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Abstract. Smallholder agriculture is the bedrock of the food production system in sub-Saharan Africa. Yields in Africa are

significantly below potentially attainable yields for a number of reasons, and they are particularly vulnerable to climate change

impacts. Monitoring of these highly heterogeneous landscapes is needed to respond to farmer needs, develop appropriate policy

and ensure food security, and Earth Observation (EO) must be part of these efforts. There is a lack of ground data for developing

and testing EO methods in West Africa, and in this paper, we present data on (i) crop locations, (ii) biophysical parameters5

and (iii) crop yield and biomass was collected in 2020 and 2021 in Ghana and is reported in this paper. In 2020, crop type

was surveyed in more than 1800 fields in three different agro-ecological zones across Ghana (Guinea Savannah, Transition and

Deciduous zones). In 2021, a smaller number of fields were surveyed in the Guinea Savannah zone, and additionally, repeated

measurements of leaf area index (LAI) and leaf chlorophyll concentration were made on a set of 56 maize fields. Yield and

biomass were also sampled at harvesting. LAI in the sampled fields ranged from 0.1 to 5.24m2m−2, whereas leaf chlorophyll10

concentration varied between 6.1 and 60.3 µgcm−2. Yield varied between 190 and 4580 kgha−1, with an important within-

field variability (average per field standard deviation 381 kgha−1). The data are used in this paper to: (i) evaluate the Digital

Earth Africa 2019 cropland masks where 61% of sampled 2020/21 cropland is flagged as cropland by the data set; (ii) develop

and test an LAI retrieval method from Earth Observation Planet surface reflectance data (validation correlation coefficient

R= 0.49, RMSE 0.44m2m−2; (iii) create a maize classification dataset for Ghana for 2021 (overall accuracy within the15

region tested: 0.84); and (iv) explore the relationship between maximum LAI and crop yield using a linear model (correlation

coefficient R= 0.66 and R= 0.53 for in situ and Planet-derived LAI, respectively). The data set, made available here within

the context of the GEOGLAM initiative, is an important contribution to understanding crop evolution and distribution in

smallholder farming systems, and will be useful for researchers developing/validating methods to monitor these systems using
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Earth Observation data. The data described in this paper are available from https://doi.org/10.5281/zenodo.6632083 (Gomez-20

Dans et al., 2022).

1 Introduction

Agricultural production in Sub-Saharan Africa is dominated by smallholder farms that support most households (Giller et al.,

2021; Antonaci et al., 2014). In Ghana, agriculture contributes around 20% of GDP and employs around half of the population

(MOFA, 2010). Maize accounts for more than half of the country’s cereal production (Ragasa et al., 2014), and in the North25

of the country, the crop is grown in rain-fed conditions, with low inputs (limited use of fertiliser, low uptake of modern/hybrid

varieties, low mechanisation), suffering additionally from considerable post-harvesting losses and nutrient-poor soils (Freduah

et al., 2019; MacCarthy et al., 2017; Sánchez, 2010),(MOFA, 2010). These factors result in an important yield gap compared to

potential attainable yields (van Loon et al., 2019; Cairns et al., 2013). This yield gap is exacerbated in a climate change context,

where agricultural production in Ghana is likely to be further limited by increased temperature and more erratic rain regimes30

(Sultan and Gaetani, 2016; Chemura et al., 2020), with complex relationships with nitrogen use (Falconnier et al., 2020) and

other social factors (Nyantakyi-Frimpong and Bezner-Kerr, 2015), adding further vulnerability to yields in the region.

Timely monitoring of smallholder maize production is important to understand the developing food security situation, but

also to provide information to food producers and other value creators. Decision-makers at regional or national levels need this

for planning policy, import-export requirements, or other advance planning or support mechanisms for farmers (United Nations,35

2013; Nakalembe et al., 2021). Monitoring capabilities are also important for developing crop insurance and maximising the

economic potential (and hence livelihoods) of smallholder farmers (Benami et al., 2021). At more local scales, such information

can be used by extension workers to assist farmers in improving their practice. (Carletto et al., 2013) argues that a lack of good

quality agricultural data in Africa has hampered innovation and growth in this crucial economic sector.

In Ghana, 60% of farms have an area of less than 1.2 ha (MOFA, 2010), giving rise to a highly heterogeneous landscape.40

Some factors that explain this heterogeneity are also common with the yield gap: limited access to e.g., irrigation, mechanisa-

tion and fertilser use, workforce scarcity, low labour productivity, limited access to finance, etc. (van Loon et al., 2019). Local

patterns of crop yield are known to be impacted by local soil and meteorological conditions as well as farmer choices. For ex-

ample, Freduah et al. (2019) note that maize planting occurs over a three month period, with further crop development variation

depending on the use of fertiliser and other management practices. This, alongside the varying quality of seed inputs, results45

in very different inter- and intra-field crop evolution even for crops subject to very similar weather patterns. This complicates

both monitoring and modelling efforts.

There is a strong need for better information on cropland area, crop productivity, and the factors that affect crop production

in Africa. Earth Observation (EO) has been shown to provide a practical data source to monitor croplands over large areas

for much of the world and contribute to the collection of better agronomic statistics. This in turn can be used by decision-50

makers, agronomists and other parties to better understand and plan actions to improve food security and alleviating poverty

(e.g. (Baruth et al., 2008; Carletto et al., 2015; Brown, 2016)).
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To monitor agriculture, the first layer of information is mapping the areas of croplands, to distinguish them from other land

uses, but even this basic information is currently very uncertain for large parts of Ghana. To be able to estimate total production

or even average productivity in some region, an additional level of sophistication is needed on top of that where the crop type55

is identified. While there have been some recent advances on cropland masks derived from Earth Observation for the region

(Burton et al., 2022; Estes et al., 2021; Xiong et al., 2017), accurate, timely data sets that allow the location of individual crops

over large areas are still mainly lacking.

The advent of frequent, medium- to high-resolution Earth Observation (EO) data over the last ∼ 5 years from sensors such as

Sentinel 2 (Drusch et al., 2012) and the Planet constellation (Planet, 2018) allows repeated data acquisitions over the growing60

season that give the potential to infer the status of crops at the field and sub-field level, even for smallholders. This is currently

mainly done using empirical relationships between satellite-derived indicators (such as spectral vegetation indices) and in situ

measurements of yield and/or above ground biomass. Typical approaches relate either the maximum value or the time integral

of the signal over the season to yield or biomass (Becker-Reshef et al., 2010; Kouadio et al., 2012; Unganai and Kogan, 1998;

Mkhabela et al., 2011; Franch et al., 2015; Petersen, 2018). The EO data act as indicators of green leaf biomass or green-up or65

senescence rates.

