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Abstract. A complete global flood event record would aid researchers to analyze the distribution of global
floods and, thus, better formulate and manage disaster prevention and reduction policies. This study used Gravity
Recovery and Climate Experiment (GRACE) terrestrial water storage and precipitation data combined with high-
frequency filtering, anomaly detection and flood potential index methods to successfully extract historical flood
days globally between 1 April 2002 and 31 August 2016; these results were then further compared and validated
with Dartmouth Flood Observatory (DFO) data, Global Runoff Data Centre (GRDC) discharge data, news reports
and social media data. The results showed that GRACE-based flood days could cover 81 % of the flood events in
the DFO database, 87 % of flood events extracted by MODIS and supplement many additional flood events not
recorded by the DFO. Moreover, the probability of detection greater than or equal to 0.5 reached 62 % among 261
river basins compared to flood events derived from the GRDC discharge data. These detection capabilities and
detection results are both good. Finally, we provided flood day products with a 1◦ spatial resolution covering
the range between 60◦ S and 60◦ N from 1 April 2002 to 31 August 2016; these products can be obtained
from https://doi.org/10.5281/zenodo.6831384 (Zhang et al., 2022b)CE1 . Thus, this research contributes a data
foundation for the mechanistic analysis and attribution of global flood events.

1 Introduction

Flood disasters threaten the lives of millions of people around
the world every year, causing more economic loss than any
other natural disaster. An increasing number of extreme
weather events are occurring more frequently under global5

climate change (Schinko et al., 2017). The latest research on
global flood disasters shows that the proportion of the popu-
lation at risk from floods is increasing each year (Tellman et
al., 2021).

Existing global flood data mainly include historical data10

records, hydrological model simulations and remote sens-
ing observations. Historical data records include those of
the Dartmouth Flood Observatory (DFO) (Brakenridge,
2022), the international disasters database (EM-Dat) (Guha-
Sapir et al., 2021), Munich Re’s NatCatSERVICE (https:15

//natcatservice.munichre.com, last access: 6 June 2022), and
Sigma (Swiss Re, 2022). The DFO database mainly records
large-scale flood events from news reports and from gov-
ernmental, instrumental and remote sensing sources. This
database records not only the country, latitude, approximate 20

scope, and start and end time of each event but also the cause
and severity level of the event. There have been approxi-
mately 4700 major flood events since 1985. EM-Dat contains
basic core data on the occurrence and impact of more than
22 000 large-scale disasters in the world from 1900 to the 25

present. This database is compiled from a variety of sources,
including United Nations (UN) agencies, nongovernmental
organizations, insurance companies, research institutes and
news organizations. NatCatSERVICE is a natural hazard-
based disaster loss database with up to 28 000 entries owned 30

by Munich Re. Sigma is also a global disaster database com-
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prising anthropogenic and natural catastrophe losses since
1970. In addition to recording basic disaster information, this
database includes the total and insured losses. Flood data are
also derived from global hydrological models. For example,
the University of Maryland’s Global Flood Monitoring Sys-5

tem (GFMS) takes real-time integrated precipitation infor-
mation (Tropical Rainfall Measuring Mission, TRMM, and
Global Precipitation Measurement, GPM, data) as inputs in
a quasi-global (50◦ N–50◦ S) hydrological runoff and rout-
ing model to run 1/8◦ gridded data. Surface water storage10

statistics are used to derive flood thresholds for each grid lo-
cation, and the depth above the corresponding threshold is
calculated as the flood intensity (Wu et al., 2014, 2012a, b,
2011). Another example is the Floods.Global system (http:
//floods.global, last access: 6 June 2022) database, in which15

Integrated Multi-satellite Retrievals for GPM (IMERG) pre-
cipitation data are used to estimate future 72 h flows, with
coverage from 60◦ N to 60◦ S and a resolution of 0.1◦. With
the development of remote sensing satellite products in the
1980s, a cost-effective flood monitoring method emerged. As20

long as there are historical areas over which satellites have
passed and imaged, there are opportunities to observe flood
events; these methods are more realistic and effective than
flood models with respect to characterizing actual observed
flood areas. Commonly used remote sensing data include25

optical remote sensing images and microwave remote sens-
ing images, among which microwave remote sensing tech-
nologies, especially the commonly applied synthetic aperture
radar (SAR), are used. Rättich et al. (2020) developed an au-
tomatic procedure to evaluate flood durations and uncertain-30

ties using multiple satellites, including Sentinel-1, Sentinel-
2, Landsat 8 and TerraSAR-X. The method was successfully
demonstrated on the 2019 flood in Sofala Province, Mozam-
bique, and on the 2017 flood in Bihar, India. Tellman et
al. (2021) used 250 m resolution Moderate Resolution Imag-35

ing Spectroradiometer (MODIS) data to extract the inunda-
tion extents of a total of 913 global flood events from 2000
to 2018, thereby providing data support for vulnerability as-
sessments and flood model improvements. Tong et al. (2018)
used both Landsat 8 optical imagery and COSMO-SkyMed40

radar imagery combined with a support vector machine and
the active contour without edges model to perform flood
monitoring. The results showed high accuracies of 97.46 %
for optical imagery and 93.70 % for radar imagery.

However, there are some limitations in current databases.45

NatCatSERVICE, EM-Dat and Sigma provide data only at
the country level. The NatCatSERVICE database covers
most large flood events around the world but only a few
small flood events in developing countries due to restricted
connectivity (de Bruijn et al., 2019). Although there are ap-50

proximate map locations available in the Sigma and NatCat-
SERVICE databases, specific location names are not publicly
available (Moriyama et al., 2018). Moreover, both the Nat-
CatSERVICE and Sigma databases are developed by rein-
surance companies, and the accessibility of the information55

in these databases is limited (Moriyama et al., 2018; Kron
et al., 2012; Huggel et al., 2015). The EM-Dat database
records only the numbers of flood events in different coun-
tries without corresponding spatial location information. Al-
though DFO records the start and end times as well as the 60

