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Abstract. Soil moisture (SM) is a key variable of regional hydrological cycle and has important applications for water

resource and agricultural drought management. Various global soil moisture products have been mostly retrieved from

microwave remote sensing data. However, there is currently rare spatially explicit and time-continuous soil moisture

information with a high resolution at a nation scale. Here we generated a 1km soil moisture dataset for stable crop drylands15
in China (ChinaCropSM1km) over 1993−2018 through random forest (RF) algorithm, based on numerous in situ daily

observations of soil moisture. We used independently in situ observations (181327 samples) from the Agricultural

Meteorological Stations (AMS) across China for training (164202 samples) and others for testing (17125 samples). An

irrigation module was firstly developed according to crop type (i.e. wheat, maize), soil depth (0–10 cm, 10–20 cm) and

phenology. We produced four daily datasets separately by crop type and soil depth, and their accuracy is all satisfactory20
(wheat r 0.93, ubRMSE 0.033 m3m–3; maize r 0.93, ubRMSE 0.035 m3m–3). The spatio-temporal resolutions and accuracy of

ChinaCropSM1km are significantly better than those of global soil moisture products (e.g. r increased by 116 %, ubRMSE

decreased by 64 %), including the global remote-sensing-based surface soil moisture dataset (RSSSM) and the European

Space Agency (ESA) Climate Change Initiative (CCI) SM. The approach developed in our study could be applied into other

regions and crops in the world, and our improved datasets are very valuable for many studies and field managements such as25
agriculture drought monitoring and crop yield forecasting. The data are published in Zenodo at

https://zenodo.org/record/6834530 (wheat0–10) (Cheng et al., 2022a), https://zenodo.org/record/6822591 (wheat10–20) (Cheng

et al., 2022b), https://zenodo.org/record/6822581 (maize0–10) (Cheng et al., 2022c) and https://zenodo.org/record/6820166

(mazie10–20) (Cheng et al., 2022d).

https://zenodo.org/record/6834530
https://zenodo.org/record/6822591
https://zenodo.org/record/6820166
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1 Introduction30

Soil moisture (SM) is closely associated with droughts and floods, consequently agricultural productions (Tao et al., 2003).

Thus, SM information at a high resolution is critical to improve crop yield prediction (Prasad et al., 2006; Chakrabarti et al.,

2014) and drought impact assessment (Sheffield, 2004). However, such higher resolution in both temporal (e.g. daily and

more than decade) and spatial scales are still unavailable across China, especially for dry croplands.

SM can be obtained by several ways, including in situ observations (Walker et al., 2004; Bogena et al., 2007), remote35
sensing retrieval (Mohanty et al., 2017; Wei et al., 2019), and process-based model simulations (Vergopolan et al., 2020;

Ahmed et al., 2021). The field observations provide the most accurate SM but being expensive and time-consuming, and

large uncertainties from extrapolating the limited observations into larger regions with high heterogeneity (Collow et al.,

2012; Crow et al., 2012). The microwave sensors have been applied to retrieve SM in recent years (Schmugge et al., 2002;

Wigneron et al., 2003; Amazirh et al., 2018). The microwave sensors can only monitor near-surface SM (0−10 cm)40
(Eagleman and Lin, 1976; Jackson et al., 1982). The passive microwave sensors can monitor daily SM but with a coarse

resolution (25−40 km), comparing with a high spatial resolution (10–30 m) whereas a coarser repetition interval (15−25 days)

for active ones (Eagleman and Lin, 1976; Jackson et al., 1982; Mallick et al., 2009). Such SM products have large

uncertainties due to the limitations from satellite coverage and downscaling methods, although they can easily cover large

regions compared with the in situ observations (Loew et al., 2013; Su et al., 2016; Peng et al., 2017). Deriving the SM from45
model simulation is also challenging because of its high requirements in input data, computing ability and large uncertainties

from model parameters (Wang and Qu, 2009; Yilmaz et al., 2012; Petropoulos et al., 2015). In addition, many studies have

found that irrigation, as an additional water supply source other than precipitation, reduces soil albedo (Chen and Dirmeyer,

2019), increases heat capacity (Wang et al., 2019), alters local SM (Lawston et al., 2017), and affects the water/energy

budget (Shen et al., 2013). However, few studies have taken irrigation into account in developing SM data products at the50
national or global scales (Drewniak et al., 2013; Qiu et al., 2016a). Thus, it is critical yet challenging to improve SM

accuracy at both spatial and temporal resolutions.