There is a concerted effort to provide a minimal set of so-called "Essential Agricultural Variables" (EAVs) that are required

to monitor agriculture globally (Whitcraft et al., 2019). Some of the EAVs are more directly related to the status of the crop, e.g.

leaf area index (LAI), the fraction of photosynthetically active radiation absorbed by the canopy (fAPAR), soil moisture, above

ground biomass and leaf pigment concentrations such as chlorophyll concentration. Some of these biophysical parameters have70

been successfully derived from EO data (Verrelst et al., 2019). The derivation of biophysical parameters is more involved than

calculating a vegetation index, but simplify the interpretation of EO data, reducing the effect of extrinsic/nuisance processes in

the EO signal, such as soil colour or brightness variations, acquisition geometry effects, different sensor spectral configurations,

etc. As the derivation is indirect, careful validation and assessment of uncertainties in the inference of these parameters is critical

(Loew et al., 2017).75

LAI is an important indicator of crop development, and its use for yield estimation has been shown superior to using simple

indices (Baez-Gonzalez et al., 2005; Lambert et al., 2018). Although the relationship between surface reflectance and LAI is

complex, it is possible to develop empirical mappings between LAI and vegetation indices, although these mappings may not

be very general. Having estimates of LAI allows us to leverage mechanistic crop growth models to e.g., train the relationship

between modelled LAI (as a function of meteorological data, typical management and soils) EO observations (Jin et al.,80

2017, 2019; Azzari et al., 2017; Jain et al., 2016), or more sophisticated data assimilation methods, based on combining the

uncertain evidence from the model predictions with the (incomplete) EO-derived observations of LAI (Huang et al., 2019).

Ultimately, all of these approaches rely on in situ data for method development and validation. The need for new data

collection is particularly acute for smallholder croplands in Sub-Saharan Africa, as most studies have concentrated in croplands

and crops in the global North (Pritchard et al., 2022). The contribution of this paper is to provide and describe a data set covering85

three main aspects: (i) location of crops; (ii) biophysical parameters over the growing season for maize; and (iii) crop yield and

biomass data. We demonstrate the application of the crop type/location data to validate cropland data sets and to train a maize
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classifier using Sentinel 2 observations. This data set can be used to understand crop dynamics over three different regions.

We describe a biophysical parameter and yield data set collected over a set of maize fields in northern Ghana between July

and November 2021. An associated crop type data set for Ghana is also introduced, covering the same area as the biophysical90

parameters for the 2021 season, but with a wider-area mapping undertaken during 2020.

Estimating biophysical parameters from EO data is an indirect problem, and in situ data is needed to validate EO retrievals

for particular environments. For croplands, tracking the vegetation over the entire growing season is particularly important.

Here, we concentrate on LAI and leaf chlorophyll concentration as the parameters of interest. LAI was selected for its known

relationship to yield and the use of LAI as a critical state variable in crop growth models. Leaf chlorophyll content has also been95

related to GPP (Gitelson et al., 2006) and yield (Croft et al., 2020). Leaf chlorophyll has also been linked to the CO2-saturated

photosynthetic rate (Vmax) (Wang et al., 2021), which would provide an additional linkage into crop models to LAI, as well as

potential information on nitrogen stress. The biophysical parameter data set is enhanced by collecting additional data on grain

yield and biomass, both fundamental to understand food production and to allow the development of models that link EO data

to this.100

Releasing the data set described in this paper is a contribution to data sharing efforts championed by the Group on Earth

Observations Global Agricultural Monitoring (GEOGLAM, https://www.earthobservations.org/geoglam.php), an initiative

launched by the G20 international forum in 2011 (Becker-Reshef et al., 2020). The crops in the fields surveyed in this data

set are grown by smallholder farmers and represent a typical sample of the variability found in this region, and provide a

strong foundation for developing and assessing land cover or crop type maps. The crop biophysical and agronomic parameters105

provide an important source of data to develop and adapt crop monitoring methods to typical West African conditions, as well

as a useful source of data to validate the performance of crop growth models parameterised for maize in the region using typical

fields.

The data is available from https://doi.org/10.5281/zenodo.6632083 (Gomez-Dans et al., 2022).

2 Materials and methods110

2.1 Location

In this study we present a new dataset of farm boundaries and biophysical parameter measurements in Ghana. The dataset

includes information on crop type, collected in an extensive campaign covering areas of 50 km by 50 km in three agroecological

zones across the country in December 2020 (see Fig. 1 for locations), and an intensive maize-focused campaign in 2021 in the

North of Ghana, specifically the Northern and Savannah regions (see Fig. 2).115

In the intensive campaign, data were collected from the Tamale, Mion, Salaga North, Gushegu, Karaga and Nanton districts.

The intensive study area covers around 55 km East to West and close to 70 km North to South. It is within the Guinea Savannah

agro-ecological zone of the country. Rainfall patterns in the area are unimodal, with a rainy season starting in April/May and

ending in September/October. Mean daily temperatures oscillate between 31 °C in the hottest month (February/March) and

around 22 °C in the coolest month (August/September). Annual rainfall ranges between 900mm and 1100mm (see Fig. 3).120
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During the rainy season, when most crops are grown, cloud cover is persistent, making it often difficult to acquire observations

using optical EO sensors. Additional difficulties for remote sensing of crops in this area include the prevalence of trees within

fields, inter-cropping practices, and often the presence of significant weed cover early in the season, all of which complicate

the interpretation of EO signals (see Fig. 4 for an example of this).

Figure 1. Location of samples for crop type mapping in the 2020 extensive campaign. (A) Transition zone (B) Deciduous and (C) Northern

Savanah sites. Top right sub-image shows the location of these areas within Ghana.

2.2 Crop type mapping125

Two crop type mapping campaigns were conducted: a preliminary campaign in December 2020, covering three agroecological

zones, and a maize-focused campaign in 2021.

The 2020 campaign served partly as a training exercise for 2021 data collection, but also to provide extensive sampling

over different crops and cropping systems within Ghana. Three teams surveyed three ∼ 50 km× 50 km sites in the Guinea
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Figure 2. Location of the crop type mapping for the 2021 campaign. Red dots show agricultural fields. Green dots show locations where

biophysical parameters were collected. Top right sub-image shows the location of the area within Ghana

Savanna, Transition and Deciduous forest regions (see Fig. 1 for locations) between December 12 and December 21, 2020.130

The site locations and main crops associated to each site were chosen based on previous knowledge and in discussion with

local agricultural extension workers. Within each site, crop types were initially identified from a drive-thru "windshield sur-

vey" (Defourny et al., 2014) and GPS locations and photographs were simultaneously gathered using mobile phones inside

individual fields. Crop type was mapped at a point location within each field. Fields that were less than 0.25 ha were ignored,

following the recommendations from Defourny et al. (2014). Fields were selected for cases where: (i) a crop could be identified135

(the campaign took place in December when many fields had already been harvested, so crop identification was sometimes

based on crop residue inspection); (ii) a single crop was present (so plots with evidence of intercropping were discarded). The

crop types to map were selected as being the most representative of the region, with the goal of collecting around 600 points

6



Jan Mar May Jul Sep Nov Jan
Date/2021 [d]

20

30

40

2
m

 t
e
m

p
e
ra

tu
re

 [
C

]

Tmax 2021

Tmin 2021

Tmean 2021

Jan Mar May Jul Sep Nov Jan
Date/2021 [d]

0.0

0.2
T.

 m
o
n
th

. 
p

re
ci

p
.

[m
m

m
o
n
th

1
]

0 50 100 150 200 250 300 350
Date [DoY/2021]

0

1

2

D
o
w

n
. 

