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Abstract. The Earth climate system is out of energy balance and heat has accumulated
continuously over the past decades, warming the ocean, the land, the cryosphere and the
atmosphere. According to the 6™ Assessment Working Group | Report of the Intergovernmental
Panel on Climate Change, this planetary warming over multiple decades is human-driven and
results in unprecedented and committed changes to the Earth system, with adverse impacts for
ecosystems and human systems. The Earth heat inventory provides a measure of the Earth energy
imbalance (EEI), and allows for quantifying how much heat has accumulated in the Earth system,
and where the heat is stored. Here we show that the Earth’s system has continued to accumulate
heat, with 381 + 61 ZJ from 1971 to 2020. This is equivalent to a heating rate (i.e., the EEI) of
0.48 £ 0.1 W m2. The majority, about 89 %, of this heat is stored in the ocean, followed by about
6 % on land, 1 % in the atmosphere, and about 4 % is available for melting the cryosphere. Over
the most recent period 2006-2020, the EEI amounts to 0.76 + 0.2 Wm™. The Earth Energy
Imbalance is the most fundamental global climate indicator that the scientific community and the
public can use as the measure of how well the world is doing in the task of bringing anthropogenic
climate change under control. Moreover, this indicator is highly complementary to other
established ones like global mean surface temperature as it represents a robust measure of the rate
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of climate change, and its future commitment. We call for an implementation of the Earth energy
imbalance into the Paris agreement’s global stocktake based on best available science. The Earth
heat inventory in this study, updated from von Schuckmann et al., 2020, is underpinned by
worldwide multidisciplinary collaboration and demonstrates the critical importance of concerted
international efforts for climate change monitoring and community-based recommendations and
we also call for urgently needed actions for enabling continuity, archiving, rescuing and calibrating
efforts to assure improved and long-term monitoring capacity of the global climate observing
system.

Introduction

The Earth energy imbalance (EEI) is the most fundamental indicator for climate change, as it tells
us if, how much, how fast and where the Earth climate is warming, and how this warming evolves
in the future (Hansen et al., 2011, 2005; von Schuckmann et al., 2016). The EEI is given by the
difference between incoming solar radiation and outgoing radiation, which determines the net
radiative flux at the Top Of the Atmosphere (TOA). Today, the Earth climate system is out of
energy balance, and consequently, heat has accumulated continuously over the past decades,
warming the ocean, the land, the cryosphere and the atmosphere, determining the Earth heat
inventory (Fig. 1, von Schuckmann et al., 2020). This planetary warming is human-driven and
results in unprecedented and committed changes to the Earth system (Fig. 1) (Forster et al., 2022),
with adverse impacts for ecosystems and human systems (IPCC, 2022a). As long as this imbalance
persists, or even increases, planet Earth will keep gaining energy, increasing planetary warming
(Hansen et al., 2005; 2017). Today the EEI can be best estimated from the quantification of the
Earth heat inventory, complemented by direct measurements from space (von Schuckmann et al.,
2016; Loeb et al., 2021). In addition, the Earth heat inventory as derived from multiple sources of
measurements and models also allows to unravel where the energy — mostly in the form of heat —
is stored in the Earth system across all components (von Schuckmann et al., 2020). Results of the
first internationally driven initiative on the Earth heat inventory (von Schuckmann et al., 2020) do
not only show how much and where heat has accumulated in the Earth system, but have also shown
for the first time that the Earth energy imbalance has increased over the recent decade. This
increase is expected to have fundamental implications for Earth climate, and several potential
drivers have been discussed recently (Hakuba et al., 2021; Kramer et al., 2021; Loeb et al., 2021).

The Earth system responds to an imposed radiative forcing through a number of feedbacks, which
operate on various different timescales. Earth’s radiative response is complex, comprising a variety
of climate feedbacks (e.g., water vapor feedback, cloud feedbacks, ice-albedo feedback) (Forster
et al., 2022). Conceptually, the relationships between EEI, radiative forcing and surface
temperature change can be expressed as (Gregory & Andrews, 2016):

ANToA=AFerr— | arp|ATs, 1)

where ANToa is the Earth's net energy imbalance at TOA (in W m™2), AFerr is the effective
radiative forcing (W m2), ATs is the global surface temperature anomaly (K) relative to the
equilibrium state and orp is the net total feedback parameter (W m2K™), which represents the
combined effect of the various climate feedbacks. Essentially, arp in Eq. (1) can be viewed as a
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measure of how efficient the system is at restoring radiative equilibrium for a unit surface
temperature rise. Thus, ANToa represents the difference between the applied radiative forcing and
Earth's radiative response through climate feedbacks associated with surface temperature increase
(e.g., Hansen et al., 2011). Observation-based estimates of ANToa are therefore crucial both to our
understanding of past climate change and for refining projections of future climate change
(Gregory & Andrews, 2016; Kuhlbrodt & Gregory, 2012). The long atmospheric lifetime of carbon
dioxide means that ANToa, AFerr and ATs will remain positive for centuries, even with substantial
reductions in greenhouse gas emissions, and lead to substantial sea-level rise, ocean warming and
ice shelf loss (Cheng et al., 2019; Forster et al., 2022; Hansen et al., 2017; IPCC, 2021; Nauels et
al., 2017). In other words, warming will continue even if atmospheric greenhouse gas (GHG)
amounts are stabilized at today's level, and the EEI defines additional global warming that will
occur without further change in forcing (Hansen et al., 2017). The EEI is less subject to decadal
variations associated with internal climate variability than global surface temperature and therefore
represents a robust measure of the rate of climate change and its future commitment (Cheng et al.,
2017; Forster et al., 2022; Loeb et al., 2018; Palmer & McNeall, 2014; von Schuckmann et al.,
2016).
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Fig. 1: Schematic overview on the central role of the Earth heat inventory and its linkage to
anthropogenic emissions, the Earth energy imbalance, change in the Earth system and
implications for ecosystems and human systems. The Earth heat inventory plays a central role for
climate change monitoring as it provides information on the absolute value of the Earth energy
imbalance, the total Earth system heat gain, and how much and where heat is stored in the different
Earth system components. Examples of associated global-scale changes in the Earth system as
assessed in (Gulev et al., 2021) are drawn, together with major implications for the ecosystem and
human systems (IPCC, 2022b). Upward arrows indicate increasing change, downward arrows
indicate decreasing change, and turning arrows indicate change in both directions. The % for heat
stored in the Earth system are provided over the period 2006-2020 (see section 6).

The heat gain in the Earth system from a positive EEI results in directly and indirectly triggered
changes in the climate system, with a variety of implications for the environment and human
systems (Fig. 1). One of the most direct implications from a positive EEI is the rise of Global Mean
Surface Temperature (GMST). The accumulation and storage of surplus anthropogenic heat leads
to ocean warming and thermal expansion of the water column, which together with terrestrial ice
melt leads to sea level rise (WCRP Global Sea Level Budget Group, 2018). Moreover, there are
various facets of impacts from ocean warming such as on climate extremes, which are provided in
more detail in a recent review (Cheng et al., 2022a). The heat accumulation in the Earth system
also leads to warming of the atmosphere, particularly to a temperature increase in the troposphere,
leading to water vapor increase and changes in atmospheric circulation (Gulev et al., 2021).

On land, the heat accumulation leads to an increase in ground heat storage, which in turn triggers
an increase in ground surface temperatures that may increase soil respiration, and may lead to a
decrease in soil water, depending on the climatic and meteorological conditions and factors such
as land cover and soil characteristics (Cuesta-Valero et al., 2022a; Gulev et al., 2021). Moreover,
inland water heat storage increases, leading to increases in lake water temperatures that may result
in algal blooms and lake stratification, and typically leads to a decrease in ice cover. Heat gain in
the Earth system also induces an increase in permafrost heat content, which in turn leads to
disruptive changes in ground morphology, CH4 and CO2 emissions, and a decrease in permafrost
extent and ground ice volume. More details are synthesized in (Cuesta-Valero et al., 2022). In the
cryosphere associated changes include a loss of glaciers, ice sheets and Arctic sea ice (IPCC, 2019,
2021a). These human-induced changes have already impacted terrestrial, freshwater and ocean
ecosystems, and have adverse impacts on human systems (Fig.1). Particularly, they have emerged
for ecosystem structure, species ranges and phenology (timing of life cycles), and include adverse
impacts such as for water security and food production, health and wellbeing, cities, settlements
and infrastructures (IPCC, 2022c, see their Fig. SPM.2).

Regularly assessing, quantifying and evaluating the Earth heat inventory creates a unique
opportunity to support the call of action and solution pathways as assessed during the 6%
assessment cycle of the IPCC. Moreover, the Earth heat inventory allows for a regular stock taking
of the implementation of the Paris Agreement! while monitoring progress towards achieving the
purpose of the agreement and its long-term goals based on best available science. These assessment
outcomes further emphasize the need to extend the Global Climate Observing System (GCOS)

! https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
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beyond the strict scientific observation of the climate state to also supporting policy and planning
(GCOS, 2021). Science-driven studies driven by an Earth system view and backboned by
concerted multidisciplinary and international collaborations play here a critical role to support
these objectives (Crisp et al., 2022; Dorigo et al., 2021; von Schuckmann et al., 2020). With this
second study we aim to contribute to a more frequent and regular science-driven update of the state
of the Earth heat inventory as an important indicator of climate change.

Based on the quantification of the Earth heat inventory published in 2020 (von Schuckmann et al.,
2020), we will present the updated results of the Earth heat inventory over the period 1960-2020,
along with the long-term Earth’s system heat gain over this period, and the partitions of where the
heat goes for the ocean, atmosphere, land and cryosphere. Section 2 provides the updates for ocean
heat content, which is based on improved evaluations (e.g., trend evaluation method) and the
addition of further international data products of subsurface temperature. Updated estimates and
refinements for atmospheric heat content are discussed in Section 3. For the land component in
section 4, an improved uncertainty framework is proposed for the ground heat storage estimate,
and new evaluations for inland freshwater heat storage and thawing of permafrost have been
included (Cuesta-Valero et al., 2022a). An update of the heat available to melt the cryosphere is
described in section 5 based on reenforced international collaboration. In section 6, the updated
Earth heat inventory is established and discussed based on the results of sections 2-5. In the final
section, challenges and recommendations for future improved estimates are discussed for each
Earth system component, with associated recommendations for future evolutions of the observing
system.

2. Heat stored in the ocean

Global Ocean Heat Content (OHC) can be estimated directly from subsurface temperature
measurements , which is one of the variables of the in situ component of the Global Ocean
Observing System (GOOS?), and which has continued to evolve during the past century (Abraham
et al., 2013; Gould et al., 2013; Moltmann et al., 2019). The evolution of the ocean observing
system for subsurface temperature measurements is provided for example in Cheng et al. (2022a),
leveraging the transition from historical measures to modern autonomous techniques, which
achieved near-global coverage in the year 2006 (the so-called golden Argo era). Different research
groups have developed gridded products of subsurface temperature fields and ocean heat content
using different processing methodologies, and an exhaustive list can be found for example in
(Abraham et al., 2022; Boyer et al., 2016; Cheng et al., 2022; Gulev et al., 2021; Li et al., 2022,
Savita et al., 2022). Additionally, specific Argo-based products are listed on the Argo web page
(http://www.argo.ucsd.edu/, last access: 12 July 2022). Near-global OHC can also be indirectly
estimated from spatial geodetic measurements by combining sea surface height from altimetry and
ocean mass from gravimetry to solve the sea-level budget equation (Dieng et al., 2017; Llovel et
al., 2014; Meyssignac et al., 2019). Spatial geodetic OHC is available since 2002 and provides full
depth OHC variations (Hakuba et al., 2021; Marti et al., 2022). Ocean reanalysis systems have
also been used to deliver estimates of near-global OHC (Trenberth et al., 2016; von Schuckmann
et al., 2018), and their international assessments show increased agreement with increasing in situ
data availability for the assimilation, particularly after 2006, i.e. when Argo had achieved nearly

2 https://www.goosocean.org/
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global scale data sampling (Fig. 2) (Palmer et al., 2017; Storto et al., 2018, 2019; Meyssignac et
al., 2019).

