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Abstract.

We present IT-SNOW, a serially complete and multi-year snow reanalysis for Italy (300k+
:::::
∼301k

:
km2) covering

:
– a transi-

tional continental-to-Mediterranean region where snow plays an important, but still poorly constrained societal and ecological

role. IT-SNOW provides ∼500-m, daily maps of Snow Water Equivalent (SWE), snow depth, bulk-snow density, and liquid

water content for the
:::::
initial

:
period 01/09/2010 - 31/08/2021, with future updates envisaged on a regular basis. As the output5

of an operational chain employed in real-world civil-protection applications (S3M Italy), IT-SNOW ingests input data from

thousands of automatic weather stations, snow-covered-area maps from Sentinel 2
::::::::
Sentinel-2, MODIS, and H-SAF products,

and maps of snow depth from the spazialization of
:::
over

:
350 + on-the-ground snow-depth sensors. Validation using Sentinel-1-

based maps of snow depth and a variety of independent, in-situ snow data from three focus regions (Aosta Valley, Lombardia,

and Molise) shows little to none
::
no mean bias compared to the former, and Root Mean Square Errors on the

::::::
typical order of10

30 to 60 cm and 90 to 300 mm for in-situ, measured snow depth and Snow Water Equivalent, respectively. Estimates of peak

SWE by IT-SNOW are also well correlated with annual streamflow at the closure section of 102 basins across Italy (0.87),

with ratios between peak SWE
:::::
water

::::::
volume

:::
in

::::
snow

:
and annual streamflow that are in line with expectations for this mixed

rain-snow region (22% on average
::
and

:::::
12%

::
on

:::::::
median). Examples of use allowed us to estimate 13.70 ± 4.9 Gm3 of SWE

::::
water

:::::::
volume

:::::
stored

::
in
:::::
snow

:
across the Italian landscape at peak accumulation, which on average occurs on the 4th of March15

::::
±10

::::
days. Nearly 52% of mean seasonal SWE is accumulated across the Po river basin, followed by the Adige river (23%),

and central Apennines (5%). IT-SNOW is freely available with
:
at
:
the following DOI: https://doi.org/10.5281/zenodo.7034956

(Avanzi et al., 2022b) and can contribute to better constraining the role of snow for seasonal to annual water resources – a

crucial endevor in a warming and drier climate.
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1 Introduction20

The seasonal snow cover is a key modulator of global climate (Flanner et al., 2011) and a primary source of freshwater

for more than one sixth of the world population (Barnett et al., 2005; Immerzeel et al., 2020). Snow water resources play

a particularly important role in Mediterranean, summer-dry regions, where winter accumulation and the following summer

freshet provide highly needed runoff to support societies and ecosystems as their demand peaks and precipitation declines

(Zanotti et al., 2004; Bales et al., 2006; Viviroli et al., 2007). Snow-dominated regions include, among others, life hotspots25

like the US Mountain West, where snow provides up to 80% of annual discharge (Serreze et al., 1999; Skiles et al., 2018)
::::
53%

::
of

::::
total

:::::
runoff

:::::::::::::
(Li et al., 2017), Central Asia (Immerzeel et al., 2010), the Andes (Soruco et al., 2015), and the European Alps

(Viviroli et al., 2007), from where benefits of snow propagate downstream and across the globe (Sturm et al., 2017). This
:::
The

critical role of snow for water resources, energy management, and ecosystem services is at the foundation of one of the most

recurring, simplest, and yet most elusive questions in mountain hydrology (Bales et al., 2006; Margulis et al., 2015; Sturm30

et al., 2017): how much snow is accumulated across the landscape at any given time?

Despite major advances since the seminal 1906 field campaigns by Dr. James E. Church on Mount Rose (NV, USA), the

:::
this quest for quantifying snow amount and distribution remains wide open (Dozier et al., 2016). In-situ measurements from

ultrasonic snow depth sensors (Ryan et al., 2008) or snow pillows (Cox et al., 1978) are only representative of point conditions,

with extrapolation at larger scales being hindered by the striking spatial heterogeneity of the snowpack (Grünewald et al.,35

2010; Grünewald and Lehning, 2015; De Michele et al., 2016) and possible perturbations of in-situ instrumentation to snow

natural conditions (Malek et al., 2017). Extrapolation may be assisted by measuring snow amount along courses (Rice and

Bales, 2010), or at strategically chosen locations that are representative of large-scale patterns (Zhang et al., 2017b), but these

solutions still imply intense labor and a comparatively high budget. Remote sensing, whether in the form of Lidar
:::::::
airborne

::::
lidar (Kirchner et al., 2014; Painter et al., 2016), remotely-piloted aircrafts (Bühler et al., 2016; De Michele et al., 2016; Harder40

et al., 2016; Avanzi et al., 2018), or optical and microwave satellites (Dietz et al., 2012; Gascoin et al., 2019b), has recently

gained positions in this context, particularly because it allows one to capture the full spatial distribution of the snowpack

(Blöschl, 1999; Lievens et al., 2019). However, remote sensing techniques are limited by either comparatively long revisit

times, small areal coverage, uncertainties related to complex morphology, high maintenance costs, or cloud coverage. Finally,

snowpack distributed models can simulate snow amount at virtually any resolution, but uncertainties in input data and in45

process representations make estimates solely based on modeling of limited value in operational snow hydrology (Tang and

Lettenmaier, 2010; Pagano et al., 2014; Avanzi et al., 2020).

Reanalyses obtained by assimilating in-situ and remote-sensing data into dynamic models are progressively becoming the

most frequent, and arguably the most successful, solution to estimate snow water resources. Recent examples of such reanal-

yses for snow are the Snow Water Equivalent (SWE) product by Margulis et al. (2016) across the California Sierra Nevada,50

the hyper-resolution ensemble-based reanalysis applied in Switzerland by Fiddes et al. (2019), the meteorological and snow

reanalysis across the French mountains by Vernay et al. (2021), the High Mountain Asia UCLA Daily Snow Reanalysis by

Liu et al. (2021), or the Austrian reanalysis product by Olefs et al. (2020). Estimates of snow coverage and amount are
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also available through Earth-system reanalyses like the ERA suite by ECMWF (https://doi.org/10.24381/cds.e2161bac, last

access 19/07/2022), the NASA Global Land Data Assimilation System (GLDAS, see https://ldas.gsfc.nasa.gov/gldas, last ac-55

cess 19/07/2022), or the Japanese 55-year Reanalysis (https://jra.kishou.go.jp/JRA-55/index_en.html, last access 19/07/2022),

among many others. Despite inheriting some of the original uncertainty in data and models, reanalysis products optimally

combine data and models in reconciled estimates and provide a consistent coverage in space and time, thus paving the way for

a new generation of snow science.

We present IT-SNOW, a ∼500-m snow reanalysis providing estimates of snow patterns across Italy (∼300k+
::::
301k

:
km2)60

– a topographically and climatically complex region including some of the highest peaks in Europe (the Alps and the Apen-

nines) and partially snow-dominated, socio-economically relevant regions like the Po river basin or central Apennines. To

our knowledge, this is the first open, sub-kilometric, serially complete, and multi-year snow reanalysis providing information

on snow depth and mass specifically for the Italian territory. Thus, IT-SNOW fills an important scale gap between in-situ

measurements and climate models or satellite-based datasets at km+
::::::::
kilometric

:
resolution – such as the already mentioned65

ERA suite at 9 km, the H-SAF suite (https://hsaf.meteoam.it/Products/ProductsList?type=snow, last access on 19/08/2022),

the Twentieth Century Reanalysis Project at ∼200 + km
::
km

:::
or

::::
more

:
(Compo et al., 2011), the NCAR Climate Forecast System

Reanalysis at ∼50 + km
::
km

:::
or

::::
more

:
(Saha et al., 2014), the NASA MERRA reanalysis product at ∼50 + km

:::
km

::
or

:::::
more

(Gelaro et al., 2017), or the
::::::::::::::
non-mountainous

:
GlobSnow product at 25 km (Pulliainen et al., 2020, see a complete review at

https://globalcryospherewatch.org/reference/snow_inventory.php, last access 19/08/2022).70

IT-SNOW blends modeling, in-situ data from snow depth sensors, and satellite observations from Sentinel 2
::::::::
Sentinel-2,

MODIS, and the H-SAF initiatives, and is the output of a real-time operational monitoring chain developed and maintained by

CIMA Research Foundation for the Italian Civil Protection Department, S3M Italy (S3M stands for Snow Multidata Mapping

and Modeling, the underlying model used in this operational chain). The present dataset (IT-SNOW v1.0) includes daily

reanalyzed outputs of SWE, snow depth, density, and bulk liquid water content from S3M Italy for water years 2011 through75

2021 (a water year is defined as a period between the 1st of September and the following 31st of August and is indicated

with the calendar year in which it ends). Future updates are planned to expand this dataset (see Section 4). IT-SNOW is freely

available with
:
at

:
the following DOI: https://doi.org/10.5281/zenodo.7034956 (Avanzi et al., 2022b).

The paper is organized as follows. Section 2 describes S3M Italy (Section 2.1) and the preparation of the IT-SNOW reanal-

ysis over the historical period 01/09/2010 - 31/08/2021 (Section 2.2). Section 3 evaluates the performance of IT-SNOW by80

using remote-sensing data, in-situ data, and an indirect water-balance approach using streamflow; this Section also includes

a discussion of IT-SNOW sources of uncertainty (Section 3.3). Finally, Section 4 provides examples of use, while Section 5

details data format and standards.
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Figure 1. Schematic of
::::::
methods

:::
and

:::
data

:::::
flows

::
in S3M Italy, the operational chain used to generate the IT-SNOW dataset. All components of

this chain are available in an open source framework at https://github.com/c-hydro/ (last access 30/08/2022).
::::
SWE

:
is
:::::
Snow

::::
Water

:::::::::
Equivalent,

::::
LWC

::
is

:::::
Liquid

::::
Water

:::::::
Content

::
of

::::
snow,

:::
and

::::
SCA

::
is

::::
snow

::::::
covered

::::
area.