S
W

 r
a
d

.
[K
J
m

2
d

1
]

1e4

SW rad 2021

0

20

T.
 d

a
ily

 p
re

ci
p

.
[m

m
d

1
]

Precip 2021

Figure 3. Monthly climatologies for temperature (top), precipitation and shortwave downwelling radiation over the Tamale area (derived

from ERA5/Land dataset between 1990 and 2021), as well as daily temperatures, precipitation and downwelling radiation for 2021. Grey

area indicates biophysical parameter collection period.

for each region. The crop distribution per region is shown in Table 1. For the deciduous, savannah and transitional zone, 644,

630 and 660 fields respectively were sampled.140

A second crop type campaign was carried out in August 2021, more focused on identifying maize fields. It was conducted

near Tamale (Guinea savannah region) (Fig. 2), with the primary aim of identifying maize fields to compare to the data collected

in 2020, and a secondary aim of scoping fields that could be used for the biophysical parameter campaign. Fields were selected

following the same considerations as the 2020 campaign, but rather than points, polygons of the field boundaries were collected.

This required physical access to the fields, for which access permission was needed from the owners. This resulted in a smaller145

number of fields (375) being surveyed compared to the 2020 campaign (Table 1). Field boundaries were collected by walking

around the field using a GPS tracker, and taking care to exclude trees and buildings to ensure that the mapped field area was

as homogeneous as possible and measurements in that area would relate to the crop. Only minor post-collection editing was

performed (e.g. closing polygons).
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Figure 4. Pictures of two maize fields within the study area, showing the crop heterogeneity, present of weeds and trees within fields. (Left)

field 7071ZIN (17th September 2021) In situ LAI: 1.1m2m−2, Chlorophyll conc: 39.3 µgcm−2). (Right) field 3075TAM (14th September

2021) LAI: 1.9m2m−2, Chlorophyll conc: 45.2 µgcm−2.

2.3 Biophysical parameter collection150

The collection of biophysical parameters in 2021 focused on maize farms around Tamale. These farms were selected from

maize fields mapped in 2021 (Sect. 2.2) after permission was obtained from the farmers to allow repeated visits and harvesting

at the end of the growing season. The field campaign was delayed by the arrival of the measurement equipment into Ghana and

training requirements (covid and related delays), so the fields that were selected were those that appeared to be less developed

towards the start of the measurement campaign (August 2021). In the study area, maize is typically sown around June, so it155

is possible that the selected fields are sown later than what is usual for this area. As for the crop mapping, the selected fields

show no intercropping, and the presence of trees is limited to the edges and have been masked out. These decisions limit

the selection of fields, but provide a simpler setting to validate EO-derived products and to test the link between biophysical

parameters and crop production. Heterogeneous fields required different measurement strategies to characterise the nature of

the crop combination, and the presence of several canopy layers (e.g. crop-tree) is not considered in most EO LAI products, so160

tree detection and masking using VHR data would be needed to make any comparison fair.

An initial set of 56 maize fields were selected both for biophysical parameter and yield characterisation. The field sizes

ranged from 0.25 ha to 2.2 ha, with an average field size of 0.78 ha. From the initial 56 farms, eight farms were dropped later

in the season as the crop had been damaged by animals, flooded or abandoned by the farmer and overgrown with weeds. These

fields are representative of typical maize fields grown in the Guinea savanna region of Ghana.165

Measurements were taken from September 6th, 2021 to November 5th, 2021. Measurement of LAI and leaf chlorophyll

content was performed weekly in the sample farms using an Li-Cor LAI-2200-C device and a Minolta SPAD 500 device

respectively. The full field protocol for LAI and leaf chlorophyll is presented in Appendix A.
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2020 campaign 2021 campaign

Deciduous Guinea Savannah Transition Guinea Savannah

Crop class Number Crop class Number Crop class Number Crop class Number

Oil palm 117 Maize 90 Maize 127 Maize 214

Maize 116 Soybean 87 Cassava 83 Groundnut 71

Cocoa 90 Sorghum 75 Cashew 78 Cassava 4

Cassava 74 Rice 74 Yam 60 Rice 50

Plantain 66 Groundnut 68 Plantain 54 Soyabean 20

Orange 61 Pigeon pea 56 Cocoa 53 Cowpea 5

Rubber 46 Yams 56 Tomatoes 53 Yam 6

Rice 45 Millet 52 Mango 41 Millet 1

Coconut 10 Cassava 39 Garden eggs 33

Garden eggs 7 Cowpea 30 Pepper 26

Bush 12 Bush 3 Cabbage 23

Orange 18

Cowpea 11
Table 1. Number of mapped fields per crop type class for the 2020 and 2021 campaigns.

In each field visited, 4 locations were selected and marked, and measurements taken at these. For the leaf chlorophyll

measurements, the 5th and 6th leaf (relative to the bottom of the canopy) of individual plants in each sampling site were tagged170

on the first visit. Measurements were then repeatedly taken on these leaves in subsequent visits. At the time of measurements,

the general state of the crop and its phenology were also noted.

2.4 Crop yield and biomass measurements

Crop yield was measured by crop cutting. For each farm, three 6m× 6m plots inside the field were harvested, cobs removed,

and grain weighted. We report the quadrant yields, as well as the field-averaged mean yield and associated standard deviation.175

For a subset of 10 farms, above ground biomass was also sampled. The full protocol is given in Appendix B.
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2.5 Satellite data

Together with the ground data described above, we have also produced a ready-processed dataset of contemporaneous satellite

observations to facilitate training and experimentation. We will use the ground data to develop an empirical estimation of LAI.

Fig. 5 shows time series of the field averaged NDVI over four fields derived from Sentinel 2 and Planet. Sentinel 2 observations180

are restricted by clouds, whereas Planet data are more frequent, particularly towards the end of the growing season. When both

sensors collect data, the NDVI value is comparable, although it is also clear that the Planet data show a larger instability in

time, as well as the presence of outliers. It would have been preferable to use Sentinel 2 observations to produce estimates of

LAI as the data have a richer spectral information content, but given the scarcity of match ups with the ground measurements,

we decided to use the Planet data, and to develop a simple mapping using a vegetation index as a pragmatic trade off.185

We have used the Planet Surface Reflectance (SR) version 2 product (Planet, 2018) downloaded from Planet Explorer

(https://www.planet.com/explorer/). We calculate NDVI as it is a commonly used vegetation index that is frequently used

to describe crop condition and yield (Turner et al., 1999; Smith et al., 2002; le Maire et al., 2004; Ferwerda and Skidmore,

2007; Le Maire et al., 2008). The Planet SR product is derived from the top of atmosphere (TOA) radiance images acquired by

the PlanetScope constellation which collects data in the red, green, blue and near infrared bands with a nominal resolution of190

∼3.7m. The SR product has a ground sampling distance of ∼3m and a positional accuracy better than 10m (Planet, 2018).

The data are atmospherically corrected and have an associated cloud, cloud shadow, etc. pixel mask (Planet, 2018).