This initiative relies on the availability of regular updates of data products, their temporal
extensions and direct interactions with the different research groups. A complete view of all
subsurface ocean temperature products can be only achieved through a concerted international
effort and over time, particularly accounting for the continued development of new or improved
OHC products. In this study, we do not achieve a holistic view of all available products but present
a starting point for future international regular assessments of global OHC. A first established
international ensemble mean and standard deviation of near global OHC up to 2018 was
established in von Schuckmann et al. (2020), which has now been updated up to 2020, and further
extended with the addition of 5 new products (Fig. 3). The ensemble spread gives an indication of
the agreement among products and can be used as a proxy for uncertainty. Compared to the results
in von Schuckmann et al. (2020), the spread has increased which can be referred back to the
additional use of data products, the impact of year-to-year variations, and the refined use of the
ensemble spread approach (see below).

Albeit the tremendous improvement of in situ subsurface temperature measurements over time,
estimates of global OHC remain an area of active research to minimize the major effects from
different data processing techniques of the irregular (in space and time) in situ database and
associated sampling characteristics, followed by the choice of the climatology used in the mapping
process, and data bias corrections, which today induce discrepancies between the different
estimates (Allison etal., 2019; Boyer et al., 2016; Cheng et al., 2014, 2018; Good, 2017; GouretskKi
& Cheng, 2020; Savita et al., 2022). Concerns about common errors in the products remain.
Accurate understanding of the uncertainties of the product is an essential element in their use. So
far, a basic assumption is that the error distribution for the observations is Gaussian with a mean
of zero, which has been approximated by an ensemble of various products. However, a more
complete understanding of any apparent trends requires determination of systematic errors (e.g.,
systematic calibration errors), or the impacts of changing observation densities through a synthetic
profile approach (Allison et al., 2019), and of instrument technologies (Wong et al., 2020). These
elements can result in biases across the ensemble, or produce artificial changes in the energetics
of the system (Wunsch, 2020). For example, Li et al. (2022) estimated that assuming linear vertical
interpolation with sparse historical vertical profiles results is an underestimation of global ocean
heat content (and ocean thermal expansion) trends since the 1950s of order 14% compared with
more a sophisticated vertical interpolation scheme (Barker & McDougall, 2020; Li et al., 2022),
with the greatest systematic underestimates at latitudes 15-20°N and S. Li et al. (2022) also found
that interannual differences between various XBT corrections were similar to the differences when
only higher quality hydrographic data were included, implying the need for improved time
dependent XBT corrections. The uncertainty can also be estimated in other ways including some
purely statistical methods (Cheng et al., 2019; Levitus et al., 2012; Maclntosh et al., 2017) or
methods explicitly accounting for the error sources (Gaillard et al., 2016; Lyman & Johnson, 2014;
von Schuckmann & Le Traon, 2011). Each method has its caveats; for example, the error
covariances are mostly unknown, and must be estimated a priori. For this study, adopting a
straightforward method with a “data democracy” strategy (i.e., all OHC estimates have been given
equal weights) has been chosen as a starting point, differently from the ensemble approach adopted
in ARG (Forster et al., 2022).
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Figure 2. Ensemble mean time series and ensemble standard deviation (95%, shaded) of global
ocean heat content (OHC) anomalies relative to the 2005-2020 climatology for the 0—-300m
(gray), 0—700m (blue), 0-2000m (yellow) and 700-2000m depth layer (green). The ensemble mean
is an outcome of an international assessment initiative, and all products used are referenced in
the legend of Fig. 3. The trends derived from the time series are given in Table 1. Note that values
are given for the ocean surface area between 60°S and 60°N and are limited to the 300m
bathymetry of each product.
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Figure 3. Trends of global ocean heat content (OHC) as derived from different products (colors),
and using LOWESS (see text for more details). References are given in the figure legend, except,
CMEMS (CORA, Copernicus Marine Ocean Monitoring Indicator,
http://marine.copernicus.eu/science-learning/ocean-monitoring-indicators, last access: 28 June
2022), EN.4.2.2.c14 ( (Good et al., 2013b) with (Cheng et al., 2015) XBT and (Gouretski & Cheng,
2020) MBT bias corrections, and the method of (Palmer et al., 2007)). CSIRO-GEOMAR-NOC
(Argo) (Domingues et al., 2008; Roemmich et al., 2015; Wijffels et al., 2016), CSIRO-GEOMAR-
NOC (hist) (Church et al., 2011; Domingues et al., 2008), NOC (National Oceanographic
Institution) (Desbruyeéres et al., 2017) and the Argo dataset MOAA GPV (Hosoda et al., 2008).
Results from the Copernicus Marine reanalysis ensemble mean have been added as well (CMEMS,
2022) for comparison, but are not considered for the ensemble mean in Fig. 1. The ensemble mean
and standard deviation (95% confidence interval) are indicated in black. The shaded areas show
trends from different depth layer integrations, i.e., 0-300m (light turquoise), 0—700m (light blue),
0-2000m (purple) and 700-2000m (light purple). For each integration depth layer, trends are
evaluated over the three study periods, i.e., historical (1960—2020), altimeter era (1993-2020)
and golden Argo era (2006— 2020). See text for more details on the international assessment
criteria. Note that values are given for the ocean surface area (see text for more details).
References as indicated in the legend include (Cheng et al., 2017; Gaillard et al., 2016; Good et
al., 2013a; Ishii et al., 2017; Kuusela & Giglio, 2022; Levitus et al., 2012; Li et al., 2017; Li et al.,
2022; Lyman & Johnson, 2014; Roemmich & Gilson, 2009; von Schuckmann & Le Traon, 2011).
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The continuity of this activity will help to further expand international collaboration and to unravel
uncertainties due to the community’s collective efforts on data quality as well as on detecting and
reducing processing uncertainties. It also provides up-to-date scientific knowledge of ocean
warming. Products used for this assessment are referenced in the caption of Fig. 3. Estimates of
OHC have been provided by the different research groups under homogeneous criteria: all
estimates use a coherent ocean volume limited by the 300m isobath (700m for Li et al. 2022) of
each product and are limited to 60°S—60°N since most observational products exclude high latitude
ocean areas because of the low observational coverage, and only annual averages have been used.
The ocean areas within 60°S—-60°N includes 91% of the global ocean surface area, and limiting to
the 300m isobath neglects the contributions from coastal and shallow waters, so the resultant OHC
trends will be underestimated if these ocean regions are warming. For example, neglecting shallow
waters is estimated to account for more than 10% for 0-2000m OHC trends (Savita et al., 2022;
von Schuckmann et al., 2014), and about 4% for the Arctic area (Mayer et al., 2021a). The
assessment is based on three distinct periods to account for the evolution of the observing system,
i.e., 1960-2020 (i.e., “historical’), 1993-2020 (i.e., “altimeter era”) and 2006-2020 (i.e., “golden
Argo era”). All time series go up to 2020 — which was one of the principal limitations for the
inclusion of some products. Our final estimates of OHC for the 0-300m, 0-700m, 700-2000m and
0-2000 m depth layers are the ensemble average of all products, with the uncertainty range defined
by the standard deviation (2o, 95% confidence interval) of the corresponding ensemble used (Fig.
2).

For the trend evaluation we have followed the most recent study of (Cheng et al., 2022), and used
a Locally Weighted Scatterplot Smoothing (LOWESS) approach to reduce the effect of high-
frequency variability (e.g., year-to-year variability), data noise or changes in the observing system
as it relies on a weighted regression (Cleveland, 1979) within a prescribed span width of 25 years
for the historical and altimeter era, and 15 years for the recent period 2006-2020. The change in
OHC(t) over a specific period, AOHC, is then calculated by subtracting the first value to the last
value of the fitted time series, OHCLowess(t), to obtain the trend while dividing by the considered
period. To obtain an uncertainty range on the trend estimate, and take into account the sensitivity
of the calculation to interannual variability, we implement a Monte-Carlo simulation to generate
1000 surrogate series OHCrandom(t), under the assumption of a given mean (our “true” time series
OHC(t)) (Cheng et al., 2022). Each surrogate OHCrandom(t) consists of the fitted “true” time serie
OHC(t) plus a randomly generated residual which follows a normal (Gaussian) distribution, and
which is included in an envelope equal to 2 times the uncertainty associated to the time series.
Then, a LOWESS fitted line is estimated for each of the 1000 surrogates. The 95% confidence
interval for the trend is then calculated based on + 2 times the standard deviation (x 2-c) of all
1000 trends of the surrogates. However, the use of either trend estimates following a linear, or
LOWESS approach, or the approach discussed in (Palmer et al., 2021) lead to consistent results
within uncertainties (not shown).

In agreement with (Cheng et al., 2019; Gulev et al., 2021), our results confirm a continuous
increase of ocean warming over the entire study period (Fig. 2). Moreover, rates of global ocean
warming have increased over the 3 different study periods, i.e., historical up to the recent decadal
change. The trend values are all given in Table 1. The major fraction of heat is stored in the upper
ocean (0—300 m and 0—700 m depth). However, heat storage at intermediate depth (700-2000 m)
increases at a nearly comparable rate as reported for the 0—300 m depth layer (Table 1, Fig. 3).
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There is a general agreement among the 16 international OHC estimates (Fig. 3). However, for
some periods and depth layers the standard deviation (95% confidence level) reaches maxima to
about 0.3 W m™2. All products agree on the fact that global ocean warming rates have increased in
the past decades and doubled since the beginning of the altimeter era (1993-2020 compared with
1960-2020) (Fig. 3). Moreover, there is a clear indication that heat sequestration took place in the
700-2000m depth layer over the past 6 decades linked to an increase in OHC trends over time (Fig.
3). Ocean warming rates for the 0-2000 m depth layer reached record rates of 1.03 (0.62) +
0.2 W m™2 over the period 2006-2020 for the ocean (global) area, consistent with what had been
reported in (Johnson et al., 2022).

Ocean Heat Content linear trends (W/m?)

0-300m 0-700m 0-2000m 700-2000m 0-bottom 0-bottom, 0-bottom,
Hakuba et al., Marti et al.,
2021 2022

1960-2020 0.14+0.04 021%01 032+0.1 0.11+0.04 0.35+0.1

1971-2020 018+01 0.27+0.1 040+0.1 0.13+0.03 0.43+0.1
1993-2020 024+01 037+0.1 055+0.2 0.18+0.04 0.61+0.2
2006-2020 027+01 0.39%0.1 0.62+0.2 0.23+0.1 0.68+0.3 0.88+0.24 0.87+0.2

Table 1: OHC trends using LOWESS (Locally Weighted Scatterplot Smoothing, see text for more
details) as derived from the ensemble mean (Fig. 2) for different time intervals, as well as different
integration depths. The regression was done for each time period (1960 - 2020, 1971 - 2020, 1993
- 2020, 2006 -2020). A time window of 25 years was used for the periods that allowed it (1960 -
2020, 1971 - 2020, 1993 - 2020). For the period 2006 - 2020, a time window of 15 years was used.
Note that values are given in Wm-2 relative to the global surface. See also text and Fig. 2-3 for
more details. Additionally, values for satellite-derived estimates of OHC have been added for the
most recent period, updated after Hakuba et al., 2021 and Marti et al., 2022.