2 S3M Italy and IT-SNOW

2.1 The S3M Italy operational chain85

S3M Italy provides real-time, spatially explicit estimates of snow cover patterns at ∼200-m resolution and with a latency of

a few hours for the whole of the Italian territory (∼300k
::::
301k

:
km2). This operational chain includes algorithms to ingest

in-situ weather station data and satellite maps of snow cover, spatialization and remapping tools to generate weather-input and

assimilation maps, parallel scripts to manage model simulations on multi-core servers, as well as a variety of post-processing

and maintenance tools to generate final visualizations. S3M Italy is open source and available at https://github.com/c-hydro/90
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(last access 30/08/2022), in particular through the Python packages called fp-hyde and
::::::
package

::::::
called fp-s3m. A schematic of

:::::::
methods

:::
and

::::
data

:::::
flows

::
of this operational chain is reported in Figure 1.

The core of S3M Italy (and hence of
::
the

:::::::::
reanalysis IT-SNOW) is the Snow Multidata Mapping and Modeling system, or S3M

(Avanzi et al., 2022a). S3M is a spatially distributed , cryospheric dynamic
:::::::::
cryospheric model solving the snow mass balance

and parametrizing snow melt using a hybrid, temperature-index and radiation-driven melt approach. Other processes included95

in S3M are snow settling, liquid-water outflow, snow-albedo evolution, and precipitation phase partitioning. Complementary to

these processes is an estimate of glacier melt based on the same hybrid approach used for snow, but with modified parameters.

:::::::::
Land-cover

::::::
effects,

::::::::
turbulent

::::::
fluxes,

:::
and

::::::::::
snow-forest

::::::::::
interactions

:::
are

::::::::
currently

:::
not

:::::
taken

:::
into

:::::::
account.

:

S3M is a raster-based model, where snow model equations are solved for each cell with no exchange of mass or energy

across pixels. S3M is also open source and freely available at https://github.com/c-hydro/s3m-dev (last access 30/08/2022),100

while more details on model physics and user requirements can be found in Avanzi et al. (2022a).

2.1.1 Input data preparation

Every hour at **
:::
HH:40, input data required by the model are downloaded and saved in pre-defined formats. These inputs

include total precipitation, air temperature, relative humidity, and solar radiation, and
::
all

::
of

::::::
which

:
are obtained from the

database of the Italian Regional Administrations, Autonomous Provinces, and the Italian Civil Protection.
::::
Input

::::
data

:::::
have105

::
an

::::::
hourly

::::
time

::::
step.

:::
To

:::
fill

:::::::
potential

::::
gaps

::::
due

::
to

:::::::::
occasional

:::::::::::::
malfunctioning

::::::
and/or

:::::::
failures,

:::::
every

::::
hour

::::::::
automatic

::::::::::
procedures

:::::
check

:::
the

:::::::
existence

:::
of

:::::
hourly

::::::
inputs

::
for

:::
the

::::
last

::
30

:::::
hours.

:::
An

::::::
unique

:::::::
estimate

::
of

:::
the

::::::::
precision

::
of

:::::::::
considered

:::::::
weather

::::
data

::
is

:::
not

:::::::
available

::
as

:::
the

::::
type

::
of

::::::
sensor

:::::::
installed

::::::
varies

::::
from

:::
one

::::::
region

::
to

:::::::
another.

::::
The

:::::::::
installation

::::
and

:::
the

::::::::::
maintenance

::
of

:::
the

:::::::
sensors

:::::::
generally

::::::
follow

:::::::::
guidelines

::::
from

:::
the

::::::
World

::::::::::::
Meteorological

::::::::::::
Organization,

::
to

:::::
which

:::
the

::::::
reader

:
is
:::::::
referred

::::::::::::
(WMO, 2018)

:
.

Total precipitation fields are the result of a modified conditional merging approach applied to precipitation gauges (spatial110

density of ∼1/100 km2) and radar observations (Bruno et al., 2021), so no further spatialization is performed in S3M Italy

(Figure 2). This modified conditional merging spatializes in-situ precipitation data using an approach similar to Kriging (called

GRISO, from the Italian version of Random Generator of Spatial Interpolation from Uncertain Observations) where, however,

the covariance structure is estimated for each precipitation gauge and each hour using radar data (see full details in Sinclair and Pegram, 2005; Apicella et al., 2021; Bruno et al., 2021)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see full details in Sinclair and Pegram, 2005; Apicella et al., 2021; Bruno et al., 2021; Lagasio et al., 2022). Final maps have115

a resolution of ∼1 km2, with a median Root Mean Square Error of less than 1 mm for a selection of 70 heavy precipita-

tion events
::
in

::::
Italy

::::
with

::::::::::::
accumulation

::::::
greater

::::
than

::::
100

:::
mm

:::
or

::::::::
maximum

:::::::::::
precipitation

::::
rate

::::::
greater

::::
than

:::
50

:::::
mm/h

::::::
during

:::
the

:::::::::
2011–2014

::::::
period (see details in Bruno et al., 2021). No phase partitioning is performed at this stage: separation between

rainfall and snowfall is performed by the S3M model using the parametric approach by Froidurot et al. (2014), which relies on

both air temperature and relative humidity.120

Data of air temperature, solar radiation, and relative humidity are obtained as in-situ point station and further spatialized

between **
:::
HH:50 and **

:::
HH+1:10.

::
10

::::
(∼ 1

:::
km

:::
for

::::::::::
temperature

:::
and

::::::
∼ 500

::
m

:::
for

:::::::
radiation

::::
and

::::::
relative

:::::::::
humidity). For air tem-

perature, spatialization is performed by organizing station data into meteorological homogeneous regions as dictated by the Ital-

ian Civil Protection (see https://mappe.protezionecivile.gov.it/it/mappe-rischi/bollettino-di-vigilanza, last access 22/08/2022)
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and then fitting a
:::::
fitting region-specific hourly linear regression

:::::::::
regressions

:
between air temperature and elevation (Figure 2).125

:::::
These

:::::
linear

::::::::::
regressions

:::
are

::::
then

::::::
applied

:::::
using

:::
the

:::::::::::::
meteorological

::::::::::::
homogeneous

:::::::
region’s

::::::
Digital

::::::::
Elevation

::::::
Model

::
to

::::::
derive

::::::::::
temperature

:::::
maps.

::::::
Figure

:
3
:::::::

reports
:::::::
monthly

:::::::
quartiles

::::
and

:::
the

:::::::::
frequency

:::::::::
distribution

:::
of

::::
daily

:::::::
average

:::::::
national

:::::
lapse

::::
rates

:::
as

::::::
derived

:::::::
through

:::
this

:::::::::
procedure,

:::::
which

:::::
agree

::::
with

::::::::
estimates

::
by

::::::::::::::
Rolland (2003)

:
in

:::
the

:::::
Alps. As for relative humidity and incom-

ing shortwave radiation, we currently employ a computationally efficient method based on inverse distance weighting (Figure

2); no shadow effect or reflections from surrounding terrain are currently considered here, unless these are already captured130

by the comparatively dense network of stations. While installed sensors significantly vary from one area of the country to

the other, and so a unique estimate of precision of these data is not available, installation and maintenance generally follow

guidelines from the World Meteorological Organization, to which the reader is referred (WMO, 2018).

Input data preparation ends between **
:::
HH+1:10 and ∼ **

:::
HH+1:20, when input maps are remapped

::::::
cropped

:
over the 20

computational domains, each corresponding to one Italian administrative region. This is done both for reducing computational135

requirements and for allowing each region to tailor
::::::::::::
Computational

:::::
grids

:::
for

:::::
these

::
20

::::::::
domains

::::
were

:::::::::
originally

::::::
derived

:::::
from

:
a
:::::
20-m

::::::
Digital

::::::::
Elevation

::::::
Model

:::::::
provided

:::
by

:::
the

::::::
Italian

:::::::
Institute

:::
for

::::::::::::
Environmental

:::::::::
Protection

:::
and

::::::::
Research

::::::::
(ISPRA),

::::::
which

:::
was

:::::::::
resampled

::
at

:::
200

::
m

:::::::::
resolution

:::::
using

::
an

::::::::
averaging

:::::::
method.

:::::::
Besided

:::::::::
elevation, S3M Italy to their own needs

:::::::
employs

:::::
static

:::::
glacier

:::::
maps

:::::
from

::
the

:::::::::
Randolph

::::::
Glacier

::::::::
Inventory

::
v
:::
6.0

:::::::::::::::::
(Pfeffer et al., 2014).

2.1.2 Assimilation data preparation140

Data assimilation in S3M Italy is performed both in the form of
::::
both satellite snow covered area (SCA) and in the form of snow-

depth maps (Figure 4). Maps of snow covered area are produced, once per day, by blending images from the ESA Sentinel

2
::::::::
Sentinel-2, the NASA MODIS, and the Eumetsat H-SAF initiatives (product H10). First, the most recent ∼20-m maps of

Sentinel 2
:::::::::
Sentinel-2 for the last 6 days across Italy are mosaicked ; a

:::::
(using

:::
the

::::
most

:::::
recent

::::
one

::
in

:::
case

:::
of

:::::::::
overlapping

::::::::
images).