The vast changes in acquisition geometry, sensor properties, failure of the cloud and cloud/shadow mask and inconsistencies

in the atmospheric correction result in the measurements from Planet being very noisy and contaminated with outliers, as is

clear from Fig. 5 (see also Houborg and McCabe (2016)). Outliers and gaps in the time series (particularly at the start of the195

measurements period) require treatment: we develop here a robust smoothing and interpolation approach that allows us to

achieve the desired NDVI to LAI mapping, along with an estimate of LAI uncertainty.

We use an efficient and robust smoothing filter with a bi-square weighting to flag and remove gross outliers in the Planet

NDVI time series (Heiberger and Becker, 1992; Garcia, 2010). An outlier is flagged if
∣∣ ui

4.685

∣∣≥ 1, where ui is the studentised

residual for sample i (Garcia, 2010). An example application of the smoother is shown in Fig. 6(a), where the Sentinel 2 field200

averaged NDVI is also shown for comparison.

To further reduce the large remaining variability, we fit a double logistic function (Zhang et al., 2003; Beck et al., 2006;

Atkinson et al., 2012; Yang et al., 2019) (Eq. 1) to NDVI as a function of time t for each pixel, an effective way to both reduce

the noise (Hird and McDermid, 2009; Jönsson and Eklundh, 2002) and allow temporal interpolation.

NDVI = p0 − p1

[
1

1+ exp(p2(t− p3))
+

1

1+ exp(−p4(t− p5))
− 1

]
(1)205

We have implemented the double logistic fitting as a two stage process to account for both the large variability and the

limited observational opportunity at the early start of the growing season. As a first stage, the six parameters pi, i ∈ (0...5) in

Eq. 1 are estimated for individual pixels over a field. Then, the per field median values for the six parameters are calculated

and used to define bounds in parameter values for the second pass. In the second pass, the double logistic is again fitted the per
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pixel NDVI time series, with all parameters except p1 (the amplitude) being constrained to be within 5% of the median field210

value. In this way, we ensure that the mapped timing information is spatially correlated at the field level, and that the variation

in the amplitude of the vegetation index will be greater.

Although the outlier filtering method described above is based on smoothing and statistical tests, the spatially-aware field

constraints and typical consistency in reconstructed VI trajectories (Fig. 6(c)) over a field suggest that the outlier filtering is

appropriate, and does not introduce large biases. The processing described above results in more stable estimates of NDVI over215

time, as can be seen in Fig. 6(c), particularly tightening up the temporal trajectory towards the start of the time series.

We use the interpolated and smoothed NDVI data to develop the mapping to LAI. The large uncertainty in the individual

elemental sampling unit (ESU) LAI ground measurements suggests that the model is fitted at field level. A potential further

issue with a mapping from NDVI to LAI are saturation effects with high LAI (Baret and Guyot, 1991). For maize in the

study area, very high LAI is never achieved, and the field measurements never exceed an LAI of 3, so we might suppose220

that saturation of the signal should not be a problem here. The limited range of the field data LAI data also suggests that a

linear model is an acceptable model choice. We estimate the value of NDVI on the day of the in situ observations from the

smoothed/interpolated Planet data, and average both the EO estimated NDVI and the in situ LAI over the field. We randomly

split the data set set into 70% for training and 30% validation. We fit the linear model LAI =m ·NDVI+c to the training data

and test its performance on the validation samples. We repeat this fitting procedure using twenty random splits to avoid biases225

in the estimates of m and c and to provide an initial uncertainty on these parameters.

2.6 Validation of cropland masks

We use the collected data to partially validate the DigitalEarth Africa cropland mask (Burton et al., 2022). This binary (crop/no

crop) mask has been developed for 2019, but there are plans to extend it to other years. Using crop masks from prior years is a

pragmatic choice to monitor the same region in the current season (Becker-Reshef et al., 2018). We can use the crop location230

data to assess the accuracy of the crop mask for other years, and to test its suitability to enable within-season crop mapping.

The DigitalEarth Africa cropland mask is based on a random forest (RF) classifier, but as well as binary mask of cropland/non-

cropland final product, it provides an estimate of the probability of each 10m pixel being cropland. The final binary mask is

derived from the pixel probability data set, and cropland is assumed if the pixel probability is greater than 0.5. We can assess the

quality of the mask by testing the fraction of surveyed cropland locations (pixels) and their associated probability. A good mask235

would be characterised by a large proportion of the visited cropland pixels having a probability larger than 0.5. Conversely, a

poor mask would show most visited pixels having a probability lower than 0.5.

2.7 Crop mask classification

The data sets collected in 2020 and 2021 can be used to extend previous efforts to provide cropland/crop type maps (Xiong

et al., 2017; Jolivot et al., 2021; Estes et al., 2021; Burton et al., 2022), but here we illustrate the use of the 2021 data set240

in developing a 10m maize mask for the whole Northern province in Ghana using data from Sentinel 2. The classification

experiment is done using the Google Earth Engine platform (Gorelick et al., 2017). The approach taken was to collect Sentinel
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Figure 5. Field averaged NDVI from Sentinel 2 (green dots) and Planet (purple squares) over four of the visited maize fields in 2021. Vertical

purple lines indicate the extent of the in situ data gathering campaign. Error bars indicated 2-98% field NDVI percentiles.

2 observations of surface reflectance (atmospherically corrected with the sen2cor package (Louis et al., 2016), GEE data

set "COPERNICUS/S2_SR") between May and October 2021, when rain-fed crops are being grown. After applying a cloud

mask, and only processing pixels labelled as "Crops" in the ESRI Sentinel 2 landcover map (Karra et al., 2021) (although the245

code provided is flexible and users can modify the base map and its classes easily), temporal series of number of vegetation

indices (NDVI, LSWI, IRECI and GCVI) and a subset of spectral bands (Red Edge 1, NIR, SWIR1 and SWIR2) are then

smoothed/interpolated using a robust Whittaker smoother (Eilers, 2003; Garcia, 2010), with a smoothing strength parameter

of 0.5. The classifier used was a random forest (RF) with 100 trees, and in order to train the classifier, the individual pixels

underlying the field-surveyed polygons were used. The pixels were split into two sets: 70 and 30% of the points were used for250

training and validation (respectively). For the production of the final mask, all pixels were used to train the classifier.

3 Results

3.1 Biophysical parameter measurements

Pictures from two typical fields are shown in Fig. 4, which show the clear row structure and the low plant density that was

common to most fields. Time series of the evolution of in situ measurements are shown in Figs. 7 and 8 for LAI and chlorophyll255

respectively for the sample fields.
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Figure 6. Planet VI time series processing steps example for field 7074ZIN. (a) Outlier filtering. (b) First pass single pixel double logistic

fitting (unconstrained). (c) Second pass single pixel double logistic fitting (phenology parameters constrained by median field). The vertical

lines show the extent of the ground campaign period.

LAI values ranged from 0.1 to 5.24m2m−2, with a mean value of 1.37. The 10, 50 and 90-th percentiles were 0.5281, 1.15

and 2.13m2m−2, respectively. LAI values are lower compared to other regions where irrigation and fertilisation are common,

but are in line with other studies for the area (Srivastava et al., 2016; MacCarthy et al., 2015). In some of the fields the decrease

of LAI from around its maximum is obvious (e.g., fields labelled as 1029ZIN, 5034TUG, 5036TUG, 1056ZIN). The pattern260

for other fields is not clear, with some having the LAI peak towards day of year (DoY) 275 (e.g., fields labelled as 7021YAM,

7068ZIN, 7069ZIN), whereas other fields show no clear dynamics.

