the extent of the ground campaign period.

LAI values ranged from 0.1 to 5.24 m?m~2, with a mean value of 1.37. The 10, 50 and 90-th percentiles were 0.5281, 1.15
and 2.13 m%m ™2, respectively. LAI values are lower compared to other regions where irrigation and fertilisation are common,
but are in line with other studies for the area (Srivastava et al., 2016; MacCarthy et al., 2015). In some of the fields the decrease
of LAI from around its maximum is obvious (e.g., fields labelled as 1029ZIN, 5034TUG, 5036TUG, 1056ZIN). The pattern
for other fields is not clear, with some having the LAI peak towards day of year (DoY) 275 (e.g., fields labelled as 7021 YAM,
7068ZIN, 7069ZIN), whereas other fields show no clear dynamics.

For leaf chlorophyll concentration, the values ranged between 6.1 and 60.3 ugem 2, with a mean value of 34.2 uygem =2 and
the 10, 50 and 90-th percentiles given by 15.71 ugem 2, 35.9 uygem =2 and 49.39 pgem 2.

The trends for leaf chlorophyll concentration are clearer than those of LAIL. Most fields show an expected decay of chloro-
phyll as the season progresses, with most of the differences between fields relating to the timing and magnitude of the leaf

chlorophyll reduction.
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Figure 7. Per field temporal evolution of in situ leaf area index (LAI). For any date, the mean is shown, and error bars represent +10.

3.2 Crop yield and biomass measurements

The distributions of measured yield are shown in Fig. 9a. Biomass and harvest index histograms are shown in Fig. 9b. For
the individual quadrant measurements, yield varied between 35kgha ™' and 5036 kgha'. The per field averaged values
were between 190 kgha ™! (field 7033FUU) and 4580 kgha ™' (field 7021 YAM), with an average of 1379kgha " and a
standard deviation of 872 kg ha~'. The uncertainties within the fields were also important, with an average within-field standard
deviation deviation in yield ~350 kg ha™*. Total above ground biomass was between 1000 and 16000 kgha ™!, and the harvest
index varied between 0.21 and 0.77.

3.3 EO-derived leaf area index (LAI)

The approach described in Sect 2.5 results in a simple transformation between Planet NDVI and LAI. The calibration and vali-
dation of this approach are shown in Fig. 10. The conversion equation is given by LAI,.cq = 3.95- N DV I —1.21, with the two
coefficients have bootstrapped uncertainties of 0.16 and 0.09, respectively. In validation, the model shows a modest correlation
(R = 0.5, R?> = 0.25), but in absolute terms, the model performs in line with medium resolution products (Fang et al., 2019),

2

with a validation root mean squared error (RMSE) around 0.43 m?m~2, mean absolute error (MAE) was 0.35 m?m~2, and

negligible bias (Fig. 10). Fig. 10 clearly shows an underestimation of the Planet NDVI signal for LAI > 1.5. A comparison of
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Figure 8. Per field temporal evolution of in situ leaf area chlorophyll concentration (Cy). For any date, the mean is shown, and errorbars

represent +1o.

the field LAI measurements and the Planet-derived LAI time series is presented in Fig. 11, where a correspondence between

the model predicted LAI and the field measurements is shown.
3.4 Validation of cropland masks

Fig. 12 shows the distribution of DEAfrica’s cropland mask probabilities for the surveyed pixels in 2020 and 2021. For a
perfect mapping, one would expect the cumulative distribution to be a Heaviside step function changing from O to 1 for a high
probability value, suggesting that all the pixels are detected as cropland with a high confidence. At the very least, the change
point should be around 50. Any samples that appear with less than 50 % probability would be omission errors.

There are clear differences between years and sites. For the semi-deciduous zone in 2020, the vast majority of pixels are
labelled as non-crop, with the cropland mask consistently under-reporting crop area. Best results are obtained for maize,
cassava and plantain, where ~12 % of crop area is reported as such. For the transition zone in 2020, the performance is better.
For pepper, cowpea and cabbage, ~50 % of the surveyed pixels are reported as cropland. For maize in this region, only 40 % of
pixels have a probability of more than 0.5. Results for the savanna region 2020 are better: 260 % of maize fields are labelled
as cropland, but for other popular crops such as sorghum, millet, groundnut and soybean, less than 40 % of the samples are
labelled as cropland. For the savanna region in 2021, results are similar to the same region 2020, with rice and maize having

around half of the pixels detected as cropland by the mask. Soybean is only detected in 20 % of pixels. The conditions towards
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