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Abstract. Near-surface air temperature (Ta) is a key variable in global climate studies. A global gridded dataset of daily maximum
and minimum Ta (Tmax and Tmin) is particularly valuable and critically needed in the scientific and policy communities, but is
still not available. In this paper, we developed a global dataset of daily Tmax and Tmin at 1-km resolution over land across 50°S
~79°N from 2003 to 2020 through the combined use of ground station-based Ta measurements and satellite observations (i.e.,
digital elevation model, and land surface temperature) via a state-of-the-art statistical method named Spatially Varying Coefficient
Models with Sign Preservation (SVCM-SP). The root mean square errors of our estimates ranged from 1.20 to 2.44 °C for Tmax
and 1.69 to 2.39 °C for Tmin. We found that the accuracies were affected primarily by land cover types, elevation ranges, and
climate backgrounds. Our dataset correctly represents a negative relationship between Ta and elevation and a positive relationship
between Ta and land surface temperature; it captured spatial and temporal patterns of Ta realistically. This global 1-km gridded
daily Tmax and Tmin dataset is the first of its kind and we expect it to be of great value to global studies such as urban heat island
phenomenon, hydrological modeling, and epidemic forecasting. The data has been published by lowa State University at
https://doi.org/10.25380/iastate.c.6005185 (Zhang and Zhou, 2022).

1 Introduction

Near-surface air temperature (Ta) refers to the atmospheric temperature 1.5-2m above surfaces and it is an important variable for
numerous applications, especially those pertinent to climate and environment change (Huang et al., 2019; Zhang et al., 2018),
terrestrial hydrology and phenology (Lin et al., 2012; Ren et al., 2019), public health (Lan et al., 2010, 2022; Zhang et al., 2019),
disease vectors propagating (Lowen et al., 2007; Petrova and Russell, 2018; Wu et al., 2020), and epidemic forecasting (Aggarwal
et al., 2012; Connor et al., 1998). Ta generally varies across space and time dramatically, due to the spatial heterogeneity and
temporal dynamics of environmental factors such as solar radiation, wind speed, land cover, cloud cover, and vegetation phenology
(Benali et al., 2012; Chen et al., 2015, 2021; Prihodko and Goward, 1997). At the global scale, a Ta dataset will be of limited or
no use if not characterizing and capturing such fine spatial details and continuous temporal coverage. A high-/medium-resolution

global Ta dataset at the daily interval is highly desirable.
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Many global or regional Ta datasets have been previously published (Chen et al., 2021; Crespi et al., 2021; Fang et al., 2021,
Hersbach et al., 2018; Hooker et al., 2018; Kalnay et al., 1996; MacDonald et al., 2020; Meyer et al., 2019; Nashwan et al., 2019;
Oyler et al., 2015; Thornton et al., 2021; Werner et al., 2019); however, these have either coarse spatiotemporal resolutions or only
cover specific regions (Table S3). For example, some global Ta datasets have daily frequencies but at coarse spatial resolutions
(e.g., 0.05° or even coarser) (Hersbach et al., 2018; Hooker et al., 2018; Kalnay et al., 1996); other Ta datasets with medium spatial
resolutions (~ 1-km) are only available for specific regions such as North America and mainland China (MacDonald et al., 2020;
Oyler et al., 2015; Thornton et al., 2021; Chen et al., 2021). There are also several Ta datasets at even finer spatial resolutions but
generated only for much smaller spatial regions (Crespi et al., 2021; Meyer et al., 2019; Nashwan et al., 2019; Werner et al., 2019).
Despite the increasing need for a global daily Ta at finer resolutions (e.g., 1 km), such global products do not exist yet—a gap still
not filled yet.