:
A
:
latency of 6 days is allowed both to manage the fairly infrequent revisit time of Sentinel 2

::::::::
Sentinel-2 (∼5 days in Italy) and as145

a first provision to manage cloud obstruction. These maps at ∼20 m are then resampled at the ∼200-m grid of S3M Italy using

the Python raster processing package Rasterio with a mode resampling approach, so to assign the dominant land cover among

the ∼20 m inscribed pixels to
:::::
pixels

::::::::
inscribed

::
in each 200-m pixel. Once this first-guess SCA map is available, cloud-covered

or unclassified pixels are further filled using resampled MODIS
:
(https://modis.gsfc.nasa.gov/data/dataprod/mod10.php,

::::
last

:::::
access

::::::::::
13/12/2022)

:
and H-SAF H10 data ,

:
(https://hsaf.meteoam.it/Products/Detail?prod=h10

:
,
:::
last

::::::
access

::::::::::
13/12/2022),

:
which150

have both nominal daily frequency
:::
and

:::
are

::::
used

::
as

:::::::::
distributed

::
by

:::
the

:::::::::
respective

::::::::
providers

::::
with

::
no

::::::
further

:::::::::
processing. The result

is a blended snow map providing information on snow cover, bare ground, and non classified pixels.
::::::
Besides

::::::::::
mosaicking

:::::
maps

::::
from

:::::::
multiple

:::::::
sources

::::
with

:::::::
different

::::::
revisit

:::::
times,

:::
no

::::::::
additional

:::::::::
gap-filling

:::
for

:::::
cloud

::::::::
coverage

::
is

:::::::::
performed.

:
Like input data,

this map is then remapped across the 20 regional domains to be assimilated.

Currently, Sentinel-2 SCA is produced by operationally applying the Sen2Cor algorithm by ESA (https://step.esa.int/main/snap-155

supported-plugins/sen2cor/, last access 30/08/2022), and SCA maps were validated against snow depth sensors at national scale

(not shown). Albeit lower in accuracy than snow-specific and high-resolution products like Theia (Gascoin et al., 2019a),
::::
SCA

::::
maps

:::::::
derived

::::
with Sen2Cor generally provides snow masks with accuracy above 80% (Main-Knorn et al., 2017)

::::
were

::::::::
validated

6
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:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Figure 2.
:::::::
Examples

::
of

:::::
input

:::
data

::::
used

:::
by

::::
S3M

::::
Italy

::
to

:::::::
produce

::
the

:::::::::
IT-SNOW

::::::::
reanalysis.

:::
(a):

:::::::
location

::
of

::::
snow

:::::
depth

:::::
(HS),

:::::::
radiation

::::
(rad),

:::
and

::::::
relative

:::::::
humidity

::::
(RH)

:::::
sensor

::::::
stations

:::
for

:::::::::
04/02/2021

::
at

::
10

:::
AM

:::::
UTC;

:::
(b):

:::
air

:::::::::
temperature

:::
map

:::
for

:::::::::
14/02/2022

::
at

::
08

:::
PM

:::::
UTC;

::
(c):

::::::::::
precipitation

::::
map

:::::
based

::
on

::
a

:::::::
modified

::::::::
conditional

:::::::
merging

::::::
between

::::::::::
precipitation

::::::
gauges

:::
and

:::::
radars

:::
for

:::::::::
23/11/2019

::
at

::
09

:::
AM

:::::
UTC

::::::::::::::
(Bruno et al., 2021)

:
.
:::::::::
Background

::::
map:

::::
ESRI

:::::::
Satellite

:::::
theme.

::::
Note

:::
that

::::
some

::::::
stations

::
in

::::
panel

:::
(a)

:::
may

::::
host

:::::
several

:::::
types

::
of

:::::::::::
measurements.

::::::
against

::::
snow

:::::
depth

:::::::
sensors

::
at

::::::
national

:::::
scale

::::::
during

:::
the

:::::::
average,

:::::::::::
representative

:::::
2020

::::
snow

::::::
season

::::
and

::::::
showed

::::::
typical

::::::::
accuracy

:::::
scores

::
on

:::
the

:::::
order

::
of

:::
0.7

::
to
::::
0.8,

::
as

::::::::
expected

:::::::::::::::::::::::::::::::::::::::::::::::::::
(see Figure S1 in the Supplement and Main-Knorn et al., 2017).160

Snow-depth maps are produced based on the interpolation of snow-depth-sensor in-situ data. Every day during winter,

measurements of the
::
∼350 + snow-depth sensors across Italy at 10 AM UTC are downloaded and quality-checked using an

automatic filtering approach based on seasonality, climatological thresholds on minimum and maximum snow depth, and a

filter based on a 6-h moving-window coefficient of variation to detect grass growth after snow melt. The specific device used

7



:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Figure 3. Examples
::::
Daily

:::::::
national

::::
lapse

:::
rate

:::::::::
climatology

::::
(left)

:::
and

::::::::
frequency

:::::::::
distribution

:
of input data used by

:::
daily

:::::::
national

::::
lapse

::::
rates

:::::::
according

::
to

:
S3M Italy –

::::::
period

::::::::
September

::::
2010

:
-
::::::
August

::::
2021.

::::
Q1,

:::
Q2, and thus

::
Q3

:::
are

:
the IT-SNOW reanalysis. (a): location of snow

depth
:::
first, radiation

:::::
second, and relative humidity sensor stations

:::
third

:::::::
quartiles

::
of

::::
daily

::::::
national

:::::
lapse

:::
rates

:
for 04/02/2021 at 10 AM UTC;

(b): air temperature map for 14/02/2022 at 08 PM UTC; (c): precipitation map based on a modified conditional merging between precipitation

gauges and radars for 23/11/2019 at 09 AM UTC (Bruno et al., 2021)
:::
each

:::::
month.Background map: ESRI Satellite theme.

to automatically monitor snow depth varies across the country, with the majority of them using a ultrasonic principle with an165

accuracy of ∼±1 cm (Ryan et al., 2008).

Snow-depth
:::
The

:::::
∼350

::::::::::
snow-depth

:
in-situ data are then organized in 10 homogeneous regions that were defined along the

boundaries of the International Standardized Mountain Subdivision of the Alps (SOIUSA, see Valt et al., 2018) based on

snow climatology and expert knowledge (
:
a
:::::::
tradeoff

:::::::
between

::::::::::
maximizing

::::
data

::::::::::
availability

::
for

:::::
each

:::::
region

::::
and

:::::::::
complying

::::
with

:::::::
expected

::::::::::
climatology

:::::
(e.g.,

:::
we

:::::::::::
differentiated

::::::::
between

:::::::::::
inner-Alpine

::::::
valleys

:::
and

:::::::
coastal,

::::::::
maritime

::::::::
mountain

:::::::
ranges, see Fig-170

ure 4 for a delimitation of these regions). For each of these homogeneous regions, a separate multilinear-regression model

is fitted across observed snow depth at sensor locations (predictand), elevation, slope, and aspect (predictors, with slope and

aspect retained only if statistically significant). By applying the resulting (daily) multilinear regressions using a Digital El-

evation Model of each homogeneous region, daily snow-depth maps are created and then remapped
::::::
cropped

:
across the 20

computational domains of S3M. This is only done if at least 10 observations are available in a given homogeneous region;175

otherwise, spatialization and thus assimilation for that homogeneous region is foregone. Previous evaluations
:::
An

:::::::::
evaluation of

this multilinear-regression model in Aosta valley show that it successfully captures orographic gradients in snow depth with

an average uncertainty of ±
::::::
showed

::::::
biases

::
on

:::
the

:::::
order

::
of

:
10 % (Avanzi et al., 2021)

::
cm

:::::::::
compared

::
to

::::::::
avalanche

:::::::
probes,

:::::
while

:
a
::::::::::
comparison

::::
with

:::::::::
Sentinel-1

::::::::::
snow-depth

::::
data

::
at

:::::::
national

::::
scale

:::::::
showed

::::::
typical

::::::
biases

::
of

:::
up

::
to

:
5
:::

cm
::::

and
::::::
typical

:::::
Root

:::::
Mean

::::::
Square

:::::
Errors

:::::
below

:::
10

:::
cm

::::
(see

::::::
Section

::
3

::
for

::::::
details

:::
on

::::
these

:::::::::
evaluation

::::
data).180

Along with maps of snow depth, the procedure also generates a Kernel map quantifying spatial uncertainty in the multilinear-

regression model based on the distance across snow-depth sensors (Avanzi et al., 2021, 2022a). This Kernel is employed to

8



assimilate snow-depth map via a spatially distributed Newtonian-Relaxation approach (also known as Nudging), under the

assumption that uncertainty in snow-depth maps will be lower in areas with a denser network of snow depth sensors. For each

time instant when
:::::
When a snow-depth map is available, the assimilation procedure computes pixelwise differences between185

a-priori SWE and snow-depth-map-based SWE (after conversion of snow depth maps into SWE maps using modeled density);

this difference is then added to a-priori SWE via Kernel weighting. Note that

SCA maps are not assimilated directly, but are used to clip snow-free pixels in snow-depth maps before assimilation in the

S3M model (thus preserving
::::::
leaving

::::::
without

:::::
snow instances where snow-depth maps estimate no snow but SCA maps observed

snow). Both positive and negative differences are assimilated, meaning that assimilation may result in either a decrease or an190

increase in simulated SWE. To further cope with grass interference in snow-depth-sensor data, the assimilation of snow depth

and SCA maps is only performed between December and April, once per day, conventionally at 10 AM UTC.

2.1.3 Model runs and postprocessing

Upon completion of the input-data remapping component of the modeling chain, parallel runs of S3M are performed (a first

batch is launched at **
::
HH+1:24 and a second one at **

:::
HH+1:34). Duration of each run

:::
Run

::::
time

:
depends on the size of the195

::::
each modeling domain, with all simulations being completely roughly by **

:::
HH+2:00, hence a 1.3 to

::::::
latency

::
of

::::
less

::::
than

:
2

hours latency
::
for

::
all

::::::::
domains. A Python wrapper manages each run, with S3M being a compiled Fortran executable. Every day

at 3 AM
:::
a.m., summaries of previous day’s simulations are compiled by mosaicking each domain on a national grid and saving

outputs for visualization on the Italian Civil Protection WebGIS maintained by CIMA Foundation, myDewetra.