approximate spatial locations of flood events, the duration is
sometimes long (more than 1 or 2 months), and the spatial
locations are only roughly delineated according to news re-
ports. Tellman et al. (2021) extracted flood extents and ana-
lyzed the population exposure of 913 large-scale flood events 65

from 2000 to 2018 based on MODIS daily data with a res-
olution of 250 m, thereby finely delineating the spatial in-
undation extent. During this period, there were more than
3000 flood events recorded in the DFO database, whereas
the number of MODIS-derived floods was less than 30 % of 70

that recorded by DFO. The numbers of flood events recorded
in China, Russia and Canada are obviously lacking. More-
over, flood detection methods based on remote sensing data
are mainly aimed at specific flood events in small areas and
are influenced by the number of revisit cycles at the same 75

location (especially for SAR images) and bad weather (espe-
cially for optical images) (Kussul et al., 2011; Hostache et al.,
2018; Manavalan, 2017). The spectral information of optical
remote sensing images is influenced by clouds, affecting the
quantitative inversion of flood extent based on remote sens- 80

ing. SAR images lack revisits of the same location for flood
change detection. These shortcomings affected the flood ex-
traction accuracy. There is a need to fill in the missing flood
events with a new observational dataset.

Another remote sensing technique based on gravity 85

satellites, the Gravity Recovery and Climate Experiment
(GRACE), has also been successfully used to detect flood
events. Reager and Famiglietti (2009) first proposed the use
of the terrestrial water storage capacity and flood poten-
tial index, creating a precedent for GRACE to assess large- 90

scale flood events. This method was subsequently improved
upon and applied to different river basins. Molodtsova et
al. (2016) found an agreement between the flood potential
index derived from GRACE and recorded floods by using
multiyear flood observation data from 2003 to 2012 from the 95

United States (US) Geological Survey and DFO. Gupta and
Dhanya (2020) proved that GRACE terrestrial water stor-
age (TWS) and the flood potential index had the capabil-
ity to assess hydrological extreme events over heterogeneous
regions with the occurrences of high-intensity and long- 100

duration floods. They suggested that flood potential index
can be useful for flood monitoring when discharge data are
rarely available. With the continuous progress of the global
GRACE-only gravitational field solution, GRACE daily data
products have also been effectively developed and applied 105

(Kvas et al., 2019; Mayer-Gürr et al., 2018). Gouweleeuw
et al. (2018) used a daily solution based on GRACE TWS
and daily river runoff data to assess major flood events in the
Ganges–Brahmaputra Delta and confirmed the method’s po-
tential for gravity-based large-scale flood monitoring. Xiong 110
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et al. (2022) used daily downscaled GRACE data to de-
tect short-duration and high-intensity floods. They found that
there was a strong correlation between the high-frequency
components of GRACE TWS and runoff.

In this study, we focus on extracting global historical5

flood events based on daily GRACE and precipitation data.
Apart from being affected by battery management in some
months, GRACE’s gravity measurements cover most months
and are not affected by varying weather conditions. This
study mainly extracted all flood days in the historical time10

series caused by extreme precipitation, regardless of whether
the flood event caused severe damage. Finally, we provided
global flood days with a resolution of 1◦ during the period
from 1 April 2002 to 31 August 2016. These data replen-
ish the missing flood events in the historical record and pro-15

vide a new and complete flood dataset, thereby contributing
a sufficient data foundation for research on the inducement
of global floods.

2 Data

2.1 Daily GRACE TWS20

The GRACE constellation is a pair of twin satellites that
can measure changes in Earth’s gravitational field. There
is a precise radar rangefinder between the two satellites.
When Earth’s gravitational field changes slightly, it can be
detected by either of the two satellites. The distance signal25

between the two satellites is amplified to measure the state
change at the current moment relative to the previous mo-
ment (Cazenave and Chen, 2010). The short-term gravita-
tional field changes of Earth are mainly caused by changes
in factors such as terrestrial water storage, atmospheric wa-30

ter vapor and ocean tides. When these signals are deducted,
the change in the entire terrestrial water storage can be in-
verted (Wahr et al., 1998). The daily GRACE data selected in
this study come from daily solutions obtained using Kalman
smoothing by Mayer-Gürr et al. (2018), Graz University35

of Technology, based on the ITSG-Grace2018 gravity field
model. The ITSG-Grace2018 gravity field model, which of-
fers unconstrained monthly and Kalman-smoothed daily so-
lutions, is the most recent GRACE-only gravity field model
computed in Graz (Mayer-Gürr et al., 2018). The time pe-40

riod spans from 1 April 2002 to 31 August 2016, the res-
olution is 1◦ and the unit is meters (m). A third-order au-
toregressive (AR) model was used to stabilize the daily so-
lution. A set of spherical harmonic coefficients for the vari-
ous degrees (n= 2. . .40) was estimated. When GRACE data45

were not available for a specific day, daily solutions were
delivered through an adjustment process (Bergmann-Wolf et
al., 2015; Dill, 2008). These processed data can be obtained
from the following website: https://www.tugraz.at/institute/
ifg/downloads/gravity-field-models/itsg-grace2018/ (last ac-50

cess: 21 November 2021).

2.2 Precipitation

This study used Global Precipitation Measurement (GPM)
data to calculate extreme precipitation. GPM is an interna-
tional satellite mission launched by the National Aeronau- 55

tics and Space Administration (NASA) and Japan Aerospace
Exploration Agency (JAXA). It is the next-generation, high-
quality global rain and snow satellite observation network
after the TRMM. GPM provides an important data founda-
tion for scientific researchers to understand the Earth’s wa- 60

ter resources and energy cycles and improve their ability to
predict extreme events (Huffman et al., 2019). The resolu-
tion of these data is 0.1◦, with the unit of millimeters (mm),
mainly covering the range of 60◦ S–60◦ N, and both north–
south latitudes of 60–90◦ have partial coverage. This study 65

selects the IMERG Final Run product, which uses global mi-
crowave precipitation data, infrared data, precipitation sta-
tion data and other potential precipitation indicators to cross-
calibrate, fuse and interpolate TRMM and GPM data at re-
fined temporal and spatial scales. It is an officially recom- 70

mended product and can be obtained from the following
website: https://gpm.nasa.gov/data/directory (last access: 10
October 2021). To remain consistent with the GRACE res-
olution and maintain extreme precipitation signals, we take
the maximum values of the precipitation covered by each 1◦ 75

GRACE grid to further calculate the flood potential index and
the number of extreme precipitation days.