For the deep OHC changes below 2000 m, we adapted an updated estimate from (Purkey &
Johnson, 2010) (PG10 hereinafter) from 1992 to 2020, which is a constant linear trend estimate
(0.97 £ 0.48 ZJ yr?, 0.06 £0.03 W m™?) derived from a global integration of OHC below 2000 m
using basin scale deep ocean temperature trends from repeated hydrographic sections. Some recent
studies strengthened the results in PG10 (Desbruyeéres et al., 2016; Zanna et al., 2019). Desbruyeéres
et al. (2016) examined the decadal change of the deep and abyssal OHC trends below 2000 m in
the 1990s and 2000s, suggesting that there has not been a significant change in the rate of decadal
global deep/abyssal warming from the 1990s to the 2000s and the overall deep ocean warming rate
is consistent with PG10. Using a Green’s function method and ECCO reanalysis data, Zanna et al.
(2019) reported a deep ocean warming rate of ~0.06 W m™2 during the 2000s, consistent with PG10
used in this study. Zanna et al. (2019) shows a fairly weak global trend during the 1990s, different
from observation-based estimates. This mismatch might come from how surface-deep connections
are represented in ECCO reanalysis data and the use of time-mean Green’s functions in Zanna et
al. (2019), as well as from the sparse coverage of the observational network for relatively short
time spans. Furthermore, combining hydrographic and deep-Argo floats, a recent study (Johnson
et al., 2019) reported an accelerated warming in the South Pacific Ocean in recent years, but a
global estimate of the OHC rate of change over time is not available yet, and the rates of warming
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may vary by ocean basin. Comparison of the results in table 1 with OHC estimates derived from
the space geodetic approach (Hakuba, 2019; Marti et al., 2022) shows overall agreement within
uncertainties.

Before 1992, we assume zero OHC trend below 2000 m due to insufficient global observations
below 2000m, following the methodology in some studies (Cheng et al. 2017; 2022), IPCC-AR5
(Rhein et al., 2013) and IPCC-ARG (Forster et al., 2022; Gulev et al. 2021). The deep warming is
likely driven by decadal variability in deep water formation rates, which could have been in a non-
steady state mode prior to 1990, introducing additional uncertainty to the pre-1990 OHC estimates.
Using surface temperature observations and assuming the heat is advected by mean circulation,
Zanna et al. (2019) shows a near-zero (small cooling trend) OHC trend below 2000 m from the
1960s to 1980s, suggesting the trend before 1992 might be small. The derived time following PG10
series after 1991 and zero-trend before 1992 is used for the Earth energy inventory in Sect. 5. A
centralized (around the year 2006) uncertainty approach has been applied for the deep (>2000 m
depth) OHC estimate following the method of Cheng et al. (2017), which allows us to extract an
uncertainty range over the period 1993-2018 within the given [lower (0.96-0.48 ZJ yr't), upper
(0.96+0.48 ZJ yr 1)] range of the deep OHC trend estimate. We then extend the obtained
uncertainty estimate back from 1992 to 1960, with 0 OHC anomaly.

3. Heat available to warm the atmosphere

The heat content of the atmosphere is small in absolute terms, since its heat capacity as a gas is
small compared to the one of the other Earth subsystems discussed in this paper. Yet it is by no
means negligible, since in relative terms, the atmospheric heat gain is rapid over the recent decades
and has a high impact on human life (Fig. 1). As for Earth’s surface, widespread and rapid changes
are ongoing in the atmosphere due to human-induced climate change (IPCC, 2021).

Atmospheric observations show a warming of the troposphere and a cooling and contraction of the
stratosphere since at least 1979 (Pisoft et al., 2021; Steiner et al., 2020a). In the tropics, the upper
troposphere has warmed faster than the near-surface atmosphere since at least 2001, as seen with
the new observation technique of GPS radio occultation (Gulev et al., 2021; Ladstédter et al., 2023;
Steiner et al., 2020a; Steiner et al., 2020b), while observations based on microwave soundings
have likely underestimated tropospheric temperature trends in the past (Santer et al., 2021; Zou et
al., 2021).

Recently, a continuous rise of the tropopause has been observed for 1980 to 2020 over the northern
hemisphere (Meng et al., 2022). The increase is equally due to tropospheric warming and
stratospheric cooling in the period 1980 to 2000 while the rise after 2000 resulted primarily from
enhanced tropospheric heat gain. Moreover, indications exist on a widening of the tropical belt (Fu
et al., 2019; Grise et al., 2019; Staten et al., 2020) as well as on changes in the seasonal cycle
(Santer et al., 2022). However, changes in atmospheric circulation and conditions for extreme
weather are still subject to uncertainty (Cohen et al., 2020) while the occurrence of heat-related
extreme weather events has clearly increased over the recent decades (Cohen et al., 2020; IPCC,
2021b), with high risks for society, economy, and the environment (Fischer et al., 2021).
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A regular assessment of atmospheric heat content changes is hence critical for a complete overview
of energy and mass exchanges with other climate components and for a complete energy budgeting
of Earth’s climate system.

3.1 Atmospheric heat content

In a globally averaged and vertically integrated sense, heat accumulation in the atmosphere arises
from a small imbalance between net energy fluxes at the top-of-atmosphere (TOA) and the surface
(denoted s). The heat energy budget of the vertically integrated and globally averaged atmosphere
(indicated by the global averaging operator <.>) reads as follows (Mayer et al., 2017):

OE,

ot

where the vertically integrated atmospheric energy content AE per unit surface area [Jm?] reads

>= < Npog > —<F>—<Fpow >—<Fpg >, (1)

Ex=["p (T +9(z—2) +Lg+3V?)dz.  (2)

In Equation (1), Ntoa is the net radiation at top of the atmosphere, Fsis the net surface energy flux
defined as the sum of net surface radiation and latent and sensible heat fluxes, Fsnow denotes the
latent heat flux associated with snowfall, and Fpe additionally accounts for sensible heat of
precipitation. See Mayer et al. (2017) or von Schuckmann et al. (2020) for a discussion of the latter
two terms, which are small on a global scale and hence often neglected.

Equation (2), formulated in mean-sea-level altitude (z) coordinates used here for integrating over
observational data, provides a decomposition of Ea into sensible heat energy (sum of the first two
terms, internal heat energy and gravity potential energy), latent heat energy (third term), and
kinetic energy (fourth term), where p is the air density, cv the specific heat for moist air at constant
volume, T the air temperature, g the acceleration of gravity, Le the temperature-dependent effective
latent heat of condensation Ly or sublimation Ls (the latter relevant below 0 °C), g the specific
humidity of the moist air, and V the wind speed. We neglect atmospheric liquid water droplets and
ice particles as separate species, as their amounts and especially their trends are small.

In computing Ea for the purpose of this update to the von Schuckmann et al. (2020) heat storage
assessment, we continued to use the formulations described therein, including that we refer to the
(geographically aggregated) Ea as atmospheric heat content (AHC) in this context. This
acknowledges the dominance of the heat-related terms in Eq. (2). Briefly, in deriving the AHC
from observational datasets, we accounted for the intrinsic temperature-dependence of the latent
heat of water vapor in formulating Le (for details see Gorfer, 2022) while the reanalysis derivations
approximated Le by constant values of Ly, as this simplification is typically also made in the
assimilating models (e.g., ECMWEF-IFS, 2015). As another small difference, the observational
estimations neglected the kinetic energy term in Eq. (2) while the reanalysis estimations accounted
for it. The resulting differences in AHC anomalies from any of these differences are negligibly
small, however, especially when considering trends over time.

3.2 Datasets and heat content estimation
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Turning to the actual datasets used, the AHC and its changes and trends over time can be quantified
using various data sources, observation-based and reanalyses. Reassessing possible data sources,
we extended the high-quality datasets that we used in the initial von Schuckmann et al. (2020)
assessment. In particular, we updated the time period from 2018 to 2020 and improved the back-
extension from 1980 to 1960. Specifically, the adopted datasets and the related AHC data record
preparations can be summarized as follows.

Atmospheric reanalyses combine observational information from various sources (radiosondes,
satellites, weather stations, etc.) and a dynamical model in a statistically optimal way. These data
have reached a high level of maturity, thanks to continuous improvement work since the early
1990s (Hersbach et al., 2018). Especially reanalyzed thermodynamic state variables, like
temperature and water vapor that are most relevant for AHC computation, are of high quality and
suitable for climate studies, although temporal discontinuities introduced from changing observing
systems continue to deserve due attention (Berrisford et al., 2011; Chiodo & Haimberger, 2010;
Hersbach et al., 2020; Mayer et al., 2021b).

We use the latest generation of reanalyses, including ECMWEF’s Fifth generation reanalysis ERA5
(Bell et al., 2021; Hersbach et al., 2020), JMA’s reanalysis JRAS5 (Kobayashi et al., 2015), and
NASA’s Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA?2)
(Gelaro etal., 2017). ERA5 and JRAS5 are both available over the full joint timeframe of this heat
storage assessment from 1960 to 2020, while MERRAZ2 complements these from 1980 to 2020.
The additional JRA55C reanalysis variant of JRAS55, included for initial inter-comparison in von
Schuckmann et al. (2020), is no longer used since it is available to 2012 only and due to its
similarity to JRA55 is not adding appreciable complementary value.

In addition to these three reanalyses, the datasets from two climate-quality observation techniques
are used, for complementary observational AHC estimates. These include the Wegener Center
(WEGC) multi-satellite radio occultation (RO) data record, WEGC OPSv5.6 (Angerer et al., 2017,
Steiner et al., 2020b), over 2002-2020 and a radiosonde (RS) data record derived from the high-
quality Vaisala sondes RS80/RS92/VS41, WEGC Vaisala (F Ladstadter et al., 2015), covering
1996-2020. These RO and RS data sets provide atmospheric profiles of temperature, specific
humidity, and density that are vertically completed by collocated ERAS5 profiles in domains not
fully covered by the data (e.g., in the lower troposphere for RO or at polar latitudes for RS). Similar
to dropping the JRA55C reanalysis variant for no longer adding appreciable further value, the
simplified AHC-proxy data based on microwave sounding unit (MSU) observational data, inter-
compared in von Schuckmann et al. (2020), are no longer used.

From the observational data, the AHC is estimated by first evaluating Eq. (2) (using all terms for
total and the third term only for latent AHC) at each available profile location and subsequently
deriving it as volumetric heat content, for up to global scale, from vertical integration, temporal
averaging, and geographic aggregation according to the approach summarized in von Schuckmann
et al. (2020) and described in detail by (Gorfer, 2022). For the reanalyses, the estimation is based
on the full gridded fields. Applying the approach for crosscheck to reanalysis profiles sub-sampled
at observation locations only, confirms its validity as it accurately leads to the same AHC results
as from the full gridded fields.
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Overall, the ensemble spread of all the atmospheric datasets used is deemed a reasonable proxy
for the uncertainty in the ensemble-mean annual AHC anomaly data, in particular since 1980
during the “satellite observations era” (e.g., Hersbach et al., 2020; Steiner et al., 2020a). The
uncertainties of the trend estimates, i.e., of the AHC increase rates (“AHC gain”) obtained from
linear fitting to the anomaly data over periods of interest (see next Sect. 3.3), are weakly depending
on these data uncertainties anyway, however, since the trend uncertainties are dominated by the
inter-annual natural variability in the data, which is significantly larger than the data uncertainties
expressed by the ensemble spread (see Figure 4).