Methodologically speaking, a range of techniques have been proposed and applied to generate Ta products; the majority of them
rely on combining weather station data and gridded auxiliary datasets to simply make spatial interpolation or build empirical
predictive models (Chen et al., 2015; Goward and Waring, 1994; Hengl et al., 2012; Hou et al., 2013; Hrisko et al., 2020; Li and
Zha, 2019; Li et al., 2018; Nemani and Running, 1989; Rao et al., 2019; Shen et al., 2020; Shi et al., 2017; Sun et al., 2005; Yoo
et al., 2018; Zhu et al., 2013). Common spatial interpolation algorithms, such as Inverse Distance Weighting (IDW), Spline, and
Kriging, are unlikely to be applicable at the global scale, for example, due to the relative sparsity of weather stations and the high
spatial heterogeneity of Ta (Chai et al., 2011; Dodson and Marks, 1997; Li and Heap, 2011; Stahl et al., 2006). Model-based
approaches are often a better choice to capture the true spatial variability of Ta; these methods are roughly divided into three groups.
The first is the Temperature-Vegetation Index (TVX) method, which estimates Ta from the maximum normalized difference
vegetation index (NDVI) based on the assumption that the canopy temperature over fully covered vegetation approximates near-
surface Ta (Goward and Waring, 1994; Nemani and Running, 1989; Zhu et al., 2013). An apparent weakness of the TV X method
is its large uncertainty or unsuitability for regions with low vegetation cover. The second group is the energy balance method,
leveraging the explicit modeling of surface energy balance and the quantification of net radiation (e.g., the sum of sensible, sail,
and latent heat fluxes) (Sun et al., 2005; Zhang et al., 2015). Energy-based methods are physically based, requiring detailed
characterization of surface biophysical conditions and thereby, making it difficult to implement for large areas, due to the lack of
such detailed biophysical parameters.

Of the three groups, the third category is statistical methods that estimate Ta via statistical relationships empirically calibrated
between Ta and other covariates. Common algorithms used include geographically weighted regression (GWR), Cubist, random
forests, and deep learning, among others (Chen et al., 2015, 2021; Hooker et al., 2018; Li et al., 2018; Rao et al., 2019; Shen et al.,
2020; Yoo et al., 2018). Compared to physical-based methods, statistical methods have fewer restrictions on data requirements and
better applicability for large spatial extents (Noi et al., 2017). However, direct applications of common statistical methods often
fail to capture and preserve relationships between Ta and auxiliary covariates (e.g., an unrealistically positive relationship between
Taand elevation), thereby leading to large uncertainties or even wrong results. To overcome such drawbacks, we recently proposed
a class of Spatially Varying Coefficient Models with Sign Preservation (SVCM-SP) (Kim et al., 2021; Zhang et al., 2022b), which
can capture and preserve relationships between Ta and explanatory variables. The SVCM-SP algorithm was originally
implemented for estimating Ta over mainland China, with significant improvement in terms of both accuracies and computational
efficiency compared to alternative methods such as GWR (Zhang et al., 2022b). The potential of SVCM-SP as a routine algorithm
to generate global Ta products is still untapped and addressed here.

Here we aim to generate a global dataset of daily maximum and minimum Ta (Tmax and Tmin) at 1 km across 50°S ~79°N

from 2003 to 2020 by integrating ground station-based Ta measurements and gridded satellite-observed covariates (i.e., DEM and
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LST). We employed our newly developed SVCM-SP algorithm that, for example, can preserve negative and positive relationships
with elevation and LST, respectively. Zhang et al. (2022b) successfully estimated and validated gridded Ta using the SVCM-SP
algorithm and demonstrated its novelty through the comparison with the geographically weighted regression (GWR) model, while
in this study, we developed the global product of gridded Ta, performed extensive model calibration and accuracy assessment at
the global scale, and provided details on accuracy, spatial and temporal patterns of the global gridded Ta. Our dataset aims to

provide the first ever 1-km resolution daily maximum and minimum Ta dataset with a global coverage.