2.3 Flood events from Dartmouth Flood Observatory

The DFO dataset records large flood events from various
news reports as well as governmental, instrumental and re- 80

mote sensing sources. It contains the start and end times of
each flood, the country where it occurred, the approximate
flood extent, the cause of the flood and the degree of dam-
age. It is a rare and useful product for studying global his-
torical floods. This data product has been widely used in 85

flood hazard science research (Tellman et al., 2021; Hagen
et al., 2010; Winsemius et al., 2013; Idowu and Zhou, 2019).
This study focuses on precipitation-induced floods. A total
of 2380 flood events in the 60◦ S–60◦ N range were caused
by heavy precipitation between 1 April 2002 and 31 August 90

2016. This product was primarily used to validate the flood
data extracted in this study and can be obtained from https://
floodobservatory.colorado.edu/Archives/index.html (last ac-
cess: 1 October 2021).

2.4 MODIS-derived flood inundation data 95

The flood inundation extent data used in this study come
from a total of 807 flood events extracted based on MODIS
data by Tellman et al. (2021) in the 60◦ S–60◦ N region from
1 April 2002 to 31 August 2016. This product was produced
based on atmospherically corrected Terra (MOD09GA/GQ) 100

and Aqua (MYD09GA/GQ) MODIS images. The authors
then used threshold analysis methods (including standard

https://www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2018/
https://www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2018/
https://www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2018/
https://gpm.nasa.gov/data/directory
https://floodobservatory.colorado.edu/Archives/index.html
https://floodobservatory.colorado.edu/Archives/index.html
https://floodobservatory.colorado.edu/Archives/index.html
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and Otsu-optimized threshold methods) and slope con-
straints (slopes greater than 5◦ were masked out) to extract
inundations at a 250 m spatial resolution according to the
flood events recorded by the DFO (Tellman et al., 2021).
The MODIS-based floods were compared and verified5

for coincidence with the 30 m resolution inundation data
derived from Landsat 5, 7 and 8 images, and flood map
quality control analysis was also performed. This product
relies on the Google Earth Engine platform (Gorelick
et al., 2017), which can be obtained from the following10

site: https://developers.google.com/earth-engine/datasets/
catalog/GLOBAL_FLOOD_DB_MODIS_EVENTS_V1
(last access: 1 October 2021). These data were further
refined on the basis of DFO-recorded approximate flood
extent and provided a reliable spatial inundation dataset for15

verification in our study.

2.5 Global Runoff Data Centre (GRDC) discharge data

The Global Runoff Data Centre is an international data cen-
ter operating under the auspices of the World Meteorolog-
ical Organization. It was established in 1988 to support re-20

search on global climate change and integrated water re-
source management. We downloaded the global mean daily
discharge data from https://www.bafg.de/GRDC/EN/Home/
homepage_node.html (last access: 2 November 2021), which
additionally contained other attributes, like the country, lon-25

gitude, latitude and river name, associated with each flood
event. The unit of mean daily discharge is cubic meters per
second (m3 s−1), and the stations with more than 50 % of
days missing in the research time period (1 April 2002–
31 August 2016) were excluded to ensure accuracy. Finally,30

we obtained 3408 stations from 1 April 2002 to 31 August
2016 as the validation dataset to verify the GRACE-derived
flood days.

3 Methods

Figure 1 shows the technical workflow of this study. It mainly35

consists of data preparation, extraction flood days and re-
sult verification. Daily precipitation and daily GRACE TWS
data are used for the flood data extraction step, and daily
discharge, DFO, MODIS-derived flood inundation and so-
cial media data are used for the flood validation step. The40

flood extraction step is mainly based on high-frequency sig-
nals of TWS and the flood potential index to obtain the prese-
lected possible flood days; extreme precipitation constraints
are then used to obtain the final flood days. The flood val-
idation includes comparisons with the DFO-recorded flood45

extent, MODIS-derived flood inundation, GRDC discharge-
derived flood events and significant flood events recorded on
social media.

3.1 Seasonal and trend decomposition using loess
(STL) 50

Extreme precipitation has sudden characteristics, and its sig-
nals are reflected in the high-frequency signals of GRACE
(Xiong et al., 2022; Gouweleeuw et al., 2018). Seasonal and
trend decomposition using loess (STL) (Robert et al., 1990)
is a filtering process as well as a general and robust time se- 55

ries decomposition and forecasting method used to decom-
pose time series variables into seasonal, trend and remainder
components for further forecasting. This process can handle
data with any type of seasonality as well as high-frequency
signal data. It also allows seasonal components to vary over 60

time and is robust to outliers. In this study, we selected this
method as a high-pass filtering tool to process GRACE TWS
and obtain high-frequency signals (excluding seasonal and
trend components) for subsequent analyses. In this work, the
STL function in the R language “stats” package was used 65

to process all grid time series corresponding to the GRACE
TWS period (1 April 2002–31 August 2016). The two main
parameters, “t.window” and “s.window”, should be specified
when using STL. “t.window” is the number of consecutive
observations when estimating the trend cycle; it was set to a 70

31 d window to cover the month and separates daily data ac-
cording to Gouweleeuw et al. (2018) and Xiong et al. (2022).
“s.window” is the number of consecutive years when esti-
mating each value in the seasonal component; it was set to
360, which was determined using a Fourier transform to con- 75

vert to the frequency domain to obtain the frequency corre-
sponding to the maximum amplitude.