2.2 IT-SNOW preparation200

For the scopes of IT-SNOW, we replicated an operational run of S3M Italy over the historical period 01/09/2010 to 31/08/2021

(with a first period from 01/09/2009 through 31/08/2010 used as spin-up). Historically observed weather data were thus down-

loaded and spatialized as outlined above, while also downloading, processing, and spatializing both satellite SCA maps and

snow-depth maps. Note that Sentinel-2 data were used only from summer 2021 and thus assimilated SCA before that period

are the result of MODIS + H-SAF maps. The native resolution of this historical run was ∼200 m, in line with the operational205

chain of S3M Italy.

Outputs of this historical run were saved every 6 hours (5 AM, 11 AM, 5 PM, 11 PM, all UTC times) and those at 11

AM were assumed as representative snapshots of daily conditions. These outputs at 11 AM UTC were thus remapped from

the native ∼200-m grid to a national, geographic grid at ∼500 m (WGS84, EPSG 4326, pixel size: 0.00505757
::::::::
0.005057°).

We used
::
No

:::::::::
projection

::::
was

:::::::::
performed

::
to

:::::
avoid

::::::::
accuracy

:::
and

::::::::
distortion

::::::
issues

::::::
related

::
to

::::
such

:::::::::::
cartographic

::::::::
systems.

::::::
Owing210

::
to

:::
the

:::::::::
geographic

:::::
grid,

:::
the

::::::
actual

::::
pixel

::::
size

::
in
::::::

meters
::::::::

changes
::::
with

:::::::
latitude,

:::::
from

:
a
:::::::::

minimum
::
of

::::::
∼460

::
m

::
to

::
a
:::::::::
maximum

::
of

:::::
∼508

:::
m.

:::
We

::::::::
remapped

::
at
:::::
∼500

:::
m

:::::
using a nearest neighbor approach , both for storage and

::
for

:
computational-efficiency

reasons and as an intermediate trade-off maximizing predictive confidence between the native resolution of S3M Italy and

the coarser resolution of precipitation data at 1km2. Remapped outputs include instantaneous Snow Water Equivalent (SWE),

9



:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Figure 4. Data assimilated in S3M Italy and thus in
:
to
:::::::

produce
:::
the IT-SNOW

:::::::
reanalysis: (a) homogeneous snow regions based on snow

climatology and expert knowledge; (b) blended snow covered area maps based on Sentinel-2 + MODIS + H-SAF H10 snow products for

13/02/2022; (c) snow depth interpolated map for 13/02/2022
::::
2022.

:::
For

::::::::::
visualization

::::::
reasons,

:::
the

:::::::::
snow-depth

:::
map

::
in

::::
panel

:
(note that

:
c)
::::

was

:::::
clipped

:::::
using

:::
the

::::::::
concurrent snow depth maps

:::::
covered

::::
area

::::
map.

:::::::::
Snow-depth

::::::::
estimates for some homogeneous regions were missing on

that day due to insufficient in-situ datafor that region, with these
:
;
:::::::
available regions being

::
are

:
showed with a 50% transparency). Background

map: ESRI Satellite theme.

snow depth, bulk snow density, and bulk liquid water content, which overall form the IT-SNOW reanalysis dataset (see Section215

5). Additional outputs are available upon request, and remapping over alternative grids is also possible.
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3 IT-SNOW Evaluation

3.1 Methods

Given that snow-depth sensor data from the 20 regional networks were assimilated in IT-SNOW, we looked for alternative

data that could act as truly independent evaluation sources. The first one was the satellite product by Lievens et al. (2019),220

C-SNOW, which provides daily, 1-km snapshots of snow depth across
::::::::::
mountainous

:::::
areas

::
of the northern Hemisphere based

on an empirical change detection method applied to the Sentinel-1 measurements of the cross-polarization ratio. While C-

SNOW is a remote-sensing product and as such may have locally larger uncertainties that in-situ data, it has been successfully

compared with in-situ data from ∼4,000 sites, with biases within ±0.1 m for most of them (Lievens et al., 2019). For the scope

of evaluating IT-SNOW, one
:::
the

::::
main advantage of C-SNOW compared to in-situ data is that it is natively spatially distributed,225

and thus allowed us to compare IT-SNOW across the landscape rather than at specific points. The evaluation period went from

01/09/2016 to 08/04/2020, the full span of 1-km C-SNOW data that is currently available. We remapped C-SNOW data onto

the ∼500-m grid of IT-SNOW using a nearest-neighbor approach and then computed pixelwise bias and Root Mean Square

Error with regard to IT-SNOW.
::::
Note

:::
that

:::::::::
C-SNOW

:::
data

:::
are

::::::::
available

::::
only

:::
for

:::
dry

:::::
snow

::::::::::
conditions,

:::
and

::::
that

::
its

:::::::::::
optimization

::::::::
procedure

:::::::
included

:::::
some

::::
(but

:::
not

:::
all)

::
of

:::
the

::::::
Italian

:::::
in-situ

::::::::::::::::
snow-depth-sensor

::::
data.

:
230

The second source of validation data considered here were in-situ data taken in Aosta Valley (north-western Italy, see Figure

6), Lombardia (northern Italy, see Figure 7), and Molise (central Italy, see Figure 8). These three areas present significantly

different climates and thus snow types (Sturm and Liston, 2021), with Aosta Valley and Lombardia being characterized by a

seasonally consistent and deep Alpine snowpack, and Molise being more exposed to lake-effect snowfalls from the Adriatic Sea

and thus to a more ephemeral and maritime snow cover (Da Ronco et al., 2020). These three dataset
::::::
datasets are topographically235

diverse and cover a comparatively long time span (see below), meaning that they are representative of larger scale performance

:::::::::::
performances of IT-SNOW.

Measurements in Aosta Valley included yearly snow-course manual samples taken at peak accumulation every 50-100 m

along elevation transects of several kilometers upstream of five hydropower reservoirs (water years 2011-2021, elevation above

2000 m ASL
::::
a.s.l.), daily to weekly manual measurements at recurring locations for avalanche forecasting (water years 2011-240

2021, elevations above 1000 m ASL
:::
a.s.l.), and hourly automatic measurements from a ultrasonic snow depth sensor and a SWE

sensor in Torgnon (2012-2020, elevation 2160 m ASL, see a data inventory and more details on these data in Avanzi et al., 2021, 2022a)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(2012-2020, elevation 2160 m a.s.l., see a data inventory in Avanzi et al., 2021, 2022a). Data in Lombardia include weekly es-

timates of snow depth and SWE obtained by running the physics-based multi-layer SNOWPACK model (Bartelt and Lehning,

2002) in correspondence of automatic weather and snow stations at medium elevation (1800-2600 m ASL
::::
a.s.l.), where the245

model was forced using local input data and assimilating local snow depth (henceforth, AWS snow depth and SWE – years

2016 through 2021, AWS standing for Automatic Weather Station), and measurements of snow depth and SWE collected be-

tween May and June on glacier terrain at very high elevation for mass-balance purposes (elevations above 3000 m ASL
:::
a.s.l.,

years 2016 through 2021, henceforth glacier snow depth and SWE). Data in Molise included daily to weekly manual measure-

ments at four recurring locations for avalanche and water-supply forecasting (2011-2021, elevation 1200-1500 m ASL).
:::::
a.s.l.).250
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::::::::::
Performance

:::::::
metrics

:::::::
between

::::::::
observed

::::
and

::::::::
simulated

:::::
SWE,

:::::
snow

::::::
depth,

:::
and

:::::::::
bulk-snow

:::::::
density

::::::::
included

::::
bias,

::::
Root

::::::
Mean

::::::
Square

:::::
Error,

:::::
Mean

:::::::
Absolute

:::::
Error

:::::::
(MAE),

:::::::
Positive

:::
and

:::::::
Negative

:::::
Mean

:::::
Error

:::::
(PME

::::
and

:::::
NME,

:::::::::::
respectively),

:::
the

:::::::::::
Kling-Gupta

::::::::
Efficiency

::::::::::::::::
(Kling et al., 2012),

::::
and

:::
the

::::::::
Pearson’s

:::::::::
correlation

:::::::::
coefficient.

:

The third source of validation data were streamflow measurements for a selection of 102 basins in Italy for which long-term,

serially complete, and quality-checked time-series of streamflow were available for the period 01/09/2010 through 31/08/2019255

(Bruno et al., 2022a)
::::::::::::::::
(Bruno et al., 2022b). We used these data to compare annual peak SWE

:::
the

::::::
annual

::::
peak

::
of

:::::
water

::::::
stored

::
in

::::
snow

:
and annual cumulative streamflow at the closure section of these basins (both in Gm3), as a proxy of the proportion

of annual flow that was accumulated as snow.
::
To

:::
this

::::
end,

:::::
water

::::::
stored

::
in

:::::
snow

::::::
(simply

:::::
SWE

::
in

:::::
Gm3

::
in

:::
the

:::::::::
following)

::::
was

:::::::
obtained

:::
by

:::::::::
multiplying

:::::::::
pixelwise

:::::
SWE

::
in

::
m

::::
w.e.

::::
from

:::::::::
IT-SNOW

:::
by

:::
the

::::
area

::
of

::::
each

::::
cell,

::::
and

::::
then

::::::::
summing

::
all

:::::::::
pixelwise

::::::
values. Given general knowledge of Italian precipitation climatology being a mix between snow and rain, we not only expect260

these ratios to be between 0 and 1, but also to predominatly
:::::::::::
predominately

:
be smaller than 0.5. Owing to precipitation increasing

with elevation (Avanzi et al., 2021), we also expect these ratios to increase with average elevation of each of these catchments.