As one part of the Climate Change Initiative (CCI), the European Space Agency (ESA) published a long-term surface SM

dataset, and the latest version (v06.1) covered the period of 1978–2020 (https://www.esa-soilmoisture-cci.org/, last access:

10 Apr. 2022) (Dorigo et al., 2017; Gruber et al., 2019; Preimesberger et al., 2021). The ESA CCI SM products are55
consistent with the observed values   at some grassland and farmland sites in China (Liu et al., 2011; Albergel et al., 2013;

Dorigo et al., 2015, 2017), however, they have a coarse spatial resolution (~27 km) and lots of coverage gaps (Llamas et al.,

2020; Guevara et al., 2021). More recently, based on multiple neural networks, the global remote-sensing-based surface soil

moisture (RSSSM) dataset covering 2003–2018 at 0.1° resolution was developed by using Soil Moisture Active Passive

(SMAP) SM as the primary training target. RSSSM improved Coefficient of determination (R2) of 0.46 and Root Mean60
Squared Error (RMSE) of 0.083 m3 m−3, with a 10-day resolution (Chen et al., 2021). In 2020, another new SM dataset in

China from 2002 to 2018 was provided from different passive microwave SM products and model-based downscaling
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techniques (Meng et al., 2021). With an improved correlation coefficient (r) of 0.84 and an unbiased root-mean-squared

error (ubRMSE) of 0.056 m3 m−3, the new dataset has a 0.05° spatial resolution and a monthly time resolution. These SM

products did contribute largely to related agriculture studies and managements, however, they are still too coarse to assess65
agricultural drought risk and predict crop yield accurately.

Despite numerous efforts have been devoted to develop SM products, major concerns should be addressed: (1) agricultural

management activities such as irrigation have not been fully considered by the previous studies, especially in countries like

China with extensive areas irrigated (Zhu et al., 2013); (2) both spatial and temporal (e.g. daily) resolutions of SM products

need to be improved for regional agricultural managements; (3) the SM accuracy need to be further improved. In recent70
years, the in situ observations are becoming available (Li et al., 2005). Some new methods such as machine learning are

increasingly applied to many fields and have been shown to be robust in incorporating multiple sources data to develop

spatiotemporal datasets (Ahmad et al., 2010; Srivastava et al., 2013; Im et al., 2016).

Thus, our main objectives in the study are: to develop a novel method to generate a daily 1km SM dataset for dry croplands

across China based on numerous field observations; to evaluate their accuracy and compare them with current products; to75
explore the spatio-temporal characteristics of soil moisture for crop drylands. We are sure our methods and datasets will be

valuable for agriculture drought monitoring and crop yield forecasting.

2 Materials and Method

2.1 Study area

The study area is dominated by dryland crops such as wheat and maize in China, with complex cultivation methods (Wu and80
Li, 2012) and various irrigation activities (Huang et al., 2015). According to the annual crop harvesting areas of crops across

mainland China from 2000 to 2015 (Luo et al., 2020a, b), maize and wheat are the two main crops in China, accounting for

35.4 % of the total harvested area (FAOSTAT, 2019). The study areas and SM in situ field monitoring sites for the two crops

are shown in Figure 1.

2.2 Data85

2.2.1 In situ SM observations

The in situ SM observation data (http://data.cma.gov.cn/data/detail/dataCode/AGME_AB2_CHN_TEN.html, last access: 18

April 2021) from 1993 to 2018 in this study were obtained from agriculture meteorological sites in China, which recorded

the location, crop type, phenology, soil depth and SM. SM was measured at the depths of 10 cm and 20 cm at each agro-

meteorological station on the 8th, 18th and 28th of each month. For each sample, crop phenology was observed and recorded90
by well-trained agricultural technicians in experimental fields (the average field size was 0.15 ha) and then were checked and

qualified by the Chinese Agricultural Meteorological Monitoring System (CAMMS). The first layer (0–10 cm) has been
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widely used to investigate spatial and temporal characteristics of SM and validate SM retrieved from microwave across

China (Lacava et al., 2012; Zeng et al., 2015; Liu et al., 2018; Fang et al., 2020).