3.2 Anomaly detection based on a generalized extreme
studentized deviate test

The generalized extreme studentized deviate (GESD) test 80

(Rosner, 1983) is a simple and effective statistical method
for detecting one or more outliers in univariate data that
follow an approximately normal distribution. It has been
widely used in the field of hydrological anomaly detection
(Saghafian et al., 2014; Clark and Zipper, 2016). The GESD 85

test is mainly used in this study to extract possible flood days
corresponding to the high-frequency signals. In this study,
the method selected for extracting flood information from
the high-frequency signals needed to ensure minimum im-
pact from the random error in the high-frequency signal and 90

maximum flood signal extraction. The method requires only
that an upper bound for suspected outliers be specified and
determines the number of possible outliers based on hypoth-
esis testing (Rosner, 1983). The basic assumptions of GESD
are as follows: 95

there are no outliers in the dataset (H0);

there are at most r outliers in the dataset (Ha).

https://developers.google.com/earth-engine/datasets/catalog/GLOBAL_FLOOD_DB_MODIS_EVENTS_V1
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Figure 1. Workflow of the global flood extraction approach based on GRACE and precipitation data.

The corresponding statistic is calculated as follows:

Ri =
maxi |xi − x̄|

σ
, (1)

where x̄ and σ are the sample mean and standard deviation,
respectively. After each iteration in which the largest |xi −
x̄| value is removed, the remaining statistics are calculated,5

and the above process is repeated until at most r outliers are
removed.

Consistent with the r test statistics, the r critical values are
computed as follows:

λi =
(n− i)tp,n−i−1√

(n− i− 1+ t2p,n−i−1)(n− i+ 1)
; i = 1,2, . . ., r; (2)10

p = 1−
α

2(n− i+ 1)
. (3)

Here, tp,v is the 100p percentage point in a t distribution
with v degrees of freedom, and α is the significance level.

The number of final outliers is then determined by the corre-
sponding maximum i value in Ri > λi (Rosner, 1983). 15

Considering that the GRACE high-frequency signal con-
tains both random errors and useful signals, we used
the GESD test to control the number of outliers so that
they were not affected by subjective thresholds. In this
study, the “AnomalyDetection” package (https://github.com/ 20

twitter/AnomalyDetection, last access: 2 November 2021)
(Aggarwal, 2013; Chandola et al., 2009; Rosner, 1983; Vallis
et al., 2014) was used to extract GRACE high-frequency sig-
nal data. This package not only includes the GESD algorithm
but can also specify the direction of detected outliers. The pa- 25

rameter “direction” indicates whether to extract peaks or val-
leys, where “pos” means the extraction of peaks, and “neg”
means the extraction of valleys. As we considered extreme
weather events caused by heavy precipitation in this study,
important information was contained in the peak. The main 30

parameter “direction” was set to the “pos”, and the maximum
possible number of abnormal days “max_anoms” was set to

https://github.com/twitter/AnomalyDetection
https://github.com/twitter/AnomalyDetection
https://github.com/twitter/AnomalyDetection
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0.1 to cover the maximum number of abnormal days among
the global time series comprising every grid. We provide an
example in Fig. S1 in the Supplement to show the process of
extracting possible flood days from high-frequency signals
of GRACE TWS using the GESD test method as well as the5

reason for missing some flood events. We have also consid-
ered the reliability of the GESD test method in Fig. S2.

3.3 Flood potential index

We used the probable flood days extracted by the flood po-
tential index (FPI) to supplement the inability of GRACE10

to detect flood events with high-frequency signals. The FPI
mainly considers rainfall-induced floods and has been widely
used to evaluate flood events (Gupta and Dhanya, 2020;
Molodtsova et al., 2016; Reager et al., 2014). Its basic as-
sumption is that the regional water storage capacity can be15

approximated by the maximum value of historical TWS time
series. The water storage capacity at the current time can be
calculated by subtracting the TWS at the previous time from
the maximum value of TWS time series. The proposal of this
method was based on monthly data, but this does not affect20

its application to GRACE daily data. The application of the
FPI was undertaken as follows.

The water storage capacity of the current day can be ex-
pressed as the temporal difference between the maximum
time series value and the previous day’s value; the formula25

is expressed as follows:

TWSDEF (t)= TWSMAX−TWS(t − 1), (4)

where TWSDEF (t) represents the maximum allowable rela-
tive water storage change on the current day, TWSMAX rep-
resents the maximum value over the entire time series and30

TWS(t − 1) represents the TWS value of the current day rel-
ative to the previous day. A low storage deficit and high pre-
cipitation result in a high probability of flooding, i.e., the oc-
currence of floods should be based on the mismatch between
the extreme precipitation level and the increase in water stor-35

age, as follows:

F (t)= Pday (t)−TWSDEF(t), (5)

where Pday (t) represents the daily precipitation, and F (t)
represents whether the current precipitation matches the wa-
ter storage capacity. When F (t)> 0, flooding may occur.40

This study uses the FPI to supplement possible flood days
in the case that the daily GRACE TWS data have lost use-
ful high-frequency signals due to the interpolation process.
In Fig. S3, we have provided an example in which the FPI
was able to supplement some flood events not identified by45

GRACE high-frequency signals.

3.4 Flood detection based on GRACE TWS and
precipitation data

The flood extraction mainly went through a preselection
stage and a final selection stage. We first used GRACE high- 50

frequency signal data combined with the GESD method and
FPI to preselect the possible flood days pixel by pixel. Next,
we further used the number of extreme precipitation days to
constrain and obtain the final flood days. This study focuses
on flood events caused by heavy precipitation. Considering 55

that floods are caused not only by single-day precipitation but
also by cumulative precipitation, we calculated the extreme
precipitation days based on the 1 d precipitation, 3 d cumula-
tive precipitation and 5 d cumulative precipitation. Regarding
extreme precipitation, the most commonly used metric is the 60

percentiles of the precipitation time series data, including the
nth quantiles of the entire time series data; alternatively, the
nth quantile of wet days (daily precipitation > 1 mm) can
be considered (Myhre et al., 2019; Pendergrass, 2018; Shi et
al., 2021). In order to present the calculation process more 65

clearly, we randomly selected a spatial grid for detailed pro-
cessing. Figure S4 shows the intermediate process of flood
day extraction. This process was carried out as follows:

1. The high-frequency signal of the TWS was extracted
using the STL method. 70

2. The possible flood days were calculated using the
GESD method.

3. We used the FPI to supplement possible flood days in
the case that the daily GRACE TWS data had lost useful
high-frequency signals due to the interpolation process. 75