For leaf chlorophyll concentration, the values ranged between 6.1 and 60.3 µgcm−2, with a mean value of 34.2 µgcm−2 and

the 10, 50 and 90-th percentiles given by 15.71 µgcm−2, 35.9 µgcm−2 and 49.39 µgcm−2.

The trends for leaf chlorophyll concentration are clearer than those of LAI. Most fields show an expected decay of chloro-265

phyll as the season progresses, with most of the differences between fields relating to the timing and magnitude of the leaf

chlorophyll reduction.
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Figure 7. Per field temporal evolution of in situ leaf area index (LAI). For any date, the mean is shown, and error bars represent ±1σ.

3.2 Crop yield and biomass measurements

The distributions of measured yield are shown in Fig. 9a. Biomass and harvest index histograms are shown in Fig. 9b. For

the individual quadrant measurements, yield varied between 35 kgha−1 and 5036 kgha−1. The per field averaged values270

were between 190 kgha−1 (field 7033FUU) and 4580 kgha−1 (field 7021YAM), with an average of 1379 kgha−1 and a

standard deviation of 872 kgha−1. The uncertainties within the fields were also important, with an average within-field standard

deviation deviation in yield ∼350 kgha−1. Total above ground biomass was between 1000 and 16000 kgha−1, and the harvest

index varied between 0.21 and 0.77.

3.3 EO-derived leaf area index (LAI)275

The approach described in Sect 2.5 results in a simple transformation between Planet NDVI and LAI. The calibration and vali-

dation of this approach are shown in Fig. 10. The conversion equation is given by LAIpred = 3.95·NDV I−1.21, with the two

coefficients have bootstrapped uncertainties of 0.16 and 0.09, respectively. In validation, the model shows a modest correlation

(R= 0.5, R2 = 0.25), but in absolute terms, the model performs in line with medium resolution products (Fang et al., 2019),

with a validation root mean squared error (RMSE) around 0.43m2m−2, mean absolute error (MAE) was 0.35m2m−2, and280

negligible bias (Fig. 10). Fig. 10 clearly shows an underestimation of the Planet NDVI signal for LAI > 1.5. A comparison of
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Figure 8. Per field temporal evolution of in situ leaf area chlorophyll concentration (Cab). For any date, the mean is shown, and errorbars

represent ±1σ.

the field LAI measurements and the Planet-derived LAI time series is presented in Fig. 11, where a correspondence between

the model predicted LAI and the field measurements is shown.

3.4 Validation of cropland masks

Fig. 12 shows the distribution of DEAfrica’s cropland mask probabilities for the surveyed pixels in 2020 and 2021. For a285

perfect mapping, one would expect the cumulative distribution to be a Heaviside step function changing from 0 to 1 for a high

probability value, suggesting that all the pixels are detected as cropland with a high confidence. At the very least, the change

point should be around 50. Any samples that appear with less than 50% probability would be omission errors.

There are clear differences between years and sites. For the semi-deciduous zone in 2020, the vast majority of pixels are

labelled as non-crop, with the cropland mask consistently under-reporting crop area. Best results are obtained for maize,290

cassava and plantain, where ≈12% of crop area is reported as such. For the transition zone in 2020, the performance is better.

For pepper, cowpea and cabbage, ≈50% of the surveyed pixels are reported as cropland. For maize in this region, only 40% of

pixels have a probability of more than 0.5. Results for the savanna region 2020 are better: ≈60% of maize fields are labelled

as cropland, but for other popular crops such as sorghum, millet, groundnut and soybean, less than 40% of the samples are

labelled as cropland. For the savanna region in 2021, results are similar to the same region 2020, with rice and maize having295

around half of the pixels detected as cropland by the mask. Soybean is only detected in 20% of pixels. The conditions towards
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Figure 9. Crop yield distribution (top left: field averaged, bottom left: individual quadrants), field averaged above ground biomass (top right)

and field averaged harvest index (bottom right).

the South of Ghana (persistent cloud, mixing of crops and trees) make it harder to identify cropland. Towards the North, with

fewer trees and (comparatively) less cloud, the cropland mask improves, but still misses around half of the cropland area, and

for some crops (soyabean), the situation is even worse.

It is worth noting that for 2020, each pixel belongs to a different field, whereas for 2021, all pixels belonging to the visited300

fields have been considered, and as such, pixels within a field are spatially correlated, which suggests that the result for this site

is probably optimistic. An example of the cropland mask and the visited fields around a small area within the Mion district is

shown in Fig. 13, where it is clear that the cropland mask misses many of the visited fields. The reported probability of cropland

values are also fairly low (very few pixels have probabilities over 70%), suggesting a large uncertainty for most pixels.
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Our results are hard to compare with the the official validation report from (Burton et al., 2022), as we are considering using305

the mask for a different periods than those used to develop the data set, but in our case, the results show a large omission error

of more than 50% for all crops, with results being markedly worse towards the South of Ghana. These figures is at least double

the the reported 25% omission reported in Burton et al. (2022).

3.5 Crop type classification

The maize mask derived as presented in Sect 2.7 is shown in Fig. 14. The validation results (using the 70:30 data split introduced310

earlier) were an overall accuracy of 0.84 and a kappa score of 0.68 (see Table 2 for details).
:::::
5-fold

::::::::::::
crossvalidation

::::
was

::::
also

::::
used

::
to

:::::::
evaluate

:::
the

:::::::::
robustness

::
of

:::
the

::::::
results

::::::
shown

::
in

:::::
Table

::
2,

::::::
which

:::::::
resulted

::
in

::
an

:::::::
overall

:::::::
accuracy

:::
of

::::
0.72

::::::::
(standard

::::::::
deviation

:::::
0.12).

:::
The

::::::::::
importance

::
of
:::::

each
:::::::::
considered

:::::::
features

::
is
::::::
shown

::
in

:::
the

:::::
Gini

:::::
index

::::
plot

:::::
shown

:::
in

:::
Fig.

::::
15,

:::::
which

:::::
ranks

::::::::
different

::::::
features

:::
by

:::::::
classifier

::::::::::
importance.

:

Crop Other Maize User’s accuracy Overall accuracy Kappa score

Other 7823 1234 0.86

0.84 0.68Maize 1800 7975 0.82

Overall accuracy 0.81 0.87

Table 2. Results from the crop classification for 2021.
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Figure 11. Predicted LAI time series and associated standard deviation (blue line and grey area) in comparison with field measurements (per

field mean and standard deviation, green lines).
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Figure 12. Cumulative frequency of surveyed pixels against probability of cropland per DEAfrica cropland probability mask for 2019.

Horizontal dashed lines are 0.5 and vertical line is cropland probability of 50%. Numbers between brackets in legends indicate the number

of samples of each class included in the calculations.