While indirect in that IT-SNOW is not evaluated against snow data, this third evaluation stems from a long-standing tradition

of inverting the hydrological cycle (Valery et al., 2009) to provide insights into the consistency of SWE estimates by IT-SNOW

and
::::::::
estimates

::::
with the local water budget.265

3.2 Results: C-SNOW

3.2.1
::::::::
C-SNOW

Mean pixelwise bias between IT-SNOW and C-SNOW was close to zero (-0.01 m), with
:
a
::::::
median

:::::
value

::
of

::::
zero

::::
and first and

third spatial quartiles being -0.03 m and +0.02 m, respectively (Figure 5c). Thus, the distribution of spatial biases was well

centered around zero (Figure 5c). Mean
::::::::
pixelwise

:
RMSE was 0.22 m

::::::
(Figure

:::
5d), that is, close to the mean absolute error270

found by Lievens et al. (2019) in the original evaluation of C-SNOW with snow depth sensors (Figure 5d
::::
0.18

::
to

::::
0.31

::
m). First

:
,

::::::
second,

:
and third quartiles of

:::::::
pixelwise

:
RMSE were 0.14 m

:
,
::::
0.19

:::
m, and 0.27 m, with only a fraction of values above 0.5

m (Figure 5d).
:
,
::::
both

::::
bias

:::
and

::::::
RMSE

:::::
were

::::::::
calculated

::::::::
between

:::::::::
time-series

::
at

::::
each

::::::
pixel).

:::
We

::::::::
conclude

::::
that

:::
the

:::
two

::::::::
products

::::::
provide

:::::::::
consistent

::::::::
estimates

::
of

::::
snow

:::::
depth

::::::
across

:::
the

:::::
Italian

:::::::::
landscape.

:

The spatial distribution of bias across the Italian Alps and the central Apennines showed no obvious pattern, with only a275

tendency of IT-SNOW to underestimate C-SNOW snow depth at high elevations and in particular across the central Italian Alps

(see blue areas in
:::
(see

:
Figure 5a and b). This may be related to well-known biases of precipitation gauges and radars, the main

sources of input precipitation in S3M Italy, at high elevations and/or in inner-Alpine areas (Zhang et al., 2017a; Cui et al., 2020;

Avanzi et al., 2021, see Section 3.3 for a discussion). Overall, we conclude that the two products provide consistent estimates of

snow depth across the Italian landscape
::::::
Besides

:::
this

::::
bias

::::
with

::::::::
elevation,

::::::
biases

:::
and

:::::::
RMSEs

:::::::
between

:::::::::
IT-SNOW

:::
and

:::::::::
C-SNOW280

::::
were

::::::::
consistent

::::::
across

:::
the

::
10

::::::::::::
homogeneous

::::::
regions

:::::
used

::
to

:::::::
generate

::::::::::
snow-depth

:::::
maps

::
to

::
be

::::::::::
assimilated

::
in

::::::::
IT-SNOW

:::::::
(Figure

::
S2

::::
and

::
S3

::
in

:::
the

:::::::::::
Supplement).

12



Figure 5. Evaluation of IT-SNOW using the Sentinel-1 snow-depth product C-SNOW, period September 2016 through April 2020: pixelwise

bias for the Italian Alps (a) and the central Apennines (b), frequency distributions of pixelwise bias (c) and Root Mean Square Error (d).

Background map: ESRI Satellite theme.
::::
Panel

:::
(a)

:::
and

::
(b)

::::
refer

::
to

:::
the

:::
two

::::
areas

::
of

::::
Italy

:::
with

::::::::
seasonally

::::
deep

::::
snow

:::::
cover.

3.3 Results: In-situ data

3.2.1
::::::
In-situ

::::
data

IT-SNOW estimates of snow depth, SWE, and bulk-snow density were generally well correlated with measurements in Torgnon285

(Aosta valley, Figure 6 e, g, and i), with local RMSE for snow depth, SWE, and density being 30 cm, 95 mm, and 93 kg/m3,

respectively .
:::::
(Table

::
1)
::::

and
::::::::
Pearson’s

::::::::::
correlations

:::::::
between

::::
0.43

::::
and

::::
0.81

::::::
(Table

::
1).

:::::
Also

:::::
biases

::::
were

::::::
minor

::
in

::::::::
Torgnon,

::::
with

::::::::::
Kling-Gupta

::::::::::
efficiencies

::::
that

::::
were

:::::::::::
significantly

:::::
above

:::
the

:::::::
no-skill

::::::::
threshold

::
of

:::::
-0.41

:::::::::::::::::::::::::::::::
(see Knoben et al., 2019, and Table 1)

:
.
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Table 1.
:::::::
Overview

::
of

::::::::
IT-SNOW

:::::::::
performance

:::::
versus

:::::
in-situ

::::
data

::
in

:::::
Aosta

:::::
valley,

:::::::::
Lombardia,

:::
and

::::::
Molise.

:::::
RMSE

::
is

:::
the

::::
Root

::::
Mean

::::::
Square

::::
Error,

:::::
MAE

::
is

:::
the

::::
Mean

::::::::
Absolute

::::
Error,

:::::
PME

::
is

:::
the

::::::
Positive

:::::
Mean

:::::
Error,

::::
NME

::
is
:::
the

:::::::
Negative

:::::
Mean

:::::
Error,

::::
KGE

::
is
:::
the

::::::::::
Kling-Gupta

:::::::
Efficiency

:::::::::::::::
(Kling et al., 2012),

:::
and

:
r
::
is

::
the

::::::::
Pearson’s

::::::::
correlation

::::::::
coefficient.

::::
Area

::::::
Variable

:::::
RMSE

:::
Bias

::::
MAE

:::
PME

: ::::
NME

::::
KGE

:
r
:

Aosta valley

::::
SWE

::::::::
(Torgnon)

::
95

:::
mm

:::
-8.5

:::
mm

: :::
66.2

:::
mm

:::
59.6

::::
mm

::
-72

::::
mm

::::
0.74

:::
0.81

:

::::
Snow

::::
depth

::::::::
(Torgnon)

::
30

::
cm

: ::
-1.9

:::
cm

: :
20

:::
cm

:::
16.4

::
cm

: :::
-24.7

:::
cm

::::
0.73

:::
0.75

:

::::::
Density

:::::::
(Torgnon)

: :
93

::::::
kg/m3

:::
-5.8

:::::
kg/m3

: ::
70

:::::
kg/m3

: :::
59.4

::::::
kg/m3

::::
-82.5

:::::
kg/m3

: ::::
0.37

:::
0.43

:

::::
Snow

:::::
depth

:::::
(Aval.

:::::
probes)

: ::
56

::
cm

: ::
7.9

:::
cm

:::
37.6

:::
cm

:::
37.7

::
cm

: :::
-37.4

:::
cm

::::
0.25

:::
0.55

:

::::
Snow

:::::
depth

:::::::
(courses)

::
132

:::
cm

::
-55

:::
cm

:::
105

::
cm

: ::
87

:::
cm

:::
-113

:::
cm

::::
0.06

:::
0.21

:

Lombardia

::::
SWE

:::::
(AWS)

: :::
290

:::
mm

: :::
-112

::::
mm

:::
202

:::
mm

::
158

:::
mm

: :::
-220

:::
mm

: ::::
0.54

:::
0.57

:

::::
Snow

::::
depth

::::::
(AWS)

::
63

::
cm

: ::
-19

:::
cm

:
43

:::
cm

::
39

:::
cm

:::
-44

::
cm

: ::::
0.60

:::
0.63

:

:::
SWE

:::::::
(glacier)

:::
842

:::
mm

: :::
-717

::::
mm

:::
722

:::
mm

::
139

:::
mm

: :::
-733

:::
mm

: ::::
0.33

:::
0.60

:

::::
Snow

:::::
depth

::::::
(glacier)

: ::
135

:::
cm

::::
-110

::
cm

: :::
113

::
cm

: ::
27

:::
cm

:::
-117

:::
cm

::::
0.41

:::
0.60

:

Molise
::::
SWE

:::
200

:::
mm

: ::
82

:::
mm

:::
135

:::
mm

::
161

:::
mm

: ::
-80

::::
mm

::::
0.37

:::
0.45

:

::::
Snow

::::
depth

::
61

::
cm

: ::
34

:::
cm

:
44

:::
cm

::
49

:::
cm

:::
-26

::
cm

: ::::
-0.19

:::
0.48

:

::::::
Density

:::
109

:::::
kg/m3

: :::
-24

:::::
kg/m3

: ::
86

:::::
kg/m3

: ::
82

:::::
kg/m3

: ::
-89

::::::
kg/m3

::::
0.35

:::
0.44

:

::::
From

::
a
:::::::
seasonal

:::::::::::
perspective, IT-SNOW and measurements in Torgnon also agreed in terms of accumulation and snowmelt

temporal patterns, as well as date of peak accumulation (Figure 6 d, f, and h). The lowest correlation was found for bulk-snow290

density
::::::
(Table

::
1), which is not surprising given that density was indirectly derived from measurements of snow depth and

SWE (DeWalle and Rango, 2011), a procedure that may increase noise (Terzago et al., 2019). Correlation
::::::::::
Performance

::::::
scores

decreased when considering avalanche probes (Figure 6c
:::
and

:::::
Table

::
1) and high-elevation snow courses (Figure 6b

:::
and

:::::
Table

:
1), which was also expected given the significant scale mismatch between a ∼500 m reanalysis and topographically diverse,

in-situ manual measurements and the already mentioned, possible underestimation of precipitation fields at high elevations295

(see Figure 5 and Avanzi et al., 2021). From this point of view, it is encouraging that IT-SNOW showed no systematic bias

compared to high-elevation, peak-accumulation snow courses in Aosta valley (Figure 6b). Overall, evaluation results in Aosta

Valley showed that IT-SNOW successfully reconstructs both the seasonal dynamics and peak timing of snow depth and mass,

hence density, along the local elevation gradients of this heavily instrumented region (see Figure 2 and 4).