4. We constrained the preselected floods using the extreme
precipitation days derived from daily and cumulative
precipitation. Based on the principle of extracting as
many flood events as possible with as few errors as pos-
sible, we choose the 95th quantile of the entire time 80

series as the condition to constrain the flood days ex-
tracted from GRACE data. We also provide GRACE-
based flood days obtained with the 90th and 99th quan-
tiles of the entire time series data and wet days at
https://doi.org/10.5281/zenodo.6831384 (Zhang et al., 85

2022a). TS1

3.5 Flood event extraction based on daily discharge
data

To verify the reliability of the extracted results, this paper
used the global discharge data products released by GRDC 90

and the statistics-based automated flood event extraction
(FloodR) method to extract possible flood events. FloodR
is a statistics-based flood event separation method proposed
by Fischer et al. (2021). It can automatically separate flood
events using a univariate daily discharge time series, and it 95

https://doi.org/10.5281/zenodo.6831384
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includes additional tool for manually checking and correct-
ing the separation results quickly, allowing expert knowledge
to be easily incorporated. Considering that the fluctuation in
daily discharge data is smoother than that in hourly discharge
data, FloodR used the moving-window variance to overcome5

the lower dynamic characteristics of daily discharge. Its ba-
sic rules include three points: (1) a flood event is an event
that temporarily exceeds the normal discharge, and the start
and end of each flood event can be defined; (2) a flood event
can be characterized by significantly increased dynamics of10

discharge; (3) the sum of the increasing discharges is sim-
ilar to the sum of the recession of the flood event (Fischer
et al., 2021). FloodR can also automatically handle missing
data and perform flood separation in segments according to
the missing data before finally merging them. In this paper,15

the “eventsep” function in the FloodR package was used and
the parameters were set to default (according to the practice
of Fischer et al., 2021CE2 ), while the “NA_mode” parameter
was based on whether there were missing values in the dis-
charge time series. The results extracted by FloodR include20

information like the start and end times of each flood, the
flood peak date, and the flood baseflow, thereby providing an
important data foundation for verifying the time series com-
parison ability of this study.

We use the goodness of flood separation (GFS) to eval-25

uate the performance of the FloodR method. This indicator
explicitly minimizes the number of small runoff events and
maximizes the number of flood events with high discharge.
This indicator can be used to address the lack of a consistent
and true data foundation for the evaluation of the goodness30

of flood separation (Fischer et al., 2021).

GFS=

(
QQ>THupper;Flood

QQ>THupper

)

−max
(
QQ>THlower;Flood

QQ>THlower

−Tollower,0
)
, (6)

TS2where QQ>THupper;Flood is the number of flood days
with discharge above the threshold of THupper, QQ>THupper

is the number of days above the threshold of THupper,35

QQ>THlower;Flood
TS3 is the number of flood days with dis-

charge below the threshold of THlower and QQ>THlower
TS4 is

the number of days below the threshold of THlower. The up-
per threshold THupper, lower threshold THlower and tolerance
threshold Tollower are set as the 95th quantile of discharge,40

the 50th quantile of discharge and 1 % of the discharge days
below the lower threshold, respectively, according to the sug-
gestion of Fischer et al. (2021).CE3

3.6 Probability of detection (POD)

In order to better compare the relationship between flood45

events (observed from DFO, MODIS and discharge) and
flood days (derived from GRACE), we referred to the
probability of detection (POD) index proposed by Yang et

al. (2021) and made it more appropriate for our study.

POD= floodGRACE-based/(floodobserved+floodmiss), (7) 50

where floodGRACE-based denotes flood events identified by
GRACE, and floodobserved denotes DFO-recorded flood
events, MODIS-derived flood events or discharge-derived
flood events. If each flood event with a 3 or 5 d buffer
could cover the GRACE-based flood days, we consider it a 55

floodGRACE-based event.

4 Results

4.1 Flood days and events based on GRACE TWS and
precipitation data

This study considers GRACE-based flood days obtained un- 60

der the constraint of the 95th percentile of the entire time se-
ries dataset. Figure 2 shows the global cumulative flood days
and flood events from 1 April 2002 to 31 August 2016, and
Fig. 3 shows the histograms of flood days and flood events
corresponding to Fig. 2. Although the number of flood days 65

extracted above cannot accurately reflect how many flood
events occurred, we can simplify the results such that a num-
ber of consecutive detected flood days or the interval be-
tween 2 consecutive flood days, no more than 3 d or 5 d can
be considered a flood event. The principle involves roughly 70

calculating the spatial distribution of global flood event oc-
currences. Consistency was found between the global spa-
tial distributions of flood events and flood days. We found
that 99.8 % of the grids around the world experienced fewer
than 400 flood days except in Southeast Asian countries and 75

countries at the junction of North and South America, which
experienced more than 400 flood days from 1 April 2002 to
31 August 2016. In addition, the areas with the most flood
days and events were mainly located in the tropics. Island
countries, western Africa, India, the Himalayas, southern 80

China, etc. were also prone to floods. From the perspective of
the divided flood events, the number of grid cells with fewer
than 100 events accounted for 96.15 % (Fig. 2b), 97.11 %
(Fig. 2c) and 97.52 % (Fig. 2d) of all grids.

We also calculated the average flood days in the same 85

month in each year from 2002 to 2016 to identify seasonal
characteristics. As shown in Fig. 4, the global flood distri-
bution reflected obvious seasonal characteristics, and differ-
ences between the Northern and Southern hemispheres are
clear. More flood days were identified in the Northern Hemi- 90

sphere in summer (approximately June–September), while
flood days in the Southern Hemisphere were concentrated
from December to March.