3.6 Yield prediction testing315

The relationship between leaf area and crop yield has been widely explored, often via vegetation indices (e.g., Becker-Reshef

et al. (2010)), and it usually follows that a green, healthy and dense canopy results in higher yield. Many authors relate yield

to the magnitude of the maximum value of leaf area (or vegetation) index. This is a fairly crude relationship, but for regional

applications in areas with large fields and monocultures, it can be quite effective (Mkhabela et al., 2011; Petersen, 2018;
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DEAfrica	Cropland	Prob
Band	1	(Gray)

Figure 13. Detail of some the visited field sites (yellow polygons) and the DEAfrica cropland probability mask (Burton et al., 2022) around

Mion districts in the Northern region in 2021.

Kouadio et al., 2012). Here, we look at this relationship between maximum field measured LAI and field measured yield, as320

well Planet-derived LAI and field measured yield. For in situ data, a linear relationship yields a reasonable fit (coefficient of

correlation R= 0.66, coefficient of determination R2 = 0.44), once fields 7021YAN, 7033FUU and 7036SAN are removed

as outliers. The slope and intercept of the linear model are 866.44 and -180.45, respectively (Fig. 16a). Including the left out

fields reduces the coefficient of determination to R2 = 0.31. Using the maximum LAI value from the Planet data introduced in

Section 2.5, the correlation degrades to R= 0.53 (R2 = 0.29, ignoring fields 7021YAN, 7033FUU and 7036SAN) (Fig. 16b).325

Slope and intercept for the Planet derived maximum LAI are 1606.51 and -893.10 respectively. The lower correlation from

the satellite-derived relationship is probably explained by the underestimation of the maximum LAI for the higher yield fields

(Fig. 10). For the in situ case, the value of the slope in the maximum LAI relationship is close to 900 kgha−1, suggesting that
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Figure 14. (Left panel) Maize mask (maize shown in orange). Insets (A) and (B) illustrate the field data. Maize fields are shown as green

outlines and other crops as red outlines .

the with errors in the Planet LAI estimates around 0.44m2m−2, the typical error in the estimate would be around 381 kgha−1,

a value close to the average uncertainty in the field measured yield.330

4 Discussion

4.1 Crop measurements

The in situ data gathered is a useful contribution to advance crop monitoring methods for smallholder farmers in West Africa.

It is important to note that the data collection started when the crops were already established in the fields, as is clear from

the satellite temporal trajectories (e.g. Fig. 6 and Fig. 4), so that the initial growth period after emergence was not captured.335
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Additionally, due to logistical issues, the field campaign could only start towards the end of August/start of September 2021,

when planting in this area starts three months earlier. To capture the longest possible dynamics over the campaign, the chosen

fields were all late-sown, which may result in them not being very representative of the majority of fields in the region. The

choice of fields with the least amount of tree cover and no intercropping may also impact the generality of the data gathered

with respect to other fields where these conditions are not met. The in situ LAI measurements show some variability (mean340

standard deviation for samples collected on the same date on the same field of ≈0.25m2m−2). The effect of this variation is

relatively more important here as the maximum LAI is quite small (≈2m2m−2, compared to e.g. US, where the maximum

LAI will be between around 5-6m2m−2 (Nguy-Robertson et al., 2012).

The variation of leaf chlorophyll content appears different to the LAI trajectory, but is broadly characterised by a plateau

followed by a steady drop. Here, we have not looked at its use, either for EO-product validation or other applications, as the345

scarcity of Sentinel 2 reflectance data over the fields makes retrievals unreliable.

There is a large variability of yields within individual fields. This is due to differential management practices, small-scale

soil and/or topography variations, etc. Three crop cuts over a standardised area were used to determine yield, conforming to
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Figure 16. Relationship between maximum LAI estimates and yield. For in situ measured LAI vs yield (Fig. 16a), and discarding fields

7021YAN, 7033FUU and 7036SAN, the linear fit has an R2 = 0.44 and the linear fit is shown as the dotted line y = 866.33 ·x− 180.45..

For Planet-dervied LAI vs yield (Fig. 16b), and discarding fields 7021YAN, 7033FUU and 7036SAN, the linear fit has an R2 = 0.28 and the

linear fit is shown as the dotted line y = 1606.51 ·x− 893.10.

common practice. However, the spatial locations of these estimates were not surveyed, so the data limits us answering whether

EO data provides useful within-field yield variability. Yield estimates should also be co-located with the LAI/leaf chlorophyll350

measurement points to fully exploit the connection between canopy variables and yield.

Only limited data on above ground biomass was collected, but the distribution of the harvest index between 0.2 and 0.7

suggests that the relationship between biomass and yield is not well established. Lambert et al. (2018) finds a strong relationship

between AGB and yield for maize in Mali. Karlson et al. (2020) shows that for a range of cereals, the relationship varies from

year to year in Burkina Faso. Hay and Gilbert (2001) shows a HI ranging from 0.19 to 0.53 for maize in Malawi. It is interesting355

that Moser et al. (2006) point out that water stress can have an impact on HI in maize, which suggests that the relationship

between AGB and yield may not be constant. This has important implications, as in many applications of EO, the target variable

is AGB which is then converted into yield assuming a fixed HI (Jin et al., 2017; Lambert et al., 2018).

4.2 LAI estimations

We presented a very simple approach to exploit the ground data set and calibrate a simple LAI relationship to satellite NDVI.360

The outlier filtering and logistic function fitting are fairly standard approaches, and are necessary pre-processing stages to

establish a linkage between ground and satellite measurements. While the results of the mapping appear in line with similar

approaches (e.g. Fig. 4 in Fang et al. (2019) shows a median RMSE for LAI around 0.5, although larger correlations are
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typical), and better than universal relationships for maize (Kang et al. (2016) report an RMSE ∼1m2m−2 for maize, against

our reported ∼0.5m2m−2), there are issues with poor correlation and high LAI samples in Fig. 10. The small dynamic range of365

the field data, coupled with the large uncertainties of the measurements are behind both of these effects. Ground uncertainties

arise from measurements in a heterogeneous, sparse and discontinuous canopy, whereas the low variability of the ground data

is caused by the period of data gathering not providing a full description of the entire vegetation growth dynamics (see Fig. 7).

A further potential source of uncertainty is the contribution of the soil to the NDVI signal (Baret and Guyot, 1991; Carlson and

Ripley, 1997).370

The evaluation metrics presented here and the suitability of this data and method have to be evaluated for particular applica-

tions. In some applications, the low bias estimate of LAI and acceptable RMSE performance of the model will make this data

useful, whereas for others, just using the filtered and smoothed NDVI trajectory may be more appropriate.

4.3 Cropland mask validation

We have used the crop location data to assess a continent-wide cropland mask and to derive a local maize mask. Both were375

developed with Sentinel 2 data, which in Ghana (and similar tropical regions) is challenging due to limited observation oppor-

tunity due to clouds. In Ghana, this is exacerbated as the vast majority of crops are grown during the wet season. Additionally,

smallholder landscapes show a large within-class variability, due to large differences in management choices, as well as the

presence of trees and other non-crop vegetation. So infrequent temporal sampling and most crops growing simultaneously

makes using Sentinel 2 challenging for developing a cropland mask. The task of developing a crop type mask is even harder,380

and in all likelihood, would need vast numbers of crop labels covering different seasons and locations.