2 Study area and data

Land areas covered by our global dataset span from 50°S to 79°N. We divided the global lands roughly into five regions: North
America, South America, Europe and Asia, Africa, and Australia/New Zealand. To encompass all the land areas resolved at 1-km
resolution as well as cover all the possible weather stations, the boundaries of the five regions were irregular. There also exist some
overlaps between the regions. Our analysis considered three major data sources: ground station-based Ta observations, satellite-
derived LSTs, and elevation. In our algorithm, ground station-based Ta is assumed to be statistically related to satellite LST and
elevation. Details about each data source are further described below.
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Figure 1: Regions and locations of weather stations in this study. Red points are the locations of weather stations, polygons are the
boundary of regions used in the SVCM-SP algorithm. Specifically, polygons of red, purple, orange, blue, and black represent the
boundaries of North America, South America, Africa, Australia, and Europe & Asia, respectively.

Ground station-based daily Tmax and Tmin were compiled from a total of 103,156 weather stations from 2003 to 2020. These
are obtained from two climatology networks, the Global Historical Climatology Network daily (GHCNd) across the world and the
China Meteorological Data Service Centre (CMDC) across mainland China. The LST dataset is a global seamless 1-km resolution
LST dataset at a daily (mid-daytime and mid-nighttime) frequency from 2003 to 2020, which was gap-filled from the MODIS LST
products (Zhang et al., 2022a). Both the mid-daytime and mid-nighttime LSTs were considered in our analysis. The DEM layer
we used is the SRTM30_PLUS product at 1-km resolution (Becker et al., 2009), which has been generated from the combination
of the Shuttle Radar Topography Mission (SRTM30) topography (collected in 2000) (Hennig et al., 2001; Rosen, 2000) within a
latitude of +55 degrees, ICESat derived topography (collected from February 1st, 2003 to June 30th, 2005) (Dimarzio et al., 2007)
in Antarctica, and the GTOPO30 topography (completed in late 1996) (Danielson and Gesch, 2011) in the Arctic. Besides, the

Kdppen-Geiger climate zones and MODIS land cover data (MCD12Q1) were acquired to divide the world into zones for accuracy
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assessment (Sulla-Menashe and Friedl, 2018). Specifically, our dataset covers a small portion of Greenland which is constrained

by the extent of the global seamless 1-km daily LST dataset.

3 Methods

The core of our methodological framework is the SVCM-SP algorithm that correlates ground station-based Ta with satellite LST
and elevation. We applied the SVCM-SP algorithm to estimate Tmax and Tmin separately. To capture potential non-stationarity,
the algorithm was trained for each day of the period 2003-2020 as well as for each of the five regions. Before applying the SVCM-
SP algorithm, weather station Ta data were first pre-processed and filtered for quality control to ensure the high fidelity of reference
Ta observations.

More specially, we first processed the weather station data in three ways. First, the locations of many weather stations in China,
especially those located in complex terrains, are not accurately documented, geo-referenced only at the level of arc degrees and
minutes in the metadata. Such location errors have to be corrected, and we manually corrected the locations of those weather
stations located over complex terrains by searching the meteorological observation fields near the reported locations of weather
stations with the help of high spatial resolution images from ArcGIS base map or google maps (Zhang et al., 2022b). Second, there
are missing values, especially in stations in Africa and South America (Fig. S1). We filled these data gaps using a 5-day local
moving window (Fig. S2). Accordingly, the number of records largely increased (Figs. S3 and S4) with reasonable error ranges
(Fig. S5). Third, the processed ground station-based Ta data from the two steps were overlaid and matched with satellite LST and
elevation to extract pairs of ground station-based Ta and satellite covariates as inputs to the SVCM-SP algorithm. Specifically,
mid-daytime and mid-nighttime LSTs were used to develop their relationship with air temperature to interpolate station Tmax and
Tmin, respectively. The actual time of Tmax and Tmin may be slightly different from mid-daytime and mid-nighttime of LST.
Within the small difference in time between LST and Tmax/Tmin, there will not be significant change in the spatial variations of
LST. Therefore, the impact of time difference between LST and Tmax/Tmin on the accuracy of the estimated Ta is minor as shown
by shifting LST for time difference (Fig. S8).