We collected the in situ observations of maize (287 sites) and wheat (240 sites), with total 181327 samples (maize: 3622695
samples for the 0–10 cm soil layer, 36245 samples for the 10–20 cm soil layer; wheat: 54396 samples for the 0–10 cm soil

layer, 54460 samples for the 10–20 cm soil layer).

2.2.2 Environmental factors

The environmental factors are classified into Site features and Gridded features, which both include meteorological data

(MD), day of year (DOY), Classified Irrigation (CIR), soil properties (SP), remote sensing data (RSD), and geographical100
information (GI) (Table 1).

MD includes daily total precipitation (pre) and ante-accumulated precipitation over ten days (pre10) from the meteorological

stations across China (CNMSs) (http://data.cma.cn, last access: 10 April 2021) (Figure S1).

CIR was calculated using Eq. (1).

CIR =
1, �������� ≥ ������;
0, �������� < ������; (1)105

where �� , �� , �� , and ������ are crop type, phenology, soil depth, and the evaluation index of relative soil moisture (SMI)

corresponding to the crop type �, phenology �, soil depth �. SMI is a threshold to determine when irrigation is applied (Table

2), which was released by Ministry of Water Resources of China (CNMWR) (http://www.mwr.gov.cn, last access: 10 July

2022) in July 2012.

SP includes sand, silt, gravel, organic carbon, clay contents, soil PH and bulk density, obtained from Harmonized World Soil110
Database Version 1.2 (http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/, last access: 18

Aug. 2021). The original 30 arc-second raster spatial resolution data were resampled to a 1 km resolution based on the

nearest neighbor interpolation, and the site-related SP were extracted from values to points using ArcGIS 10.5 software

(ESRI).

RSD includes Reference Evapotranspiration (pet) and field capacity (fc). pet was obtained from TerraClimate115
(https://doi.org/10.7923/G43J3B0R, last access: 28 Aug. 2021) which included monthly climate and climatic water balance

from 1958-present with a resolution of 1/24° or ~4 km (Abatzoglou et al., 2018). fc was obtained from OpenLandMap

(https://zenodo.org/record/2784001, last access: 18 July 2021) (Hengl and Gupta, 2019) which included fc under 33kPa at 0

cm (b0) and 10 cm (b10) depth.

GI includes latitude (lat), longitude (lon), moisture index (im) (Thornthwaite, 1948), and river vector data, provided by the120
Data Centre for Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/Default.aspx,

accessed on 18 April 2021). The distance from each AMS to river networks at all levels (R4, R5, R12) in China was

calculated using Euclidean distance analysis method.

https://doi.org/10.7923/G43J3B0R
https://zenodo.org/record/2784001
http://www.resdc.cn/Default.aspx
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2.2.3 Public SM products for comparison

We used two existing SM products for comparison: 1) The ESA CCI SM data are a merged multi-satellite surface SM125

product, which consists of active, passive, or combined products. The SM retrievals are from four microwave radiometers

(SMMR: Scanning Multichannel Microwave Radiometer, SSM/I: Special Sensor Microwave/Imager, TMI: Tropical Rainfall

Measuring Mission (TRMM)’s Microwave Imager, and AMSR-E: Advanced Microwave Scanning Radiometer for the Earth

Observing System) and two scatterometers (AMI: Active Microwave Instrument, ASCAT: Advanced Scatterometer) in a

0.25° global daily dataset. The data assimilated relies on their respective sensitivity to vegetation density and uses a Global130
Land Data Assimilation System (GLDAS) surface SM product (Rodell et al., 2004) as a climatology reference (Wagner et al.,

2012). The active/passive products are the integration of the scatterometer /radiometer-based SM retrievals, respectively,

while ESA CCI SM product is the fusion of both the active and passive products. We used the v05.2 product for comparison

because of its advantages comparing with active/passive products (Liu et al., 2012; Dorigo et al., 2017). 2) The RSSSM is an

improved global long-term remote-sensing-based surface SM dataset covering 2003–2018 at 0.1° resolution135
(https://doi.org/10.1594/PANGAEA.912597). Considering their compatibility, we chose 1995 to 2018 for comparison

between ChinaCropSM1km and ESA CCI SM, and the 2003–2018 period for that of ChinaCropSM1km and RSSSM.