In Lombardia, IT-SNOW estimates of snow depth and SWE generally agreed well with those provided by SNOWPACK300

at medium elevations, despite a larger RMSE and
::::::::
somewhat

::::::
larger

:::::::
RMSEs

:::
and

::::::
biases,

:::::
larger

::::::
Mean

:::::::
Absolute

:::::::
Errors,

:::
and

:
a

lower correlation than in Aosta valley (60 cm and 290 mm for snow depth and SWE, respectively, with correlation on the

order of 0.63-0.57 –
::::
Table

::
1
:::
and

:
Figure 7). Note that these medium-elevation data in Lombardia were not directly observed,

but were the result of modeling, which may have increased their own uncertainty. Contrary to Aosta valley, on
::
On

:
the other

hand, IT-SNOW showed a
::
in

:::::::::
Lombardia

:::::::
showed

::
an

::::::::
expected, systematic underestimation of very-high-elevation mass-balance305

measurements on glaciers in Lombardia (RMSE of 135 cm and 840 mm , respectively
::::::
(biases

::
of

::::
-717

::::
mm

:::
and

::::
-110

::::
cm,

:::::
Table
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Figure 6. Evaluation of IT-SNOW in Aosta Valley. (a): topography of the focus region, along with sampling location of evaluation data; (b)

and (c): observed vs. simulated snow depth at snow-course and avalanche-probe locations; (d) and (e): simulated vs. observed snow depth

at Torgnon; (f) and (g): simulated vs. observed SWE at Torgnon; (h) and (i) simulated vs. observed bulk-snow density at Torgnon. Note

that simulated snow depth, SWE, and density in panels (d), (f), and (h) was smoothed using a 5-day moving window for readibility. r is the

Pearson’s correlation coefficient, HS is snow depth, and SWE is Snow Water Equivalent.
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:
1), despite a still promising correlation

::::::::
promising

:::::::::
correlation

::::
and

:::::
KGE between observations and simulations (0.59 for both

variables
:::::
Table

:
1). Whilst overcoming these underestimations is a major challenge for large-scale reanalyses like IT-SNOW,

again because of the scale and undercatch issues discussed with regard to C-SNOW (Figure 5) and Aosta valley data (Figure

6), and whilst very-high elevation regions play only a minor role in a catchment water balance, we discuss pathways to improve310

IT-SNOW in this regard in Section 3.3.

Figure 7. Evaluation of IT-SNOW in Lombardia. (a): topography of the focus region, along with location of evaluation data and an exam-

ple of glacier-data sampling geometry; (b) and (c): IT-SNOW vs. SNOWPACK snow depth and SWE at medium-elevation snow stations,

respectively; (d) and (e): observed vs. IT-SNOW snow depth and SWE at very-high-elevation glacier sites in the context of end-of-season

mass-balance surveys. r is the Pearson’s correlation coefficient, SWE is Snow Water Equivalent.

Correlations between measured and simulated snow depth, SWE, and density was lower in Molise than in Aosta Valley and

Lombardia (Figure 8b, c, and d, RMSE of 61 cm, 200 mm, and 109 kg/m3, respectively), which we interpret
:
,
:::
and

:::::
biases

:::
of

::
34

:::
cm,

:::
82

::::
mm,

::::
and

:::
-24

::::::
kg/m3,

::::::::::
respectively

:
–
:::::
Table

:::
1).

:::
We

:::::::
interpret

::::
this

:::::::
outcome

:
as due to the sparser network of assimilated

snow depth sensors used in southern Italy compared to northern Italy (see Figure 4). Yet, IT-SNOW successfully reconstructed315

not only the seasonal dynamics of accumulation of melt in Molise, but also the much more significant interannual variability

in peak SWE than in Aosta valley (Figure 8f). This finding speaks for the possibility of using
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:::::
These

:::::::::::
performances

:::
of IT-SNOW

::::::
against

::::::
in-situ

::::
data

::
is

::::::::
consistent

::::
with

:::::
snow

:::::::::
reanalyses

::::
over

:::::
other

:::::
areas

::
of

:::
the

:::::
Alps.

:::
In

:::
this

::::::
regard,

:::::::::::::::::
Vernay et al. (2021)

:::::
report

:::::::
median

::::::
RMSEs

:::
for

:::::
snow

:::::
depth

:::
on

:::
the

:::::
order

::
of

:::
10

:
to support climatological studies.

::
40

:::
cm

::
in

::::::
France

::::::::::
(maximum

::::::
RMSEs

:::
up

::
to

:::
90

::::
cm),

::::
with

:::
an

::::::::
increasing

:::::
trend

::::
with

:::::::::
elevation;

::::
both

::::::
results

::::
echo

:::::::
findings

::
in

::::
this320

::::
paper

:::
for

:::::
areas

::
at

:::::::
medium

:::::::
elevation

::::::
where

:::
the

::::
bulk

::
of

::::::
forcing

::::
and

::::::::
evaluation

::::
data

::
is

:::::::
available

:::::::::::::::::
(Avanzi et al., 2021)

:
.
::
In

:::::::
Austria,

:::::::::::::::
Olefs et al. (2020)

:::::
found

:::::::
RMSEs

::
for

:::::
snow

:::::
depth

::::
and

::::
SWE

:::
on

:::
the

:::::
order

::
of

:::
10

:::
cm

:::
and

::::
100

::::
mm,

::::
with

::::::::::
correlations

::
of

::::
0.86

::::
and

::::
0.91,

:::::::::::
respectively;

:::
this

::::::::
accuracy

::
is

:::::
higher

::::
than

::::
that

::
of

:::::::::
IT-SNOW,

:::::
likely

:::::::
because

::
of

:::
the

:::::
much

:::::
more

::::::::::::
homogeneous

:::::::
coverage

:::
of

::::
snow

::::
data

::
in

:::::::
Austria

::::::::
compared

::
to
:::::

Italy
::::::::::::::::::::::::::::
(see Figure 1 in Olefs et al., 2020).

:::::::
Finally,

::::::::::::::::
Fiddes et al. (2019)

:::::
report

:::::::
RMSEs

:::
on

:::
the

::::
order

::
of

:::
38

::
to

::
53

:::
cm

:::
for

:::::
snow

:::::
depth

:::
and

::::
184

::
to

:::
258

::::
mm

:::
for

:::::
SWE,

:::::
which

:::::
again

:::::
tallies

::::
with

:::
the

::::::::
accuracy

::
of

:::::::::
IT-SNOW.

:
325

Simulated time-series of snow depth and SWE in Torgnon present frequent, abrupt oscillations that are not related to any

physical process, such as melt or settling (Figure 6d and f). These oscillations, which were already noted in Avanzi et al.

(2022a), are due to the assimilated snow-depth maps, which often include – or even propagate – instrumental noise (Ryan

et al., 2008). Indeed, similar oscillations are not visible in bulk-snow density time-series, which are unaffected by assimilation

(Figure 6h), or in Molise (Figure 8e and f), where assimilation is much rarer due to a sparse network of snow depth sensors.330

While these oscillations do not affect the seasonal reconstruction of snow depth, or the temporal patterns of peak SWE, it is

important to bear them in mind when performing temporally fine analyses with IT-SNOW. Such oscillations could be better

handled by assimilation techniques that explicitly account for point-measurement uncertainty, such as a Kalman or Particle

Filter (Piazzi et al., 2018), but doing so would entail significantly higher computational demands that are currently non-feasible

given the tight, real-time schedule required by S3M Italy.335

3.3 Results: SWE vs. streamflow indirect validation

3.2.1
:::::::
Results:

:::::
SWE

:::
vs.

:::::::::
streamflow

::::::::
indirect

:::::::::
validation

On average, peak SWE is about 22% ±24% of annual streamflow across the considered 102
::::
guage

:
stations and 9 water years

(
::::::
median

::
of

::::::
12.8%,

:::::
period

:
2011-2019, Figure 9b

:
–
::::
note

:::
that

:::::
SWE

::
is

::::::::
expressed

::
in

::::
this

::::::
section

::
in

:::
the

::::
form

::
of

::::
total

:::::
water

:::::::
volume

:::::
stored

::
in

:::::
snow,

:::::
Gm3,

:::
see

:::::::
Section

:::
3.1). As expected, the distribution of this ratio is highly skewed toward values below 50%,340

and shows a clear latitudinal trend, with higher values for rivers draining from the southern Alps in the Po river valley and a

handful of basins draining from central Apennines (Figure 9a). In these snow-dominated regions, the average ratio across the

considered 9 water years locally exceeds 50 to 60%, especially in the high-elevation regions of north-western Italy and the

Adige valley. Comparatively small watersheds on the central-western side of the Italian peninsula show significantly smaller

values, reflecting lower elevations and a more maritime and warmer climate.345

As an additional, indirect validation of IT-SNOW, peak SWE is significantly correlated with annual streamflow (Pearson’s

correlation coefficient of 0.87, Figure 9c). In other words, peak SWE is a robust predictor of annual streamflow in Italy, which

agrees with past experience in more snow-dominated regions of the world (Pagano et al., 2004; Rosenberg et al., 2011; Harrison

and Bales, 2016). Again
:
,
:
as expected, peak SWE is smaller than annual streamflow (Figure 9c) and is significantly correlated
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Figure 8. Evaluation of IT-SNOW in Molise. (a): topography of the focus region, along with sampling location of evaluation data; (b), (c),

and (d): simulated vs. observed snow depth, SWE, and bulk-snow density at Molise snow stations, respectively; (e), (f), and (g): example of

simulated vs. observed time-series of snow depth, SWE, and bulk-snow density at Pescopennattaro, respectively. Note that simulated snow

depth, SWE, and density in panels (e), (f), and (g) was smoothed using a 5-day moving window for readibility. r is the Pearson’s correlation

coefficient, HS is snow depth, and SWE is Snow Water Equivalent. Density was measured with a resolution of 20 kg/m3, hence the discrete

values of the point cloud along the x axis in panel d.
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Figure 9. Example
:::::
Indirect