The SVCM-SP algorithm seeks to build a spatially varying relationship between ground station-based Ta with LST and elevation
with sign preservation (Kim et al., 2021; Zhang et al., 2022b). A salient feature distinguishing it from conventional regression
approaches is the spatially varying nature with constraints of estimated coefficients in the predictive relationship:

Ta(wi, vi) = Bo (i, i) + Berew (wy, vy) - Elevation(w;, v;) + Bise (wy, vi) - LST (uy, vy) + &, )

where both the variables (e.g., Ta, Elevation, and LST) and the model parameters are functions of locations/coordinates (u;, v;).
More importantly, the two slope parameters (e.g., Beier aNd B;5;) are constrained to be negative and positive, respectively. g; is the
normal random error with mean zero and finite variance. These unknown parameters were estimated with a penalized bivariate
spline method based on the triangulation technique under constraints. Details about the SVCM-SP algorithm are reported in Kim
et al. (2021) and Zhang et al. (2022b). To estimate Ta across the globe, we applied the SVCM-SP algorithm to develop region-
specific relationships for the five regions (Fig. 2). Also, two separate sets of equations were developed, one for Tmax using mid-
daytime LST as the explanatory variable, and another for Tmin using mid-night LST as the explanatory variable. The model
performance for estimating gridded Ta was assessed based on root mean square error (RMSE) and mean square error (MAE) using
the 10-fold cross-validation in these regions in each day. Taking the RMSE as an example, a RMSE was generated in each test of
the 10-fold cross-validation and all RMSEs from the 10 tests were averaged as the final RMSE in a specific day in a specific region.
This accuracy assessment using the 10-fold cross-validation was implemented based on independent validation data and can

provide a reliable evaluation of the accuracy. For each station, we can also calculate RMSE based on the time series of estimated



140  and validation Ta from the 10-fold cross-validation. Accordingly, we can calculate mean RMSE and corresponding standard
deviation in each land cover type, climate type, and elevation range. Specifically, this accuracy assessment represents conservative
estimates of the uncertainties of our data because when producing the final results, we used all the available data, more than those

in the 10-fold cross-validation.

Elevation Ta at weather stations

145 Figure 2: Framework for implementing the SVCM-SP algorithm in a region (e.g., Africa). Bg, Beter @and Big: are the intercept,
coefficients of elevation, and LST, respectively.

4 Results and discussion
4.1 Accuracy of the estimated Ta

The results of the 10-fold cross-validation indicate the accuracy of estimated Ta varies across regions within a reasonable range
150 (Fig. 3 and Table 1). The estimated and observed Ta in different regions scattered along the 1:1 line with the RMSE ranging from
1.17 to 2.38°C and 1.59 to 2.34°C, respectively, for Tmax and Tmin in 2010 (Fig. 3). As shown in Table 1, the estimated average
RMSE and MAE from 2003 to 2020 ranged from 1.20 to 2.44 °C and 0.89 to 1.82 °C, respectively. The highest accuracy was
obtained in Australia for Tmax, with the RMSE and MAE of 1.20 °C and 0.89 °C, respectively. The lowest accuracy was obtained
in North America for Tmax, with the RMSE and MAE of 2.44 °C and 1.82 °C, respectively. Meanwhile, the variation of accuracy
155  across years in each region is smaller compared to spatial variations of the accuracy across regions (Tables S1-S2). The variations
in accuracy may be caused by the differences in climate and topography in these regions (Hooker et al., 2018). For example,
Australia is a continent with the gentlest undulations of terrains with about 87% of the land below 500 m.a.s.l. and is dominated
by hot arid desert and steppe climates, leading to the smallest spatial variations of Ta. However, other regions contain a variety of

dominant climate types and geomorphic types, contributing to the large spatial variability observed in Ta.
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Table 1. Multi-year average accuracies for Tmax and Tmin in different regions from 2003 to 2020