The Burton et al. (2022) cropland mask was assessed for the two subsequent years to that when it was produced. We

found that in areas towards the South of Ghana (semi-deciduous agroecological zones), the cropland mask underestimates

cropland area for most crops. Towards the transition and northern Savanna zones, the performance improves, but in the best

case, omission errors are larger than 50%. This is in marked contrast to the validation report for West Africa, where omission385

errors are 50%. It would be of great interest to repeat the exercise here for the cropland masks for the years 2020 and 2021,

and assert whether the performance is similar (suggesting that the issue is with the data source and method) or whether they

improve, suggesting a very dynamic interannual cropland variation. As more of these data sets become available (e.g. Estes

et al. (2021)), the data we provided in this contribution can be used as a source of independent validation, but also as a source

of training data, with the important caveat that no non-cropland samples were collected. Non-cropland ssamples are needed to390

fully characterise the masks.

The maize mask that was developed in this paper demonstrates that the data can be used as an input to a classifier. However,

the limited number of samples for 2021 (where the main aim of the field campaign was biophysical parameter collection)

result in a crop mask that is probably only reliable around the
:::::::
collected

:
data points. Also, since the surveyed fields were

selected as late sown, this may also bias the field selection.
:::
Fig.

:::
15

::::::::
indicates

::::
that

:::
the

::::::::
classifier

::
is

::::::
mostly

:::::
being

::::::
driven

:::
by395

::::::::::
observations

::::::
around

:::
the

::::
first

::::
half

::
of

::::
June

::::::
(DoYs

::::::::
150-165),

::::::::::
suggesting

:::
that

:::::
early

::::
crop

:::::::::::
development

::::
may

::
be

:::::
more

::::::::::
informative

::
for

::::
crop

::::::::::::
discrimination

::::
than

::::
late

::::
crop

:::::::::::
development.

:
We note that even methods based on more training data (>4000 samples),
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more complex classifiers and a very rich set of data combining Sentinel 1, Sentinel 2 and Planet (M Rustowicz et al., 2019)

still report overall accuracies for crops in Ghana around 60%.

It is instructive to compare the results for Ghana to those in Nigeria. In Nigeria, cropland and crop type masks appear feasible400

with accuracies over 70% for both cropland and crop type reporteb y Ibrahim et al. (2021) and even over 90% (using Sentinel

1 and 2) (Abubakar et al., 2020). These two studies suggest that if cloud cover is not an issue, Sentinel 2 is able to use the

temporal signal to map different crops, and adding Sentinel 1 (as in Abubakar et al. (2020)) only marginally improves on the

Sentinel 2 results. The importance of the optical data suggests that there might be limited improvements in crop type mapping

using Sentinel 1 for Ghana.405

4.4 Yield prediction

We show the effect of using maximum LAI to predict yield, both using the in situ and satellite-derived LAI estimates at field

level. After removing three outlier fields, we find that the relationships are quite weak (R2 = 0.44 and R2 = 0.28 for ground

and EO-derived maximum LAI, respectively). The poor performance of the EO-derived method stems from the saturation

effect, which strongly affects the maximum LAI estimation. For the ground data, the results still show a large dispersion.410

The slope of the regression is also large: 866.33 kgha−1 per unit of LAI. Any error in maximum LAI estimation will have a

considerable error in yield estimation. Nevertheless, the results reported here compare favourably to more complex field-level

studies done in the US corn belt (R2 = 0.45, RMSE 1850 kgha−1) using a more complex model and Landsat data (Deines

et al., 2021). Kang and Özdoğan (2019) use a data assimilation system ingesting MODIS and Landsat data over the US corn

belt and report yield estimates with a correlation R2 = 0.41 and RMSE 2170 kgha−1.415

The above discussion hints some of the challenges of monitoring yield in smallholder landscapes: the large within and

between field variations in yield only have a modest effect in LAI. Given that these variations occur over small areas with

roughly the same meteo drivers, the variability of the system can only be studied by making use of wall-to-wall observations

of e.g., LAI, as other sources of information (e.g., agrometeorological crop models) will not exhibit variation in its drivers over

these spatial scales.420

Our results suggest that extracting relationships between yield and EO-derived diagnostics such as maximum LAI is uncer-

tain in part due to yield showing a large spread even within single fields, indicating that the scale of analysis should be the

point within the field, rather than the field average. With precisely co-located yield and LAI ground measurements, a clearer

understanding of the uncertainty of the canopy variable to LAI mapping could be developed.

5 Conclusions425

We have gathered a rich data set to understand and develop crop monitoring methods using EO for maize in northern Ghana.

The data set includes the location of crops, a comprehensive set of repeated biophysical parameters (LAI and leaf chlorophyll

concentration) over the growing season, and measurements of crop yield and biomass. These measurements were acquired in

2021 (with some crop locations also reported in 2020), and were taken from an agricultural area East of the city of Tamale.
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The collected data is novel in that it focuses on smallholder maize farms, an important and understudied agricultural landscape430

that supports many farmers in Africa.

This data set has a number of uses, some of which we illustrate throughout this paper. The crop location data presented here

complements recent contributions such as Jolivot et al. (2021), and can also be used to validate and create cropland/crop type

masks. We demonstrate both of these uses in the paper. In West Africa, producing these data sets faces important challenges

due to similar timing of crop development, persistent cloud cover and huge heterogeneity in crop development within and435

between growing seasons. This points out for a need for more multi-location, multi-season in situ data, to which this paper is

a small contribution.

The in situ collected biophysical parameters have been used to develop and validate a simple method to infer LAI from

Planet data, which resulted in a local estimates having a low error (RMSE 0.44m2m−2, negligible bias), but a low coefficient

of correlation R= 0.49, due to an underestimation of high LAI. The measurements described in this contribution can also be440

used to validate biophysical parameters retrieved using other sensors and methods (Fang et al., 2019; Delegido et al., 2011;

Clevers and Gitelson, 2013; Brown et al., 2021; Kganyago et al., 2020). The repeated temporal sampling is an important feature

of this data set: as more sophisticated techniques are developed to fully use time series of data (Lewis et al., 2012), repeated

measurements covering the entire development of the crop should be preferred over the traditional approach of data collected

over a single or few dates. The multi-parameter nature of the data (LAI and chlorophyll concentration) is important in showing445

the dynamics of both and supporting efforts to define a rich set of Essential Agricultural Variables (Whitcraft et al., 2019).

The data show a large variation in yield within a relatively small area and a considerable yield variation within fields. This

local variability cannot be attributed to coarse scale weather patterns or broad soil classes, but rather to local soils variation,

farming practices, etc. There are important implications for the use of crop growth models in these systems and the need to

consider the sources of the underlying yield variability, in addition to usual climate and soil drivers (Beveridge et al., 2018).450

The large yield variability also suggests that to truly understand food production, the real spatial distribution of yields needs

to be measured. This will require the use of EO-based methods, and an important data collection effort similar to the one

presented here to understand their limitations. We show that there is a relationship between the in situ measured maximum

LAI value and yield at the plot level, but the relationship deteriorates for the EO-derived maximum LAI, due to the additional

uncertainty and bias of the EO-derived LAI estimate. Developing robust methods to infer LAI from EO data (in particular, high455

revisit frequency sensors) is critical to be able to monitor crop development.