3.3 Atmospheric heat content change since 1960 and its amplification

Figure 4 shows the resulting global AHC change inventory over 1960 to 2020 (61 years record),
in terms of total AHC anomalies for each data type (Fig. 4a), and for the ensemble mean with
trends for selected periods and uncertainty estimates (Fig. 4c). The selected trend periods align
with those for ocean data and with availability of atmospheric data sets (see subsection 3.2 above)
and represent a reference trend 1961-2000 plus recent trends of the last about 30, 20, and 15 years,
respectively. Latent AHC anomalies, a key component of the AHC (Matthews et al., 2022), are
also shown (Fig. 4b and 4d). Compared to von Schuckmann et al. (2020), the AHC data have the
ENSO signal removed (with ENSO regressed out via the Nino 3.4 Index; and cross-check with
non-ENSO-corrected data showing that trend differences are reasonably small). Variability due to
volcanic eruptions is still included, however, and may somewhat influence the trends over 1993-
2020, which start in the cold anomaly after the Pinatubo eruption (Santer et al., 2001).

The latent AHC (Fig. 4b and 4d), which accounts for about one-quarter of the total AHC, exhibits
a qualitatively similar temporal evolution as total AHC, however with larger relative uncertainty
compared to the total AHC. The RO and RS data sets in Fig. 3b show some differences, particularly
the low latent AHC values in the 1990s and early 2000s from the RS WEGC Vaisala data set likely
stem from known dry biases of the RS80/RS90/RS92 humidity sensors (Verver et al., 2006; Vomel
etal., 2007). Estimated trends based on these RS data are thus likely too high, although the overall
increase in latent AHC is substantial also in the other datasets.
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Figure 4. Annual-mean global AHC anomalies from 1960 to 2020 of total AHC (left) and latent-
only AHC (right), respectively, of three different reanalyses and two different observational
datasets shown together with their mean (top), and the mean AHC anomaly shown together with
four representative AHC trends and ensemble spread measures of its underlying datasets (bottom).
The in-panel legends identify the individual datasets (top) and the selected trend periods together
with the associated trend values (plus 90 % confidence range) and ensemble spread measures
(bottom), the latter including the time-average standard deviation and minimum/maximum
deviations of the individual datasets from the mean.

The results clearly show that the AHC trends have increased from the earlier decades represented
by the 1961-2000 trend of near 1.7 TW. We find the mean trend about 2.5 times higher over 1993-
2020 (about 5.3 TW) and about four times higher in the most recent two decades (about 6-7 TW),
a period that is already covered also by the RO and RS records. Latent AHC trends in the most
recent periods are 3 times larger than the 1961-2000 reference period. Since 1971, the heat gain in
the atmosphere amounts to 5 + 1 ZJ (see also Fig. 8).

The remarkable amplification of total AHC and latent AHC trends is highlighted in Figure 5 and
summarized in Table 2 for the representative recent periods vs. the 1961-2000 reference period.
The 1961-2000 and 1993-2020 periods were covered by reanalysis only, while the WEGC Vaisala
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RS dataset additionally covers the 2001-2020 and 2006-2020 periods and the RO dataset the most
recent period (see dataset descriptions in subsection 3.2). The larger diversity of recent datasets
induces more spread; for example, the RS dataset shows an amplification factor of near 4.5 in the
global total AHC gain for 2001-2020, while the amplification factors from the reanalyses range
from 2.6 to 3.8. Amplifications are generally largest in the southern hemisphere extratropics, where
also the 1961-2000 reference gain is smallest, and weakest in the tropics. In the most recent period
2006-2020, the amplification factors are strongest, with the RS and RO data sets on the high end
of the spread (near factor 5 in global total AHC) and somewhat smaller but still high from the
reanalyses (around factor 4).

Climate change amplification of AHC gain vs Ref.1961-2000
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Figure 5. Amplification of long-term trends in AHC anomalies (“AHC gain”) for total AHC (left)
and latent-only AHC (right) in four geographic domains (global, northern-hemisphere
extratropics, tropics, southern-hemisphere extratropics) for three recent time periods (legend
upper-left) expressed as a ratio of the trend of each period relative to the trend in the previous-
century reference period 1961-2000 (noted below the “amplification factor = 1" reference line).
The amplification factor for each recent-trend case (for the four domains of both total and latent
AHC) is depicted for the mean anomaly serving as best estimate (larger black circles), the related
recent trends in the individual-dataset anomalies (colored circles as per upper-right legend). The
related 90 % uncertainty range (black “error bar”) is estimated from the spread (standard
deviation) of the individual-dataset amplification factors. The trend in the mean anomaly over
1961-2000 is used as the reference AHC gain.
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For the latent AHC amplification factors, we see moderate values in the 1993-2020 period in the
global mean and tropics. In the tropics, the lower uncertainty bound for amplification is slightly
below 1 during all three recent trend periods. The spread of the amplification factors increases for
the most recent periods, which is on the one hand due to the shorter period duration. The range
increase is also related to the introduction of the RS and RO data sets after 1993-2020 which
contribute the largest and smallest latent AHC gain amplification factors. For 2006-2020, the
global mean amplification factor from RO is about 2, whereas from the RS data set it is near 5.
Regarding latitudinal bands, the amplification factors are again strongest in the extratropics, where
also the 1961-2000 reference gains are smallest, exhibiting a large spread especially in the southern
extratropics. The relatively large amplification factors of the RS WEGC Vaisala data set are likely
exaggerated due to the well documented dry bias of the early RS humidity sensors as noted above
(Vomel, 2007; Verver et al., 2006).

Despite the uncertainties and spread described, the overall message from Figure 5 and Table 2 is
very clear and substantially reinforcing the evidence from the initial von Schuckmann et al. (2020)
assessment: the trends in the AHC, including in its latent heat component, show that atmospheric
heat gain has strongly increased over the recent decades.

Total AHC Gain Latent AHC Gain
Domain Time range [Gain ZJ/decade (TW) Amplification vs Ref. |Gain ZJ/decade (TW) Amplification vs Ref.
GLOBAL 1993-2020 (1.68+0.24 (5.33+0.76) 3.19[2.631t03.34] |0.50+0.06 (1.59+0.20) 2.51 [2.05 to 2.91]
2001-2020 |1.91+0.34 (6.04+1.09) 3.62[2.27t04.73] |0.60+0.09 (1.90+£0.27) 3.39[1.79t0 5.13]
2006-2020 |2.29+0.54 (7.25+1.72) 4.35[3.33t05.36] |0.65+0.13 (2.05+0.42) 3.37 [1.55t0 5.18]
Ref. 1961-2000 |0.53+0.18 (1.67+0.56) 1.0 0.19+0.06 (0.61+0.18) 1.0
NH20-90N 1993-2020 (0.62+0.11 (1.97+0.35) 5.44[4.86105.92] |0.16+0.02 (0.50+0.08) 4.57 [3.90 to 5.26]
2001-2020 |0.64+0.15(2.03+0.47) 5.62[4.261t06.48] |0.18+0.03 (0.58+0.11) 5.50 [4.79 t0 6.31]
2006-2020 |0.79+0.25 (2.4940.80) 6.89[5.51t08.26] |0.22+0.05 (0.70+0.17) 6.32[4.36 to 8.28]
Ref. 1961-2000 |0.11+0.08 (0.36+0.24) 1.0 0.03+0.02 (0.11£0.06) 1.0
TROPICS 1993-2020 (0.60+0.13 (1.90+£0.41) 1.72[1.05t01.98] [0.24+0.04 (0.75+£0.12) 1.58[0.71 to 2.36]
2001-2020 |0.89+0.15 (2.82+0.47) 2.56[1.20t0 3.77] |0.31£0.05 (1.00+0.16) 2.52[0.70 to 4.49]
2006-2020 |0.96+0.24 (3.041+0.77) 2.76 [1.86t0 3.67] |0.31+£0.07 (0.9940.22) 2.22[0.48 to 3.96]
Ref. 1961-2000 |0.35+0.08 (1.10+0.25) 1.0 0.14£0.03 (0.45+0.11) 1.0
SH20-90S 1993-2020 (0.46+0.09 (1.46+0.29) 7.14[5.49t07.86] |0.11+0.02 (0.33+0.05) 6.11 [3.02 to 9.02]
2001-2020 |0.37+0.17 (1.184+0.52) 5.80[3.76to 7.58] |0.10+0.03 (0.32+0.08) 6.31 [2.81 to 9.95]
2006-2020 |0.54+0.25 (1.714£0.79) 8.40[6.99t09.81] |0.11+0.04 (0.36+0.12) 6.87 [3.52 t0 10.22]
Ref. 1961-2000 |0.07+0.06 (0.21+£0.18) 1.0 0.02+0.01 (0.05+0.03) 1.0

Table 2. Long-term trend values in mean AHC anomalies (AHC gains; in units ZJ/decade and TW)
and amplification factors vs. the 1961-2000 reference gain (grey “Ref.” lines), for total AHC (left
block) and latent-only AHC (right block) for the three recent time periods in four geographic
domains as illustrated in Figure 4. The AHC gain and amplification values are listed together with
their 90 % confidence ranges.

4. Heat available to warm land

In previous studies the land term of the Earth heat inventory was considered as the heat used to
warm the continental subsurface (Hansen et al. 2011; Rhein et al. 2013; von Schuckmann et al.
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2020). Temperature changes within the continental subsurface are typically retrieved by analyzing
the global network of temperature-depth profiles, measured mostly in the northern hemisphere,
southern Africa, and Australia. Each temperature profile records changes in subsurface
temperatures caused by the heat propagated through the ground due to alterations in the surface
energy balance (Cuesta-Valero et al., 2022b). Such perturbations in the subsurface temperature
profiles can be analyzed to recover the changes in past surface conditions that generated the
measured profile, allowing a reconstruction of the evolution of ground surface temperatures and
ground heat fluxes at decadal to centennial time scales (Beltrami et al., 2002; Beltrami &
Mareschal, 1992; Demezhko & Gornostaeva, 2015; Hartmann & Rath, 2005; Hopcroft et al., 2007;
Jaume-Santero et al., 2016; Lane, 1923; Pickler et al., 2016; Shen et al., 1992). Although previous
estimates only considered changes in ground temperatures for representing the heat storage by
exposed land, ground heat storage has been found to be the second largest term of the Earth heat
inventory accounting for 4 % to 6 % of the total heat in the Earth System (von Schuckmann et al.
2020, section 6).