North America

Indicator
Tmax

Tmin

South America Europe & Asia

Tmax Tmin Tmax Tmin

Africa

Tmax Tmin

Australia

Tmax Tmin

RMSE+SD (°C) 2.44+0.40 2.39£0.39 1.99+0.29 1.92+0.21 1.80+0.19 1.75+0.26 2.22+0.55 2.21+0.40 1.20+0.26 1.69+0.26

MAE=SD (°C) 1.82+0.30 1.78+0.29 1.47+0.20 1.43+0.15 1.29+0.15 1.28+0.20 1.62+0.37 1.68+0.29 0.89+0.18 1.28+0.21

Note: The selected testing stations were within 50 km surrounding the training stations. SD represents the corresponding standard deviation.
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Figure 3: Scatter plots between estimated and observed Ta in five regions in year 2010. Each point represents the estimated and observed

Ta (Tmax or Tmin) in a specific day in a weather station. The color of points represents the density, in which red and blue points

represent the high and low densities, respectively. The red line is the regression line and the black line is the 1:1 line.

The accuracy of estimated Ta varied in different land cover types, elevation ranges, and climate types (Tables 2-4). RMSE and

MAE for Tmax ranged from 2.06 to 2.56 °C and 1.54 to 1.97 °C, respectively, and these indicators for Tmin range from 1.84 to

2.83 °C and 1.40 to 1.96 °C, respectively. The model performs well for impervious surface (with the lowest RMSE), cropland,

water, and wetland, whereas RMSE values were higher for the tundra and bare land, which was generally consistent with the
findings of existing studies in mainland China (Chen et al., 2021; Shen et al., 2020; Zhang et al., 2022b). As shown in Table 3,

RMSE and MAE values vary with elevation ranges but did not increase with the increase of elevation ranges, which is different

from existing findings (Chen et al., 2015; Rao et al., 2019). This is because we only used weather stations within the distance of

50 km from the training sites to evaluate the accuracy of estimated Ta in this study, which can mitigate the effects of sparse weather

stations at high elevations on accuracy assessment, as reported in existing studies (Chen et al., 2015; Rao et al., 2019). RMSE and

MAE values in equatorial climate zones are distinctly lower than those of other climate zones (Table 4), indicating the highest

accuracies for both Tmax and Tmin, possibly due to Ta near the equator being generally warmer and less intra-annual variations

compared to other climate zones (Legates and Willmott, 1990).

Table 2. Model performance for different land cover types in 2003-2020

Tmax Tmin
Land cover type
Records (%) RMSE+SD (°C) MAE+SD (°C)  Records (%) RMSE+SD (°C) MAE=SD (°C)
Cropland 11.40 2.08+0.77 1.59+0.64 11.40 1.89+0.69 1.45+0.56



Forest 21.82 2.20+0.84 1.71+0.71 21.82 2.26+0.86 1.76+0.74

Grassland 38.01 2.29+0.86 1.76x0.72 38.00 2.29+0.84 1.77+£0.73
Shrubland 1.58 2.13+0.94 1.66+0.77 1.57 2.36+1.07 1.89+0.97
Wetland 0.06 2.09+0.83 1.54+0.55 0.06 1.87+0.68 1.40+0.49
Water 1.60 2.09+0.75 1.61+0.60 1.59 2.07+0.86 1.61+0.71
Tundra 0.77 2.56x1.40 1.97+1.27 0.77 2.83£1.30 2.17+£1.12
Impervious surface 21.49 2.06+0.75 1.58+0.62 21.53 1.84+0.62 1.41+0.50
Bare land 3.23 2.22+0.84 1.71+0.70 3.21 2.46%0.95 1.96+0.84
Snow/Ice 0.05 2.18+0.67 1.71+0.59 0.05 2.46+0.75 1.91+0.61

Note: SD represents the corresponding standard deviation.
180

Table 3. Model performance for different elevation ranges in 2003-2020

Tmax Tmin
Elevation (m)
Records (%) RMSE=SD (°C) MAE=SD (°C) Records (%) RMSE=+SD (°C) MAE=SD (°C)

<1000 75.36 2.13+0.80 1.63+0.66 75.37 2.01+0.72 1.54+0.59
1000-2000 16.84 2.44+0.90 1.89+0.76 16.84 2.51£0.99 1.99+0.87
2000-3000 6.76 2.24+0.88 1.75+0.76 6.76 2.71+0.98 2.18+0.87
3000-4000 1.01 2.11+1.04 1.65+0.80 1.00 2.44+0.87 1.95+0.75
> 4000 0.03 2.69£1.05 2.28+1.00 0.03 2.48+0.57 1.90+0.43

Note: SD represents the corresponding standard deviation.