2.3 Method

2.3.1 Variable selection and data treatment

For the site-related variables, we use the Extract Values to Points tool to extract the 1km resolution raster information of140
environmental (i.e. SP, RSD and GI) data to AMS point data, output point data attributes and save it in CSV format to obtain

a data set of environmental factors through ArcGIS 10.5, and then we deleted those with high multicollinearity (|r|> 0.5)

according to the factor stacks (Figure S3 and S4). Thus, the 11 independent variables (pre, pre10, DOY, CIR, T_REF_BULK,

R4, im, pet, lat, lon and fc) were selected because they well characterize the impacts of meteorological, temporal, irrigation,

soil properties, geographical information on regional SM. We used the “Euclidean distance” option of the Spatial Analyst145
Tools in ArcGIS10.5 to obtain the variables related with river network in China (Danielsson, 1980). We also applied the

kriging interpolation method to obtain precipitation-related variables (e.g. pre and pre10) from CNMSs. Thereafter, all

gridded maps were processed in the WGS84 UTM zone 45N Geographic Coordinate System (EPSG:32645), and resampled

to the same spatial resolution (1 km).

2.3.2 Model development150

Ensemble learning was used to aggregate a collection of algorithms to predict the potential impacts, which represents a better

method than that uses any algorithm alone (Brownlee, 2016). Random Forest (RF) is a typical ensemble learning algorithm

which can be used to build predictive models for both classification and regression purposes. RF fits an ensemble of models

that first train a multitude of decision trees and then obtain predictions by an average or vote through all individual trees

https://doi.org/10.1594/PANGAEA.912597
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(Breiman, 2001). The algorithm introduces extra randomness when growing trees and searches for the best trees among a155
random subset of features. This technique results in greater tree diversity, generally yielding an overall better model

(Hutengs and Vohland, 2016; Lagomarsino et al., 2017). In addition, bagging method, which constructed multiple training

sub-dataset by resampling with replacement of the original dataset, is employed to reduce the variance and overfitting (Díaz-

Uriarte and Alvarez de Andrés, 2006; Zhang et al., 2018). Its high accuracy and stability in agricultural fields have been

substantiated in several previous studies, especially for predicting grain yield, identifying crop planting areas, and mapping160
soil properties (Hengl et al., 2015; Jeong et al., 2016; Sun et al., 2019).

Hyper parameters in a RF model are very important to optimize its performance. Such parameters are initially defaulted, and

we need investigate their appropriateness or find a potentially better values during developing a RF regression (RFR). The

important hyper parameters include follows:

n_estimators: the number of trees that the algorithm builds before taking the maximum voting or average over predictions. A165
high number of trees increases the performance and makes the predictions more stable, but demand more computations.

max_features: the maximum number of features that the random forest considers on a per-split level. The condition is based

on variance for regression.

min_samples_leaf: the minimum number of leafs that are required to split an internal node.

max_samples: ratio of samples needed for training each tree.170
We applied the 10-fold cross-validation method to tune the four hyper parameters for avoiding the overfitting of RF models

(Figure S5). Meanwhile, we use this 10-fold cross-validation to evaluate model performance (Figure S7).

The detailed irrigation module is shown in Figure S2. Given SM is highly sensitive to irrigation application for crop drylands

in China, we firstly used the RF classification (RFC) to build irrigation module. This module aims to predict whether

irrigation application occurred there, and assign response variable “1” for irrigation and “0” for without-irrigation according175
to the response variables and predictor ones (the same environmental indicators used in producing ChinaCropSM1km).

As for the response variable (Classified Irrigation CIR), it is calculated by irrigation threshold (Table 2) and in situ

information, including crop type, phenology and soil depth. Then we used the forecasted CIR as an additional predictor,

integrating with other key predictor variables, to drive RFR for forecasting SM. Considering the regional differences in SM,

we randomly sampled in situ SM observations (90% for training and 10% for testing) in each agricultural zone to develop180
RF model. Totally, 98576 (65626) and 10820 (6845) observations were used for training and testing the model for wheat

(maize), respectively. All these point samples are used to develop pointed-SM model, and then applied these pointed-models

developed to inversely calculate the gridded-SM by inputting 1km-raster environmental variables (Figure 2).