::::::::
validation

:
of use of IT-SNOW

:::
with

:::::::::
streamflow

:::
data. (a): mean annual ratios (in %) between peak SWE and

annual cumulative streamflow for a selection of 102 water basins with long-term, serially complete, and quality-checked time-series of

streamflow; (b): frequency distribution of these annual ratios across all sections and years; (c): correlation between annual streamflow and

annual peak SWE across all sections and years (red line is the 1:1 reference line, the black dashed line is a linear regression between peak

SWE and annual streamflow); (d): correlation between mean peak SWE and river basin mean elevation (the black dashed line being a linear

regression between these two data). Q is annual streamflow. Note that considered water sections of the central Po river valley do not account

for snow accumulated in the Swiss Canton Ticino, which is not included in IT-SNOW (Canton Ticino represents about 5% of the Po river

basin at its most downstream closure section). Background map: ESRI Satellite theme.
:::
SWE

::
is
::::::::
expressed

:::
here

::
in

:::
the

:::
form

::
of
::::
total

::::::
volume

::
of

::::
water

:::::
stored

::
in

::::
snow,

:::::
Gm3,

::
see

::::::
Section

:::
3.1.

with mean elevation of each watershed. Overall, these evaluations show consistency between IT-SNOW SWE estimates and350

the Italian water budget.
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3.3 Sources of uncertainty

Like all reanalyses combining sparse data and a dynamic model over large domains, IT-SNOW is the result of a number of

trade-off choices and epistemic uncertainties that should be taken into consideration while handling this dataset. The first

source of uncertainty is represented by precipitation estimates, similar to any snow-hydrologic model simulation in mountain355

regions. The modified conditional merging approach used in IT-SNOW has already been extensively validated and shows

robust performances for heavy precipitation events at national scale (relative error on high flows < 25% for 72% out of 241

Italian river sections when used to force a hydrologic model, see Bruno et al., 2021). However, it does not include explicit

provisions for reconstructing precipitation orographic gradients (besides those captured by the location of stations and by radar

images). Previous work in Aosta valley (Avanzi et al., 2021) and elsewhere (Lundquist et al., 2015; Zhang et al., 2017a; Avanzi360

et al., 2020), as well as evaluation results reported in this paper (Figure 5 and 7) show that including these orographic gradients

is important to close the water budget of small, high-elevation, Alpine catchments. While we iterate that bias at very high

elevations has a minor impact on snow estimates at large scale, as also substantiated by our indirect validation with streamflow

data in Figure 9, targeted
:::::::
Targeted

:
validations for such high-elevation, Alpine catchments will thus be the subject of future

work.365

A second source of uncertainty related to precipitation and more generally to in-situ weather data is data sparsity, and how

this can affect spatialization in partially ungauged regions. While density of weather data in Italy is comparatively high (as

order of magnitude, ∼1 station every 100 + km2
:
or

:::::
more) and stations are routinely monitored and maintained by regional

administrative authorities, we expect estimates for peripheral regions
::::::
regions

::
at
:::
the

:::::::::
boundary

::
of

:::
the

::::::
Italian

:::::::
territory to show

an inherently larger uncertainty than the rest of the country
:::::::
(because

:::
of

:
a
::::
lack

:::
of

:::::
input

::::
data

::::::
outside

:::
the

::::::
Italian

::::::::
territory).370

Data sparsity also limits the amount of snow-depth data that we can currently employ in assimilation, as well as the extent of

evaluation regions in this paper (see Section 3). While estimating a real-time layer of uncertainty for this reanalysis product is

currently non feasible, this will be target of future work.

Regarding the assimilation data, uncertainty in
::::::
satellite

:
SCA is in line with standards by the European Space Agency, as

already discussed in Section 2. On the other hand, we noted that noise in snow-depth sensor data, along with the likely simplistic375

multilinear-regression approach used to spatialize snow depth across the landscape, often introduce artifacts in snow depth that

translate into abrupt oscillations in snow depth value
:::::
values

:
at the daily time scale (Figure 6). Another source of uncertainty in

this regard is that we organized the Italian territory in 10 homogeneous regions, but no smoothing at the regional boundaries is

currently in place. As a result, IT-SNOW may sometimes overestimate snow-depth variability across the boundaries of these

homogeneous regions, and/or exaggerate the role of single topographic predictors of snow depth, such as aspect. While we did380

not quantify the specific uncertainty of these maps, we reported RMSEs and biases of a few cm when comparing simulations

resulting from the assimilation of these maps with C-SNOW (Figure 5), which is assumed here as a proxy of such average

uncertainty. An alternative to our approach would be to directly assimilate remote-sensing products; ongoing efforts by the

European Space Agency and others are moving towards this direction, and we aim to include new findings in this regard in our

assimilation framework.385
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In terms of epistemic uncertainty, the S3M model relies on an enhanced temperature-index approach that was calibrated in

Aosta valley and then extensively evaluated elsewhere in Italy (both in this paper and in other projects, such as Alfieri et al.,

2022). While relying
::::::
Relying on the same parameters across the whole country could introduce some additional uncertainty

at local scale, we highlight that .
::::::::
However,

:
results in this paper show a credible reconstruction of melt dynamics even in areas

with only occasional assimilation (Figure 8), while .
:::
In

:::
this

::::::
regard,

:
Bouamri et al. (2018) reported encouraging results when390

transferring model parameters of the same enhanced temperature-index approach to uncalibrated sites. A more influencing

factor in this sense could a-priori appear that the
:::::
appear

:::
that

:
S3M model does not solve the full energy balance, but Magnusson

et al. (2015) show that this is no key driver of model performance for snow bulk variables at daily scale. Thus, quantifying this

uncertainty in still elusive at this stage.

IT-SNOW maps are provided according to a WGS84 geographic grid at ∼500 m (pixel size: 0.00505757°), thus no projection395

was performed to avoid accuracy and distortion issues related to such cartographic systems. Owing to the geographic grid, the

actual pixel size in meters changes with latitude, from a minimum of ∼460 m to a maximum of ∼508 m.

4 Examples of use

By providing spatially explicit, high-resolution, and serially complete estimates of snow patterns, reanalyses like IT-SNOW

have the potential to fill important knowledge gaps in hydrology, for example by elucidating the role of snow in supporting400

worldwide water security (Viviroli et al., 2007), or snow sensitivity to climate extremes like droughts (Hatchett and McEvoy,

2018). Besides and beyond basic science, IT-SNOW
:::
also

:
responds to pressing societal questions from operational water re-

sources managers and decision makers, who need diversified information on snow distribution, amount, and interannual vari-

ability to make accurate decisions regarding water allocations and uses (Harrison and Bales, 2016). In this section, we show

examples of how IT-SNOW can be used to answer two such societally relevant questions (Dozier, 2011; Margulis et al., 2015;405

Painter et al., 2016): (1) How much snow is accumulated across the landscape? (2) Where is it and what is it doing
:::::::::
distributed?

4.1 How much snow is accumulated across the landscape?

Figure 10a shows total daily SWE across Italy for the whole period of record. This time-series was obtained by multiplying

pixelwise SWE from IT-SNOW by the area of each cell (raster available upon request), and then summing all pixelwise values.

410

:
,
::::
again

::
in

:::
the

:::::
form

::
of

::::
total

:::::
water

::::::
volume

::
in

:::::
snow

:::::
(Gm3,

:::
see

:::::::
Section

::::
3.1). Peak SWE in Italy is on average 13.70 ± 4.9 Gm3,

with a minimum in 2017 (∼5 Gm3) and a maximum in 2014 (∼23 Gm3). SWE peaks on average on the 4th of March
:::
±10

::::
days,

that is, about one month earlier than the 1th
:

st-April reference date(this finding is in agreement with a recent reconsideration of this conventional date, see Montoya et al., 2014)

:
;
:::
this

::::::
finding

::
is

::
in

:::::::::
agreement

::::
with

:
a
::::::
recent

:::::::::::::
reconsideration

::
of

:::
this

:::::::::::
conventional

::::
date

::::::::::::::::::
(Montoya et al., 2014). The earliest peak-

SWE date was the 3rd of February (2019), while the latest was the 26th of March in 2013. Seasonal dynamics show signs of415

intraseasonal melt (e.g., see late 2011 to early 2012), which is expected in a Mediterranean region where cold-alpine and mar-
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Figure 10. Example of use of IT-SNOW. (a): spatially aggregated total daily SWE across Italy; (b) to (l): mean annual SWE (November to

June, water years 2011 to 2021). Background map: ESRI Terrain.
::::
SWE

:
in
:::::

panel
::
(a)

::
is

:::::::
expressed

::
in
:::
the

::::
form

::
of

::::
total

:::::
volume

::
of
:::::
water

:::::
stored

:
in
:::::
snow,

::::
Gm3,

:::
see

::::::
Section

:::
3.1.
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itime snow types coexist (Sturm et al., 1995; Sturm and Liston, 2021). Nonetheless, snow seasons are temporally continuous,

with no episode of intraseasonal melt out. Little to none carryover occurs between seasons.