Table 4. Model performance for different climate types in 2003-2020

Tmax Tmin
Climate type
Records (%) RMSE=SD (°C) MAE=ZSD (°C) Records (%) RMSE=SD (°C) MAE=SD (°C)

Equatorial 1.36 1.54+0.67 1.24+0.61 1.39 1.49+0.73 1.20+0.69
Arid 16.72 2.34+1.00 1.80+0.85 16.69 2.33+0.91 1.83+0.79
Warm temperate 46.28 2.14+0.76 1.65+0.64 46.29 1.94+0.76 1.50+0.64
Snow 34.99 2.21+0.82 1.70+0.68 34.98 2.36+0.80 1.82+0.68
Polar 0.65 2.32+1.12 1.80+0.94 0.65 2.35+0.93 1.81+0.76

185  Note: SD represents the corresponding standard deviation.
Spatial distributions of RMSE illustrate that most of the climate zones show reasonable accuracies (RMSE < 3.0 °C) for Tmax

and Tmin (Fig. 4). The lower-accuracy climate zones (RMSE > 3.0 °C) mainly occur where there are low station densities (Fig.

7
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S6), which is consistent with the finding of decreasing accuracy with the increase of station density (Shen et al., 2020). Meanwhile,
these lower-accuracy climate zones are generally located at the boundary of regions where some directions have no weather stations.
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Figure 4: Accuracy of estimated Ta in climate zones in 2003-2020. Climate zones with black boundaries are areas with low densities of
weather stations (i.e., distances between training and validation sites are larger than 50 km). The white regions on land are areas without
reliable evaluations due to the lack of weather stations.

The RMSE values generally show distinctly seasonal patterns in the five regions within reasonable ranges (Fig. 5). Taking the
year 2010 as an example, RMSEs in Summer (June, July, and August) are generally lower than those in Winter (December, January,
and February) in North America, Europe and Asia regions (Fig. 5), possibly due to plant phenology which leads to a closer
relationship between Ta and LST in the Summer than that of the Winter (Benali et al., 2012; Cai et al., 2017; Lin et al., 2012). This
seasonal variation is less obvious in Africa and South America, possibly due to weaker correlations between plant phenology and
air temperature in the two regions, which are located across the equator (Adole et al., 2019; Sakai and Kitajima, 2019). Specifically,
the Australia region, which locates in the Southern Hemisphere, shows higher RMSEs in Summer (December, January, and
February) than that in Winter (June, July, and August) for Tmax. This may be caused by more homogeneous spatial variations of
Tmax in Winter than that in Summer in the Australian region.
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Figure 5: Temporal patterns of accuracies in estimated Ta in different regions in the year 2010.
4.2 Spatial and temporal patterns of Ta

The estimated Ta shows significant spatial variations at the global scale (Fig. 6). Taking the estimated Ta in one July day as an
example, both Tmax and Tmin decrease from about 30° N to the North and South Poles (Fig. 6). Meanwhile, lower Ta values also
occur at higher elevation regions such as the Tibetan Plateau in the center of Asia and the Andes Mountains in the west of South
America. Therefore, the characteristics of Ta change with latitude and elevation (i.e., the trend of lower Ta in higher
latitude/elevation areas), which is consistent with the existing studies (Chen et al., 2015; Zhang et al., 2022b). The highest Ta

values occur in northern Africa and the Arabian Peninsula, as these regions are mainly covered by the Gobi deserts.
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Figure 6: Spatial pattern of estimated Ta at the global scale in an example day of 200 in 2010.