The hyper parameters in the optimal model were determined as 50, 1, 1 and 4 for the respective n_estimators, max_samples,

min_samples_leaf and max_features according to the highest accuracy during training (Figure S5). We implemented this185
processes in Matlab9.8.0 (R2020a). More information could be referred to the MATLAB help center

(https://www.mathworks.com/help/stats/regressionlearner-app.html, last access: 26 May 2022).
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The features importance was evaluated for the RF model with the greatest regression accuracy by ordering the out-of-bag

predictor observations, using the Matlab ‘oobPermutedPredictorImportance’ function

(https://www.mathworks.com/help/stats/regressionbaggedensemble.oobpermutedpredictorimportance.html, last access: 26190
May 2022). We also used the method to measure the importance of each predictor variable during predicting ChinaCropSM.

2.3.3 Evaluation metrics for validation and comparison

The in situ observations provide the most accurate SM, all performance measures were calculated using the testing dataset

for evaluation purposes. All SM products were evaluated against the in situ observations (testing dataset) according to three195
metrics: Root Mean Square Error (RMSE; m3m–3), bias (m3m–3), unbiased RMSE (ubRMSE; m3m–3), Explained variance(R2),

and the correlation coefficient (r), which are defined as follows Eqs. (2)–(6):

� = 1
�−1 �=1

� ��−��

��
� ��−��

��
(2)

�2 = 1 − �=1
� ��−�� 2�

� �=1
� ��−���

(3)

���� = 1
� �=1

� �� − ��� (4)200

���� = 1
� �=1

� �� − ��
2� (5)

������ = ����2 − ����2 (6)

where the overbar indicates the mean; Pi is the ith prediction SM from products; Oi is the ith in situ observation SM; N is the

total number of observations; and σo and σp are the standard deviations of the in situ observed or predicted SM, respectively.

In addition, we compared our four subset data with RSSSM and ESA CCI SM separately through evaluating their spatial and205
temporal accuracy related to in situ surface SM observations (Table S1 and S2).

We evaluated our irrigation factor forecasting model results using the receiver operating characteristics (ROC) curve and

their Area Under the Curve (AUC) (Table S4) (Fawcett, 2006). Also, we calculated UA (Eq. 7), PA (Eq. 8), and overall

accuracy (Eq. 9) based on confusion matrices (Table S3) containing the percentages of the four possible outcomes of a

model: True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) (Fawcett, 2006).210

�� = ��
��+��

(7)

�� = ��
��+��

(8)

�������� = ��+��
��+��+��+��

(9)
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3 Results and discussion

3.1 ChinaCropSM1km products validation215

The scatterplots between the predicted SM and those observations were displayed by soil layers and crops (Figure 3). We

found that the SM predicted by RF model agreed well with in situ SM observations, with ubRMSE of 0.028–0.037, bias of -

0.0011–0.0009, r from 0.925–0.944. Moreover, the mean bias in predicting SM for wheat was negative (Figure 3-a, b), while

those for maize were positive (Figure 3-c, d). These findings suggest that maize SM were overestimated while those for

wheat were underestimated. The absolute value of mean bias and RMSE in predicting SM at top soil depth (0–10 cm) for220
both crops were relative larger (eg. RMSE 0.036>0.028) than that for soil depth of 10–20 cm. It indicates that RF model

performed better in predicting the SM content at 10–20 cm layer than that at 0–10 cm layer, which was consistent with the

previous studies (O and Orth, 2020).