A large fraction of Italian snow accumulates across the southern Alps, while snow accumulation on the Apennines is spatially

more limited and – importantly – more variable from one season to the others (Figure 10b to l). This increased variability in the420

Apennines compared to the Alps agrees with sparse, but consistent previous work showing that snow in the Apennines – and

particularly on their eastern side – is the result of intense, but highly seasonal lake-effect storms (Da Ronco et al., 2020). One

such event is evident in the 2012 reanalysis of IT-SNOW (Figure 10c), when central Italy was hit by extensive snowfalls as

part of a continental cold wave (Demirtaş, 2017). Anecdotal data
::::
Data

:
for February 2012 report 150 + cm

::
cm

::
or
:::::
more

:
of fresh

snow at places, with more precise estimates of return period for this event being challenged by the sparsity of the data network425

(Bisci et al., 2012). Another such exceptional event was the 2014 season in the southern Alps (Figure 10e), with 8 + m of peak

snow depth at 2000 m (200% of long-term mean) and locally 150+ cm of fresh snow in 24 hours (Chiambretti et al., 2014)

::::::::::::::::::::::::::::::::::::::::::::
(200% of long-term mean, see Chiambretti et al., 2014). IT-SNOW also correctly captured rare, but significant low-elevation

snowfall events (see water year 2011, Figure 10b).

The spatially and temporally consistent framework of IT-SNOW can aid not only climatological and hydrologic studies, for430

example by providing highly needed validation datasets of snow cover
:::
and

::::
SWE, but also operational water resources managers

who routinely use SWE as an estimate of freshet volume (Harrison and Bales, 2016). Similar efforts have already been made

in other regions like California, where Margulis et al. (2016) estimate about 20 Gm3 of mean peak SWE
:::::
water

::::::
volume

::
in

:::::
snow

across the Sierra Nevada. This estimate tallies
:
,
::
or

:::::
Japan,

::::::
where

:::::::::::::::::
Niwano et al. (2022)

:::::::
estimate

::::
42.2

::::
Gm3

:::
on

::::::
average

::::::
during

:::
the

:::::::::
2017-2022

:::::::
winters.

:::::
These

:::::::
estimate

:::::
tally with that of IT-SNOW across the Italian mountain ranges (Figure 10), an area with435

a similar geographic span as the California Sierra Nevada
:
or

:::::
Japan

:
but a less snow-dominated climate. With its high spatial

resolution and fine temporal granularity, IT-SNOW can contribute to the quest for constraining the extent and volume of the

world’s cryosphere.

4.2 Where is snow and what is it doing
::::::::::
distributed?

Spatially aggregating mean winter SWE across major Italian watersheds shows that ∼52% of Italian snow-water resources440

accumulate across the Po river basin, the largest Italian water basin (Figure 11b). The second largest snow reservoir in Italy is

expectedly the Adige river basin (23%), followed by the Piave, Tagliamento, and Brenta basins (6%, 3%, and 3%, respectively).

Collectively, these five Alpine water basins host nearly 87% of Italian snow. A second hotspot of snow accumulation are central

Apennines, with the Tevere river basin accumulating about 2% of national mean winter SWE. This and other three basins

in central Italy (Aterno-Pescara, Garigliano, and Sangro) accumulate about 5% of national SWE, with the remaining 8-9%445

scattered across the remaining basins.

Median and quartiles of daily SWE for a selection of the most snow-dominated Italian basins show the typically seasonal

dynamics of snow accumulation and melt, with peak-SWE date between water-year day ∼180 and ∼200 (that is, between the

end of February and mid March, Figure 11c to i
:
–
:::::
SWE

::::::::
expressed

:::
as

::::
total

::::::
volume

::
of
:::::

water
::::::

stored
::
in

:::::
snow,

:::::
Gm3,

:::
see

:::::::
Section

23



Figure 11. Example of use of IT-SNOW. (a) and (b): percentage of mean winter SWE that is accumulated across the major Italian river

basins (right) and location of these major basins across Italy (left); (c) to (i): median and quartiles of daily basinwide SWE across a selection

of the most snow-dominated basins in Italy. Q2 is the median, Q1 and Q3 are the first and third quartiles, respectively. Background map:

ESRI Satellite theme.
::::
SWE

:
is
::::::::

expressed
::::
here

:
in
:::
the

::::
form

::
of

::::
total

:::::
volume

::
of
:::::
water

:::::
stored

:
in
:::::

snow,
::::
Gm3,

:::
see

::::::
Section

:::
3.1.
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:::
3.1). As already noted in Figure 10, Apennines basins show much more interannual variability than Alpine basins, as evident450

in the larger spread between the first and third quartiles in Figure 11g to i compared to Figure 11c to f.

Italian basins also show significantly different melt rates: e.g., mean annual SWE for the Po river basin is 4 Gm3, with

an almost continuous snow cover (Figure 11c) and an almost symmetrical accumulation and melt season
::::::
(Figure

::::
11c). This

symmetry significantly differs from more radiation-driven and maritime snow types, such as that of the Aterno-Pescara or

Tagliamento rivers (Figure 11f and h), where the melt season is shorter than the accumulation season.455

With its initial time span of 11 years, IT-SNOW-derived statistics like those from Figure 11c to Figure 11i can provide

estimates of medium-term SWE variability and thus put accumulation at any given time (like those in Figure 10) into a broader

context. Such a broader context is becoming all the more important in a warming and drier climate, particularly given the

growing emergence of snow droughts as a specific typology of droughts (Harpold et al., 2017; Hatchett et al., 2017; Huning

and AghaKouchak, 2020). In this regard, medium-term climatological bands like those in Figure 11 have already been used460

to contextualize the severe 2022 precipitation deficit in northern Italy, by showing that this deficit translated into ∼40% SWE

compared to the 2009-2021 median (Toreti et al., 2022). While the initial time span of IT-SNOW snow is too short for rigorous

deficit estimates, the operational chain delivering this reanalysis will provide yearly updates for future seasons, while an

extension to the near past (say, 2002-2009) is also in consideration. Besides deficit analysis, we expect the notion of snow

accumulation and melt rates to aid in other contexts, such as ecology (Slatyer et al., 2022) or climate-change assessments465

(Musselmann et al., 2017).

5 Data format

IT-SNOW is available in an open access framework at the following DOI: https://doi.org/10.5281/zenodo.7034956 (CC BY-NC

4.0, see Avanzi et al., 2022b). Data are organized in monthly netCDF files with zlib compression, each hosting a 3D matrix

of daily maps for one variable of interest (SWE, snow depth, bulk snow density, and bulk liquid water content). Filename470

strings follow a consistent convention including variable name and month (e.g., ITSNOW_SWE_201009.nc for SWE data of

September 2010. Variable labels and units are as follows: SWE for Snow Water Equivalent (mm w.e.), HS for Snow Depth

(cm, Fierz et al., 2009), RhoS for bulk-snow density (kg/m3), and ThetaW for bulk-liquid water content (vol%).

In addition to data, each netCDF file includes information regarding the reference system (variable crs, including well-known

text strings for EPSG 4326), latitude and longitude matrices, and a time array. Compatibility with the NASA Panoply system475

(https://www.giss.nasa.gov/tools/panoply/, last access 23/08/2022) and with QGIS were both verified, including reprojection

to a UTM metric system. Each netCDF file also includes metadata identifying contact points and curators.

6 Conclusions

We presented IT-SNOW, a spatially explicit and multi-year reanalysis of snow cover patterns across Italy at ∼500-m resolution.

IT-SNOW is the reanalyzed output of S3M Italy, a cryospheric modeling chain operationally delivering spatial snapshots of480
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snow water resources for civil-protection applications. Through S3M Italy, IT-SNOW ingests input data from thousands of

automatic weather stations across the Italian territory, while assimilating daily snow-covered-area maps from ESA Sentinel

2
::::::::
Sentinel-2, NASA MODIS, and EUMETSAT H-SAF products and multilinear regressions of on-the-ground snow-depth data.

Validation results show little to none
::
no

:
mean bias compared to C-SNOW, a state-of-the-art retrieval of snow depth from

Sentinel 1, Root Mean Square Errors on the order of 30 to 60 cm for in-situ, measured snow depth and 90 to 300 mm for485

in-situ, measured Snow Water Equivalent, a strong (0.87) correlation between peak SWE and annual streamflow, and ratios

between peak SWE and annual streamflow that are in line with expecations
::::::::::
expectations

:
for this mixed rain-snow region (22%

on average). Examples of use showed how IT-SNOW can both fill fundamental knowledge gaps in snow hydrology and support

real-world applications, by answering recurring questions like "How much snow is accumulated across the Italian landscape?"

(on average 13.70 ± 4.9 Gm3 peak SWE), or "Where is it?" (∼52% and 21% across the Po and Adige river basins, respectively,490

with the remainder between smaller
:::
less

::::::::::::::
snow-dominated watersheds in north-eastern Italy and the central Apennines).

IT-SNOW will be annually updated and community engagement will be favored to maintain a high-resolution reanalysis of

snow for Italy. Engagement will follow two lines of action: the first is institutional, as we are engaging with the Italian regional

administrations to benchmark IT-SNOW against their long-standing systems providing local to regional estimates of SWE with

methodologies that vary among the offices. The second is bottom-up, as we are designing tools to favor engagement through a495

GitHub discussion page hosted at https://github.com/c-hydro (last access 30/08/2022). The author team thus remains open to

critical feedback from the user community on IT-SNOW accuracy, issues, and improvement opportunities.

7 Code and data availability

IT-SNOW is available in an open access framework at the following DOI: https://doi.org/10.5281/zenodo.7034956 (CC BY-NC

4.0, see Avanzi et al., 2022b).500

Sources of data used are reported in the paper, and include the database of the Italian Regional Administrations and Au-

tonomous Provinces, as accessible by CIMA Research Foundation through the Italian Civil Protection, the Aosta valley Envi-

ronmental Protection Agency (snow courses), The Aosta valley Ufficio Neve e Valanghe (avalanche probing data), Meteomont

(as available to the Molise Region, Molise snow data), the Lombardia Environmental Protection Agency (Lombardia data),

and the C-SNOW initiative (Lievens et al., 2019).505

The S3M model is open-source software. Official releases are available at https://zenodo.org/badge/latestdoi/350732564,

while the following GitHub repository includes also minor updates: https://github.com/c-hydro/s3m-dev. The most important

components of the S3M Italy operational chain are also open source, see https://github.com/c-hydro.
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