30°8

The spatial patterns of estimated Ta in selected cities with clear weather around the world illustrate that the urban heat island
(UHI) phenomenon (i.e., the higher temperature in urban than in the surrounding rural areas) has been well captured at the city
scale (Fig. 7). On an example day of July in 2010, the estimated Ta in these cities shows an obvious UHI phenomenon, which is
reasonable with the transition from urban centers to surrounding rural areas. The estimated Ta in Changsha, China, shows several
hotspots because some nearby cities (such as Xiangtan and Zhuzhou) have also been included in the buffer of Changsha, indicating
the effectiveness of the estimated Ta for presenting UHI in small urban areas. Specifically, as a coastal city, estimated Ta in
Melbourne, Australia, shows decreasing trends from the coast, and the UHI phenomenon is not obvious in surrounding small cities.
This is because there is also an increasing trend of elevation from the coast in Melbourne, leading to the mixed spatial patterns of

Ta due to the UHI phenomenon and elevation changes.
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Figure 7: Spatial pattern of estimated Ta in five representative cities on day 200 of the year 2010. A city shape includes the urban

extracted by using nighttime light data (Zhou et al., 2018) and its surrounding buffer of equal size. Black polygons are the urban extents
extracted by using global 30-m resolution artificial impervious area data (Li et al., 2020).

The comparison of the temporal pattern between estimated Ta and ground station-based measurements from an example of
weather stations in a mega-city (Fig. 8) illustrates that the SVCM-SP algorithm can effectively (RMSE of 1.25°C and 1.53°C,
respectively, for Tmax and Tmin) estimate Ta for the entire period. As shown in Fig. 8, the estimated Ta based on 10-fold cross-
validation and Ta observations from the weather station in Beijing, China, show similar temporal patterns and very close values
for both Tmax and Tmin in 2010. For both clear weather (days 28 and 130 in Fig. 8) and overcast weather (days 219 and 293 in
Fig. 8) (Zhang et al., 2022a), the gridded Ta can illustrate the UHI phenomenon. An existing study has found that the estimated Ta
in urban areas was more accurate than those of other regions (Zhang et al., 2022b), specifically suggesting its great value for urban

applications.
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Figure 8: Temporal pattern of estimated and observed Ta in the weather station of Beijing (black point) in the year 2010. The black
rectangles are example days showing maps of estimated data in Beijing.

4.3 Comparison with existing Ta datasets

The gridded Ta data in this study have advantages regarding spatiotemporal resolutions (i.e., 1-km and daily maximum and
minimum) and its global coverage (Table S3). The spatial resolution of existing global Ta datasets with daily frequencies and long-
term coverage is generally low (e.g., 0.25°) (Hersbach et al., 2018; Kalnay et al., 1996). Ta datasets with improved spatial
resolutions (e.g., 1 km) are usually only available at the continental or national scales (Chen et al., 2021; Fang et al., 2021;
MacDonald et al., 2020; Oyler et al., 2015; Thornton et al., 2021).

The gridded Ta in this study can effectively capture the spatial variation of Ta by preserving physical relationships between Ta
and response variables (Fig. S7). In other Ta datasets, such physical relationships (e.g., positive relationship between Ta and LST)
cannot always be preserved in some situations because these datasets were created using methods without explicit constraints on
the relationships between Ta and response variables. Efforts have been made to build vertical lapse models to estimate gridded Ta
according to Adiabatic Lapse Rate (ALR) (Dodson and Marks, 1997; Rhee and Im, 2014; Thornton et al., 2021; Zhu et al., 2017),
but the generalization of these models is limited because it is difficult to accurately capture ALR due to its spatial change.