The ground heat is, nevertheless, not the only energy component of the continental landmasses.
Other processes with large thermodynamic coefficients, such as permafrost thawing and the
warming of inland water bodies, occur across large areas, leading to the exchange of large amounts
of heat with their surroundings over time. To account for those heat exchanges, a recent study
(Cuesta-Valero et al., 2022a) has estimated the heat uptake by permafrost thawing and the warming
of inland water bodies, as well as ground heat storage from subsurface temperature profiles,
resulting in a comprehensive estimate of continental heat storage. Therefore, our estimate is
different to ‘terrestrial’ or ‘land’ estimates, as we take into account the subsurface and water bodies
of the continental landmasses, thus not the land surface. The authors used the same global network
of subsurface temperature profiles as in von Schuckmann et al. (2020) to estimate ground heat
storage but applied an improved inversion technique to analyze the profiles. This new technique
is based on combining bootstrapping sampling with a widely-used Singular Value Decomposition
(SVD) algorithm (e.g., Beltrami et al., 1992) to retrieve past changes in surface temperatures and
ground heat fluxes, which also resulted in smaller uncertainty estimates for global results (Cuesta-
Valero et al., 2022b). Heat uptake from permafrost thawing was estimated using a large ensemble
of simulations performed with the CryoGridLite permafrost model (Nitzbon et al., 2022). Ground
stratigraphies required for this purpose, including ground ice distributions, were generated using
various global ground datasets. For soil properties, we used the datasets described in (Masson et
al., 2003) and (Faroux et al., 2013); for soil organic carbon, the dataset described in (Hugelius et
al., 2013); and for excess ground ice content (Brown et al., 1997). Latent heat storage due to
melting of ground ice is evaluated to a depth of 550 m over the Arctic region. Uncertainty ranges
are evaluated using 100 parameter ensemble simulations with strongly varied soil properties and
soil ice distributions. The climate forcing at the surface is based on a paleoclimate simulation
performed by the Commonwealth Scientific and Industrial Research Organization (CSIRO)
providing the initialization of the permafrost model, and data from the ERA-Interim reanalysis
since 1979 onwards. Heat storage by inland water bodies was estimated by integrating water
temperature anomalies in natural lakes and reservoirs from a set of Earth System Model (ESM)
simulations participating in the Inter-Sectoral Impact Model Intercomparison Project phase 2b
(ISIMP2Db) (Frieler et al., 2017; Golub et al., 2022; Grant et al., 2021). Heat storage is then
computed using simulations with four global lake models following the methodology presented in
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(Vanderkelen et al., 2020), but replacing the cylindrical lake assumption in that study for a more
detailed lake morphometry, which leads to a more realistic representation of lake volume.

30
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Figure 6: Continental heat storage from Beltrami et al. (2002) (black), von Schuckmann et al.
(2020) (gray), and Cuesta-Valero et al. (2022a) (red). Gray and red shadows show the uncertainty
range of the heat storage from von Schuckmann et al. (2020) and Cuesta-Valero et al. (2022a),
respectively.

Figure 6 shows the three main estimates of heat gain by the continental landmasses since 1960.
The first global estimate of continental heat storage was provided by Beltrami et al. (2002),
consisting of changes in ground heat content for the period 1500-2000 as time steps of 50 years
(black line in Figure 6). These estimates were retrieved by inverting 616 subsurface temperature
profiles constituting the global network of subsurface temperature profiles in 2002, yielding a heat
gain of 9.1 ZJ during the second half of the 20th century. A comprehensive update was included
in von Schuckmann et al. (2020) using the results of (Cuesta-Valero et al., 2021) (gray line in
Figure 6), with the main difference consisting in the use of a larger dataset with 1079 subsurface
temperature profiles. Since many of these new profiles were measured at a later year than those in
Beltrami et al. (2002), the inversions from this new data set were able to include the recent
warming of the continental subsurface, yielding higher ground heat content than those from
Beltrami et al. (2002). Concretely, the estimates in von Schuckmann et al. (2020) showed a heat
gain of 24 £ 5 ZJ from 1960 to 2018.

Recently, a new estimate of continental heat gain including the heat used in permafrost thawing
and in warming inland water bodies was presented in Cuesta-Valero et al. (2022a) (red line in
Figure 6), achieving a heat gain of 24 £ 2 ZJ since 1960, and 21 + 2 ZJ since 1971 (see also Fig.
8). Despite considering the heat stored in permafrost thawing, the warming of inland water bodies,
and the warming of the ground, the retrieved continental heat storage is similar to the values from
ground warming in von Schuckmann et al. (2020). There is a difference of ~ 3 ZJ between the
average ground heat storage in Cuesta-Valero et al. (2022a) (21.6 £ 0.2 ZJ) and in von Schuckmann
et al. (2020) (24 + 5 ZJ), which is similar to the heat storage in inland water bodies and the heat
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storage due to permafrost thawing together (see below). That is, the decrease in ground heat storage
in the new estimates is compensated by the heat storage in inland water bodies and permafrost
degradation. Another important result is the narrower confidence interval in estimates from
Cuesta-Valero et al. (2022a), which is directly related to the new bootstrap technique used to invert
the subsurface temperature profiles (Cuesta-Valero et al., 2022b). This new bootstrap technique
offers a more adequate statistical framework than the technique used in von Schuckmann et al.
(2020) as demonstrated in Cuesta-Valero et al. (2022a), thus we are confident in the robustness of
the lower uncertainty estimate for ground heat storage presented here. Heat storage within inland
water bodies has reached 0.2 + 0.4 ZJ since 1960, with permafrost thawing accounting for 2 + 2
ZJ. Therefore, ground heat storage is the main contributor to continental heat storage (90 %), with
inland water bodies accounting for 0.7 % of the total heat, and permafrost thawing accounting for
9 %. Despite the smaller proportion of heat stored in inland water bodies and permafrost thawing,
several important processes affecting both society and ecosystems depend on the warming of lakes
and reservoirs, and on the thawing of ground ice (Gadeke et al., 2021). Therefore, it is important
to continue quantifying and monitoring the evolution of heat storage in all three components of
the continental landmasses.

5. Heat utilized to melt ice

Changes in Earth’s cryosphere affect almost all other elements of the environment including the
global sea level, ocean currents, marine ecosystems, atmospheric circulation, weather patterns,
freshwater resources and the planetary albedo (Abram et al., 2019). The cryosphere includes frozen
components of the Earth system that are at or below the land and ocean surface: snow, glaciers,
ice sheets, ice shelves, icebergs, sea ice, lake ice, river ice, permafrost and seasonally frozen
ground (IPCC, 2019). In this study, we estimate the heat uptake by the melting of ice sheets
(including both floating and grounded ice), glaciers and sea ice at global scale (Fig. 7).
Notwithstanding the important role snow cover plays in the Earth’s energy surface budget as a
result of changes in the albedo (de Vrese et al., 2021; Qu & Hall, 2007; Weihs et al., 2021), or its
influence on the temperature of underlying permafrost (Jan & Painter, 2020; Park et al., 2015), or
on sea ice in the Arctic (Perovich et al., 2017; Webster et al., 2021) and Antarctica (Eicken et al.,
1995; Nicolaus et al., 2021; Shen et al., 2022), estimates of changes in global snow cover are still
highly uncertain and not included in this inventory. However, they should be considered in future
estimates. Similarly, changes in lake ice cover (Grant et al., 2021) are not taken into account here
and warrant more attention in the future. Permafrost is accounted for in the land component (see
section 4).
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Figure 7: Heat uptake (in ZJ) and Mass Loss (Trillions of tons) for the Antarctic Ice Sheet
(grounded and floating ice, green), Glaciers (orange), Arctic sea ice (purple), Greenland Ice Sheet
(grounded and floating ice, red) and Antarctic sea ice (blue), together with the sum of the energy
uptake within each one of its components (total, black). Uncertainties are 95% confidence
intervals provided as shaded areas, respectively. See text for more details.

We equate the energy uptake by the cryosphere (glaciers, grounded and floating ice of the Antarctic
and Greenland Ice Sheets, and sea-ice) with the energy needed to drive the estimated mass loss. In
doing so we assume that the energy change associated with the temperature change of the
remaining ice is negligible. As a result, the energy uptake by the cryosphere is directly proportional
to the mass of melted ice:

E = AM*(L+c* AT),

where, for any given component, AM is the mass of ice loss, L is the latent heat of fusion, c is the
specific heat capacity of the ice and AT is the rise in temperature needed to bring the ice to the
melting point. For consistency with previous estimates (Ciais et al., 2014; Slater et al., 2021; von
Schuckmann et al., 2020), we use a constant latent heat of fusion of 3.34x105 J kg1, a specific
heat capacity of 2.01x103 J/(kg °C) and, a density of ice of 917 kg/m?>. Estimating the energy used
to warm the ice to its melting point requires knowledge of the mean ice temperature for each
component. Here we assume a temperature of -15 °C for floating ice in Greenland, -2 °C for the
floating ice in Antarctica, -20 = 10 °C for grounded ice in Antarctica and Greenland and 0 °C for
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sea-ice and glaciers. Although this assumption is poorly constrained, the energy required to melt
ice is primarily associated with its phase transition and the fractional energy required for warming
is a small percentage (< 1% °C 1) of the total energy uptake (Slater et al., 2021). Nevertheless, we
include an additional uncertainty of £10 °C on the assumed initial ice temperature within our
estimate of the energy uptake. An overview of all datasets used and their availabilities are provided
in Table 2, and are further described in the following.

Components

Data type and information

Periods covered

Other specifications:

Antarctic lce
Sheet

Grounded ice change from IMBIE 1992-2020;

(Shepherd et al., 2018, 2019)

Grounded ice change before 1992 1972-1991

combining satellite and regional climate

model data after Rignot et al., 2019

Floating ice change from satellite altimetry | 1994-2020

reconstructions (Adusumilli et al., 2020) (extrapolated between
2017-2020);

1979-1993: zero mass
loss assumed

Ice front retreat due to calving in the

1994-2020 (linear rate

Mean ice temperature for

+ floating ice (basal
melting): -2°C + 10 °C

+ floating ice (calving): -
16°C = 10 °C (Clough &
Hansen, 1979)

» grounded ice: -20 £ 10 °C

satellite velocity (Mankoff et al., 2019)
and regional climate models (Mougino et
al., 2019)

Floating ice change (ice shelf
collapse/thinning & tidewater glacier
retreat) after (Moon & Joughin, 2008;
Motyka et al., 2011; Mouginot et al., 2015;
Minchow et al., 2014; Wilson et al., 2017;
Carr et al., 2017)

1979-1996: no loss
assumed

Amundsen Sea using ERS-1 radar of energy uptake
altimetry (Adusumilli et al. 2020) assumed)
Antarctic Peninsula ice front retreat due to | 1979-2020 (linear rate
calving from imagery and remotely sensed | of energy uptake
data (Cook & Vaughan, 2010; Adusumilli | assumed)
et al. 2020)
Antarctic Sea ice thickness from GIOMAS (Zhang 1979-2020 Mean ice temperature: 0°C +
Sea Ice & Rothrock, 2003) 10 °C
Aurctic Sea Sea ice thickness from PIOMAS model 1979-2011 Mean ice temperature: 0°C
Ice data (Schweiger et al., 2019; Zhang & 10°C
Rothrock, 2003)
CryoSat-2 satellite radar altimeter 2011-2020
measurements (Slater et al., 2021; Tilling
etal., 2018)
Glaciers Geodetic and in-situ glaciological 1979-1996 Mean ice temperature: 0°C +
(distinct observations after Zemp et al., 2019 10°C
from ice In-situ glaciological observations after 1997-2020
sheets) Zemp et al., 2020 and WGMS, 2021
Greenland Grounded ice change from IMBIE 1992-2020; Mean ice temperature for
Ice Sheet (Shepherd et al., 2018, 2019) » floating ice: -15°C £ 10
Grounded ice change before 1992 from 1979-1991 ¢

» grounded ice: -20 £ 10 °C

Table 2: Overview on data used and their availability for the estimate of heat available to melt the
cryosphere over the period 1979-2020. Backward extension to 1971 for the heat inventory is based on the
assumption of negligible contribution. General specification include constant values for latent heat of
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fusion of 3.34x105 J kg—1, specific heat capacity of 2.01x103 J/(kg °C); density of ice with 917 kg/m® for
first-year ice, and 882 kg/m® for multi-year ice, see also Ciais et al., 2014; Slater et al., 2021; von
Schuckmann et al., 2020. Other component specification are provided in the table.