4.2 Flood days in mountain glacier regions

We also analyzed the distribution of flood days in the moun- 95

tain glacier regions. We used global glacier outline data from
the Randolph Glacier Inventory (RGI). This dataset can be
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Figure 2. Spatial distribution of global floods: (a) global flood days from 1 April 2002 to 31 August 2016; (b) global flood events based on
consecutive flood days; (c) global flood events based on the interval between 2 consecutive flood days not exceeding 3 d; (d) global flood
events based on the interval between 2 consecutive flood days not exceeding 5 d.

used to estimate glacier volumes, rates of elevation change at
regional and global scales, and the response of the cryosphere
to climate forcing. The dataset is updated annually in shape-
file format. In this paper, we used it to locate global glaciers
(RGI Consortium, 2017).5

In the range of 60◦ S–60◦ N, there are 10 glacial regions
and 163 flood events recorded based on the DFO database
(Fig. 5). A total of 142 flood events were identified, and 21

flood events were not detected, resulting in a POD of 0.87.
The capacity of flood detection is close to the global POD 10

(0.81). The results showed that GRACE also has good poten-
tial with respect to identifying precipitation-induced floods in
glacial regions. Of these 21 flood events, 4 flood events could
not be identified due to missing months in GRACE data.
Eight flood events had a maximum daily precipitation of 15

less than 40 mm according to the DFO-recorded time period
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Figure 3. Histograms of cumulative flood days and flood events from 1 April 2002 to 31 August 2016: (a) histogram of global flood days
from 1 April 2002 to 31 August 2016; (b) histogram of global flood events based on consecutive detected flood days; (c) histogram of global
flood events based on the interval between 2 consecutive flood days not exceeding 3 d; (d) histogram of global flood events based on the
interval between 2 consecutive flood days not exceeding 5 d.

Figure 4. Average flood days in the same month of each year from 2002 to 2016.
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and spatial location (minimum of 8.44 mm and maximum of
36.56 mm), and GRACE could not identify the weaker sig-
nal. The remaining nine flood events could not be identified
due to GRACE itself failing to identify flood conditions.

We further selected the GRACE grid covering the glacial5

regions and analyzed the characteristics of the extracted flood
days. Figure 6 shows the 10 detailed glacial regions and the
corresponding selected GRACE grids that covered the main
glacial areas. Figure 7 shows the results of the extracted flood
days related to the grid of each region. In general, the num-10

ber of flood days in the glacial regions was relatively small,
and flood days were mostly concentrated within 50 d from
1 April 2002 to 31 August 2016, whereas the glaciers in
the South Island of New Zealand and the glacial regions in
the east of southern Asia exceeded 100 d. The areas of the15

South Island of New Zealand where mountain glaciers are
located experience a hyper-maritime climate, and the west
coast of the South Island receives the most precipitation (an-
nual precipitation > 12 m) (Anderson et al., 2010). Glacial
regions in eastern South Asia are mainly located in the Hi-20

malayas, where normal climatic fluctuations become rather
quick in the Himalayan sectors due to topography and the
southwest Indian Ocean monsoon. Cloud bursts, high winds,
snowstorms, etc. can also cause quick floods (Nandargi and
Dhar, 2011).25

4.3 Validation with DFO and MODIS-derived flood data

Figure 8 shows the spatial distribution of 2380 precipitation-
type floods recorded by the global DFO from 60◦ S to 60◦ N.
Judging by the floods recorded by the DFO, floods have oc-
curred in most parts of the world except in the Sahara Desert,30

the Great Victoria Desert and the northern part of North
America.

In this study, the temporal length of the DFO database
was compared with GRACE-based flood data throughout
the 1 April 2002–31 August 2016 period. According to the35

database attributes, flood events caused by heavy precipita-
tion were extracted as the validation dataset for this study.
Given that the temporal and spatial DFO recording character-
istics are approximate and considering the effect of advanced
or delayed times on short-duration records, the start and end40

times of the DFO records were extended forward and back-
wards by 3 or 5 d, respectively, when being compared with
the flood day results. Similarly, when the extent of the DFO
polygon was less than 3◦, we appropriately built a buffer (3◦)
to compensate for the positioning errors. We then detected45

every event in the DFO record to determine whether flood
days could be identified based on its temporal and spatial
coverage.

Figure 9 shows the distribution of the number of flood
events recorded by DFO on 1◦ spatial grids (the same as50

the GRACE spatial resolution). It also shows that the east-
ern part of North America, the northern part of South Amer-
ica, the central and southern parts of Africa, western Europe,

northern India and southern China are all areas with high-
frequency flood events. Except for the archipelagic countries 55

in Southeast Asia, the entire spatial distribution is consistent
with our results.

We compared the 2380 precipitation-type flood events
recorded by the DFO one by one with the real flood extent
extracted by Tellman et al. (2021) based on remote sensing 60

images. Figure 10 shows part of the flood event comparison
results derived based on GRACE, MODIS and DFO data.
The dark blue polygons show the approximate flood ranges
delineated by the DFO, red pixels are the flood inundation
areas extracted based on MODIS data, and light blue regions 65

show the flood days (≥ 1 d) extracted using GRACE TWS
and extreme precipitation data during the period recorded
by the DFO. MODIS-based inundation extents were cal-
culated according to the DFO time period as well as the
union of DFO polygons and HydroSHEDS Basins Level 4 70

data (Tellman et al., 2021; Lehner et al., 2008; Lehner and
Grill, 2013). We also used the DFO-recorded time series
as a reference to filter flood days in each grid cell and ob-
tained the spatial flood distributions in specific areas. The
flood extents recorded by DFO are rough, and time dura- 75

tions are sometimes long (much more than 1 month); this
causes large uncertainties in the spatial distribution and du-
ration. Although the MODIS resolution (1 km) is higher than
that of GRACE TWS (1◦, ∼ 100 km), only a limited amount
of flooding can be identified by remote sensing images due 80

to the influence of bad weather. The GRACE-based flood
days that we provided were only able to indicate the pres-
ence of flood events under the ∼ 100 km grid coverage, and
specific detailed flood extents require further identification
using high-resolution satellite remote sensing images. There- 85

fore, we note some differences among the spatial patterns of
floods recorded by DFO, MODIS and GRACE. This study
focuses on whether the flood events recorded by the DFO
can be detected by GRACE; as long as the number of flood
days (≥ 1 d) extracted by GRACE could be found at the time 90

and in the space specified by DFO, the effectiveness of the
method could be demonstrated. Considering the results of
2380 events, 463 flood events were not detected, resulting
in a detection rate of 81 %. Among the undetected events,
85 events went undetected due to low precipitation (not the 95