The accuracy of the resulting gridded Ta from this study is comparable to several other reported gridded Ta datasets (e.g., Chen
etal., 2021; Oyler et al., 2015; Thornton et al., 2021). Among them, the 1-km daily Ta from Daymet (Thornton et al., 2021) reaches
MAE of 1.52 and 1.78 °C for Tmax and Tmin, respectively, and the 30-arcsec (~800 m) daily Ta from TopoWx (Oyler et al., 2015)
reaches that of 1.03 and 1.06 °C, while in this study, the average MAE is 1.82 and 1.78 °C in North America. However, Daymet
failed to capture the UHI phenomenon due to the spatial interpolation of Ta being implemented based on only elevation (Menne

et al., 2012) and did not consider the impact of biophysical and socioeconomic factors on spatial variations of Ta (Li et al., 2018).
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Therefore, Daymet has difficulties in capturing the spatial variation of Ta in urban areas, although its accuracy is comparable to
our dataset. The estimated Ta from TopoWx can display the UHI phenomenon but tend to overestimate the impact of topographical
features and show fewer temporal variations of the spatial pattern of Ta within a month than that in this study, as 10-year average
of monthly LSTs were used as a covariate in TopoWx (Li et al., 2018; Oyler et al., 2015) instead of daily LST data in this study.
The 1-km daily average Ta data by Chen et al.(2021) reaches RMSE of 1.615 to 1.957 K using leave-location-out cross-validation
in mainland China, while the average RMSE of estimated Tmax and Tmin is 1.80 and 1.75 °C, respectively, in Europe and Asia.
While the accuracy of Ta obtained in this study is comparable to the other large-scale Ta datasets, our dataset is produced at the
global scale using consistent modeling and assessment approaches.

There are some limitations in the SVCM-SP algorithm used in this study for creating the gridded Ta dataset, and future work
can focus on improving the accuracy of the estimated Ta with an improved SVCM-SP algorithm. First, we only considered the
linear relationship between Ta and covariates. However, nonlinear relationships may exist between Ta with elevation and LST
when other factors, such as winds, clouds, snow, and land cover types, have non-negligible impacts on Ta (Cai et al., 2017; Good,
2016). Second, we only used two covariates in the SVCM-SP algorithm although the potential of generalization of our framework
is large. Additional covariates (e.g., other surface characters such as GLAS-derived canopy height and vegetation parameters) can
be explored in the SVCM-SP algorithm to further improve the model performance. Third, the limited number of valid station
observations in specific days might introduce larger uncertainties in interpolating Ta using the SVCM-SP algorithm. In future

studies, station observations from neighboring days can be explored to improve the interpolation of Ta.

5 Data availability

Data described in this paper can be accessed at lowa State University’s DataShare at https://doi.org/10.25380/iastate.c.6005185
(Zhang and Zhou, 2022). The dataset contains 36 sub-datasets. Each sub-dataset contains Tmax or Tmin of each year from 2003to
2020 in five regions (i.e., North America, South America, Europe and Asia, Africa, and Australia (and New Zealand)). The data
are in GeoTIFF with the georeferenced information embedded. The MODIS ellipse sinusoidal projection with a spatial resolution
of 1 km is used in the data. The unit of LST in GeoTIFF is 0.1 degrees Celsius (°C), and the naming rule can be found in the file
“README.pdf”.

6 Conclusions

We generated a global land (50°S ~79°N) 1-km daily maximum and minimum Ta (i.e., Tmax and Tmin) dataset from 2003 to 2020
based on ground station-based Ta measurements and gap-filled LST dataset using the Spatially Varying Coefficient Models with
Sign Preservation (SVCM-SP) algorithm. The dataset showed acceptable accuracies based on the 10-fold cross-validation for five
regions of the globe, compared to existing Ta datasets. The RMSEs of estimated Tmax and Tmin ranged from 1.20 to 2.44 °C and
1.69 to 2.39 °C, respectively. The estimated Ta was affected by land cover types, elevation ranges, and climate types, with varying
accuracies but within reasonable ranges. Our gridded Ta dataset effectively captured the spatial variation of Ta under clear physical
meanings (i.e., negative and positive relationship with elevation and LST, respectively), which is not always true in other gridded
Ta datasets. The new dataset is unique in terms of spatiotemporal resolutions (i.e., 1-km daily maximum and minimum), global
coverage, and temporal span and should be useful for a wide range of applications such as urban heat island phenomenon,
hydrological modeling, and epidemic forecasting. Future work can focus on improving the accuracy of the gridded Ta dataset using

the SVCM-SP algorithm by exploring more explanatory variables which are available over large areas.
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