Grounded ice losses from the Greenland and Antarctic Ice Sheets from 1992 to 2020 are estimated
from a combination of 50 satellite-based estimates of ice sheet mass balance produced from
observations of changes in ice sheet volume, flow and gravitational attraction, compiled by the Ice
Sheet Mass Balance Intercomparison Exercise (IMBIE®) (Shepherd et al., 2018, 2019). To extend
those time-series further back in time, we use ice sheet mass balance estimates produced using the
input-output method, which combines estimates of solid ice discharge with surface mass balance
estimates. Satellite estimates of ice velocity are available from the Landsat historical archive from
1972 allowing the calculation of ice discharge before the 1990s while surface mass balance is
estimated from regional climate models. We extend the IMBIE mass balance time-series
backwards to 1979 for Greenland using (Mouginot et al., 2019) and (Mankoff et al., 2019) and for
Antarctica from 1972 to 1991 using (Rignot et al., 2019).

Changes in Antarctic floating ice shelves due to thinning between 1994 and 2017 are derived from
satellite altimetry reconstructions (Adusumilli et al., 2020). There were no estimates of ice shelf
thinning between 1979 and 1993, therefore we assume zero mass loss from ice shelf thinning
during that period. Changes in Antarctic ice shelves due to increased calving in the Antarctic
Peninsula and the Amundsen Sea sector are derived from ERS-1 radar altimetry (Adusumilli et al.
2020) for 1994-2017. For the 1979-1994 period, we only have data for changes in the extent of the
Antarctic Peninsula ice shelves from (Cook & Vaughan, 2010). These are converted to changes in
mass using an ice shelf thickness of 140 + 110 m ice equivalent which represents the range of ice
thickness values for the portions of Antarctic Peninsula ice shelves that have collapsed since 1994
(Adusumilli et al. 2020). Once icebergs calve off large Antarctic floating ice shelves, the
timescales of dissolution of the icebergs are largely unknown; therefore, we assumed a linear rate
of energy uptake between 1979-2020. For icebergs, we use an initial temperature of -16°C, which
was the mean ice temperature in the Ross Ice Shelf J-9 ice core (Clough & Hansen, 1979). There
are no large-scale observations or manifestations of significant firn layer temperature change for
the Antarctic ice shelf; for example, there is no significant trend in the observationally-constrained
model outputs of surface melt described in (Smith et al., 2020). Therefore, the change in
temperature of any ice that does not melt is assumed to be negligible.

Changes in the floating portions of the Greenland Ice Sheet include ice shelf collapse, ice shelf
thinning and tidewater glacier retreat. As in von Schuckmann et al. 2020, we assume no ice shelf
mass loss pre-1997 and estimate a loss of 13 Gt/yr post-1997 based on studies of Zacharie Isstrom,
C. H. Ostenfeld, Petermann, Jakobshavn, 79N and Ryder Glaciers (Moon & Joughin, 2008;
Motyka et al., 2011; Mouginot et al., 2015; Minchow et al., 2014; Wilson et al., 2017). We assign
a generous uncertainty of 50% to this value. For tidewater glacier retreat we note a mean retreat
rate of 37.6 m/yr during 1992-2000 and 141.7 m/yr during 2000-2010 (Carr et al., 2017). We
assume the former estimate is also valid for 1979-1991 and the latter estimate is valid for 2011-
2020. Assuming a mean glacier width of 4 km and thickness of 400 m we estimate mass loss from
glacier retreat to be 9.3 Gt/yr during 1979-2000 and 35.1 Gt/yr during 2000-2020. Based on firn

3 https://imbie.org
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modeling we assessed that warming of Greenland's firn has not yet contributed significantly to its
energy uptake (Ligtenberg et al., 2018).

The contributions from both the Antarctic and Greenland Ice Sheets to the EEI are obtained by
summing the mass loss from the individual components (ice shelf mass, grounded ice mass, and
ice shelf extent) for each ice sheet separately and, given that the datasets used for each component
are independent, the uncertainties were summed in quadrature. This is then converted to an energy
uptake according to the equation above.

Glaciers are another part of the land-based ice, and we here include glaciers found in the periphery
of Greenland and Antarctica, but distinct from the ice sheets, in our estimate. We build our estimate
on the international efforts to compile and reconcile measurements of glacier mass balance, under
the lead of the World Glacier Monitoring Service (WGMS#). Up to 2016, the results are based on
(Zemp et al., 2019), who combine geodetic mass balance observations from DEM differencing on
long temporal and large spatial scales with in-situ glaciological observations, which are spatially
less representative, but provide information of higher temporal resolution. Through this
combination, they achieve coverage that is globally complete yet retains the interannual variability
well. For 2017 to 2021, the numbers are based on the ad-hoc method of (Zemp et al., 2020), which
corrects for the spatial bias of the limited number of recent in-situ glaciological observations that
are available with short delay (WGMS, 2021), to derive globally representative estimates. Error
bars include uncertainties related to the in-situ and spaceborne observations, extrapolation to
unmeasured glaciers, density conversion, as well as to glacier area and its changes. For the
conversion from mass loss to energy uptake, only the latent heat uptake is considered, which is
based on the assumption of ice at the melting point, due to lack of glacier temperature data at the
global scale. Moreover, since the absolute mass change estimates are based on geodetic mass
balances, mass loss of ice below floatation is neglected. While this is a reasonable approximation
concerning the glacier contribution to sea-level rise, it implies a systematic underestimation of the
glacier heat uptake. While to our knowledge there are no quantitative estimates available of glacier
mass loss below sea level on the global scale, it is reasonable to assume that this effect is minor,
based on the volume-altitude distribution of glacier mass (Farinotti etal., 2019; Millan et al., 2022).
Further efforts are under way within the Glacier Mass Balance Intercomparison Exercise
(GlaMBIE®), particularly to reconcile global glacier mass changes including also estimates from
gravimetry and altimetry, and to further assess related sources of uncertainties (Zemp et al., 2019).

Sea ice, formed from freezing ocean water, and further thickened by snow accumulation is not
only another important aspect of the albedo effect (Kashiwase et al., 2017; R. Zhang et al., 2019)
and water formation processes (Moore et al., 2022), but also provides essential services for polar
ecosystems and human systems in the Arctic (Abram et al., 2019). Observations of sea-ice extent
are available over the satellite era, i.e., since the 1970s, but ice thickness data - required to obtain
changes in volume - have only recently become available through the launch of CryoSat-2 and
ICESat-2. For the Arctic, we use a combination of sea ice thickness estimates from the Pan-Arctic
Ice Ocean Modeling and Assimilation System (PIOMAS) between 1979 and 2011 (Schweiger et
al., 2019; Zhang & Rothrock, 2003) and CryoSat-2 satellite radar altimeter measurements between

https://wgms.ch
https://glambie.org
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2011 and 2020 when they are available (Slater et al., 2021; Tilling et al., 2018). PIOMAS
assimilates ice concentration and sea surface temperature data and is validated with most available
thickness data (from submarines, oceanographic moorings, and remote sensing) and against
multidecadal records constructed from satellite (Labe et al., 2018; Laxon et al., 2013; Wang et al.,
2016). We note that the PIOMAS domain does not extend sufficiently far south to include all
regions covered by sea ice in winter (Perovich et al., 2017). Given that the entirety of the regions
that are unaccounted for (e.g., the Sea of Okhotsk and the Gulf of St. Lawrence) are only seasonally
ice covered since the start of the record, this should not influence the results. We convert monthly
estimates of sea ice volume from CryoSat-2 satellite altimetry to mass using densities of 882 and
916.7 kg/m? in regions of multi- and first-year ice respectively (Tilling et al., 2018). During the
summer months (May to September) the presence of melt ponds on Arctic sea ice makes it difficult
to discriminate between radar returns from leads and sea ice floes, preventing the retrieval of
summer sea ice thickness from radar altimetry (Tilling et al., 2018). As a result, we use the winter-
mean (October to April) mass trend across the Arctic for both CryoSat-2 and PIOMAS estimates
for consistency. According to PIOMAS, winter Arctic sea ice mass estimates are 19 Gt/yr (6 %)
smaller than the annual mass trend between 1979 and 2011 (-324 Gt/yr) and so are a conservative
estimate of Arctic sea ice mass change (Slater et al., 2021). The uncertainty on monthly Arctic sea
ice volume measurements from CryoSat-2 ranges from 14.5 % in October to 13 % in April (Slater
etal., 2021; Tilling et al., 2018), and is estimated as +1.8x10° km? for PIOMAS (Schweiger et al.,
2011).

Satellite radar altimeter retrievals of sea ice thickness in the Southern Ocean are complicated by
the presence of thick snow layers with unknown radar backscatter properties on Antarctic sea ice
floes. As a result, no remote sensing estimates are available for Antarctic sea ice and we use sea
ice volume anomalies from the Global Ice-Ocean Modeling and Assimilation System (GIOMAS,
Zhang & Rothrock, 2003), the global equivalent to PIOMAS. GIOMAS output has been recently
validated against in-situ and satellite data by (Liao et al., 2022). We compute Antarctic sea ice
trends as annual averages between January and December. In the absence of a detailed
characterization of uncertainties for these estimates, we use the uncertainty in GIOMAS sea-ice
thickness of 0.34 m (Liao et al., 2022) to estimate the uncertainty in GIOMAS sea-ice volume to
be +4.0x10"3 km”3, using an annual mean sea-ice extent of 11.9x10"6 km”2 (Lavergne et al.,
2019). One caveat to this is that the observational estimates have their own significant uncertainties
(Kern et al., 2019; Liao et al., 2022). For future updates of the Earth heat inventory, we also aim
to include observation-based (remote sensing) estimates in the Southern Ocean (Lavergne et al.,
2019).

Our estimate of the total heat gain in the cryosphere amounts to 14 + 4 ZJ over the period 1971-
2020 (see also Fig. 8 and section 6), (assuming negligible contribution before 1979 according to
the data availability limitation), which is consistent with the estimate obtained in (von Schuckmann
et al., 2020) within uncertainties. Approximately half of the cryosphere's energy uptake is
associated with the melting of grounded ice, while the remaining half is associated with the melting
of floating ice (ice shelves in Antarctica and Greenland, Arctic sea ice). Compared to earlier
estimates, and in particular the 8.83 ZJ estimate from Ciais et al. (2013), this larger estimate is a
result both of the longer period of time considered and, also, the improved estimates of ice loss
across all components, especially the ice shelves in Antarctica. Contributions to the total
cryosphere heat gain are dominated by the Antarctic Ice Sheet (including the floating and grounded
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ice, about 33 %) and Arctic Sea ice (about 26 %), directly followed by the heat utilized to melt
glaciers (about 25 %). The Greenland Ice Sheet amounts to about 17 %, whereas Antarctic sea ice
is accounted for with a non-significant contribution of about 0.2 %.