Providing cropland and crop type maps for smallholder systems is challenging. We use our data to test a cropland mask,

and find it underestimates cropland. We also use our data to demonstrate a local maize/non-maize mask. In the light of the

limitations shown in both of these efforts, the collection of more extensive multi-site, multi-season crop location ground data

is critical, as is the exploration of very dense time series, as in many tropical sites with dry/rainy season dynamics, most of the460

crop growing happens during the wet season, resulting in similar temporal dynamics and low opportunity of observation.

The data set has some limitations: it covers a single growing season over a small area. Similar efforts for other years and

areas would greatly strengthen any study that makes use of this data. Second, field measurements were done preferentially in

fields that were sown late in the season, and broader sampling of earlier and late-sown crops would be beneficial for an area
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where sowing occurs over a long period in the rainy season. Finally, while the data set allows us to consider yield as a function465

of LAI and/or chlorophyll, it doesn’t allow us to understand what factors had a role in crop development, such as e.g. soil,

fertiliser, management, etc. Finally, yield measurements within a field were not georeferenced, and this makes it hard to use

EO data to understand the important within-field variability.

In the light of this, we suggest that campaigns looking at agricultural applications, should consider repeated measurements

over the growing season, as well as considering multiple seasons or multiple geographical regions. In addition, measurements470

of crop yield should also be made to coincide with biophysical parameters, as well as detailed management information, as this

would allow understanding the variability in yield estimates even within and between fields.

Collecting the data outlined above is expensive and challenging in smallholder agricultural landscapes, and in many cases,

it will require a close conversation and collaboration with the farmer. Providing useful satellite-derived data products for e.g.,

agricultural extension workers, who work closely with the farmers might encourage the collection and sharing of more data475

like that shown in this paper.

6 Code availability

Code for the classification introduced in Sect. 2.7 is available from https://code.earthengine.google.com/4795796bb1f47ff7e9ca9c0aae263c11

7 Data availability

The following data is available from http://doi.org/10.5281/zenodo.6632083 (Gomez-Dans et al., 2022):480

:::::::
Detailed

::::
field

:::::::::
sampling

::::::::
locations A GeoJSON file with the locations of maize fields where detailed measurements of bio-

physical parameters were made File names: Biophysical_Data_Collection_Points_V1.geojson and

Biophysical_Data_Collection_Polygons_V1.geojson.

::::
Field

::::::::
location

:::::::::
campaigns Four GeoJSON files with the locations of fields and the crop type.

:::::::::::::
Transition/2020 Points located inside fields. File names CropTypes_Transition_2020.geojson.485

:::::::::::::
Deciduous/2020 Points located inside fields. File name CropTypes_SemiDeciduous_2020.geojson.

:::::::::::::
Savannah/2020 Points located inside fields. File name CropTypes_NSavannah_2020.geojson.

:::::::::::::
Savannah/2021 Field outline polygons (avoiding trees). File name CropTypes_NSavannah_2021.geojson.

::
In

::::
situ

::::::::::
biophysical

:::::::::
parameter

::::
time

::::::
series Time series of repeated measurements of leaf area index and leaf chlorophyll con-

centration, as well as phenology observations and general comments. CSV format. File name Ghana_ground_dat490

a_v5.csv,

::::
Crop

:::::
yield

::::
and

:::::::
biomass Crop yield measured in three quadrants per field, and biomass measurements on reduced set of 10

fields. CSV format. Filename Yield_Maize_Biomass.csv.
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:::::::::::::
Planet-derived

::::
time

:::::
series

::
of

::::
LAI Per-field GeoTIFF files that have been derived from the original Planet data. Provided as

Zip archive. Filename PlanetDerivedLAI.zip,495

:::::
Maize

:::::
mask A maize/no-maize mask for 2021 derived from Sentinel 2 data (Sect. 2.7) in GeoTIFF format. File name CAU_m

aize_classification.tif.

Appendix A: LAI and leaf chlorophyll measurement protocol

A1 Leaf Area Index measurements

1. Identify 4 locations in each of the fields to take the LAI measurements. Ensure the selected locations capture the vari-500

ability in plant stand on the field.

2. Identify the rows in which measurements will be made and mark the locations with pegs for subsequent measurements.

3. At each location, take one above canopy reading and then 4 below canopy readings diagonally as illustrated in the picture

below.

4. Ensure that the direction of the view cap is consistent for all readings per location.505

5. Follow the steps in using the LI-COR 2200C in measuring LAI to capture the data.

Important:

– The 4A measurements are necessary to deal with scattering corrections (generating K records) if the sun is out. Otherwise

one A reading and several B readings are enough.

– Increasing number of below canopy (B) readings improves spatial average.510

– In a canopy that is 1m high, the optical sensor should be at least 3m from the edge in any direction it can see.

– Be sure to take all B readings at the same height and in same direction as the A reading.

A2 Leaf chlorophyll concentration measurement protocol

1. Select and tag 5 plants in each field for continuous measurements.

2. Tag the 5th and the 6th leaves of each of the 5 plants515

3. On each leaf, take 3 measurements at 1/4, 1/2 and 3/4 of the distance from the leaf base to its tip.

4. Take the readings on both leaves (6 measurements per plant).

5. Press Average to generate the average SPAD reading for the plant
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The SPAD readings were taken from plants within the four same sections where the LAI readings were taken, and from

another section of the field (making 5 sections in all).520

Appendix B: Biomass and yield measurement protocol

1. Measure quadrant size of 6m x 6m diagonally in 3 different location in the field.

2. Count the number of plants in each quadrant.

3. Count number of cobs harvested from each quadrant.

4. Determine the number of cobs per m2.525

5. Remove the ears leaving the husk intact on plant.

6. Weigh the total cobs harvested from each quadrant separately.

7. Select 10 cobs, weigh and shell and weigh the grains.

8. Take 500 g of the grain sub-samples from each quadrant for moisture content determination.

9. Weigh all empty cobs and then 500 g taken from each sample for oven drying530

10. Label the samples from each quadrant clearly with the quadrant number. Put all the 3 samples from the farm into 1

polybag and label the bag with the name of the farmer, community, and district.

11. Submit the grain sample for moisture content determination within 24 hours.

12. With known moisture content, estimate the grain yield per mm.

13. Cut plants in harvested area just above ground.535

14. Select 10 representative plants (stover) into leaf blade, husk, leaf sheath and stem (including tassel).

15. Weigh each component and log weights (undried). Chop components separately, take a sub-sample of 500 g of each of

the undried component. Place in sampling bags and label.

16. Oven dry each weighed undried sub-sample to a constant weight.

17. Find a ratio of the dried to the undried sub-samples of each component and multiple by their respective total undried540

weight to obtain dry weight of each component.

18. Add all total dried weight of all components (leaf blade + leaf sheath + stem (including tassel and husk) + cob) to obtain

total biomass.
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