3.2 The improvement of ChinaCropSM1km products with an irrigation module

Interestingly, all prediction accuracy of SM were consistently improved both for crops and depths (Figure 4) with225
comparison of those without an irrigation module (Table S5). Specifically, R2 values were increased by 6.8–9.7%, RMSE

were decreased by 16–23% (Table S5). Among these, R2 values for maize SM were slightly improved than those of wheat

and RMSE for maize was decreased more than that of wheat. Such finding further suggests that the irrigation water

requirements of maize are higher than for wheat, which was consistent with the reason that summer maize requires large

amounts of water to produce high yields. (Mohammed Karrou, 2012).230

3.3 The significant scores of different factors for simulating SM

It is critical to select which independent variables involved into a model, neither too many or too less, simultaneously

avoiding multicollinearity among them. We have deleted 7 variables due to their high correlations (|r|> 0.5) with the 11

variables selected (Figure S3 and S4). Surprisingly, the top first was scored to irrigation factor (CIR), followed by pre10

(ante-accumulated precipitation over ten days) and fc (field capacity) (Figure 5). Current daily precipitation show235
significantly different importance on SM planted by wheat and maize, with the similarity for DOY. Nevertheless, all other

factors show less importance on SM simulation. Comparing with the significant roles of precipitation-related variables (e.g.

pre10, pre) on SM in most rainfall-fed areas, however, irrigation shows overwhelming impacts on dryland soil moisture

across China (Qiu et al., 2016b). Such result highlights more accurately monitoring management activities, including

irrigating times, areas and quantity, will further improve irrigation module, consequently improve SM simulation (Wu et al.,240
2020; Zhang et al., 2015, 2022).
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3.4 The temporal and spatial patterns between ChinaCropSM1km and the in situ SM observations

The SM values in ChinaCropSM1km are significantly correlated with the in situ SM observations, with a mean r of 0.92,

0.94, 0.93 and 0.94, respectively, for wheat0–10, wheat10–20, maize0–10 and maize10–20, during the whole growing period (Figure

6). The spatial coefficients for wheat at 10−20 cm are generally higher than the surface SM (0.94 vs. 0.92), and the two soil245
depths SM in April and September are significantly higher (Figure 6–a, b). We attributed the high spatial correlations of

surface SM to irrigation impacts, because April and September are planting time for both spring and winter wheat. The better

relationships further substantiated the irrigation module developed in our SM model improves the simulation accuracy for

surface SM. Consistently, the spatial coefficients for maize at 10–20cm depth are higher than those for 0−10cm (0.94 vs.

0.93) (Figure7-c, d). At the sowing (Apr.), heading (Jul.), and milking (Aug.) stages, maize usually demanded water250
supplying a lot. The spatial coefficient for maize SM at both soil depth from May to Aug. were lower than the mean value

potentially due to the lack of irrigation applications (Yin et al., 2016) (Figure 6).

We still further analyzed the temporal pattern of SM accuracy in different regions (Figure 7). The median of r values for

Huang–Huai–Hai Plain and Northern Arid and Semiarid region were higher than that in other agricultural regions because of

larger training samples. Our findings further substantiated that a larger training sample size will cause a higher temporal255
accuracy, indicated by a higher r and a lower RMSE (Figure S6). However, the poor performance in Yunnan–Guizhou

Plateau might be caused by smaller training samples (Figure S6).

3.5 Comparisons between ChinaCropSM1km and public global SM products

We further compared our ChinaCropSM1km with the two popular products through evaluating their spatial-temporal

accuracy related to in situ surface SM observations. We summarized their evaluation indexes by individual product in Table260
3, which indicated consistently the bolds for our ChinaCropSM1km (all r >0.90, RMSE <0.04), while RSSSM and ESA CCI

SM were shown by r <0.50 and RMSE >0.1.

To match the different spatial resolutions of three products, we calculated the averages of all in-site observations in the same

pixel (e.g. 1 km, 27 km or 0.1°) to make their spatial-temporal accuracy comparable. Interestingly, all indexes of our

products were consistently indicated by the higher accuracy (e.g. r 0.94, bias 0.005, RMSE 0.034, ubRMSE 0.034) (Figure265
9). RSSSM dataset significantly underestimated SM with an averaged bias of −0.114, companying with a higher RMSE of

0.150. ESA CCI SM performed better than RSSSM (e.g. RMSE 0.11 vs. 0.15) derived from Soil Moisture Active Passive

(SMAP) (Entekhabi et al., 2010), and we ascribed such improvement partly into some corrections based on in situ

observations for ESA CCI SM (Dorigo et al., 2017). Such results highlight SM products derived solely from remote sensing

satellites should be corrected with ground observations. Moreover, neither RSSSM nor ESA CCI SM had considered the270
irrigation activities, thus their spatial correlations with ground observes are incomparable to those of our products (r 0.944 vs.