6. The Earth heat inventory: where does the energy go?

Evaluations of the heat storage in the different Earth system components as performed in section
2-5 allow now for the establishment of the Earth heat inventory. Estimates for all Earth system
components cover a core period of 1971-2020, except for the cryosphere where negligible
contribution is assumed before 1979. Our results reconfirm a continuous accumulation of heat in
the Earth system since our estimate begins (Fig. 8). The total Earth system heat gain in this study
amounts to 380 + 62 ZJ over the period 1971-2020. For comparison, IPCC ARG6 obtained a total
heat gain of 434.9 [324.5 to 545.5] ZJ for the period 1971-2018, and is hence consistent with our
estimate within uncertainties (Forster et al., 2021). However, it is important to note that our
estimate still excludes some aspects of Earth heat accumulation, such as for example the shallow
areas of the ocean, which are challenging to be quantified with respect to gaps in the observing
system.
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Figure 8: Total Earth system heat gain in ZJ (1 ZJ =10°*J) relative to 1960 and from 1960 to

2020. The upper ocean (0-300 m, light blue line, and 0-700 m, light blue shading) accounts for
the largest amount of heat gain, together with the intermediate ocean (700—2000 m, blue shading)
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and the deep ocean below 2000 m depth (dark blue shading). The second largest contributor is the
storage of heat on land (orange shading), followed by the gain of heat to melt grounded and
floating ice in the cryosphere (gray shading), and heating of the atmosphere (magenta shading).
Uncertainty in the ocean estimate also dominates the total uncertainty (dot-dashed lines derived
from the standard deviations (20) for the ocean, cryosphere, land and atmosphere). See sections
2-5 for more details of the different estimates. The dataset for the Earth heat inventory is published
at the German Climate Computing Centre (DKRZ,_https://www.dkrz.de/) (see section 7).
Consistent with von Schuckmann et al. (2020), we obtain a total heat gain of 38161 ZJ over the
period 1971-2020, which is equivalent to a heating rate (i.e., the EEI) of 0.48+0.1 W m~? applied
continuously over the surface area of the Earth (5.10x10%* m?). The corresponding EEI over the
period 20062020 amounts to 0.76=0.2 W m~2. The LOWESS method and associated uncertainty
evaluations have been used as described in section 2.

The estimate of heat storage in all Earth system components not only allows for obtaining a
measure of how much and where heat is available for inducing changes in the Earth system (Fig.
1), but also to improve the accuracy of the Earth’s system total heat gain. In 1971-2020 and for the
total heat gain, the ocean accounts for the largest contributor with an about 89 % fraction of the
global inventory. The second largest component in the Earth heat inventory relies on heat stored
in land with a about 6 % contribution. The cryosphere component accounts for about 4 %, and the
atmosphere about 1 %. For the most recent era of best available GCOS data for the Earth heat
inventory since the year 2006, the fractions amount to about 89 % for the ocean, about 5 % for
land, about 4 % for the cryosphere, and about 2 % for the atmosphere.

The change of the Earth heat inventory over time allows for an estimate of the absolute value of
the Earth energy imbalance. Our results of the total heat gain in the Earth system over the period
1971-2020 is equivalent to a heating rate of 0.48+0.1 W m™2, and is applied continuously over the
surface area of the Earth (5.10x10% m?). For comparison, the heat gain obtained in IPCC AR5
amounts to 274 + 78 ZJ and 0.4 W m2 over the period 1971-2010 (Rhein et al., 2013). In IPCC
ARG, the total heat rate has been assessed by 0.57 [0.43 to 0.72] W m2 for the period 1971-2018,
and 0.79 [0.52 to 1.06] Wm for the period 2006-2018 (Forster et al., 2021). Consistently, we
further infer a total heating rate of 0.76 + 0.2 W m-2 for the most recent era 2006-2020.

Thus, the rate of heat accumulation across the Earth system has increased during the most recent
era as compared to the long-term estimate — an outcome which reconfirms the earlier finding in
von Schuckmann et al. (2020), and which had then been concurrently and independently confirmed
in Foster et al. (2021), Hakuba et al. (2021), Loeb et al. (2021), Liu et al. (2020) and Kramer et al.
(2021). The drivers of a larger EEI in the 2000s than in the long-term period since 1971 are still
unclear, and several mechanisms are discussed in literature. For example, Loeb et al. (2021) argue
for a decreased reflection of energy back into space by clouds (including aerosol cloud
interactions) and sea-ice, and increases in well-mixed greenhouse gases (GHG) and water vapor
to account for this increase in EEl. (Kramer et al., 2021) refers to a combination of rising
concentrations of well-mixed GHG and recent reductions in aerosol emissions accounting for the
increase, and (Liu et al., 2020) addresses changes in surface heat flux together with planetary heat
re-distribution and changes in ocean heat storage. Future studies are needed to further explain the
drivers of this change, together with its implications for changes in the Earth system.
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Besides heat, which is the focus of this study, Earth also stores energy chemically through
photosynthesis in living and dead biomass with plant growth. Recent studies (Crisp et al., 2022;
Denning, 2022; Friedlingstein et al., 2022) on the Global Carbon Budget and cycle show that
approximately 25% of the added anthropogenic CO2 is removed from the atmosphere by increased
plant growth, which is a result of fertilization by rising atmospheric CO2 and Nitrogen inputs and
of higher temperatures and longer growing seasons in northern temperate and boreal areas
(Friedlingstein et al., 2022). This significant increase in carbon uptake by the biosphere indicates
that more energy is stored inside biomass, together with the stored carbon. The quantification of
the additional amount of energy stored inside the biosphere is outside the scope of this study.

7. Data availability

The time series of the Earth heat inventory are published at DKRZ (https://www.dkrz.de/, last
access: 24 January 2023) under https://www.wdc-
climate.de/ui/entry?acronym=GCOS_EHI_1960-2020, more precisely for:

e (von Schuckmann et al., 2023) data for ocean heat content (section 2), and the total heat
inventory as presented in section 6 are integrated.

e (Kirchengast et al., 2022); data for the atmospheric heat content are distributed (section
3).

e (Cuesta-Valero et al., 2023) data for the ground heat storage, together with the total
continental heat gain are provided (section 4)

e (Vanderkelen et al., 2022); data for inland freshwater heat storage is included (section 4)

e (Nitzbon et al., 2022b); data for permafrost are delivered (section 4).

e (Adusumilli et al., 2022); data for the cryosphere heat inventory are provided.

The Digital Object Identifiers (DOIs) for data access are provided in Table 3.

Earth heat inventory DOI Reference

component

Ocean heat content; Total  https://doi.org/10.26050/WDCC/GCOS_EHI_1960- von Schuckmann et

Earth heat inventory 2020 _OHC v2 al., 2023

Atmospheric heat content  https://doi.org/10.26050/WDCC/GCOS_EHI_1960-2020_ AHC Kirchengast et al.,
2022

Continental heat content https://doi.org/10.26050/WDCC/GCOS_EHI_1960- Cuesta Valero et al.,

2020_CoHC_v2 2023

Inland water heat content  https://doi.org/10.26050/WDCC/GCOS_EHI_1960-2020 IWHC  Vanderkelen et al.,
2022

Heat available to melt https://doi.org/10.26050/WDCC/GCOS_EHI_1960-2020 PHC Nitzbon et al.,

permafrost 2022b

Heat available to melt the https://doi.org/10.26050/WDCC/GCOS_EHI_1960-2020 CrHC  Adusumilli et al.,

cryosphere 2022

Table 3: Overview on Digital Object Identifier (DOI) for data access for the components of the Earth
heat inventory, and associated references. The results are presented in Fig. 8.

8. Conclusion
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The Earth heat inventory is a global climate indicator integrating fundamental aspects of the Earth
system under global warming. Particularly, the Earth heat inventory provides the best available
current estimate of the absolute value of the Earth Energy Imbalance (Cheng et al., 2017; Cheng
et al., 2019; Hakuba et al., 2021; Hansen et al., 2011; Loeb et al., 2012, 2022; Trenberth et al.,
2016; von Schuckmann et al., 2020). Moreover, its evaluation enables an integrated view of the
effective radiative climate forcing, Earth’s surface temperature response and the climate sensitivity
(Forster et al., 2022; Hansen et al., 2011; Hansen et al., 2005; Palmer & McNeall, 2014; Smith et
al., 2015). Additionally, its quantification informs about the status of global warming in the Earth
system as it integrates the heat ‘in the pipeline’ that will ultimately warm the deep ocean and melt
ice sheets in the long term (Hansen et al., 2011; Hansen et al., 2005; IPCC, 2021). The Earth heat
inventory also reveals how much and where surplus anthropogenic heat is available for melting
the cryosphere and warming the ocean, land and atmosphere, which in turn allows for an evaluation
of associated changes in the climate system and is essential to improve seasonal-to-decadal climate
predictions and projections on century timescales to enable improved planning for and adaptation
to climate change (Hansen et al., 2011; von Schuckmann et al., 2016, 2020). Regular international
assessment on the Earth heat inventory enables concerted international and multidisciplinary
collaboration and advancements in climate science, including to contribute to the development of
recommendations for the status and evolution of the global climate observing system (GCOS,
2021; von Schuckmann et al., 2020).

This study builds on the first internationally and multidisciplinary driven Earth heat inventory in
2020 (von Schuckmann et al., 2020) and provides an update on total Earth system heat
accumulation, heat storage in all Earth system components (ocean, land, cryosphere, atmosphere)
and the Earth energy imbalance up to the year 2020. Moreover, this study improved earlier
estimates, and further extended and fostered international collaboration, allowing to move towards
a more complete view on where and how much heat is stored in the Earth system through the
addition of new estimates such as for permafrost thawing, inland freshwater (section 4) and
Antarctic sea ice (section 5). Results obtained reveal a total Earth system heat gain of 381+61 ZJ
over the period 1971-2020, with an associated total heating rate of 0.48+0.1 W m 2. About 89 %
of this heat stored in the ocean, about 6 % on land, about 4 % in the cryosphere and about 1 % in
the atmosphere (Fig. 8, 9). The analysis additionally reconfirms an increased heating rate which
amounts to 0.76 + 0.2 W/m2 for the most recent era 2006-2020. Albeit the drivers for this change
still need to be elucidated and most likely reflect the interplay between natural variability and
anthropogenic change (Kramer et al., 2021; Liu et al., 2020; Loeb et al., 2021), their implications
for changes in the Earth system are reflected in the many record levels of change in the 2000s
reported elsewhere, e.g., (Cheng et al., 2022; Forster et al., 2022; Gulev et al., 2021).

The Paris Agreement builds upon the United Nations Framework Convention on Climate Change
and for the first time all nations agreed to undertake ambitious efforts to combat climate change,
with the central aim to keep global temperature rise this century well below 2 °C above pre
industrial levels and to limit the temperature increase even further to 1.5 °C. Article 14 of the Paris
Agreement requires the Conference of the Parties serving as the meeting of the Parties to the Paris
Agreement (CMA) to periodically take stock of the implementation of the Paris Agreement and to
assess collective progress towards achieving the purpose of the agreement and its long-term goals
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through the so-called Global Stocktake of the Paris Agreement (GST)® based on best available

science. The Earth heat inventory provides information on how much and where heat

is

accumulated and stored in the Earth system. Moreover, it provides a measure of how much the
Earth is out of energy balance, and when combined with directly measured net flux at the top of
the atmosphere, enables also to understand the change of the EEI over time. This in turn allows
for assessing the portion of the anthropogenic forcing that the Earth's climate system has not yet
responded to (Hansen et al., 2005) and defines additional global warming that will occur without
further change in human-induced forcing (Hansen et al., 2017). The Earth heat inventory is thus
one of the key critical global climate change indicators defining the prospects for continued global
warming and climate change (Hansen et al., 2011; von Schuckmann et al., 2016; 2020). Hence,

we call for an implementation of the Earth heat inventory into the global stocktake.

EARTH HEAT INVENTORY :
(< 1 0.76 £ 0.2 (0.48 £ 0.1) W/m?

" INCOMING
< SOLAR
RADIATION
B - tie ATMOSPHERE
ok OUTGOING ?% (1%)
RADIATION )
L HEAT g
<°1P§>8\ + 612, Alp
CRYOSPHERE
4% (4%) — LAND

5% (6%)

89% (89%)

0 - 700 m: 52% (55%)
700-2000m: 30% (27%);
> 2000m: 8% (7%)

2006-2020 (1971-2020)

6 https://unfccc.int/topics/global-stocktake/global-
stocktaket#t:~:text=The%20global%20stocktake%200f%20the,.term%20goals%20(Article%2014). (Last access
01.02.2023)
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Figure 9: Schematic presentation on the Earth heat inventory for the current anthropogenically
driven positive Earth energy imbalance at the top of the atmosphere (TOA). The relative partition
(in %) of the Earth heat inventory presented in Fig. 8 for the different components is given for the
ocean (upper: 0—-700 m, intermediate: 700—2000 m, deep: >2000 m), land, cryosphere (grounded
and floating ice) and atmosphere, for the periods 20062020 and 1971-2020 (for the latter period
values are provided in parentheses), as well as for the EEI. The total heat gain (in red) over the
period 1971-2020 is obtained from the Earth heat inventory as presented in Fig. 8.