cases of extreme precipitation), and 69 events went unde-
tected due to a lack of GRACE data in certain months, re-
sulting in the inability to obtain effective high-frequency sig-
nals. Among the remaining 309 undetected floods, the omis-
sion of 184 floods may have occurred due to the fact that the 100

maximum daily precipitation was less than 50 mm, causing
GRACE to fail to identify a flood signal. The other 125 unde-
tected flood events may have been caused by GRACE itself
failing to identify flood conditions. To view the spatial dis-
tributions of precipitation-type floods and the corresponding 105

situation obtained from flood inundation data extracted from
GRACE and MODIS, the reader is referred to the following
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Figure 5. Global glacier distribution (a) and corresponding DFO-based flood events (b) for (1) glacial regions in western Canada and the
US, (2) glacial regions in North Asia, (3) glacial regions in Central Asia, (4) glacial regions in the western South Asia, (5) glacial regions
in the eastern South Asia, (6) glacial regions at low latitudes, (7) glacial regions in the southern Andes, (8) glacial regions in New Zealand,
(9) glacial regions in central Europe and (10) glacial regions in central eastern Caucasus.

Zenodo repository: https://doi.org/10.5281/zenodo.6831105
(Zhang et al., 2022a).CE4

4.4 Further validation with news reports and social
media

We further selected some flood events using news reports and5

social media (like Twitter and Weibo) to verify if there were
some flood events that could not be identified by the DFO but
could be identified by GRACE-based flood days. Figure 11
presents nine flood events not recorded by the DFO, includ-
ing floods that occurred in different time periods and areas,10

such as the eastern US, northern and southern South Amer-
ica, Mozambique in Africa, France, India, China, Malaysia,
Indonesia and Australia. The red boxes indicate the approx-
imate location of the reported flood events. The blue areas
were the GRACE-based flood days corresponding to the du-15

ration and approximate location of flood events recorded by
social media or news reports. We found that GRACE-based
flood days could identify these missing flood events well,
which also proved the effectiveness of using GRACE to iden-
tify large-scale flood events. Our data can be used as a good20

supplement to DFO data.

4.5 Validation with discharge data

We also compared GRACE-based flood days with discharge
data to assess our detection ability. We used the FloodR

method of Fischer et al. (2021) to extract possible flood 25

events from 3408 GRDC discharge data to serve as a basic
reference standard when verifying the accuracy of the results
extracted in this study. We focused on extreme precipitation-
induced flood events and similarly constrained the results
derived from the discharge data with extreme precipitation 30

data. To ensure accuracy, we first selected the floods ex-
tracted from discharge stations with a GFS greater than 0.5
for comparison. Due to the fact that discharge reflects the
amount of water integrated over its entire contributing basin
and contributing time (Yang et al., 2019), we combined the 35

flood events obtained from each discharge station in time se-
ries to describe the flood events in the 261 watersheds (Hy-
droSHEDS Basins Level 4; Lehner and Grill, 2013; Lehner et
al., 2008). Flood events in the same watershed were merged
according to whether there was an intersection in the time 40

series. The accuracy index used for comparison in this study
was the probability of detection (POD) (Yang et al., 2021),
i.e., whether each flood event in the river basin contained
the GRACE-based flood days. Although flood events derived
from discharge cannot guarantee that the surrounding land 45

will experience flooding, they provide us with a reference to
support the reliability of the time series verification process.

Figure 12 shows the global distribution of discharge loca-
tions and the GFS. The data distributions in North America,
South America, Europe and southeastern Australia were rel- 50

atively dense, whereas data were seriously missing in central,

https://doi.org/10.5281/zenodo.6831105
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Figure 6. The 10 glacial regions within the 60◦ S–60◦ N latitudes. Two representative GRACE grid points in each region were selected to
analyze the temporal detection of floods and correspond to the time series in Fig. 7. The 10 regions are as follows: (1) glacial regions in
western Canada and the US, (2) glacial regions in North Asia, (3) glacial regions in Central Asia, (4) glacial regions in western South Asia,
(5) glacial regions in eastern South Asia, (6) glacial regions at low latitudes, (7) glacial regions in the southern Andes, (8) glacial regions in
New Zealand, (9) glacial regions in central Europe and (10) glacial regions in central eastern Caucasus.
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Figure 7. Flood detection results for different glacial regions (specific regions are consistent with Fig. 6).
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Figure 8. Spatial distribution of DFO-recorded flood events.

Figure 9. The frequency of flood events recorded by DFO distributed on 1◦ grids.

northern and eastern Asia. The areas with a higher GFS were
located in the eastern US and central Europe, and the stations
recorded in these areas were relatively complete. The dis-
charge stations with a GFS above 0.5 accounted for 73.49 %
of stations. Figure 13 shows the flood events in the Level 45

river basins. We find that most flood events reflected by the
discharge data were located in the eastern and western US,
central South America, eastern Europe and New Zealand.

The POD calculation results are shown in Fig. 14: the
darker the color, the higher the corresponding flood detection10

accuracy. We found that the overall accuracy performed well;
the detection accuracies obtained for the central and eastern
parts of the US, western South America, southern Africa and
around Australia were relatively high. Figure 15 shows the
histogram of 261 watersheds of Level 4 basins; the percent-15

age of river basins with POD values greater than or equal to
0.5 is 62 %. This finding shows that our extracted flood days
also reflected relatively high accuracies in comparison with
flood events at river basins.

In the Table 1, we list the flood detection performance20

compared with DFO, MODIS and discharge, respectively.
GRACE was able to detect 81 % of flood events recorded
by DFO and 87 % of flood events recorded by MODIS. If we
summed all flood events from the 261 river basins, GRACE-
based flood days could identify 53 % flood events derived25

from discharges. The percentage of river basins with POD
values greater than or equal to 0.5 was 62 %.