0.381 0.256) (Figure 8). Our study substantiates strongly that an irrigation module should be taken into account when

developing SM simulation models of producing SM products.
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4 Data availability

The 1km gridded daily Soil Moisture for Croplands in China (ChinaCropSM1km) is available at275
https://zenodo.org/record/6834530 (wheat0–10) (Cheng et al., 2022a), https://zenodo.org/record/6822591 (wheat10–20) (Cheng

et al., 2022b), https://zenodo.org/record/6822581 (maize0–10) (Cheng et al., 2022c) and https://zenodo.org/record/6820166

(mazie10–20) (Cheng et al., 2022d).

5 Discussion and Conclusions

We developed a daily 1km soil moisture dataset based on numerous field observations (181327 samples) from 1993–2018,280
which significantly enrich the current SM datasets available. Our ChinaCropSM1km shows higher temporal-spatial

resolution and accuracy than the popular global SM products. Moreover, to date, few studies have provided a daily SM

product with such higher resolution, combining different soil depths and an irrigation module. ChinaCropSM1km is the first

SM product with a higher spatial resolution (~1km) at 0–10, 10–20 cm depth in China croplands by compiling the ground

observations and using RF method.285
Our ChinaCropSM1km predicted by RF model agreed well with in situ SM observations (ubRMSE ranges from 0.028–0.037,

bias ranges from −0.0011–0.0009, r ranges from 0.925–0.944, and R2 ranges from 0.860–0.895). An irrigation module was

firstly developed according to crop type (i.e. wheat, maize), soil depth (0–10 cm, 10–20 cm) and phenology. All prediction

accuracy of SM were consistently improved (R2 values were increased by 6.8~9.7%, RMSE were decreased by 16~23%)

both for crops and depths. Meanwhile, ChinaCropSM1km generally has advantages over other popular gridded SM products290
(RSSSM and ESA CCI SM) through evaluating their spatial-temporal accuracy related to in situ SM as the benchmark. Our

ChinaCropSM1km has relatively higher accuracy (all r >0.90, RMSE <0.04), while RSSSM and ESA CCI SM were shown

by r <0.50 and RMSE >0.1.

The ChinaCropSM dataset are credible and accurate according to the results comparing with the public datasets, however,

some limitations are still existed in our study. First, the limited AMS irrigation records may lead to the uncertainty in the295
irrigation factor predictions. More detailed irrigation information will help to improve irrigation module performances.

Second, our method for generating cropland SM is applicable to other regions and crops, but more environmental variables

will be increasingly required considering the SM variabilities are complex processes controlled by many factors (Famiglietti

et al., 2008; Qin et al., 2013; Guevara and Vargas, 2019), especially for irrigation activities. For example, to characterize

more accurately the irrigation activities, many field samples are highly required in both spatial and temporal resolutions.300
Other auxiliary data on information of crop growth, classification, and managements (e.g. irrigation frequency, amount and

method) will benefit to develop our irrigation module and derive SM datasets more accurately. Third, different splitting

methods during training and testing do affect model performance. Selecting which splitting method to improve the

generalization performance is dependent on data. Generally, the larger size of data, the smaller effect of the splitting methods

on the results (Birba, 2020). Moreover, advanced algorithms will be potential alternatives for random forest due to its strong305

https://zenodo.org/record/6834530
https://zenodo.org/record/6822591
https://zenodo.org/record/6820166
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dependence on inputs (Breiman, 2001; Rasmussen, 2004). Improving irrigation module should be focused on details such as

irrigation amount and frequency, which will significantly help to verify and improve the accuracy of both irrigation and SM

predictions. We are sure more accurate SM dataset will be produced by applying the approach into other crops and areas in

future with all above improvements.
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Figure 1 Study areas and the SM in situ field monitoring sites in China. NAS: Northern Arid and Semiarid region; LP: Loess
Plateau; HP: Huang–Huai–Hai Plain; SCB: SiChuan Basin; MYP: Middle–lower Yangtze Plain; YGP: Yunnan–Guizhou Plateau
and southern China; QT: Qinghai–Tibet region; ChinaCropland1km: the harvesting areas of crops across mainland China.
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Table 1 Environmental factors used in the study, including meteorological data (MD), day of year (DOY), classified irrigation

(CIR), soil properties (SP), remote sensing data (RSD), and geographical information (GI).