The quantifications presented in this study are the result of multidisciplinary global-scale
collaboration and demonstrate the critical importance of concerted international efforts for climate
change monitoring and community-based recommendations for the global climate observing
system. For the ocean observing system, the core Argo sampling needs to be sustained — which
includes the maintenance of shipboard collection of reference data for validation - and
complemented by remote sensing data. Extensions such as into the deep ocean layer need to be
further fostered, and technical developments for the measurements under ice and in shallower areas
need to be sustained and extended. Moreover, continued efforts are needed to further advance bias
correction methodologies, uncertainty evaluations, data recovery and processing of the historical
dataset. Spatial geodetic observations and the closure of the sea level budget serve as a valuable
constraint for the full column OHC. Although the independent estimates agree within uncertainty,
the geodetic approach suggest slightly larger OHC linear trends, especially since 2016. Though
efforts are under way to investigate the emerging discrepancy (e.g., Barnoud et al., 2021), the
causes are not yet fully understood and require further investigation.

For the ground heat storage, the estimate had been hampered by a lack of subsurface temperature
profiles in the southern hemisphere, as well as by the fact that most of the profiles were measured
before the 2000s. Subsurface temperature data are direct and independent (not proxy)
measurements of temperature yielding information on the temporal variation of the ground surface
temperature and ground heat flux at the land surface. A larger spatial scale dataset of the thermal
state of the subsurface from the last millennium to the present will aid in the continuing monitoring
of continental heat storage, provide initial conditions for Land Surface Model (LSM) components
of Earth System Models (ESMs) (Cuesta-Valero et al., 2019), and serve as a dataset for validation
of climate models’ simulations (Cuesta-Valero et al., 2021; Cuesta-Valero et al., 2016). Progress
in understanding climate variability through the last millennium must lean on additional data
acquisition as the only way to reduce uncertainty in the paleoclimatic record and on changes to the
current state of the continental energy reservoir. Remote sensing data are expected to be very
valuable to retrieve recent past and future changes in ground heat flux at short-time scales with
near global coverage. However, collecting subsurface temperature data is urgent as we must make
a record of the present thermal state of the subsurface before the subsurface climate baseline is
affected by the downward propagating thermal signal from current climate heating. Furthermore,
an international organization should take responsibility to gather and curate all measured
subsurface temperature profiles currently available and those that will be measured in the future,
as the current practices, in which individual researchers are responsible for measuring, storing and
distributing the data, have led to fragmented datasets, restrictions in the use of data, and loss of the
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original datasets. Support from GCOS for an international data acquisition and curating efforts
would be extremely important in this context.

For the permafrost estimates, the primary sources of uncertainty arise from lacking information
about the amount and distribution of ground ice in permafrost regions, as well as measurements of
liquid water content (Nitzbon et al., 2022). Permafrost heat storage is defined as the required heat
to change the mass of ground ice at a certain location, thus monitoring changes in ground ice and
water contents would be required to improve estimates of this component of the continental heat
storage. Nevertheless, the current monitoring system for permafrost soils is focused on soil
temperature, and the distribution of stations is still relatively scarce in comparison with the vast
areas that need to be surveyed (Biskaborn et al., 2015). Due to the current limitations in the
observational data, a permafrost model was used to estimate the heat uptake by thawing of ground
ice. This approach retrieves latent heat fluxes in extensive areas and at depths relevant to analyze
the long-term change in ground ice mass, but at the cost of ignoring other relevant processes, such
as ground subsidence, to balance model performance with computational resources. Including
permafrost heat storage in the Tibetan Plateau is a priority for the next iteration of this work, as
well as to explore new methods to evaluate model simulations using the available observations in
permafrost areas.

For inland water heat storage, a better representation of lake and reservoir volume would be
possible by better accounting for lake bathymetry using the GLOBathy (Khazaei et al., 2022)
dataset and results from the upcoming Surface Water and Ocean Topography (SWOT) mission.
These improvements in the representation of lake volume, and an updated lake mask will be
available in the upcoming ISIMIP3 simulation round, next to improved meteorological forcing
data (Golub et al., 2022). In contrast to (Vanderkelen et al., 2020), the heat storage in rivers is not
included in this analysis due to the high uncertainties in simulated river water volume. To reduce
the uncertainty in river heat storage, the estimation of river water storage should be improved,
together with an explicit representation of water temperature in the global hydrological models
(Wanders et al., 2019). These improvements will be incorporated in ISIMIP3 and will lead to
better estimates of inland water heat storage, thus enhancing future estimates of continental heat
storage. In the long run, these model-based estimates could be supplemented or replaced by
observation-based estimates, which would however require a large, global-scale effort to monitor
lake and river temperatures at high spatial resolution and over long time periods. Estimates for
inland water heat storage and permafrost heat storage in this analysis depend heavily on model
simulations, which is of particular challenge for analyzing and adding uncertainty ranges, as the
sources of uncertainty in model simulations differ from those in observational records (Cuesta-
Valero et al., 2022a). Future estimates should hence focus on a hybrid approach considering in situ
measurements, reanalysis, remote sensing data and model simulations, consistent with the methods
employed for deriving cryosphere and atmosphere heat storage for the Earth heat inventory.

For the cryosphere, sustained remote sensing for all of the cryosphere components is critical in
quantifying future changes over these vast and inaccessible regions; in situ observations are also
needed for process understanding and in order to properly calibrate and validate them. For sea ice,
observations of the albedo, the area and ice thickness are all essential - the continuation of satellite
altimeter missions with high inclination, polar focused orbits is critical in our ability to monitor
sea ice thickness in particular. Observations of snow thickness with multi-frequency altimeters and
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microwave radiometers are essential for further constraining sea ice thickness estimates. For ice
sheets and glaciers, reliable gravimetric, geodetic, and ice velocity measurements, knowledge of
ice thickness and extent, snow/firn thickness and density, and the continuation of the now three-
decade long satellite altimeter record are essential in understanding changes in the mass balance
of grounded and floating ice. The recent failure of Sentinel-1b, which in tandem with Sentinel-1a
could be used to systematically measure ice speed changes every 6 days, means that images are
now being acquired every 12 days and thus an earlier launch of Sentinel-1c should be encouraged
to regain the ability to monitor ice speed changes over short time-scales. The estimate of glacier
heat uptake is particularly affected by lacking knowledge of ice melt below sea level, and to a
lesser degree, lacking knowledge of firn and ice temperatures. This lack of observations is likely
related to most studies on glaciers focusing on their contribution to sea-level rise or seasonal water
availability, where melt below sea level and warming of ice do not matter much. However, it
becomes obvious here that this gap introduces a systematic bias in the estimate of cryospheric
energy uptake, which is presumably small compared to the other components, but unconstrained.
Although the Antarctic sea ice change and the warming of Greenland and Antarctic firn are poorly
constrained or have not significantly contributed to this assessment, they may become increasingly
important over the coming decades. Similarly, there exists the possibility for rapid change
associated with positive ice dynamical feedbacks at the marine margins of the Antarctic Ice Sheet.
Sustained monitoring of each of these components will, therefore, serve the dual purpose of
furthering the understanding of the dynamics and quantifying the contribution to Earth's energy
budget. In addition to data collection, open access to the data and data synthesis products, as well
as coordinated international efforts, are key to the continued monitoring of the ice loss from the
cryosphere and its related energy uptake.

For the atmosphere, there is a need to sustain and enhance a coherent operational long-term
monitoring system for the provision of climate data records of essential climate variables.
Observations from radiosonde stations within the GCOS reference upper air network (GRUAN)
and from satellite-based GNSS radio occultation deliver thermodynamic profiling observations of
benchmark quality and stability from surface to stratopause. For climate monitoring, it is of critical
importance to ensure continuity of such observations with global coverage over all local times.
This continuity of radio occultation observations in the future is not sufficiently guaranteed as we
are facing an imminent observational gap in mid- to high latitudes for most local times(IROWG,
2021), which is a major concern. Thus, there is an urgent need for satellite missions in high
inclination orbits to provide full global and local time coverage in order to ensure global climate
monitoring. Operational radio occultation missions need to be maintained as backbone for a global
climate observing system and long-term availability and archiving of measurement data, metadata
and processing information needs to be ensured.

In summary, we also call for urgently needed actions for enabling continuity, archiving, rescuing
and calibrating efforts to assure improved and long-term monitoring capacity of the global climate
observing system for the Earth heat inventory, and to complement with measurements from space
for assessing the changes of EEI (e.g., Loeb et al., 2021; von Schuckmann et al., 2016).
Particularly, the summarized recommendations include

¢ Need to sustain, reinforce or even to establish data repositories for historical climate data
(archiving)
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¢ Need to reinforce efforts for recovery projects for historical data and associated meta-data
information (rescuing)

e Need to sustain and reinforce the global climate observing system for assuring the
monitoring of the Earth heat inventory targets, such as for the polar, deep and shallow
ocean, and of top-of-the-atmosphere radiation fluxes (continuity)

e Need to foster calibration measurements (in situ) for assuring quality and reliability of
large-scale measurement techniques (e.g., remote sensing, autonomous components (eg
argo) (calibrating)

A continuous effort to regularly update the Earth heat inventory is important as this global climate
indicator crosses multidisciplinary boundaries and calls for the inclusion of new science
knowledge from the different disciplines involved, including the evolution of climate observing
systems and associated data products, uncertainty evaluations, and processing tools. The outcomes
have further demonstrated how we are able to evolve our estimates for the Earth heat inventory
while bringing together different expertise and major climate science advancements through a
concerted international effort. All of these component estimates are at the leading edge of climate
science. Their union has provided a new and unique insight on the inventory of heat in the Earth
system, its evolution over time and the absolute values. The data product of this effort is made
available and can be thus used for climate model validation purposes. The results also demonstrate
that further efforts are needed for uncertainty evaluations, such as for example the use of synthetic
profile analyses. Indeed, improving the climate observing system will allow for reduced
uncertainties for estimating the Earth heat inventory. However, further evaluations are needed to
unravel uncertainties of the different components of the Earth heat inventory, which rely for
example on non-homogeneous data sampling and large data gaps, the use of different measurement
types and statistical approaches, instrumental bias corrections, and their joint analysis of mode-
based quantifications.

This study has demonstrated the unique value of such a concerted international effort, and we thus
call for a regular evaluation of the Earth heat inventory. This updated attempt presented here has
been focused on the global area average only, and evolving into regional heat storage and
redistribution, the inclusion of various timescales (e.g., seasonal, year to year) and other climate
study tools (e.g., indirect methods, ocean reanalyses) would be an important asset of this much
needed regular international framework for the Earth heat inventory. This would also respond
directly to the request of GCOS to establish the observational requirements needed to further
monitor the Earth's cycles and the global energy budget (GCOS, 2021). The outcome of this study
will therefore directly feed into GCOS assessments of the status of the global climate observing
system, and the identified observation requirements will guide the development of the next
generation of in situ and satellite global climate observations as specified by GCOS by all national
meteorological services and space agencies and other oceanic and terrestrial networks.
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