4.6 Uncertainty analysis

The uncertainty analysis performed in this study mainly fo-
cused on the selection of the extreme precipitation thresh- 30

old. The most common method for determining the extreme
precipitation threshold is to use the quantile of the analyzed
time series, considering either the quantile of the entire time
series (QETS) data or the quantile of wet days with daily
precipitation greater than 1 mm (QWDTS). This study com- 35

pared the different PODs which were obtained by setting dif-
ferent quantile threshold scenarios when comparing with the
DFO database. We selected the 90th, 95th and 99th quan-
tiles for the two methods described above. Figure 16 shows
that the selection of different thresholds in the two extreme- 40

precipitation scenarios influenced the flood extraction accu-
racy of the POD, with contributions ranging from 72.4 % to
81.4 %. This shows that the selected thresholds can affect
the detection rate of approximately 9 % (roughly 214) of the
flood events. We also provide the six products derived based 45

on these two constraints for further analysis and use by re-
searchers.

5 Data usage instructions

The data obtained herein are provided using the polygon
shapefile (SHP file) format. A separate file is provided for 50

each day, and each file represents the global flood day dis-
tribution. The spatial resolution is 1◦, covering the range of
60◦ S–60◦ N from 1 April 2002 to 31 August 2016. The SHP
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Figure 10. Flood inundation information recorded by the DFO (dark blue polygon), MODIS (red pixels) and GRACE (light blue) showing
(a) the ID-2167 flood event that occurred from 22 February to 17 March 2003, (b) the ID-2601 flood event that occurred from 11 to
23 December 2004, (c) the ID-2566 flood event that occurred from 15 September to 1 October 2004 and (d) the ID-4319 flood event that
occurred from 5 December 2015 to 26 January 2016.

Table 1. Flood detection performance compared with DFO, MODIS and discharge data.

DFO (no. of MODIS (no. of Discharge (no. of Discharge (no. of
flood events) flood events) flood events) river basins)

Total 2380 807 10 472 261
Detection 1917 703 5597 156 (POD≥ 0.5)
Percent 81 % 87 % 53 % 62 %

files have two fields, namely “ID” and “Value”: ID represents
the index number of the 1◦ grid, and Value is a binary variable
(with a value of zero or one) indicating whether a flood oc-
curred on a specific day. This flood day product can be used
to analyze the spatial distributions of historical flood days5

within a 60◦ north–south latitude and to extract specific flood
events in combination with historical data from observation
sites. At the same time, the products are obtained based on
observed data and can be used to verify flood model results.
Considering that the El Niño–Southern Oscillation affects10

both drought and flood events in different parts of the world,
these data can be used to further analyze the impacts of the El
Niño–Southern Oscillation on flood days around the world.

6 Data availability

The flood day product produced in this study can be obtained 15

from https://doi.org/10.5281/zenodo.6831384 (Zhang et al.,
2022b).

7 Conclusion and discussion

This study successfully extracted global flood days using
GRACE TWS and extreme precipitation data between 60◦ S 20

and 60◦ N from 1 April 2002 to 31 August 2016. The re-
sults were compared in time and space with the flood events
recorded by the DFO, MODIS and GRDC discharge data. It
showed that GRACE-based flood events could identify 81 %
of the flood events recorded by the DFO and 87 % flood 25

events derived from MODIS. To further verify the reliabil-
ity of our GRACE-based flood products, we compared them

https://doi.org/10.5281/zenodo.6831384
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Figure 11. Validation of some flood events recorded by social media and news but not by the DFO.

Figure 12. The GFS of 3408 discharge sites around the world. Hatching denotes no data.

with the flood events extracted from global GRDC discharge
data, and the POD greater than or equal to 0.5 reached 62 %
at the river basin scale. Moreover, we selected representative
flood events not recorded by the DFO but recorded by social
media or the news in different regions of the world as verifi-5

cation examples. These results also showed that our GRACE-
based flood days could identify and supplement flood events
not recorded by the DFO. The value of our product is mainly
reflected in the following aspects. First, the GRACE-based
flood days own wide coverage (covering between 60◦ S and10

60◦ N). Second, the information is continuous in time and
space, and the number of flood days in different areas or on
different research timescales can be calculated according to

research needs, which makes up for the lack of flood events
due to weather conditions in the MODIS dataset and missing 15

records in the DFO dataset. Third, it provides not only im-
portant data support for the spatiotemporal distributions and
attributions of global flood events but also a reference for
large-scale quasi-real-time flood event monitoring with the
development of GRACE-FO and the quality improvement of 20

GRACE daily data.
However, we acknowledge that there are some limitations

to these data. First, we used extreme precipitation to con-
strain the data, and the detection ability of some small floods
was, thus, insufficient. Second, considering the regional dif- 25

ferences in precipitation at the GRACE resolution level, the
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Figure 13. Flood event distribution in the Level 4 basins. Hatching denotes no data.

Figure 14. The POD values in the Level 4 basins. Hatching denotes no data.

Figure 15. Histogram of the POD in the 261 river basins.

maximum precipitation under the GRACE grid can retain
the signal of extreme precipitation to the greatest extent. We
have also tried to take the mean value of the precipitation
covered by the GRACE grid, but this led to many missing
flood events. Third, the high-frequency signals of GRACE5

TWS may result in the loss of some flood events, as previ-
ously demonstrated. Although the FPI can supplement some
flood events that were not identified by high-frequency sig-
nals, it can not guarantee that all flood events lost due to
high-frequency signals could be accounted for. Fourth, the10

GRACE-based days are affected by ocean signals around

Figure 16. Influence of the selected threshold and extreme precip-
itation standard on the POD.

island countries due to the coarse data resolution, and re-
searchers should be careful when using these data in such
areas. Fifth, we were not able to compute the false detection
of flood events. Due to observation difficulties, a complete 15

and correct global record of floods is unavailable. This also
highlights the importance of this study, which tries to provide
a new approach for detecting global flood events. Although
we could not calculate the false alarm rate, we could calcu-
late the corresponding detection rate (i.e., POD) for the exist- 20

ing recorded floods and selected larger flood events recorded
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by news reports or social media (not recorded by DFO) for
further comparison. Sixth, we cannot correctly separate spe-
cific flood events from GRACE-based flood days nor can we
separate false flood detection from unrecorded flood cases;
these issues require further study in the future.5
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