Data type Variable Data description
Temporal

resolution

Spatial

resolution

MD

pre daily precipitation daily 1 km

pre10
ante-accumulated precipitation

over ten days
daily 1 km

DOY DOY day of year daily 1 km

CIR CIR classified irrigation - -

SP

T_REF_BULK unit: %kg dm-3. - 1 km

T_SAND unit: % wt. - 1 km

T_CLAY unit: % wt. - 1 km

T_PH_H2O unit: %-log (H+). - 1 km

T_GRAVEL unit: % vol. - 1 km

T_SILT unit: % wt. - 1 km

RSD
pet potential evapotranspiration monthly 4 km

fc field capacity - 250 m

GI

R4 river network vector I - -

R5 river network vector II - -

R12 river network vector III - -

lat latitude - -

lon longitude - -

im moisture index - -

Note: REF_BULK: soil bulk density; PH_H2O: hydrogen ion concentration; GRAVEL: volume percentage of crushed stone;

T: the topsoil layer. The dash line represents no default values.
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Table 2 Evaluation index of relative soil moisture (SMI) in different growth periods of crops at 0–10, 10–20 cm depth.

SMI in different growth periods of wheat (%)

seeding seedling tillering greening jointing booting grouting mature

70~90 75~95 80~95 55~60

SMI in different growth periods of maize (%)

seeding seedling jointing booting tasseling grouting mature

75~85 65~75 70~80 75~85 65~75
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Figure 2 Flow chart for producing ChinaCropSM1km with an irrigating module.
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Figure 3 Comparison between the predicted soil moisture (ChinaCropSM1km) and in situ samples by crops and depths (cm). (a)

wheat0–10, (b) wheat10–20, (c) maize0–10 and (d) maize10–20. The red lines are the trend lines, the colorbar means point density, and the

black lines for 1:1 lines.
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Figure 4. Comparison of soil moisture accuracy between with irrigation and without an irrigation module.
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Figure 5 The importance scores of 11 independent variables and irrigation factor (CIR).
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Figure 6 Comparison of the spatial accuracy (r) between ChinaCropSM1km and in situ SM observations in each month by crops

and depths. (a) wheat0–10, (b) wheat10–20, (c) maize0–10 and (d) maize10–20. The dash lines represent the mean values.
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Figure 7 Comparison of the temporal accuracy (r, RMSE, bias, ubRMSE) between ChinaCropSM1km and in situ soil moisture

observations by crops and depths. (a1, a2) wheat0–10, (b1, b2) wheat10–20, (c1, c2) maize0–10 and (d1, d2) maize10–20. The dash lines

represent the mean values.
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Table 3 Summary on means of evaluation indexes (r, bias, RMSE, and ubRMSE) of three products (ChinaCropSM1km, RSSSM565
and ESA CCI SM), all products were compared with in situ surface observations (0–10 cm).

Product
ChinaCrop

SM1kmmaize
RSSSM ESA CCI SM

ChinaCrop

SM1kmwheat
RSSSM ESA CCI SM

r 0.93 0.43 0.35 0.93 0.29 0.33

RMSE 0.033 0.167 0.126 0.035 0.187 0.121

bias 0.0006 –0.1361 –0.0846 –0.0008 –0.1552 –0.0705

ubRMSE 0.033 0.097 0.093 0.035 0.105 0.099
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Figure 8 Time series of comparison between in situ SM observations and products.
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Figure 9 Boxplot of the temporal (a, c) and spatial (b, c) accuracy for ChinaCropSM1km, RSSSM and ESA CCI SM by r, bias,

RMSE, and ubRMSE. These evaluation indexes were calculated by comparing the three products with in situ SM observations;

the comparison period for ChinaCropSM1km and RSSSM was from 2003 to 2018; and for ChinaCropSM1km and ESA CCI SM575
was 1995−2018.
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